JP2022551383A - LiDARシステム及びその動作方法 - Google Patents

LiDARシステム及びその動作方法 Download PDF

Info

Publication number
JP2022551383A
JP2022551383A JP2022510226A JP2022510226A JP2022551383A JP 2022551383 A JP2022551383 A JP 2022551383A JP 2022510226 A JP2022510226 A JP 2022510226A JP 2022510226 A JP2022510226 A JP 2022510226A JP 2022551383 A JP2022551383 A JP 2022551383A
Authority
JP
Japan
Prior art keywords
optical
optical element
shaft
light
collimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2022510226A
Other languages
English (en)
Inventor
ウ、ジンヤン
ル、ドン
ウ、ヤンヤン
ジャン、ゼジェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Publication of JP2022551383A publication Critical patent/JP2022551383A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • G02B26/0883Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism
    • G02B26/0891Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism forming an optical wedge
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

多要素光学スキャンデバイスの小型軸受並びに関連するシステム及び方法が開示される。代表的なシステムは、レーザエミッタ及びレーザ受信機を有するレーザ送受信機を含み、レーザエミッタは光路に沿ってレーザ光を発するように位置決めされる。コリメート要素が、貫通する開口部を有する少なくとも1つの光学要素と同様に、光路に沿って位置決めされる。シャフトが開口部内に延び、軸受が、シャフトに対して少なくとも1つの光学要素を回転可能に支持するように位置決めされる。

Description

本技術は、一般的には多要素光学スキャンデバイスの小型軸受並びに関連するシステム及び方法に関する。
光学スキャナは、自律運転に向けられた用途を含め多くの用途を有する。モバイルプラットフォームの環境は通常、LiDARセンサ等の1つ又は複数のセンサを使用してスキャン又は他の方法で検出することができ、1つ又は複数のセンサは通常、パルス信号(例えば、レーザ信号)を送信し、パルス信号の反射を検出する。環境についての三次元情報はこのようにして特定することができる(例えば、レーザスキャンポイントにおいて)。既存のLiDARセンサは通常、意図される目的に適するが、多種多様なモバイルプラットフォームで使用されるよりコンパクトで軽量、長寿命、及び/又は統合可能なLiDARセンサへのユーザ主導の需要が引き続きある。本明細書に記載される技術の態様は、これらの需要を満たすことに向けられる。
本技術による代表的なシステムは、レーザエミッタ及びレーザ受信機を含むレーザ送受信機を有するLiDARシステムを含み、レーザエミッタは、光路に沿ってレーザ光を発するように位置決めされる。システムは、光路に沿って位置決めされるコリメート要素と、光路に沿って位置決めされ、貫通する開口部を有する少なくとも1つの光学要素と、開口部内に延びるシャフトと、シャフトに対して少なくとも1つの光学要素を回転可能に支持するように位置決めされた軸受とを更に含むことができる。
更なる代表的な実施形態は、対向する非平行表面を有する屈折要素を備えた少なくとも1つの光学要素を含む。例えば、少なくとも1つの光学要素は第1のプリズム及び第2のプリズムを含むことができ、開口部は、第1のプリズムを通って延びる第1の開口部と、第2のプリズムを通って延びる第2の開口部とを含むことができる。モータが少なくとも1つの光学要素に接続されて、送受信機に対して少なくとも1つの光学要素を回転させることができる。例えば、モータは、第1の光学要素に接続されて、第1の光学要素を第1の速度で駆動する第1のモータと、第2の光学要素に接続されて、第1の速度と異なる第2の速度で第2の光学要素を駆動する第2のモータとを含むことができる。モータはロータ及びステータを含むことができ、ロータ及びステータはそれぞれ、少なくとも1つの光学要素の周囲に外側に向かって位置決めされる。
更なる代表的な実施形態では、シャフトはシャフト軸に沿って位置決めすることができ、レーザエミッタは、シャフト軸に沿って又はシャフト軸に対して非ゼロ角度でレーザ光を発するように位置決めすることができる。コリメート要素は、対応する焦点面及び焦点面に直交する光軸を有することができ、レーザエミッタは、光軸から中心をずらしてレーザ光を発するように位置決めすることができる。他の代表的な実施形態では、シャフトは、光軸に対して非ゼロ角度で向けられたシャフト軸に沿って位置決めされる。コリメート要素は吸光材料を含むことができる。
本技術の更なる実施形態は、光学システムを動作させる方法に関する。1つのそのような代表的な方法は、開口部を有する少なくとも1つの光学要素を、開口部内に延びるシャフト及び少なくとも1つの光学要素とシャフトとの間に動作可能に接続された軸受を介して光路に沿った位置において回転可能に支持することを含む。方法は、エミッタからの光を第1の方向に光路に沿って向けることと、受信機において、第1の方向とは逆の第2の方向において光路に沿って通過する反射光を受け取ることとを更に含むことができる。更なる代表的な実施形態では、発せられた、シャフト又は軸受の少なくとも一方に衝突した光の少なくとも一部は失われる。
本技術の実施形態による、車両又は他の移動物体の周囲の環境を検知するシステムの概略ブロック図である。 本技術の実施形態による、光又は他の放射線を送受信するように位置決めされた光学要素を有するシステムの部分概略図である。 本技術の実施形態により構成された代表的な光路の部分概略図である。 本技術の実施形態により構成された1つ又は複数のエミッタ要素を有するエミッタの部分概略図である。 本技術の実施形態により構成された1つ又は複数の受信要素を有する受信機の部分概略図である。 本技術の実施形態により構成された軸受を有する複数の光学要素を有するシステムの部分概略図である。 本技術の実施形態による、遮蔽エリアを有する構成要素と、対応する光路とを有するシステムの部分概略図である。 本技術の実施形態により構成された吸光処理を有するコリメート要素の部分概略図である。 本技術の実施形態により構成された別の吸光処理を有するコリメート要素の部分概略図である。 本技術の実施形態により構成された、角度オフセットで発せられた光の光軸を有するシステムの部分概略図である。 本技術の実施形態により構成された側方オフセットで発せられた光の光軸を有するシステムの部分概略図である。 本技術の更なる実施形態により構成された側方オフセット光軸を有するシステムの部分概略図である。 本技術の代表的な実施形態により構成された少なくとも3つの光学要素を有するシステムを示す。 本技術の代表的な実施形態により構成された少なくとも3つの光学要素を有するシステムを示す。 本技術の代表的な実施形態により配置された軸受要素を有するアクチュエータの部分概略図である。 本技術の代表的な実施形態により配置された光学要素及びヨークを有するアクチュエータの部分概略図である。 本技術の代表的な実施形態により構成されたヨーク及び軸受を有するアクチュエータの部分概略図である。 本技術の代表的な実施形態による光学要素内に位置決めされたロータを有するアクチュエータの部分概略図である。 本技術の実施形態による、軸受要素と、光学要素を支持するヨークとを有するアクチュエータの部分概略図である。 図12Aに示されるタイプの代表的なステータの部分概略図である。 本技術の代表的な実施形態により構成されたステータの部分概略等角図である。 ヨークにより支持され、本技術の代表的な実施形態により構成されたロータの部分概略等角図である。 本技術の代表的な実施形態により構成されたシャフト支持体を有するアクチュエータの部分概略図である。 本技術の代表的な実施形態により構成されたシャフト支持体を有するアクチュエータの部分概略図である。 本技術の代表的な実施形態により含まれたシャフト支持体及び/又は他の代表的な要素を有するアクチュエータの部分概略図である。 本技術の代表的な実施形態により含まれたシャフト支持体及び/又は他の代表的な要素を有するアクチュエータの部分概略図である。 本技術による実施形態による代表的な傾斜面の詳細を示す。 本技術による実施形態による代表的な傾斜面の詳細を示す。 本技術の代表的な実施形態による回転バランス接続で構成された光学要素及び対応するヨークを示す。 本技術の代表的な実施形態による回転バランス接続で構成された光学要素及び対応するヨークを示す。 本技術の代表的な実施形態による対応する軸受要素に与えられた予圧力を有する代表的なシステム構成を示す。 本技術の代表的な実施形態による対応する軸受要素に与えられた予圧力を有する代表的なシステム構成を示す。 本技術の実施形態により配置された傾いた、角度のある、又は傾斜した表面を有する光学要素の代表的な構成を示す。 本技術の実施形態により配置された傾いた、角度のある、又は傾斜した表面を有する光学要素の代表的な構成を示す。 本技術の実施形態により配置された傾いた、角度のある、又は傾斜した表面を有する光学要素の代表的な構成を示す。 本技術の実施形態により配置された傾いた、角度のある、又は傾斜した表面を有する光学要素の代表的な構成を示す。 本技術の実施形態により配置された傾いた、角度のある、又は傾斜した表面を有する光学要素の代表的な構成を示す。 本明細書に記載される検知システムが本技術の代表的な実施形態により含まれる代表的な車両及び/又は他のデバイスの部分概略図である。
本技術は一般的には、多要素光学スキャンデバイスを駆動する小型軸受及びモータ並びに関連するシステム及び方法に関する。代表的な実施形態では、軸受は、光学要素の外縁とは対照的に、光学要素の開口部内に位置決めされるように構成される。この構成は、軸受構成要素に関連する速度を低減することができ、それにより、構成要素の摩耗を低減し、デバイスの寿命を延ばす。モータは、従来のデバイスよりもコンパクトに軸受及び光学要素に統合することができ、低重量及び低容積がシステム全体の大きな利点を提供する状況でこれらのデバイスを使用できるようにする。
代表的な測距デバイス(例えば、LiDARデバイス)について以下の見出し1(「前置き」)の下で説明する。小型軸受及び/又はモータを多要素デバイスに組み込んだ代表的なデバイス及びシステムについて以下の見出し2(「代表的なシステム及び方法」)の下で更に詳細に説明する。
1.前置き
本技術による代表的なデバイスは、LiDARデバイス、レーザ測距機器、及び他の電子機器を含む。代表的な実施態様では、測距デバイスは、外部環境を検知し、対応する情報、例えば特に、ターゲットまでの距離、物体又は構成要素の方位角、反射光又は他の放射線の強度、物体の速度を取得するように使用される。例えば、測距デバイスは、測距デバイスと物体との間の光伝播時間、すなわち光飛行時間(飛行時間又は「TOF」)を測定することにより、検出器からターゲット物体までの距離を検出することができる。測距デバイスは、TOFへの追加又は代替として、位相移動(位相シフト)測定に基づいて測距法又は周波数移動(周波数シフト)測定に基づく測距法等の他の技法を使用して、測距デバイスから物体までの距離を検出することができる。
本技術の考察全体を通して、測距デバイスにより発せられる放射線及び受け取られる放射線は光、レーザ光、ビーム等と呼ばれ得る。別記される場合を除き、そのような用語は電磁放射線の代表例として使用される。したがって、本技術は、可視スペクトルであるか否かに関係なく、全ての適した電磁放射線を含む。
図1は、送信(又は放射)回路101、受信(又は検出)回路102、サンプリング回路103、及び演算回路104を含むことができる代表的なシステム100(例えば、測距タスクを実行する)を示す。送信又は放射回路101は、光又は他の電磁パルスシーケンス(レーザパルスシーケンス等)を例えばビームの形態で発することができる。受信回路102は、検出された物体により反射された光パルスシーケンスを受け取り、光パルスを電気信号(例えば、光電効果を介して)に変換することができる。電気信号は処理することができ、次にサンプリング回路103に出力することができる。サンプリング回路103は、サンプリング結果を演算回路106に向け、演算回路106は測距システム100と検出された物体との間の距離及び/又は他の有用な情報を特定することができる。
任意選択的に、測距システム100は、図示の回路の1つ又は複数、例えば、各回路の作業時間及び/又は動作パラメータを制御する制御回路105を含むこともできる。
図1に示される図示の測距システムは、放射ビームからの反射を検出するために、送信回路、受信回路、サンプリング回路、及び演算回路を含むが、他の実施形態では、送信回路、受信回路、サンプリング回路、及び/又は計算回路の数は、例えば、同じ方向又は異なる方向に複数のビームを放射/検出するためにより多数であることができる。複数のビーム(例えば、少なくとも2つのビーム)を同時に放射することができ、又は異なるときに放射することができる。一例では、少なくとも2つの放射回路の回路チップは同じモジュールに封入される。例えば、複数レーザ放射チップは、図3Bを参照して後に説明するように、同じ封入空間に一緒に封入し、配置することができる。
幾つかの実施態様では、図1に示される回路に加えて、測距システム100はスキャンモジュール(図2を参照して更に後述)を含むこともでき、スキャンモジュールは、送信回路により発せられた少なくとも1つのレーザパルスシーケンスの伝播方向を変更するのに使用される。
幾つかの実施態様では、放射回路101、受信回路102、サンプリング回路103、及び演算回路104を含み、任意選択的に制御回路105を更に含むモジュールは、測距モジュールと呼ばれる。測距モジュールは、他のモジュール、例えばスキャンモジュールから独立することができる。
測距デバイスにより発せられたビーム及び環境中の物体により反射されたビームは、例えば同軸構成で測距デバイス内の同じ光路の少なくとも部分を共有することができる。代替的には、測距デバイスは異種光路を含むことができ、すなわち、測距デバイスにより発せられたビーム及び反射ビームは測距デバイス内の異なる光路に沿って伝達される。以下に更に説明する図2は、同軸光路を含む本技術の測定デバイスの実施形態の概略図である。
これより図2を参照すると、代表的なシステム200は測距デバイス208を含む。測距デバイス208は、送信機(又はエミッタ)201(上述した送信回路101を含むことができる)、コリメート要素270、受信機又は検出器202(上述した受信回路102、サンプリング回路103、及び演算回路106を含むことができる)、及び光路変更要素210を含むことができる。測距デバイス208は、ビーム212を送信し、反射ビームを受信し、返ってきたビームを電気信号に変換するのに使用される。したがって、送信機201及び受信機202はまとめて送受信機207と呼ばれ得る。幾つかの実施形態では、送信機201は、例えばレーザビームの形態のレーザパルスシーケンスを発することができる。レーザビームは、可視光範囲内又は外の波長を有する狭帯域幅ビームであることができる。コリメート要素270は、送信機201の放射光路又は光軸272に沿って配置され、例えば、関連するスキャナ204に達する前に平行成分を含むようにビームを直線化するよう送信機201から発せられたビーム212を向けるのに使用される。コリメート要素270は、受信機202に達する前、反射放射線215の少なくとも部分を集束させるのに使用することもできる。コリメート要素270は、コリメートレンズ又はビームをコリメートするように構成された他の構成要素を含むことができる。
図2に示される実施形態では、放射光及び受信光が通過するパスは、スキャナ204とコリメート要素270との間で測距デバイス208において統合され、それにより、放射光及び受信光は同じコリメート要素270を共有することができ、光路をよりコンパクトにする。他の実施態様では、システムは2つのコリメート要素を含むことができ、一つは放射光用であり、もう一つは受信光用である。
図2に示される実施形態では、送信機201のビームアパーチャは比較的小さく、測距デバイス208により受け取られた戻り光のビームアパーチャはより大きく、したがって、光路変更要素210は小面積リフレクタを使用して、放射光及び受信光のパスを統合することができる。他の実施態様では、光路変更要素210は、貫通孔を有するリフレクタを使用することができ、ここで、貫通孔は放射光の透過に使用され、リフレクタは戻り光を受信機202に向けて反射するのに使用される。
スキャナ204は放射光(例えば、ビーム)212のパスに沿って配置され、コリメート要素270によりコリメートされたビームの方向を変更する。次にビームは外部環境に向けられ、戻ってきたビーム又は反射されたビームはスキャナ204によりコリメート要素270に向けられる。
幾つかの実施形態では、スキャナ204は、反射、屈折、回折、及び/又は他の技法によりビームの伝播路を変更する少なくとも1つの光学要素を含むことができる。例えば、スキャナ204は、1つ又は複数のレンズ、ミラー、プリズム、振動器、格子、液晶、光学フェーズドアレイ、及び/又は上記光学要素の任意の適した組合せを含むことができる。一例では、光学要素の少なくとも部分は移動する。幾つかの実施形態では、スキャナ204の複数の光学要素は共通軸(例えば、回転軸)209に対して回転又は振動することができ、各回転光学要素及び/又は振動光学要素は発せられたビームの伝播方向を連続して変更することができる。幾つかの実施形態では、スキャナ204の複数の光学要素は、異なる速度又は同じ速度で回転及び/又は振動することができる。幾つかの実施形態では、スキャナ204の複数の光学要素は異なる軸の回りを回転/振動することができる。幾つかの実施形態では、複数の光学要素は、同じ方向又は異なる方向に回転及び/又は振動することができる。
幾つかの実施形態では、スキャナ204は、第1のアクチュエータ280aに接続されて回転軸209の回りを回転し、それにより、放射ビーム212の方向を変更する第1の光学要素120を含む。第1の光学要素120を透過した後のビーム212の方向との間の角度は、第1の光学要素120の回転に伴って変わる。一実施形態では、第1の光学要素は、少なくとも1つの軸に沿って厚さが変化する非平行対向面、例えば、楔形プリズムを含む。
スキャナ204は、第2のアクチュエータ280bに接続されて、例えば、第1の光学要素120の回転速度と異なる速度で回転軸209の回りを回転する第2の光学要素130を含むこともできる。第2の光学要素130は、第1の光学要素120を出るビームの方向を変更する。構成に応じて、第1の光学要素120及び第2の光学要素130は、同じ又は異なるアクチュエータにより駆動することができるが、いずれの場合でも、放射ビーム212を異なる方向に向け、それにより、より広い空間をスキャンすることができる。第2の光学要素130は、第1の光学要素120を参照して先に説明した任意の上記要素を含むことができ、第1の要素120と同じ又は異なることができる。幾つかの実施形態では、スキャナ204は、第3の光学要素(図2に示されていない)及び関連するアクチュエータを更に含む。
スキャナ204に含まれる光学要素の数に関係なく、スキャナ204は入力ビーム212を受け取ることができ(例えば、コリメート要素270から)、回転、振動、及び/又は受けた他の移動の結果として、第1の方向213及び第2の方向214として図2に示される複数の方向に入力光をリダイレクトすることができる。放射光は環境中の物体211に衝突し、反射光215を生成し、反射光215の幾らかは第3の方向216に向けられる。したがって、反射光の少なくとも一部はスキャナ204に戻り、1つ又は複数の光学要素を透過し、コリメート要素270を通り、受信機202に達する。受信機202は電気信号を生成し、電気信号はコントローラ290への入力291を提供する。コントローラ290は入力を他の入力と共に処理し、出力292を向ける。出力292は、限定ではなく、自律車両又は他の車両の方向、速度、及び/又は向き又は姿勢を含め、任意の多種多様な機能を制御するのに使用することができる。
図3Aは、選択された要素を更に詳細に示す代表的なシステム300の部分概略図である。システム300は、放射光312を第1のミラー310aに向ける送信機又はエミッタ301を含む。第1のミラー310aは光をコリメート要素370にリダイレクトし、コリメート要素370は放射光312をスキャナ(図3Aに示されず)に向ける。反射光315はコリメート要素370に戻され、そこで、スプリッタ317を透過する。反射光315の部分は第2のミラー310bに衝突し、第2のミラー310bは反射光を受信機又は検出器302にリダイレクトする。受信機302は電気信号を生成し、電気信号はコントローラ290(図2)に向けられる。
図3Bは、一緒に封入することができる複数のエミッタ要素301aを含む代表的なエミッタ301を示す。図3Cは、複数の受信要素302aを含む代表的な受信機302を示す。エミッタ要素301a及び受信要素302aは、任意の多種多様な適した固体状態デバイス及び/又は可視スペクトル内又は外の放射線を放射し受信するように構成された他のデバイスを含むことができる。例えば、エミッタ要素301aはレーザダイオードを含むことができ、受信要素302aはフォトダイオードを含むことができる。
結果として受信機302から取得された情報は、検出された物体211(図1)に対応する距離及び/又は方位角データを生成するのに使用することができる。この情報は、リモート検知、障害物回避、マッピング、モデリング、ナビゲーション、及び/又は他の機能に使用することができる。本技術による測距デバイスは、モバイルプラットフォーム、例えば、自律又は部分的自律車両に適用することができる。
2.代表的なシステム及び方法
幾つかの従来のセンサシステムに関連する一欠点は、大きく嵩張り、より小型及び/又は重量の影響を受けやすいプラットフォームに統合することが難しいことである。嵩張る一原因は、平滑で低摩擦の回転を光学デバイスに提供するのに使用される軸受である。例えば、そのような軸受は通常、光学要素の外部の周囲に配置される。光学デバイスはまた、通常、半径方向外側位置からも駆動されて、スキャナ内の光学光路との解消を回避する。本技術の態様は代わりに、アパーチャ又は開口部を光学要素内に提供し、軸受又は駆動機構の他の要素を開口部内に配置することに関する。この手法は光路に沿って遮蔽領域を生成するが、本技術は遮蔽に対処する技法を更に含み、コンパクト且つ軽量であり、それでもなお適した測距及び検出機能提供するデバイスを生成する。
図4は、第1の光学要素420(例えば、第1のプリズム)及び第2の光学要素430(例えば、第2のプリズム)が位置決めされる筐体440を有する代表的なシステム400を示す。各光学要素は、第1の開口部422及び第2の開口部432として示される対応する開口部を含む。シャフト460はシャフト軸461に沿って延び、第1の開口部422及び第2の開口部432を通る。例えば、複数の軸受要素451をそれぞれ含む1つ又は複数の軸受450は対応する開口部内に位置決めされて、シャフト460に対して第1の光学要素420及び第2の光学要素430の回転運動を安定化させる。したがって、シャフト461は軸受450と組み合わせて、光学要素420、430が平滑に回転する際にセンタリングされた状態を保つマンドレルとして機能することができる。軸受450を光学要素の波形方向中心近くに配置することにより、軸受450は、典型的な従来の設置での軸受よりも小さくすることができる。加えて、光学要素の半径方向中心近くの線形速度は光学要素の先端部よりも低く、軸受の摩滅を低減し、したがって、システム400の動作寿命を延ばすことができる。軸受450は、例えば、内レース、外レース、及びレース間の複数の玉を有し、任意選択的に、1つ又は複数のリテーナ及び/又は他の適したタイプの軸受を更に含む玉軸受構成を有することができる。そのような軸受は通常、油又はグリースを含むことができ、油又はグリースは、軸受がかなり熱くなった場合、分解又は他の方法で効き目低下を受ける。したがって、軸受構成要素の速度を低減することは、潤滑剤に悪影響を及ぼす確率を下げることにより軸受の効率及び寿命を延ばすことができる。さらに、低温では、潤滑剤はより高粘度になり、軸受が光学要素の外周に位置決めされることから生じるより大きなモーメントアームは、大きな摩擦を生み出し、光学要素は回転できなくなり、及び/又は光学要素を駆動するアクチュエータは、大きすぎて関連する回路が故障する電流を消費する。ここでも、軸受を光学要素の半径方向中心近くに位置決めすることは、この望ましくない影響を低下させるか、又はなくすことができる。さらに、軸受への摩擦負荷を低減することにより、スタートアップ時のみならず、通常の動作状況中でも、光学要素を駆動するモータ又は他のアクチュエータにより必要とされる電力量を低減することができる。
図5Aは代表的なシステム500の更なる要素を示す。システムは、放射光を送り、反射光を受け取り、外部環境に対応する情報を検出する送受信機507を含む。放射光512は、直交軸562に沿って向けられた焦点面519から、スキャナ504に向けられた光をコリメートするコリメート要素570に進む。スキャナ504において、第1の光学要素520及び第2の光学要素530は、入力放射光512を受け取り、シャフト軸561の回りを回転する。各光学要素は対応する開口部522、532を含み、開口部522、532は軸受を収容し、1つ又は複数の遮蔽面523を提示し、対応する遮蔽エリア524を生成する。遮蔽エリア524は放射光ギャップ525を生成する。放射光512は光路518に沿って物体(図5Aに示されず)まで進み、物体は光を反射して、反射光515を生成し、反射光515は光路518に沿って逆方向に進む。この構成はコンパクトであり、遮蔽エリア524に起因した光低減は許容可能レベル以下であることができる。
コリメート要素からスキャナ504に進む放射光512は、第1の光学要素520及び/又は第2の光学要素530の遮蔽エリア524に衝突して反射されることができる。したがって、典型的な設計は、関連する軸受及び/又は他の要素の収容に十分なエリアを提供しながら、可能な限り小さい遮蔽エリア524を含むことになる。本発明を用いない場合には光学ノイズ又は他の干渉をスキャナ504内に生み出す恐れがあるそのような反射を低減又はなくすために、コリメート要素570は、図5B及び図5Cを参照して更に後述する吸光処理を(任意選択的に)含むことができる。
まず図5Bを参照すると、コリメート要素570は、図5Aに示される焦点面519に向かって面する吸光処理571を含むことができる。適した吸光処理571は、放射光を高度に吸収し(及び/又は低反射性を有し)、したがって、スキャナ504内の内部反射を低減する材料を含むことができる。適した材料は、マットブラック酸化及び/又は吸光塗料を用いたコーティングを含む。そのような塗料又は他のコーティングは、光学(又は他の)要素の特定の部分に塗布して、放射光がそのような部分に衝突して、望ましくない反射を生み出すのを阻止することができる。図14A~図15Bを参照して後に説明するように、デバイスは、傾斜面又は傾いた面を含み、吸収又は減衰に向けて内部反射をリダイレクトすることができる。吸光処理は、図5Aに示される遮蔽エリア524の形状に応じて異なるパターン及び/又は配置を有することができる。例えば、図5Bに示される吸光処理571は、同様の形状の遮蔽エリアに対応するコリメート要素570の中央に配置された概して円形の形状を有する。図5Cでは、吸光処理571は、第1の概して円形の領域571a及び第1の領域571aから半径方向外側に延びる第2の領域571bを含む。第2の領域571bは、本発明を用いない場合にはスキャナ内で光を反射し、光学ノイズを生じさせる恐れがあるスキャナ内の他の構造(例えば、図13A、図13Bを参照して後に説明するスポーク又は他の支持構造)を構成することができる。
上述した吸光処理への追加又は代替として、代表的なシステムは、遮蔽エリアへの衝突を回避するように放射光を向け、したがって、吸光処理の必要性を低減又はなくす構成を含むことができる。図6~図8Cはそのような構成を有する代表的なシステムを示す。
まず図6を参照すると、代表的なシステム600は、直交軸662に対して非ゼロ傾斜角で対応する焦点面619から延びる光路618を含む。図6中、直交軸662はコリメート要素670及び/又は焦点面619に直交し、対応する第1の光学要素620及び第2の光学要素630内の開口部622、632を通るシャフト軸661と並ぶ。放射光612は光学要素620、630の遮蔽エリア624から半径方向外側に向けられるため、光学要素は吸光処理を含む必要がない(又はそれほど多くの吸光処理を含む必要がない)。システム600により発せられる光の量は、遮蔽エリア624外部の光学要素の完全な半径方向広がりを利用する構成と比較して低減し得るが、光の低減はシステム性能に大きく影響すると予期されない。
図6を参照して上述したように、示された放射光軸672は直交軸662に対してある角度をなして向けられる。他の実施形態では、光学要素はそのような角度をなして向けることができる。例えば、これより図7を参照すると、代表的なシステム700は、焦点面719と、対応するコリメート要素770及び/又は焦点面719の対応する直交軸762からオフセット距離Dだけオフセットされた対応する放射光軸772とを含む。第1の光学要素720及び第2の光学要素730はそれぞれ、対応する開口部722、732及び遮蔽エリア724を有する。光学要素720、730はシャフト軸761の回りを回転するように位置決めされ、シャフト軸761は直交軸762に対して非ゼロ傾斜角Bで向けられる。したがって、放射光712は、遮蔽エリア724への衝突を回避又は低減するように対応する放射光軸772に沿って進む。
図8A~図8Cは、放射光が対応する遮蔽エリアの周囲に又は対応する遮蔽エリアから離れて向けられる(少なくとも部分的に)システムの更なる代表的な実施形態を示す。まず図8Aを参照すると、システム800aは放射光812aを対応する焦点面819から、コリメート要素870及び/又は焦点面819の対応する直交軸862からオフセット距離Dだけオフセットされた放射光軸872に沿って向ける。システム800aは、シャフト軸861に対して回転する第1の光学要素820a及び第2の光学要素830aを含み、一方、放射光812aは対応する遮蔽エリア824を迂回する(少なくとも部分的に)。
同様の構成を3つ以上の光学要素を含むシステムに使用することができる。例えば、図8Bは、第1の光学要素820bを通り第1の平面826bに達する放射光812bを生成する代表的なシステム800bを示す。第1の光学要素820bは、例えば、図4に示されるタイプの1つ又は複数の中心配置小型軸受850を使用して支持することができる。対応する放射光軸872は、第1の光学デバイス820bに関連する遮蔽エリア824からオフセットされる。システム800bは、第2の光学要素830b1及び830b2として示される複数の第2の光学要素830bを更に含むことができる。第2の光学要素830bは、放射光812bを第2の平面836bにリダイレクトすることができ、光学要素830bの周囲に外側に位置決めされたより大きな軸受850bにより支持することができる。
次に図8Cを参照すると、代表的なシステム800cは、第1の光学要素820c1及び820c2として示される複数の第1の光学要素820cにより支持されるシャフト860を含む。放射光は第1の平面826c、対応する第2の光学要素830cを通り、第2の光学平面836cに達する。この構成では、第1の光学要素820c1及び820c2は1つ又は複数の小型中心配置軸受850により支持され、第2の光学要素830cはより大きな外側に位置決めされた軸受850bにより支持される。
図8B及び図8Cに示される代表的な実施形態の一特徴は、3つ以上の光学要素を含むことができることである。図8B及び図8Cに示される代表的な実施形態の別の特徴は、軸受構成の組合せを含むことができることである。例えば、図8B及び図8Cにおける第1の光学要素は、第1の光学要素の回転軸知覚に位置決めされた小型軸受850を含み、一方、第2の光学要素は、第2の光学要素の外側の周囲に位置決めされたより大きな軸受850bを含む。より小型の軸受は、比較的高い回転速度を有する構成要素に使用することができ、より大きな軸受はより遅い回転速度を有する構成要素に使用することができる。全てよりも少数の光学要素が回転軸近くに配置された軸受構成を含む場合であっても(図8B及び図8Cに示されるように)、それにも関わらずデバイスは全体的により軽量且つより効率的な構成を提供することが予期される。他の実施形態(図8B及び図8Cに示されない)では、全ての光学要素又は少なくともより多数の光学要素が、回転軸近くに配置された軸受要素を有する軸受構成を含むことができる。軸受構成及び関連する駆動機構の更なる詳細について図9~図17Bを参照して以下に更に詳述する。
図9は、固定シャフト960に対して支持された光学要素920を駆動して、矢印Rで示されるように回転させるアクチュエータ980が内部に位置する筐体940を含むシステム900の部分概略断面図である。光学要素920は開口部922を含み、シャフト960は開口部922を通り、アクチュエータ980は、外側に位置決めされたステータ981により駆動されるロータ982を含む。ロータ982はロータ磁石983を支持し、ロータヨーク984に取り付けられる。ロータヨーク984は光学要素920を支持し回転させる。軸受950は、シャフト960と光学要素920(例えば、少なくとも部分的に開口部922内にある)との間に位置決めされ、1つ又は複数の軸受要素951を含むことができる。軸受構成要素を支持し予圧を掛ける構成の更なる詳細について図17A及び図17Bを参照して後に説明する。
図10Aは、対応するロータから半径方向内側に位置決めされたステータを有する対応するアクチュエータ1080により駆動される代表的な光学要素1020を示す。光学要素1020は上述した任意の光学要素に対応することができる。アクチュエータ1080は光学要素1020を駆動して、回転方向矢印Rで示されるように、固定シャフト1060に対して回転させる。光学要素1020は、1つ又は複数の軸受要素1051を含む軸受1050によりシャフト1060に対して支持される。図示のアクチュエータ1080は、固定ステータ1081と、ステータ1081から外側に位置決めされたロータ磁石1083を含むロータ1082とを含む。ロータ1082はヨーク1084を介して光学要素1020に接続される。したがって、エネルギー付与されると、ロータ1082は回転方向Rにおいて回転軸1009の回りで光学要素1020をスピンさせ、一方、光学要素1020は軸受1050を介してシャフト1060に対して安定化される。上述したように、軸受1050は、回転軸1009に沿って位置決めされた開口部1022内に位置決めされて、軸受要素1051が経験する速度を低減し、したがって、加熱及び摩耗を低減する。軸受要素1051は、玉軸受及び/又は他の適した回転軸受構成要素を含むことができる。
図10Aでは、光学要素1020はリング形ステータ1081内に位置決めされる。他の実施形態では、光学要素1020はステータ1081に相対して他の位置を有することができる。例えば、これより図10Bを参照すると、光学要素1020は、ステータ1081の軸方向外側且つロータ磁石1083の外部に位置決めされる。ロータ磁石1083はロータ1082により支持され、ロータ1082は、図10Aを参照して上述したものと概して同様にヨーク1084を介して光学要素1020に接続される。図10Aに示される構成の利点は、ステータ1081及びロータ1082内の光学要素1020の「入れ子」構成がコンパクトな構成を提供することができることである。
図11は、対応するステータ1181及びロータ1182から軸方向に離れて位置決めされた光学要素1020を有する別のアクチュエータ1180の部分概略図である。加えて、この実施形態では、対応するシャフト1160は軸受1150を介して筐体1140に対して支持される。ロータ1182は光学要素1020に接続されて、光学要素1020を回転させ、シャフト1160に接続され、シャフト1160は、軸受1150を介して筐体1140に対して光学要素1020を安定化させる。
図12Aは、固定ステータ1281及び固定シャフト1260を支持する筐体1240を有する代表的なアクチュエータ1280を示す。ステータ1281は対応するロータ1282を駆動し、ロータ1282はヨーク1284を介して光学要素1020を支持する。光学要素1020は、1つ又は複数の軸受要素1251を有する対応する軸受1250を介してシャフト1260に対して安定化される。
図12Bは、シャフト1260、ステータ1281、及びロータ1282を含め、図12Aを参照して上述した要素の幾つかを示す。ステータ1281は、ステータ巻線1286を有するステータコア1285を含む。コア1285及び巻線1286は図12Cに更に詳細に示されている。図12Dは、シャフト1260、軸受1250(シャフト1260から外側に位置決めされる)、光学要素1220(軸受1250から外側に位置決めされる)、ロータ1282(光学要素1220から外側に位置決めされる)、及びヨーク1284(ロータ1828から外側に位置決めされる)の等角図を示す。ヨーク1284は、ロータ1282の一部であってもよく、又はロータに取り付けられてもよい。ヨーク1284/ロータ1282は磁石を支持することができ、磁石はステータ巻線1286により運ばれる電流により駆動される。
図13A~図15Bは、傾斜した、傾いた、又は角度付きの表面を介してシャフトを支持し、スキャナ内の光学ノイズを低減する代表的な構成を示す。まず図13Aを参照すると、代表的なスキャナ1304は対応する第1のアクチュエータ1380aにより駆動される第1の光学要素1320と、第2のアクチュエータ1380bにより駆動される第2の光学要素1330とを含む。スキャナ1304は、光学要素が回転する際、光学要素1320を安定化するシャフト1360と、シャフト1360を支持するシャフト支持体1363とを更に含むことができる。シャフト支持体1363は全体筐体1340を含む(又はその一部を形成する)ことができ、全体筐体1340内に光学要素1320、1330が位置決めされる。シャフト支持体1363は、1つ又は複数のスポーク1366を支持するリム1364を更に含むことができる。スポーク1366はハブ1365を支持し、ハブ1365内でシャフト1360が受けられる。スポーク1366は幅広よりも厚いか、又は深いことができる。図示の実施形態では、シャフト1360はシャフト支持体1363に対して固定される。他の実施形態では、シャフト1360は回転することができ、それに従って本明細書に記載されるタイプの軸受を含むことができる。
図13Bは、3つではなく2つのスポーク1366を含むシャフト支持体1363を有する、図13Aに示されるものと同様の構成を示す。図13Bに示されるスポーク1366の数低減により、スキャナ1304内の光学干渉を低減することができ、一方、図13Aに示されるスポーク1366の数増大により、シャフト1360の安定性を改善することができる。
図14Aは、図13Bに示されるものと同様であるが、スキャナ1304内の光学反射を回避又は減衰するように傾いた、角度付きの、又は傾斜した表面を含む選択された要素を有する構成を示す。例えば、幾つかの要素は、スポーク1366により支持される第1の傾き表面1367a、ハブ1365により支持される第2の傾き表面1367b、及び/又はシャフト1360により支持される第3の傾き表面1367cを含め、傾き表面1367(例えば、チャンファ)を含むことができる。傾き表面は、第1の光学要素1320に達する前、スキャナ1304内の他の要素により吸収されるように(例えば、リム1364又は筐体1340の表面)、コリメート要素1370を出る放射光1312をリダイレクトすることができる。
図14Aに示される実施形態では、傾き表面はピーク又は逆「V」字形を形成する。他の実施形態では、例えば図14Bに示されるように、傾き表面は一方向に傾くことができる。特に、ハブ傾き表面1367bは、シャフト傾き表面1367cと同様に、一方向に傾く。他の実施形態では、傾き表面は、図14A及び図14Bに示されるもの以外の向き及び/又は構成を有することができる。
図15Aは、「V」字形構成を有する代表的な傾き表面1567を示す。放射光1512は入射放射線1568を形成し、入射放射線1568は次に傾き表面1567によりリダイレクトされて反射放射線1569を形成し、反射放射線1569はスキャナ1304(図14A)の他の要素により内部で吸収することができる。
図15Bでは、傾き表面1567は対応する吸収表面1559に隣接して位置決めされる。吸収表面1559は、反射放射線1569を受け取り、吸収又は失わせる。この構成は更に、反射放射線がスキャナ内で更に送られる前、反射放射線を捕捉し吸収することにより、関連するスキャナ内の光学ノイズを低減することができる。
図16A及び図16Bは、回転したとき、光学デバイスが揺れる傾向を低減するように光学デバイスをバランスさせ、したがって、関連する軸受への負荷を低減する構成を示す。光学要素1020は楔形又はプリズム形(例えば、図12A参照)を有することができるため、光学要素1020は軽量領域1627(楔の狭い側に向かう)及び重量領域1628(楔の厚い側に向かう)を含むことができる。この非対称性を考慮するために、ヨーク1684は、相補的な重量領域1678(光学要素1020の軽量領域1627に隣接して位置決めされる)及び軽量領域1677(光学要素1020の重量領域1628に隣接して位置決めされる)を含むことができる。図16A及び図16Bに示される特定の実施形態では、リム1687の軽量領域1677は1つ又は複数のアパーチャ1688を介して軽量にすることができる。他の実施形態では、他の技法(例えば、異なる密度の材料を使用する)を使用して、重量領域1678と軽量領域1677との間の相対重量差を提供することができる。任意のこれらの実施形態では、上述したように、相補的な軽量領域1677及び重量領域1678は光学要素1020の対応する重量領域1628及び軽量領域1627とバランスして、全体的にバランスがとれた組立体を提供することができる。
図17A及び図17Bは、光学要素の回転運動を安定化させる軸受に予圧を付与する技法を示す。まず図17Aを参照すると、代表的なスキャナ1704は第1の光学要素1020及び第2の光学要素1030を含み、各光学要素は対応する軸受1750により支持される。軸受は、軸受1750(例えば、軸受リテーナ又はペデスタル1752)により支持される第1の軸受要素1751a及び第2の軸受要素1751b並びに他の軸受1750により支持される第3の軸受要素1751c及び第4の軸受要素1751dを含め1つ又は複数の軸受要素を含むことができる。各軸受1750(例えば、軸受要素1751a、1751b、1751c、1751d)は内レース、外レース、及び内レースと外レースとの間の複数の玉を含むことができる。内レースはシャフト1760に対して固定され、外レースは対応する軸受リテーナ又はペデスタル1752に対して固定され、軸受リテーナ又はペデスタル1752は対応する光学要素1020、1030に対して固定される。2つのステータ接続1779は、固定されたシャフト1760(シャフト軸1761に沿って並べられる)を軸受1750内に支持する。任意選択的なシャフトスリーブ1758が、2つの軸受1750間の機械的な接続を提供する。したがって、付与予圧PLが1つのステータ接続1779に付与されると、力はその他の軸受1750に伝達されて(シャフトスリーブ1758を介して)、軸受をシャフト1760に沿って定位置に保持する。加えて、軸受リテーナ1752の内向き段差又は突起1749は、軸受外レースが位置決めされる2つの対向する溝を形成することができ、内向き段差は各軸受外レースと係合する。シャフトスリーブ1758は軸受内レースと係合し、内レース及び外レース逆方向に付勢させる。軸受リテーナ1752はまた、対応する第1又は第2の光学要素1720、1730と係合する1つ又は複数の外向き段差又は突起1759を含むこともできる。シャフト1760の外面及び軸受1750の内面は、予圧PLが解放される前に乾燥又は硬化する接着剤でコーティングすることができる。したがって、接着剤は、製造後、予圧を保持することができる。図17Bに示される別の実施形態では、シャフトスリーブ1758は、軸受に予圧を掛け、シャフト1760に対して固定位置に軸受を保つ代替の技法として、l2つの軸受1750を互いから離れるように付勢する付勢要素1753(例えば、ばね)で置換することができる。
上述したように、代表的な光学要素は楔形又はプリズム形を有する。この形状は、直交面(入力若しくは出力光路又はシャフト軸1761に直交)及び傾斜面(同じパス又は光軸に対して傾斜)により形成することができる。図18A及び図18Bを参照して以下に示すように、複数の光学要素は、任意の数の適した構成で互いに対して配置されたこれらの表面を有することができる。
まず図18Aを参照すると、代表的なシステム1800は送受信機1807及びスキャナ1804を含む。送受信機1807は、対応する焦点面1819及び光路1872を有するエミッタ及び受信機(図18Aに示されず)を含む。コリメータ1870は、発せられた放射線をコリメートし、スキャンモジュール1804に向ける。スキャンモジュール1804は、シャフト又は回転軸1861に対して回転する第1の光学要素1020及び第2の光学要素1030を収容する。第1の光学要素1020は、直交面1821(光路1872及び/又は回転軸1861に対して直交)及び傾斜面1829(光路1872及び/又は回転軸1861に対して非直交角度に向けられる)を含むことができる。同様に、第2の光学要素1030も直交面1831及び傾斜面1839を含むことができる。図18Aに示される実施形態では、第1の光学要素1020の傾斜面1829は、第2の光学要素1030の直交面1831に面する。
図18Bに示される実施形態では、第1の光学要素1020の傾斜面1829は第2の光学要素1030の傾斜面1839に面する。図18Cでは、第1の光学要素1020の直交面1821は第2の光学要素1030の傾斜面1839に面する。図18Dでは、第1の光学要素1020の直交面1821は第2の光学要素1030の対応する直交面1831に面する。図18Eでは、第1及び第2の要素1020のそれぞれは複数の(例えば2つ)の傾斜面を含む。したがって、第1の光学要素1020は2つの対向する傾斜面1829を含み、第2の光学要素1030は2つの傾斜面1839を含む。更なる実施形態では、光学要素は異なる構成の表面及び/又は向きを有することができる。任意のこれらの実施形態では、光学要素は、本明細書に記載される構成の任意の適した1つ(又は2つ以上)を有する軸受により支持され、及び/又は本明細書に記載される構成の任意の適した1つ(又は2つ以上)を有するモータにより駆動することができる。上述したように、そのような構成は、モバイルプラットフォーム周囲の環境をスキャンする軽量、コンパクト、長寿命、省電力、及び/又は他の点で有益なデバイスを提供することができる。
図19は、ここに開示される技術の種々の実施形態により構成されたモバイルプラットフォームの例を示す。示されるように、本明細書に開示される代表的なモバイルプラットフォームは、無人機(UAV)1902、有人航空機1904、自律車両1906、セルフバランス車両808、地上ロボット1910、スマートウェアラブルデバイス1912、仮想現実(VR)ヘッドマウントディスプレイ1914、又は拡張現実(AR)ヘッドマウントディスプレイ1916の少なくとも1つを含み得る。
上記から、本技術の特定の実施形態が例示を目的として本明細書に説明されたが、本技術から逸脱せずに種々の変更を行い得ることが理解されよう。例えば、本明細書に記載された構成要素は、上述した関連する利点の1つ又は複数をなお提供しながら、図に明示的に示されたものからずれた、適した形状及び/又は寸法を有することができる。特定の例では、光学要素の開口部は、図では円形として示されているが、他の実施形態では、開口部は、対応するシャフトと同様に、他の形状を有することができる。一般に、関連する軸受はなお半径方向対称性を有して、回転を可能にする。
特定の実施形態に関して説明した本技術の特定の態様は、他の実施形態では接続又はなくすことが可能である。例えば、2つの光学要素を示している実施形態は、少なくとも幾つかの代表的な例では、1つの光学要素又は3つ以上の光学要素を含み得る。さらに、本技術の特定の実施形態に関連する利点は、それらの実施形態の状況で説明されたが、他の実施形態もそのような利点を示し得、本技術の範囲内にあるために、全ての実施形態が必ずしもそのような利点を示すわけではない。したがって、本開示及び関連する技術は、本明細書に明示的に示されない又は説明されない他の実施形態を包含することができる。
特定の実施形態に関して説明した本技術の特定の態様は、他の実施形態では接続又はなくすことが可能である。例えば、2つの光学要素を示している実施形態は、少なくとも幾つかの代表的な例では、1つの光学要素又は3つ以上の光学要素を含み得る。さらに、本技術の特定の実施形態に関連する利点は、それらの実施形態の状況で説明されたが、他の実施形態もそのような利点を示し得、本技術の範囲内にあるために、全ての実施形態が必ずしもそのような利点を示すわけではない。したがって、本開示及び関連する技術は、本明細書に明示的に示されない又は説明されない他の実施形態を包含することができる。
[項目1]
LiDARシステムであって、
レーザエミッタ及びレーザ受信機を含むレーザ送受信機であって、前記レーザエミッタは光路に沿ってレーザ光を発するように位置決めされる、レーザ送受信機と、
前記光路に沿って位置決めされるコリメート要素と、
前記光路に沿って位置決めされる少なくとも1つの光学要素であって、貫通する開口部を有する、少なくとも1つの光学要素と、
前記開口部内に延びるシャフトと、
前記少なくとも1つの光学要素を前記シャフトに対して回転可能に支持するように位置決めされた軸受と、
を備えるシステム。
[項目2]
前記少なくとも1つの光学要素は、対向する非平行表面を有する屈折要素を含む、項目1に記載のシステム。
[項目3]
前記少なくとも1つの光学要素は第1のプリズム及び第2のプリズムを含み、前記開口部は、前記第1のプリズムを通って延びる第1の開口部及び前記第2のプリズムを通って延びる第2の開口部を含む、項目1又は2に記載のシステム。
[項目4]
前記少なくとも1つの光学要素に接続されて、前記少なくとも1つの光学要素を前記レーザ送受信機に対して回転させる少なくとも1つのモータを更に備える、項目1から項目3のいずれか一項に記載のシステム。
[項目5]
前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の速度で駆動する第1のモータと、第2の光学要素に接続されて、前記第1の速度と異なる第2の速度で前記第2の光学要素を駆動する第2のモータとを含む、項目4に記載のシステム。
[項目6]
前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の方向に駆動する第1のモータと、第2の光学要素に接続されて、前記第1の方向とは逆の第2の方向に前記第2の光学要素を駆動する第2のモータとを含む、項目4に記載のシステム。
[項目7]
前記少なくとも1つのモータはロータ及びステータを含み、前記ロータ及び前記ステータはそれぞれ前記少なくとも1つの光学要素の周囲外側に位置決めされる、項目4に記載のシステム。
[項目8]
前記軸受は前記開口部に位置決めされ、前記少なくとも1つの光学要素と前記シャフトとの間で前記開口部に位置決めされて、前記少なくとも1つの光学要素を前記シャフトに対して回転可能に支持する複数の軸受の1つである、項目1から項目7のいずれか一項に記載のシステム。
[項目9]
前記シャフトはシャフト軸に沿って位置決めされ、前記レーザエミッタは、前記シャフト軸に沿ってレーザ光を発するように位置決めされる、項目1から項目8のいずれか一項に記載のシステム。
[項目10]
前記シャフトはシャフト軸に沿って位置決めされ、前記レーザエミッタは、前記シャフト軸に対して非ゼロ角度でレーザ光を発するように位置決めされる、項目1から項目9のいずれか一項に記載のシステム。
[項目11]
前記コリメート要素は対応する焦点面を有し、前記レーザエミッタは、前記焦点面に対して直交角度にレーザ光を発するように位置決めされる、項目1から項目10のいずれか一項に記載のシステム。
[項目12]
前記コリメート要素は対応する焦点面を有し、前記レーザエミッタは、前記焦点面に対して非直交角度にレーザ光を発するように位置決めされる、項目1から項目11のいずれか一項に記載のシステム。
[項目13]
前記レーザエミッタは前記シャフト軸に沿って位置決めされる、項目12に記載のシステム。
[項目14]
前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記レーザエミッタは、前記光軸から中心をずらしてレーザ光を発するように位置決めされる、項目1から項目13のいずれか一項に記載のシステム。
[項目15]
前記シャフトはシャフト軸に沿って位置決めされ、前記レーザエミッタは、前記シャフト軸から中心をずらして前記光路の一部に沿ってレーザ光を発するように位置決めされる、項目1から項目14のいずれか一項に記載のシステム。
[項目16]
前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記シャフトは、前記光軸に対して非ゼロ角度に向けられたシャフト軸に沿って位置決めされる、項目1から項目15のいずれか一項に記載のシステム。
[項目17]
前記コリメート要素は吸光材料を支持する、項目1から項目16のいずれか一項に記載のシステム。
[項目18]
前記吸光材料は黒色である、項目17に記載のシステム。
[項目19]
前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記吸光材料は前記光軸にセンタリングされる、項目17に記載のシステム。
[項目20]
出力放射光を前記エミッタから前記コリメート要素に向けるように位置決めされた第1のミラーと、入力反射光を前記受信機に反射するように位置決めされた第2のミラーとを更に備える、項目1から項目19のいずれか一項に記載のシステム。
[項目21]
無人機システムであって、
無人機と、
前記無人機により支持される、項目1から項目20のいずれか一項に記載のシステムと、
を備える無人機システム。
[項目22]
光学システムであって、
光路に沿って位置決め可能であり、放射線を受け取る少なくとも1つの光学要素であって、前記光学要素は、貫通する開口部を有する、少なくとも1つの光学要素と、
前記開口部内に延びるシャフトと、
前記シャフトに対して前記少なくとも1つの光学要素を回転可能に支持するように位置決めされた軸受と、
を備える光学システム。
[項目23]
前記光路に沿って位置決めされた光学エミッタ及び光学受信機の少なくとも一方を更に備える、項目22に記載のシステム。
[項目24]
前記光路に沿って位置決めされた光学エミッタ及び光学受信機を更に備える、項目22に記載のシステム。
[項目25]
光学エミッタ及び光学受信機の前記少なくとも一方は、レーザエミッタ及びレーザ受信機の少なくとも一方を含む、項目22に記載のシステム。
[項目26]
前記軸受は、前記少なくとも1つの光学要素と前記シャフトとの間で前記開口部に位置決めされる、項目22に記載のシステム。
[項目27]
前記少なくとも1つの光学要素は、対向する非平行表面を有する屈折要素を含む、項目22から項目26のいずれか一項に記載のシステム。
[項目28]
前記少なくとも1つの光学要素に接続されて、前記レーザ送受信機に対して前記少なくとも1つの光学要素を回転させる少なくとも1つのモータを更に備える、項目22から項目27のいずれか一項に記載のシステム。
[項目29]
前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の速度で駆動する第1のモータと、第2の光学要素に接続されて、前記第1の速度と異なる第2の速度で前記第2の光学要素を駆動する第2のモータとを含む、項目28に記載のシステム。
[項目30]
前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の方向に駆動する第1のモータと、第2の光学要素に接続されて、前記第1の方向とは逆の第2の方向に前記第2の光学要素を駆動する第2のモータとを含む、項目28に記載のシステム。
[項目31]
前記少なくとも1つのモータはロータ及びステータを含み、前記ロータ及び前記ステータはそれぞれ前記少なくとも1つの光学要素の周囲外側に位置決めされる、項目28に記載のシステム。
[項目32]
前記軸受は前記開口部に位置決めされ、前記少なくとも1つの光学要素と前記シャフトとの間で前記開口部に位置決めされて、前記少なくとも1つの光学要素を前記シャフトに対して回転可能に支持する複数の軸受の1つである、項目22から項目31のいずれか一項に記載のシステム。
[項目33]
無人機システムであって、
無人機と、
前記無人機により支持される、項目22から項目32のいずれか一項に記載のシステムと、
を備える無人機システム。
[項目34]
LiDARシステムであって、
レーザエミッタ及びレーザ受信機を含むレーザ送受信機であって、前記レーザエミッタは光路に沿ってレーザ光を発するように位置決めされ、前記レーザ受信機は、前記光路に沿って進む反射レーザ光を受け取るように位置決めされる、レーザ送受信機と、
前記光路に沿って位置決めされて、前記光路に沿って第1の方向に移動中の放射光を受け取りコリメートし、前記光路に沿って前記第1の方向とは逆の第2の方向に移動中の反射光を受け取り集束させるコリメート要素と、
出力放射光を前記コリメート要素に向けて前記第1の方向に反射するように位置決めされた第1のミラーと、
入力反射光を前記受信機に向けて前記第2の方向に反射するように位置決めされた第2のミラーと、
前記光路に沿って位置決めされて、放射光を前記第1のミラーから前記コリメート要素に前記第1の方向に渡し、反射光を前記第2のミラーに前記第2の方向に反射するように位置決めされたスプリッタと、
前記光路に沿って位置決めされた第1のプリズムであって、貫通する第1の開口部を有する第1のプリズムと、
前記光路に沿って位置決めされた第2のプリズムであって、貫通する第2の開口部を有する第2のプリズムと、
前記第1及び第2の開口部内に前記第1及び第2の開口部を通って延びるシャフトと、
前記第1のプリズムと前記シャフトとの間で前記第1の開口部に位置決めされて、前記第1のプリズムを前記シャフトに対して回転可能に支持する少なくとも1つの第1の軸受と、
前記第2のプリズムと前記シャフトとの間で前記第2の開口部に位置決めされて、前記第2のプリズムを前記シャフトに対して回転可能に支持する少なくとも1つの第2の軸受と、
前記第1のプリズム及び前記第2のプリズムに動作可能に接続されて、前記第1のプリズム及び前記第2のプリズムを回転させる少なくとも1つのアクチュエータと、
前記コリメート要素、前記シャフトのうちの少なくとも一方又は前記軸受のうちの少なくとも1つにより支持される吸光材料と、
を備えるシステム。
[項目35]
前記第1のプリズムに接続されて、第1の速度で前記第1のプリズムを駆動する第1のモータと、前記第2のプリズムに接続されて、前記第1の速度と異なる第2の速度で前記第2のプリズムを駆動する第2のモータを更に備える、項目34に記載のシステム。
[項目36]
前記第1のプリズムに接続されて、第1の方向に前記第1のプリズムを駆動する第1のモータと、前記第2のプリズムに接続されて、前記第1の方向の逆の第2の方向に前記第2のプリズムを駆動する第2のモータを更に備える、項目34又は35に記載のシステム。
[項目37]
光学システムの動作方法であって、
光路に沿った位置において、
前記開口部内に延びるシャフト及び
前記少なくとも1つの光学要素と前記シャフトとの間に動作可能に接続される軸受
を介して、貫通する開口部を有する少なくとも1つの光学要素を回転可能に支持することを含む方法。
[項目38]
前記少なくとも1つの要素は、対向する非平行表面を有する第1の屈折要素と、対向する非平行表面を有する第2の屈折要素とを含み、前記方法は、異なる速度で前記第1の屈折要素及び前記第2の屈折要素を回転させることを更に含む、項目37に記載の方法。
[項目39]
前記少なくとも1つの要素は、対向する非平行表面を有する第1の屈折要素と、対向する非平行表面を有する第2の屈折要素とを含み、前記方法は、異なる方向に前記第1の屈折要素及び前記第2の屈折要素を回転させることを更に含む、項目37又は38に記載の方法。
[項目40]
エミッタからの光を前記光路に沿って第1の方向に向けることと、
受信機において、前記第1の方向とは逆の第2の方向に前記光路に沿って進む反射光を受け取ることと、
を更に含む、項目37から項目39のいずれか一項に記載の方法。
[項目41]
光をコリメート要素に前記第1の方向で通すことにより、前記エミッタから向けられた光をコリメートすることと、
前記反射光を前記コリメート要素に前記第2の方向で通すことにより、前記反射光を集束させることと、
を更に含む、項目40に記載の方法。
[項目42]
少なくとも部分的に前記受信機において収集される情報に基づいて無人機の動作を指示することを更に含む、項目40に記載の方法。
[項目43]
少なくとも部分的に前記受信機において収集される情報に基づいて自律車両の動作を指示することを更に含む、項目40に記載の方法。
[項目44]
前記シャフトはシャフト軸に沿って位置決めされ、前記エミッタからの光を向けることは、前記シャフト軸に沿って光を向けることを含む、項目40に記載の方法。
[項目45]
前記シャフトはシャフト軸に沿って位置決めされ、前記エミッタからの光を向けることは、前記シャフト軸に対して非ゼロ角度で光を向けることを含む、項目40に記載の方法。
[項目46]
光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面を有し、前記エミッタからの光を向けることは、前記焦点面に対して直交角度の光を含む、項目40に記載の方法。
[項目47]
光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面を有し、前記エミッタからの光を向けることは、前記焦点面に対して非直交角度の光を含む、項目40に記載の方法。
[項目48]
光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記エミッタからの光を向けることは、前記光軸から中心をずらして光を向けることを含む、項目40に記載の方法。
[項目49]
前記シャフトはシャフト軸に沿って位置決めされ、前記エミッタからの光を向けることは、前記シャフト軸から中心をずらして前記光路の一部に沿って光を向けることを含む、項目40に記載の方法。
[項目50]
光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記シャフトは、前記光軸に対して非ゼロ角度で向けられたシャフト軸に沿って位置決めされる、項目40に記載の方法。
[項目51]
前記シャフト又は前記軸受の少なくとも一方に衝突した前記放射光の少なくとも一部を失わせることを更に含む、項目40に記載の方法。
[項目52]
光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることと、
前記コリメート要素に衝突する前記放射光の少なくとも一部を失わせることと、
を更に含む、項目40に記載の方法。

Claims (52)

  1. LiDARシステムであって、
    レーザエミッタ及びレーザ受信機を含むレーザ送受信機であって、前記レーザエミッタは光路に沿ってレーザ光を発するように位置決めされる、レーザ送受信機と、
    前記光路に沿って位置決めされるコリメート要素と、
    前記光路に沿って位置決めされる少なくとも1つの光学要素であって、貫通する開口部を有する、少なくとも1つの光学要素と、
    前記開口部内に延びるシャフトと、
    前記少なくとも1つの光学要素を前記シャフトに対して回転可能に支持するように位置決めされた軸受と、
    を備えるシステム。
  2. 前記少なくとも1つの光学要素は、対向する非平行表面を有する屈折要素を含む、請求項1に記載のシステム。
  3. 前記少なくとも1つの光学要素は第1のプリズム及び第2のプリズムを含み、前記開口部は、前記第1のプリズムを通って延びる第1の開口部及び前記第2のプリズムを通って延びる第2の開口部を含む、請求項1又は2に記載のシステム。
  4. 前記少なくとも1つの光学要素に接続されて、前記少なくとも1つの光学要素を前記レーザ送受信機に対して回転させる少なくとも1つのモータを更に備える、請求項1から請求項3のいずれか一項に記載のシステム。
  5. 前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の速度で駆動する第1のモータと、第2の光学要素に接続されて、前記第1の速度と異なる第2の速度で前記第2の光学要素を駆動する第2のモータとを含む、請求項4に記載のシステム。
  6. 前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の方向に駆動する第1のモータと、第2の光学要素に接続されて、前記第1の方向とは逆の第2の方向に前記第2の光学要素を駆動する第2のモータとを含む、請求項4に記載のシステム。
  7. 前記少なくとも1つのモータはロータ及びステータを含み、前記ロータ及び前記ステータはそれぞれ前記少なくとも1つの光学要素の周囲外側に位置決めされる、請求項4に記載のシステム。
  8. 前記軸受は前記開口部に位置決めされ、前記少なくとも1つの光学要素と前記シャフトとの間で前記開口部に位置決めされて、前記少なくとも1つの光学要素を前記シャフトに対して回転可能に支持する複数の軸受の1つである、請求項1から請求項7のいずれか一項に記載のシステム。
  9. 前記シャフトはシャフト軸に沿って位置決めされ、前記レーザエミッタは、前記シャフト軸に沿ってレーザ光を発するように位置決めされる、請求項1から請求項8のいずれか一項に記載のシステム。
  10. 前記シャフトはシャフト軸に沿って位置決めされ、前記レーザエミッタは、前記シャフト軸に対して非ゼロ角度でレーザ光を発するように位置決めされる、請求項1から請求項9のいずれか一項に記載のシステム。
  11. 前記コリメート要素は対応する焦点面を有し、前記レーザエミッタは、前記焦点面に対して直交角度にレーザ光を発するように位置決めされる、請求項1から請求項10のいずれか一項に記載のシステム。
  12. 前記コリメート要素は対応する焦点面を有し、前記レーザエミッタは、前記焦点面に対して非直交角度にレーザ光を発するように位置決めされる、請求項1から請求項11のいずれか一項に記載のシステム。
  13. 前記レーザエミッタは前記シャフト軸に沿って位置決めされる、請求項12に記載のシステム。
  14. 前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記レーザエミッタは、前記光軸から中心をずらしてレーザ光を発するように位置決めされる、請求項1から請求項13のいずれか一項に記載のシステム。
  15. 前記シャフトはシャフト軸に沿って位置決めされ、前記レーザエミッタは、前記シャフト軸から中心をずらして前記光路の一部に沿ってレーザ光を発するように位置決めされる、請求項1から請求項14のいずれか一項に記載のシステム。
  16. 前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記シャフトは、前記光軸に対して非ゼロ角度に向けられたシャフト軸に沿って位置決めされる、請求項1から請求項15のいずれか一項に記載のシステム。
  17. 前記コリメート要素は吸光材料を支持する、請求項1から請求項16のいずれか一項に記載のシステム。
  18. 前記吸光材料は黒色である、請求項17に記載のシステム。
  19. 前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記吸光材料は前記光軸にセンタリングされる、請求項17に記載のシステム。
  20. 出力放射光を前記エミッタから前記コリメート要素に向けるように位置決めされた第1のミラーと、入力反射光を前記受信機に反射するように位置決めされた第2のミラーとを更に備える、請求項1から請求項19のいずれか一項に記載のシステム。
  21. 無人機システムであって、
    無人機と、
    前記無人機により支持される、請求項1から請求項20のいずれか一項に記載のシステムと、
    を備える無人機システム。
  22. 光学システムであって、
    光路に沿って位置決め可能であり、放射線を受け取る少なくとも1つの光学要素であって、前記光学要素は、貫通する開口部を有する、少なくとも1つの光学要素と、
    前記開口部内に延びるシャフトと、
    前記シャフトに対して前記少なくとも1つの光学要素を回転可能に支持するように位置決めされた軸受と、
    を備える光学システム。
  23. 前記光路に沿って位置決めされた光学エミッタ及び光学受信機の少なくとも一方を更に備える、請求項22に記載のシステム。
  24. 前記光路に沿って位置決めされた光学エミッタ及び光学受信機を更に備える、請求項22に記載のシステム。
  25. 光学エミッタ及び光学受信機の前記少なくとも一方は、レーザエミッタ及びレーザ受信機の少なくとも一方を含む、請求項22に記載のシステム。
  26. 前記軸受は、前記少なくとも1つの光学要素と前記シャフトとの間で前記開口部に位置決めされる、請求項22に記載のシステム。
  27. 前記少なくとも1つの光学要素は、対向する非平行表面を有する屈折要素を含む、請求項22から請求項26のいずれか一項に記載のシステム。
  28. 前記少なくとも1つの光学要素に接続されて、前記レーザ送受信機に対して前記少なくとも1つの光学要素を回転させる少なくとも1つのモータを更に備える、請求項22から請求項27のいずれか一項に記載のシステム。
  29. 前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の速度で駆動する第1のモータと、第2の光学要素に接続されて、前記第1の速度と異なる第2の速度で前記第2の光学要素を駆動する第2のモータとを含む、請求項28に記載のシステム。
  30. 前記少なくとも1つのモータは、前記第1の光学要素に接続されて、前記第1の光学要素を第1の方向に駆動する第1のモータと、第2の光学要素に接続されて、前記第1の方向とは逆の第2の方向に前記第2の光学要素を駆動する第2のモータとを含む、請求項28に記載のシステム。
  31. 前記少なくとも1つのモータはロータ及びステータを含み、前記ロータ及び前記ステータはそれぞれ前記少なくとも1つの光学要素の周囲外側に位置決めされる、請求項28に記載のシステム。
  32. 前記軸受は前記開口部に位置決めされ、前記少なくとも1つの光学要素と前記シャフトとの間で前記開口部に位置決めされて、前記少なくとも1つの光学要素を前記シャフトに対して回転可能に支持する複数の軸受の1つである、請求項22から請求項31のいずれか一項に記載のシステム。
  33. 無人機システムであって、
    無人機と、
    前記無人機により支持される、請求項22から請求項32のいずれか一項に記載のシステムと、
    を備える無人機システム。
  34. LiDARシステムであって、
    レーザエミッタ及びレーザ受信機を含むレーザ送受信機であって、前記レーザエミッタは光路に沿ってレーザ光を発するように位置決めされ、前記レーザ受信機は、前記光路に沿って進む反射レーザ光を受け取るように位置決めされる、レーザ送受信機と、
    前記光路に沿って位置決めされて、前記光路に沿って第1の方向に移動中の放射光を受け取りコリメートし、前記光路に沿って前記第1の方向とは逆の第2の方向に移動中の反射光を受け取り集束させるコリメート要素と、
    出力放射光を前記コリメート要素に向けて前記第1の方向に反射するように位置決めされた第1のミラーと、
    入力反射光を前記受信機に向けて前記第2の方向に反射するように位置決めされた第2のミラーと、
    前記光路に沿って位置決めされて、放射光を前記第1のミラーから前記コリメート要素に前記第1の方向に渡し、反射光を前記第2のミラーに前記第2の方向に反射するように位置決めされたスプリッタと、
    前記光路に沿って位置決めされた第1のプリズムであって、貫通する第1の開口部を有する第1のプリズムと、
    前記光路に沿って位置決めされた第2のプリズムであって、貫通する第2の開口部を有する第2のプリズムと、
    前記第1及び第2の開口部内に前記第1及び第2の開口部を通って延びるシャフトと、
    前記第1のプリズムと前記シャフトとの間で前記第1の開口部に位置決めされて、前記第1のプリズムを前記シャフトに対して回転可能に支持する少なくとも1つの第1の軸受と、
    前記第2のプリズムと前記シャフトとの間で前記第2の開口部に位置決めされて、前記第2のプリズムを前記シャフトに対して回転可能に支持する少なくとも1つの第2の軸受と、
    前記第1のプリズム及び前記第2のプリズムに動作可能に接続されて、前記第1のプリズム及び前記第2のプリズムを回転させる少なくとも1つのアクチュエータと、
    前記コリメート要素、前記シャフトのうちの少なくとも一方又は前記軸受のうちの少なくとも1つにより支持される吸光材料と、
    を備えるシステム。
  35. 前記第1のプリズムに接続されて、第1の速度で前記第1のプリズムを駆動する第1のモータと、前記第2のプリズムに接続されて、前記第1の速度と異なる第2の速度で前記第2のプリズムを駆動する第2のモータを更に備える、請求項34に記載のシステム。
  36. 前記第1のプリズムに接続されて、第1の方向に前記第1のプリズムを駆動する第1のモータと、前記第2のプリズムに接続されて、前記第1の方向の逆の第2の方向に前記第2のプリズムを駆動する第2のモータを更に備える、請求項34又は35に記載のシステム。
  37. 光学システムの動作方法であって、
    光路に沿った位置において、
    前記開口部内に延びるシャフト及び
    前記少なくとも1つの光学要素と前記シャフトとの間に動作可能に接続される軸受
    を介して、貫通する開口部を有する少なくとも1つの光学要素を回転可能に支持することを含む方法。
  38. 前記少なくとも1つの要素は、対向する非平行表面を有する第1の屈折要素と、対向する非平行表面を有する第2の屈折要素とを含み、前記方法は、異なる速度で前記第1の屈折要素及び前記第2の屈折要素を回転させることを更に含む、請求項37に記載の方法。
  39. 前記少なくとも1つの要素は、対向する非平行表面を有する第1の屈折要素と、対向する非平行表面を有する第2の屈折要素とを含み、前記方法は、異なる方向に前記第1の屈折要素及び前記第2の屈折要素を回転させることを更に含む、請求項37又は38に記載の方法。
  40. エミッタからの光を前記光路に沿って第1の方向に向けることと、
    受信機において、前記第1の方向とは逆の第2の方向に前記光路に沿って進む反射光を受け取ることと、
    を更に含む、請求項37から請求項39のいずれか一項に記載の方法。
  41. 光をコリメート要素に前記第1の方向で通すことにより、前記エミッタから向けられた光をコリメートすることと、
    前記反射光を前記コリメート要素に前記第2の方向で通すことにより、前記反射光を集束させることと、
    を更に含む、請求項40に記載の方法。
  42. 少なくとも部分的に前記受信機において収集される情報に基づいて無人機の動作を指示することを更に含む、請求項40に記載の方法。
  43. 少なくとも部分的に前記受信機において収集される情報に基づいて自律車両の動作を指示することを更に含む、請求項40に記載の方法。
  44. 前記シャフトはシャフト軸に沿って位置決めされ、前記エミッタからの光を向けることは、前記シャフト軸に沿って光を向けることを含む、請求項40に記載の方法。
  45. 前記シャフトはシャフト軸に沿って位置決めされ、前記エミッタからの光を向けることは、前記シャフト軸に対して非ゼロ角度で光を向けることを含む、請求項40に記載の方法。
  46. 光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面を有し、前記エミッタからの光を向けることは、前記焦点面に対して直交角度の光を含む、請求項40に記載の方法。
  47. 光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面を有し、前記エミッタからの光を向けることは、前記焦点面に対して非直交角度の光を含む、請求項40に記載の方法。
  48. 光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記エミッタからの光を向けることは、前記光軸から中心をずらして光を向けることを含む、請求項40に記載の方法。
  49. 前記シャフトはシャフト軸に沿って位置決めされ、前記エミッタからの光を向けることは、前記シャフト軸から中心をずらして前記光路の一部に沿って光を向けることを含む、請求項40に記載の方法。
  50. 光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることを更に含み、前記コリメート要素は対応する焦点面及び前記焦点面に直交する光軸を有し、前記シャフトは、前記光軸に対して非ゼロ角度で向けられたシャフト軸に沿って位置決めされる、請求項40に記載の方法。
  51. 前記シャフト又は前記軸受の少なくとも一方に衝突した前記放射光の少なくとも一部を失わせることを更に含む、請求項40に記載の方法。
  52. 光をコリメート要素に通すことにより前記エミッタから向けられた光をコリメートすることと、
    前記コリメート要素に衝突する前記放射光の少なくとも一部を失わせることと、
    を更に含む、請求項40に記載の方法。
JP2022510226A 2019-08-22 2019-08-22 LiDARシステム及びその動作方法 Abandoned JP2022551383A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102068 WO2021031206A1 (en) 2019-08-22 2019-08-22 Small bearings for multi-element optical scanning devices, and associated systems and methods

Publications (1)

Publication Number Publication Date
JP2022551383A true JP2022551383A (ja) 2022-12-09

Family

ID=74660429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022510226A Abandoned JP2022551383A (ja) 2019-08-22 2019-08-22 LiDARシステム及びその動作方法

Country Status (5)

Country Link
US (1) US20220171033A1 (ja)
EP (1) EP3928125A4 (ja)
JP (1) JP2022551383A (ja)
CN (1) CN114341673A (ja)
WO (1) WO2021031206A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021031207A1 (en) * 2019-08-22 2021-02-25 SZ DJI Technology Co., Ltd. Motors for driving multi-element optical scanning devices, and associated systems and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285581B2 (en) * 2013-07-25 2016-03-15 Quartus Engineering Incorporated Optical scanning devices and systems
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path
US10215846B2 (en) * 2015-11-20 2019-02-26 Texas Instruments Incorporated Compact chip scale LIDAR solution
US10942272B2 (en) * 2016-12-13 2021-03-09 Waymo Llc Power modulation for a rotary light detection and ranging (LIDAR) device
CN110199204A (zh) 2017-03-29 2019-09-03 深圳市大疆创新科技有限公司 具有小形状因子的激光雷达传感器系统

Also Published As

Publication number Publication date
EP3928125A4 (en) 2022-03-23
WO2021031206A1 (en) 2021-02-25
US20220171033A1 (en) 2022-06-02
EP3928125A1 (en) 2021-12-29
CN114341673A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
US11336074B2 (en) LIDAR sensor system with small form factor
US20200033454A1 (en) System and method for supporting lidar applications
CA1085017A (en) Optical scanning apparatus
US6723975B2 (en) Scanner for airborne laser system
JP4997244B2 (ja) 信号エネルギー処理システム
KR20220048301A (ko) 넓은 시야각을 갖는 라이다 장치
KR102057199B1 (ko) 넓은 시야각 구조를 갖는 고효율 무회전 스캐닝 라이다 시스템
KR102367563B1 (ko) 초소형 및 초경량 라이다용 광학계
US20220171033A1 (en) Small bearings for multi-element optical scanning devices, and associated systems and methods
KR102013165B1 (ko) 회전형 스캐닝 라이다
US7663791B2 (en) Rotary wedge scanner
JP2022545454A (ja) 光学システム及び無人機システム
US20230006531A1 (en) Lidar with a biaxial mirror assembly
JP2021071471A (ja) 距離画像の作成装置
US6879447B2 (en) Optical gimbal apparatus
CN115754986A (zh) 激光雷达光学扫描系统、激光雷达和飞行器
CN117295968A (zh) 具有双轴镜子组件的激光雷达
US11550059B2 (en) Three-dimensional scanning LIDAR system comprising a receiver channel primary collection lens and an electronically-controllable mirror array selectively direct a directed portion of reflected scanning signal
WO2022193113A1 (zh) 扫描模组、测距装置及可移动平台
CN219456494U (zh) 一种激光雷达装置
JP2019070625A (ja) 距離測定装置
WO2021138752A1 (zh) 扫描模组、测距装置及移动平台
JP2023128023A (ja) 測距装置
NZ755482B2 (en) Mirror assembly

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20220817