JP2022545406A - マルチtrpおよびマルチパネル伝送を用いるビーム障害検出および回復 - Google Patents

マルチtrpおよびマルチパネル伝送を用いるビーム障害検出および回復 Download PDF

Info

Publication number
JP2022545406A
JP2022545406A JP2022510121A JP2022510121A JP2022545406A JP 2022545406 A JP2022545406 A JP 2022545406A JP 2022510121 A JP2022510121 A JP 2022510121A JP 2022510121 A JP2022510121 A JP 2022510121A JP 2022545406 A JP2022545406 A JP 2022545406A
Authority
JP
Japan
Prior art keywords
rss
trp
quality
network
bfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022510121A
Other languages
English (en)
Inventor
スヴェドマン,パトリック
ツァイ,アラン,ワイ.
リ,チン
ジャン,グオドン
アイヤー,ラクシュミ,アール.
リ,イーファン
アワディン,モハメド
Original Assignee
コンヴィーダ ワイヤレス, エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コンヴィーダ ワイヤレス, エルエルシー filed Critical コンヴィーダ ワイヤレス, エルエルシー
Publication of JP2022545406A publication Critical patent/JP2022545406A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

方法、システム、およびデバイスは、マルチTRP伝送を用いるBFDをサポートするか、マルチTRP伝送を用いるBFRをサポートすることができる。マルチTRP伝送を用いるBFDの場合、明確な構成または暗黙の構成が存在する場合がある。マルチTRP伝送を用いるBFRに関しては、コンテンションフリーPRACHを用いるBFR、PUCCHを用いるBFR、コンテンションフリー2ステップRACHを用いるBFR、またはPUSCHを用いるBFRが存在する場合がある。

Description

本出願は、2019年8月16日に出願の米国特許仮出願番号第62/887,917号、表題「マルチTrpおよびマルチパネル伝送を用いるビーム障害検出および回復」の利益を請求し、その全体が参照により本明細書に援用される。
大規模多入力多出力(Multiple Input Multiple Output:MIMO)システムは、将来の5Gシステムにおけるデータスループットおよび信頼性を強化すると期待されている。柔軟な展開シナリオを通した信頼性、カバレッジ、および処理能力を向上させるために、5Gにおいて複数の送受信ポイント(マルチTRP)は、重要なものである。例えば、5Gにおけるモバイルデータトラフィックの指数関数的増加をサポートし、かつカバレッジを拡張することを可能にするために、無線デバイスは、マルチTRP(例えば、マクロセル、スモールセル、ピコセル、フェムトセル、遠隔無線ヘッド、中継ノードなど)によって構成されるネットワークにアクセスすることが予測されている。
ビーム障害検出(Beam Failure Detection:BFD)およびビーム障害回復(Beam Failure Recovery:BFR)は、セル単位ベースである場合があるが、TRP/パネル単位ベースではない。BFRはSpCell向けのものであるか、またはBFRはSCell向けのものである場合がある。セル(単位の)マルチTRPの場合、PCellまたはScellに関係なく、あるTRPへの無線リンクに障害があっても、別のTRPへのリンクは依然として機能する場合がある。理想的または非理想的バックホールを伴うシナリオでは、マルチTRPによる複数のリンクのそれぞれに基づいて、BFDおよびBFRをサポートすることが好ましい場合がある。
本明細書において、特に、マルチTRP伝送を用いるBFDをサポートするか、マルチTRP伝送を用いるBFRをサポートする方法、システムおよびデバイスについて開示する。マルチTRP伝送を用いるBFDの場合、1)ビーム障害リソースセットおよび候補ビーム参照信号(Reference Signal:RS)リストセットの明確な構成オプション、または2)UEに明確なビーム障害リソースセットおよび候補ビームRSリストセットが提供されない場合、暗黙の構成オプション、などの複数のオプションが存在する場合がある。マルチTRP伝送を用いるBFRに関しては、1)コンテンションフリーPRACH使用BFR、2)PUCCH使用BFR、3)コンテンションフリー2ステップRACH使用BFR、または4)PUSCH使用BFRなどの複数のオプションが存在する場合がある。
本概要は、下記にさらに記載される発明を実施するための形態を簡略化した形式で、概念の選択を紹介するために提示される。本概要は、請求される主題の主要な特徴または実質的な特徴を特定することも、請求される主題の範囲を限定するために使用されることも意図していない。さらに、請求される主題は、本開示のいずれかの部分に記載されているいずれかまたは全ての不利点を解決するものである、といった制限にも制約されない。
より詳細な理解は、添付図面と併せて、例として挙げられる下記の説明から得ることが可能である。
例示的マルチTRP伝送を示す図である。 例示的マルチパネル伝送を示す図である。 例示的なマルチTRPおよびマルチパネル伝送を用いるUEを示す図である。 (a)DLのみが構成されている例示的SCellを示す図である。 (b)DLおよびUL伝送が構成されている例示的SCellを示す図である。 CORESET IDが関連付けられることがある例示的TRPを示す図である。 2つのTRP伝送(a)理想的バックホールをサポートする例示的CCを示す図である。 2つのTRP伝送(b)非理想的バックホールをサポートする例示的CC、および2つのパネルを有するUEを示す図である。 2つのTRP伝送(a)理想的バックホールをサポートする2つの例示的CCを示す図である。 2つのTRP伝送(b)非理想的バックホールをサポートする2つの例示的CC、および2つのパネルを有するUEを示す図である。 CCと無線リンク/マルチTRPとの間の例示的failureDetectionResourceセットマッピング関係を示す図である。 暗黙のビーム障害検出の例示的方法フローを示す図である。 BFD操作の例示的な、明確な構成方法を示す図である。 2つのTRP(a)理想的バックホールを使用する2つの例示的CC(CC1はDLおよびULを有するが、CC2はDLのみを有する)を示す図である。 2つのTRP(b)非理想的バックホールおよび2つのパネルを使用する2つの例示的CC(CC1はDLおよびULを有するが、CC2はDLのみを有する)を示す図である。 例示的BFR方法を示す図である。 CCがDLおよびULの両方を有する場合の例示的CFRA伝送使用BFRを示す図である。 複数のCCがDLおよびULの両方を有する場合の例示的CFRA伝送使用BFRを示す図である。 1つのCCがDLおよびULの両方を有するが、もう1つのCCがDLのみを有する場合の例示的CFRA伝送使用BFRを示す図である。 CCがDLおよびUL理想的バックホールを用いる際のBFRのための例示的PUCCH伝送機会を示す図である。 複数(2つの)CCがDLおよびUL理想的バックホールを用いる際のBFRのための例示的PUCCH伝送機会を示す図である。 CCがDLおよびUL非理想的バックホールを用いる際のBFRのための例示的PUCCH伝送機会を示す図である。 DLおよびULを有するCC1と、DLのみを有するCC2との2つのCCが、TRPおよびTRPとの間で非理想的バックホールを用いる際のBFRのための例示的PUCCH伝送機会を示す図である。UEは2つのパネルを装備している。 DLのみを有するSCellのBFRのための例示的2ステップコンテンションフリーRACHを示す図である。 SCellがDLのみを有する場合のBFRのMsgAの例示的MAC CEコンテンツを示す図である。 SCellがULおよびDLの両方を有する場合のBFRのMsgAの例示的MAC CEコンテンツを示す図である。 4オクテットビットマップ(レガシー)を用いるBFR MAC CEを示す図である。 Lフィールドを含む4オクテットビットマップを用いるBFR MAC CEを示す図である。 Lフィールドを含む4オクテットビットマップを用いるBFR MAC CEを示す図である。 マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復の方法、システムおよびデバイスに基づいて生成される場合がある例示的ディスプレイ(例えば、グラフィカルユーザインターフェース)を示す図である。 例示的通信システムを示す図である。 RANおよびコアネットワークを含む例示的システムを示す図である。 RANおよびコアネットワークを含む例示的システムを示す図である。 RANおよびコアネットワークを含む例示的システムを示す図である。 通信システムの別の例を示す図である。 WTRUなどの例示的装置またはデバイスのブロック図である。 例示的コンピューティングシステムのブロック図である。
マルチTRPおよびマルチパネル伝送-多様性および堅牢性の向上は、マルチTRPおよびマルチパネル伝送を用いる理想的バックホールネットワークおよび非理想的バックホールネットワークの両方によって実現する可能性があることが認識されている。少なくともPHYの観点から、TRP-UEリンクを相対的に独立させることが目標となる可能性がある。例えば、UEは、1つのPUCCH伝送に関するTRP1からのPDSCHのA/Nを多重化し、A/Nは、TRPごとに分割される。
光ファイバを使用するポイントツーポイント接続などの理想的バックホールは、TRPとコアネットワークとの間の超高スループットおよび超低遅延を可能にすることができることに留意されたい。理想的バックホールは、2.5マイクロ秒未満の遅延、および10Gbpsのスループットとして定義されることがある。xDSL、マイクロ波および中継ネットワークなどの非理想的バックホールは、ネットワークにおける著しく長い遅延時間をもたらす可能性がある。
図1に示すように、マルチTRPネットワークでは、UEは複数のTRPと通信する場合がある。典型的には、TRPは、異なるビームでUEによってアクセスされる。非理想的バックホールネットワークの場合、マルチTRPからの非干渉性同時伝送は、特にTRPのカバレッジエリアのエッジで性能を向上させる場合がある。複数のTRPによる同時伝送は、PDSCH性能およびPDCCH性能の両方を向上させる場合がある。
マルチパネル展開が、マルチビーム伝送および受信向けにTRPにおいてサポートされる場合がある。本明細書で開示する用語「TRP」は、ネットワークサイドパネルを意味する場合もある。マルチパネル展開は、UEにおいてサポートされる場合もある。加えて、用語「パネル」は、UEのパネル(例えば、アンテナアレイ)を意味する場合がある。
UEが複数のパネルから伝送することがあるマルチパネル伝送により、スペクトル効率が改善されることが知られている(パネルからの伝送は干渉性または非干渉性である場合がある)。マルチパネル伝送の概念を図2に示す。各UEパネルは、異なる方向性を有すると想定されることがあるため、受信にとって最良のビームまたはTRPは、各UEパネルによって異なる場合がある。UEは、測定に基づいて所定のパネルにとって最良のTRPまたはビームを決定し、ネットワークにその情報をフィードバックする場合があり、それに応じて、ネットワークは、どのビームまたはTRPがPUCCH/PUSCH受信に使用されるべきかを決定することができる。パネル-TRPリンクのそれぞれは、独立したリンクと見なすことができるので、UEのパネル間の調節は必要ない。
マルチTRP PDSCH伝送-従来、同じ時間-周波数リソースでの複数の層を通したコードワード伝送は、DLおよびULでサポートされることがある。コードワード(CodeWord:CW)は、異なるTRPから、独立したビームによって伝送される場合がある。そのため、CWまたは層ごとのDMRSポートは、異なるQCL仮定を有する場合がある。しかし、遅延が懸念される非理想的バックホールネットワークでは、同時伝送に頼らず、可能な限りTRPを独立して操作することが望ましい場合がある。
そのため、無線通信の目標は、マルチTRPおよびマルチパネル伝送のために、下りリンクおよび上りリンクシグナリングの拡張を可能にすることである。
UEが異なるTRPからのPDSCHを別々に認識できるように、マルチTRP PDSCH伝送をサポートするプロシージャが、TRPごとの個々のHARQ ACKコードブックと共に検討されている。UEがTRP1からPDSCH1、およびTRP2からPDSCH2を受信し、その応答として、TRP1へAck1(PDSCH1に対する)、およびTRP2へAck2(PDSCH2に対する)を送信する例を、図3に示す。PDSCH1およびPDSCH2は、同じまたは異なるHARQプロセスに対応する場合があることに留意されたい。UEが目的のTRPに対応するAckを送信できるように、受信したPDSCHを伝送したTRPに関連付けるために識別子が使用されることがある。
NRにおけるSCell構成-SCellには、下りリンク(DownLink:DL)伝送のみが構成される場合がある。このケースでは、UE用のプライマリセル(Primary Cell:PCell)でのみ、ULは伝送されることがある。別のシナリオでは、サービングセル(Serving Cell:SCell)は、伝送用の上りリンク(UpLink:UL)およびDLの両方を有している場合がある。図4Aでは、DL伝送のみがSCellに構成されている場合を示しており、また(b)は、DLおよびUL伝送の両方がSCellに構成されている場合を示している。図4Aでは、UEはPCellを介してPUCCH/PSCCHを伝送する。図4Bでは、UEは、SCellおよびPCellの両方で、PUCCH/PSCCHまたは他の物理チャネル、例えばPRACHを伝送する場合がある。
Rel-15におけるビーム障害要求-Rel-15では、ビーム障害が検出されて、候補ビームが規定されるときに、UEは、RRCメッセージPRACH-ResourceDedicatedBFRによって提供されるRACH構成に従って、識別した最良の候補ビームのPRACHを伝送する。Rel-15では、BFRは、コンテンションフリーランダムアクセス(Contention-Free Random Access:CFRA)プロシージャを介して行われる場合がある。
Rel-15では、BWP-UplinkDedicatedフィールド内のRRC BeamFailureRecoveryConfig IEは、ビーム障害検出の場合に、ビーム障害回復用のRACHリソースおよび候補ビームをUEに構成するために使用される場合がある。UEは、CORESETでのPDCCHを監視するためのRRC IE BeamFailureRecoveryConfigフィールド内のrecoverySearchSpaceIdによって提供されるサーチスペースセットへのリンクを通して、CORESETが提供される場合がある。RecoverySearchSpaceIdは、BFRランダムアクセス応答のために使用するサーチスペースを示す場合がある。
Figure 2022545406000002
Figure 2022545406000003
TRPに関連付けられたCORESET-マルチTRP伝送、PDCCH構成内の1つまたは複数のCORESETが、1つのTRPに対応する場合。ゆえに、CORESET識別子(IDentification:ID)がTRPに結び付けられて、CORESETを介したPDSCHグラントがそのTRPに関連付けられる場合がある。そのPDSCHに対するA/Nが、そのTRPに伝送される。このようにして、TRPごとのPUCCH伝送がサポートされることになる。PDCCH構成内のCORESET IDとTRP IDとの関連付けは、描写されているようなものである。
Figure 2022545406000004
Figure 2022545406000005
TRPは、CSI-RSまたはSSBによるTRPの1つまたは複数のRxビームに関するUE測定に基づいて下りリンク伝送のTxビームを決定する場合がある。
マルチTRPからの複数のビームペアリンクでのNR-PDCCHを監視するためのUE Rxビーム設定に関するパラメータは、上位層シグナリングまたはMAC CEによって構成されるか、あるいはサーチスペース設計で考慮される。少なくとも、NRは、DL RSアンテナポートとDL制御チャネルの復調用のDL RSアンテナポートとの間の空間的QCL仮定のインジケーションをサポートする。NR-PDCCH用のビームインジケーションのためのシグナリング方法の候補(例えばNR-PDCCHを監視するための構成方法)としては、MAC CEシグナリング、RRCシグナリング、DCIシグナリング、仕様書による透過的なまたは暗黙の方法、およびこれらのシグナリング方法の組み合わせがある。
マルチTRPからのユニキャストDLデータチャネルの受信の場合、NRは、DL RSアンテナポートとDLデータチャネルのDM-RSアンテナポートとの間の空間的QCL仮定のインジケーションをサポートする。RSアンテナポートを示す情報は、DCI(下りリンクグラント)を介して示される。情報は、DM-RSアンテナポートとQCLであるRSアンテナポートを示す。DLデータチャネル用のDM-RSアンテナポートの異なるセットは、RSアンテナポートの異なるセットとのQCLとして示される場合がある。
(マルチTRP伝送を用いるビーム障害検出)
CCまたはマルチCCのマルチTRP伝送を用いるBFD-UEは、CCまたはマルチCCのマルチTRPからデータを受信してもよい。図6Aおよび図6Bでは、ネットワーク(例えば、gNB)は、複数の(例えば、2つの)データリンクを設定する場合があり、この際、UE200は、特定のCC(PCellまたはSCell)からTRP201およびTRP202を通して同時にデータを受信する場合がある。しかし、それは、TRP間(例えば、TRP201またはTRP202)の理想的または非理想的バックホールに依存し、ネットワークは、それぞれ、図6Aに示すように単一のDCIまたは複数のDCIを通して複数のPDSCHを提供するか、または図6Bに示すように複数のDCIを通して複数のPDSCHを提供する場合がある。
図7Aおよび図7Bでは、ネットワークは、複数(例えば、2つの)データリンクを設定する場合があり、この際、UE200は、異なるCC(PCellまたはSCell)からTRP201およびTRP202を通して同時にデータを受信する場合がある。CC1がPCellであり、かつCC2がSCellであるか、またはその逆であってもよい。
Figure 2022545406000006
明確な構成、例えば上位層(RRC)は、ビーム障害検出用の参照信号リソース(例えば、CSI-RS)を構成する。理想的および非理想的バックホールを用いるCCまたは複数のCCのケースでは(例えば、図6および図7に示すような)、BFD操作向けの以下の明確な構成方法を適用することができる。
Figure 2022545406000007
Figure 2022545406000008
Figure 2022545406000009
Figure 2022545406000010
一部のケースでは、Nは、バンド内のサービングセルまたはCCの数である。
一部のケースでは、Nは、サービングセルまたはCC(本明細書ではサービングセル/CCと呼ばれる)リスト、例えば、TCIリレーション(例えば1つまたは複数のTCI記述のアクティベーションまたは非アクティベーション)が同時に更新されることがあるサービングセルのリスト内に構成されているサービングセルまたはCCの数である。
Figure 2022545406000011
異なるリンク(例えば、異なるTRPまたはTRPのセットに対応する)が、異なるCORESETプールに関連付けられてよい。これらのCORESETプールは、異なるCORESETプールインデックスによって、例えばRRCパラメータcoresetPoolIndex-r16を使用して区別することができる。
Figure 2022545406000012
Figure 2022545406000013
Figure 2022545406000014
Figure 2022545406000015
Figure 2022545406000016
Figure 2022545406000017
Figure 2022545406000018
Figure 2022545406000019
Figure 2022545406000020
図9は、例示的方法フローを示す。図9に示されているように、ステップ210で、サービングセルの複数の異なるCORESETプール(例えば2)がUE200に構成されてよい。ステップ211で、サービングセルのCORESETのTCI記述がUE200に構成また示されてよい。ステップ212で、BFD RSの第1セットが、第1CORESETプール内のCORESETのTCI記述内のRSから暗黙に決定されてよい。ステップ213で、UE200は、BFD RSの第1セットに基づいてBFDを実施してよい。ステップ214で、BFD RSの第2セットが、第2CORESETプール内のCORESETのTCI記述内のRSから暗黙に決定されてよい。ステップ215で、UE200は、BFD RSの第2セットに基づいてBFDを実施してよい。
図6Aおよび図7Aでそれぞれ示すようなCCまたはマルチCCの理想的バックホールを用いるマルチTRP伝送の場合、単一のDCIまたは複数のDCIが複数のPDSCH受信をスケジュールするために使用されてよい。このケースでは、UE200がCSI-RSまたはSSBを監視するために上位層からいずれの(ビーム)障害検出リソースを提供されない場合、UE200は、PDCCHの監視のためにUE200が使用するそれぞれの(単一の)CORESETのTCI-stateによって示されるRSセットを使用する必要がある。
マルチTRP PDSCHの単一のDCIスケジューリングは、例えば以下の場合に適用可能である。
・ UE200が「FDMSchemeA」、「FDMSchemeB」、「TDMSchemeA」に対して上位層パラメータRepSchemeEnablerセットによって構成される場合、UE200がDCIフィールド「Transmission Configuration Indication」のコード位置で2つのTCI記述、およびDCIフィールド「Antenna Port(s)」の1つのCDMグループ内のDM-RSポートを示された場合。
・ UE200がPDSCH-TimeDomainResourceAllocation内のRepNumR16を含むpdsch-TimeDomainAllocationList内の少なくとも1つのエントリーを示す上位層パラメータPDSCH-configによって構成される場合。
例えばUE200がControlResourceSet内のCORESETPoolIndexの2つの異なる値を示す上位層パラメータPDCCH-Configによって構成される場合、マルチTRP PDSCHの複数のDCIスケジューリングが、適用可能である場合がある。
下記記述は図6Aに示すCCまたは図7Aに示す複数のCCの複数のリンクをスケジュールするために単一のDCIが使用される場合のBFD操作のオプションに関し、また以下の表1のように説明される。
Figure 2022545406000021
Figure 2022545406000022
Figure 2022545406000023
図6Bおよび図7Bでそれぞれ示すようなCCまたはマルチCCの非理想的バックホールを用いるマルチTRP伝送の場合、複数のPDCCH/DCIまたは別個のPDCCH/DCIが複数のPDSCH受信をスケジュールするためにサポートされてよい。このケースでは、UE200はマルチリンクを伴うマルチ/別個のPDCCHが提供されてよく、そのため、UE200は、不明確さを伴うことなく各リンクに対してCORESET内のDCIを独立してマップすることができる。
このケースでは、暗黙の構成を用いるBFD操作は、CCまたはマルチCCの理想的バックホールを用いるマルチTRP伝送と同じ開示のアプローチを使用することができる。さらに、CORESETに構成されるどのTCI記述が、PDSCHのデフォルトQCL仮定であるかを明確にする必要がある。
Figure 2022545406000024
Figure 2022545406000025
Figure 2022545406000026
Figure 2022545406000027
Figure 2022545406000028
Figure 2022545406000029
Figure 2022545406000030
Figure 2022545406000031
前述のことを念頭に置きながら、図10は例示的UE物理層プロシージャフローを提示している。ステップ220で、BWPに対して、BFD用のRSの第1セットおよびRSの第2セットがUE200に構成される。RSの第1セットの第1RSは、第1TRP201から伝送される。RSの第2セットの第2RSは、第2TRP202から伝送される。ステップ221で、BWPに対して、新しいビーム特定(例えば、候補ビーム)用のRSの第3セットおよびRSの第4セットがUE200に構成される。RSの第3セットの第3RSは、第1TRP201から伝送される。RSの第4セットの第4RSは、第2TRP202から伝送される。ステップ222で、BWPがアクティブである場合、第1RSおよび第2RSに基づいて、UEによってBFDが実施される。ステップ223で、第1セット内のRSの一部または全ての無線リンク品質が閾値を下回る場合、物理層によってこのことについて周期的に示すインジケーション(例えば、信号またはメッセージ)が他の層に提供され、ここで、他の層とは、物理層以上の上位層である。第2セット内のRSの一部または全ての無線リンク品質が閾値を下回る場合、物理層は、このことについて他の層に特定の周期で示す。ステップ224で、層(例えば、物理層以上の上位層)からの要求に応じて、RSの第3セットまたはRSの第4セットに基づいて、新しいビーム特定がUEによって実施される。
図10を引き続き参照し、プロシージャ(ビーム障害検出および回復)は、2つの層(PHYおよびMAC(上位層))の間で分配されてよい。ステップ220からステップ224のプロシージャは、PHY部分が主体となってよい。MAC部分の一部は、以下を含んでよい。ステップ225で、MACは第1または第2リンク(例えばRSの第1および第2セットに対応する第1および第2リンク)の無線リンク品質のPHYインジケーションを受信してよい。ステップ226で、特定の数のPHYインジケーションの受信に基づいて、MACは第1または第2リンクのビーム障害を宣言してもよい。ステップ227で、第1リンクのビーム障害に基づいて、MACは、PHYのRSの第3セットに対応する第1リンクの新しいビーム特定を実施するようにPHYに要求する。ステップ228で、第2リンクのビーム障害に基づいて、MACは、PHYのRSの第4セットに対応する第2リンクの新しいビームインジケータ (New Beam Indicator:NBI)を実施するようにPHYに要求してもよい。全体を通して各層がインジケーションなどを送信または受信するように例示されているが、他の層がそのようなインジケーションを送信する場合があることも想定されることに留意されたい。
Figure 2022545406000032
Figure 2022545406000033
Figure 2022545406000034
(マルチTRP伝送を用いるビーム障害要求)
マルチTRP伝送をサポートするために、開示する主題は、ビーム障害回復要求(Beam Failure Recovery Request:BFRQ)伝送のためにPUCCHまたはCFRAの使用をサポートする場合がある。BFRプロシージャ中、UE200は、CCのTRPごとのみの測定されたCSI-RSリソースインデックス(CRI)または同期信号ブロック(SSB)リソースインデックス(SSBRI)に対応する1つの(例えば最良の)ビームのみを報告してよい。
CCまたは複数のCCのマルチTRP伝送を用いるBFRをサポートするために、以下のオプションが考えられる。1)コンテンションフリーPRACH使用BFR、2)PUCCH使用BFR、3)コンテンションフリー2ステップRACH使用BFR、または4)PUSCH使用BFR。
本明細書における方法は、CCまたは複数のCCのマルチパネル伝送およびマルチTRPを用いるUL信号(PRACH)/チャネル(PUCCH、PUSCH)を介したBFRの実施方法に関連して開示される。
開示のシナリオは、マルチTRPまたはマルチパネルを有するBFR操作に関して考慮される場合がある。第1のシナリオでは、(a)理想的バックホールおよびマルチパネルを有するUE、または(b)非理想的バックホールおよびマルチパネルを有するUE、によるマルチTRP伝送を、単一のCCが使用することが考えられる。第2のシナリオでは、(a)理想的バックホールおよびマルチパネルを有するUE、または(b)非理想的バックホールおよびマルチパネルを有するUE、によるマルチTRP伝送をマルチCC(DLおよびULの両方を有する)が使用することが考えられる。第3のシナリオでは、(a)理想的バックホールおよびマルチパネルを有するUE、または(b)非理想的バックホールおよびマルチパネルを有するUE、によるマルチTRP伝送をマルチCC(一部はDLおよびULの両方を有するが、他の一部のCCはDLのみを有する)が使用することが考えられる。
図6Aおよび図6Bに示すように、理想的バックホールおよび非理想的バックホールによるマルチTRPを使用するCC(DLおよびULの両方を有する)、およびBFR用のマルチパネルを装備することができるUE200が、それぞれ示されている。このケースでは、UE200は、マルチリンク(例えば異なるTRPからの)をスケジュールするために単一のDCIを使用し、かつマルチリンク(例えば異なるパネルからの)にUCIを連結させるために単一のUCIを使用してもよい。
図7Aおよび図7Bに示すように、理想的バックホールおよび非理想的バックホールによるマルチTRPを使用する複数のCC(DLおよびULの両方を有する)、およびBFR用のマルチパネルを装備することができるUE200が、それぞれ示されている。このケースでは、UE200は、マルチリンク(例えば異なるTRPからの)をスケジュールするために複数のDCIを使用し、かつマルチリンク(例えば異なるパネルからの)に複数のUCIを使用してもよい。
DLのみを有するCC204(SCell)、例えば図14に示すようにCC204にUL伝送が存在しない場合、UE200は、DLおよびULを有するCC(例えば、PCell)でUCIを伝送してよい。UE200がUL伝送用のマルチパネルを装備している場合、UEのマルチパネルは、図11に示すように同じTRPにマルチUCIを伝送するために使用されてよい。
コンテンションフリーPRACH使用BFR-ビーム障害回復要求(BFRQ)には、コンテンションフリーPRACH(Contention-Free PRACH:CFRA)を使用してもよい。DLおよびULがCCに構成されている場合、このケースでは、BFRのためにPRACH伝送が同じCCで実施されてよい。CCでサポートされる場合があるマルチTRPからのリンクの数に応じて、BFRのために1つまたは複数のPRACHリソースが同じCCによって構成されてよい。
DLのみを有するCC(例えばSCell)の場合、CCはUL伝送を行うことができない。そのため、CFRA使用BFRは、DLおよびULの両方を有するCCで実施される必要がある。
BFRQは、部分的ビーム障害または全面的ビーム障害などの複数の方式に分類することができる。部分的ビーム障害に関して、マルチTRP伝送では、UE200には、同時伝送用のマルチリンクが構成される場合がある。したがって、複数のリンク(マルチTRPからの)の間で発生するビーム障害のうちそれらの全てではなく、少なくとも1つを意味するビーム障害が、部分的ビーム障害のケースで発生する場合がある。このケースでは、BFRQは、ビーム障害がないリンクで実施されてよい。
Figure 2022545406000035
Figure 2022545406000036
Figure 2022545406000037
Figure 2022545406000038
Figure 2022545406000039
Figure 2022545406000040
Figure 2022545406000041
Figure 2022545406000042
例えば、2つのDLおよびULリンクが設定されていることが仮定される場合がある。例えば、図7Aまたは図7Bに示すように、それぞれ、DLリンク1はCC203のTRP201からのものであり、DLリンク2はCC204のTRP202からのものである場合がある。加えて、UE200は2つのパネル、例えば、それぞれ、CC203のTRP201へのULリンク1、およびCC204のTRP202へのULリンク2、を装備している場合がある。このシナリオにおける、CFRA使用BFRは、図14に描写されている。
しかし、図14に示すようにCCにDLのみが構成されている場合、CCでのUL伝送を構成することが不可能である可能性があり、したがって、BFRのためのCFRA伝送は、DLおよびULを有するPCellまたはそれらのCCで実施される場合がある。
Figure 2022545406000043
例えば、複数の(例えば、2つの)DLおよびULリンクが設定されることが仮定される場合がある。図14に示すように、それぞれ、DLリンク1はCC203のTRP201からのものであり、DLリンク2はCC204のTRP202からのものである。しかし、CC204はDLのみの場合がある。加えて、UE200は2つのパネルを装備している。したがって、ULリンク1および2の両方は、CC203のTRP201へのものである。このシナリオにおける、CFRA使用BFRは、図15に描写されている。
Figure 2022545406000044
Figure 2022545406000045
PUCCH/UCIを介して伝送される場合があるBFR-DLおよびULの両方を有するCCのマルチTRP伝送によるビーム障害報告のために、UE200には、1)PUCCHもしくはPRACH BFRリソース、または2)PUCCHおよびPRACHの両方、が構成されてよい。PUCCHおよびPRACHの両方の場合、PUCCHおよびPRACHの両方が構成されている場合、BFR向けのPUCCHリソースまたはBFR向けのPRACHリソースが可能な場合はいつでもその両方が使用されてよく、BFRのためにどちらのリソースを使用するかは、UEの実装形態次第である場合がある。
Figure 2022545406000046
PUCCH機会向けの専用PUCCHリソースは、上位層(RRC)によって提供されてよい。構成パラメータは、PUCCHフォーマット、開始PRB/PRBオフセット、周波数ホッピング(スロット間、スロット内)、周期、第1シンボル(開始シンボル)/startingSymbolIndex、シンボルの数/nrofSymbols、開始CSインデックス(initialCyclicShift)、PRBの数/nrofPRBs、時間ドメインOCC(occ-Length、occ-Index)、追加のDM-RS、最大コードレート、スロットの数、pi2BPKおよびssb-perPUCCH-Occasionを含んでよい。図11Aまたは11Bに示すように、専用PUCCH伝送機会が、PUCCHを用いるBFRのために構成されてよい。PUCCHを用いるBFRの場合、gNBがBFRQ伝送向けの周期的PUCCHリソースを構成することができる。しかし、PUCCH機会でBFRが存在しない場合、UCI/PUCCH伝送は行われない場合がある。
優先順位付けのケースでは、UCIの優先規則が、BFR>HARQ-ACK/SR>周期的CSI(Periodical CSI:P-CSI)と、規定される場合がある。
Figure 2022545406000047
Figure 2022545406000048
Figure 2022545406000049
Figure 2022545406000050
Figure 2022545406000051
Figure 2022545406000052
Figure 2022545406000053
CFRAを用いるBFRのユースケースのように、PUCCHリソースを用いるBFRは、以下の展開ケースの1つまたは複数に依存する場合がある。図6Aおよび図7Aでそれぞれ示すようなCCまたはマルチCCの理想的バックホールを用いるマルチTRP伝送の第1展開ケースの場合、単一のDCIが複数のPDSCH受信をスケジュールするために使用されてよい。このケースでは、マルチリンク(マルチTRPからの)の専用PUCCH伝送機会が使用されてよく、またリンク/TRP IDは、BFR PUCCH用のDM-RSによって示されてよい。
Figure 2022545406000054
Figure 2022545406000055
図6Bおよび図7Bでそれぞれ示すようなCCまたはマルチCCの非理想的バックホールを用いるマルチTRP伝送の場合の第4のシナリオでは、マルチ/個別DCIが複数のPDSCH受信をスケジュールするために使用されてよい。このケースでは、CCでのBFR用に別個の専用PUCCH伝送機会がUE200に構成されてよい。それらの別個の専用PUCCH伝送機会は、TDM、FDM、またはSDMを介して重複している時間-周波数に基づいてよい。
第5のシナリオでは、SCellがDLのみを有する場合、BFR PUCCHは、PCellで構成されてよい。BFR PUCCHリソースは、TRPの間の理想的または非理想的バックホールに基づいて構成されてよい。
Figure 2022545406000056
例えば、複数のDLおよびULリンクが設定されることが仮定される場合がある。図7Aに示すように、それぞれ、DLリンク1はCC203のTRP201からのものであり、DLリンク2はCC204のTRP202からのものであり、理想的バックホールが、TRP201とTRP202との間にある。加えて、UE200は2つのパネル、例えば、それぞれ、CC203のTRP201へのULリンク1、およびCC204のTRP202へのULリンク2、を装備している。このシナリオに関して、PUCCH使用BFRは、図17に描写されている。このケースでは、PUCCHを用いるBFR伝送は、UL CC203で伝送されてよく、またリンク/TRP IDは、BFR PUCCH用のDM-RSによって区別されてよい。したがって、CC203のみが、BFRのためにPUCCHを使用するように構成されてよい。
Figure 2022545406000057
例えば、図Bに示すように、それぞれ、複数がCC203に設定されており、かつCC204のDLリンク1はTRP201からのものであり、DLリンク2はTRP202からのものであり、非理想的バックホールがTRP201とTRP202との間にあることが仮定される場合がある。しかし、CC204は、DLのみを有する。加えて、UE200は2つのパネル、例えば、それぞれ、CC203のTRP201へのULリンク1、およびCC204のTRP202へのULリンク2、を装備している場合がある。この例でのPUCCHを用いるBFRは、図19に示されている。BFR PUCCH1およびBFR PUCCH2は別個のものである。このケースでは、BFR PUCCH1およびBFR PUCCH2がTDMに基づくことが仮定される場合がある。
BFRプロシージャ中、UE200は、CCごとの構成されたCSI-RSまたはSSBインデックスのセットからのCRIまたはSSBRIの最良の測定された品質(例えばRSRP)を報告してもよい(CSI-RSまたはSSBインデックスは、明確なまたは暗黙の構成に基づく場合があることに留意されたい)。BFR用のCRIを搬送する上りリンク制御情報(UCI)を表5に提示する(BFR用のCRIまたはSSBRIのある報告のCSIフィールドの例示的マッピングの順番)。
BSR用のCRI/SSBRIを伝達するUCIは、1)図6Aもしくは図6Bに示すようなマルチTRP/パネル伝送を用いる単一のCC、または2)図7Aもしくは図7Bに示すようなマルチTRP/パネル伝送を用いる複数のCC、などのユースケースで使用されてよい。
Figure 2022545406000058
Figure 2022545406000059
Figure 2022545406000060
以下の方法は、PCellでのBFRのためのコンテンションフリー2ステップRACHに使用することができる。
Figure 2022545406000061
DLのみを有するSCellでのコンテンションフリー2ステップRACH使用BFRの場合、コンテンションフリーPRACHプリアンブルとPUSCHリソース(PUSCH Resource Unit:PRU)ユニットとの間で1対1マッピングが存在する場合がある。MsgA伝送が実施される場合、DMRSポートまたはDMRS系列が、物理層に暗黙に示されてよい。あるいは、DMRSポートまたはDMRS系列は、選択されたRAプリアンブルに基づいて暗黙に物理層によって決定されてよい。
例えば、図11Bに示すように、それぞれ、複数のDLおよびULリンクがCC203に設定されており、かつCC204のDLリンク1はTRP201からのものであり、DLリンク2はTRP202からのものであり、非理想的バックホールがTRP201とTRP202との間にあることが仮定される場合がある。しかし、CC204はDLのみを有する場合がある。加えて、UE200は2つのパネル、例えば、それぞれ、CC203のTRP201へのULリンク1、およびCC204のTRP202へのULリンク2、を装備している場合がある。
図11Bの設定の例、BFRのためのコンテンションフリー2ステップRACHは、図20に描写されている。この例では、UE200は、PRACHプリアンブルとMsgAとの間にタイミングオフセットを構成してよい。このタイミングオフセットは、ゼロに設定されてよく、例えばPRACHプリアンブルおよびPUSCHは、TDMまたはFDMの同じスロットで伝送されてよいことに留意されたい。BFRのためのコンテンションフリー2ステップRACHをPCellで伝送するために、UE200は、PRACHおよびPUSCH伝送のUL空間的関係、例えばTCI記述が、PCellでUE200が監視することができる最低CORESET IDと同じであるという要因に基づいて自動的に決定する。
Figure 2022545406000062
Figure 2022545406000063
Figure 2022545406000064
Figure 2022545406000065
しかし、SCellにDLのみが構成されているユースケースには2ステップRACHが有益である場合がある。SCellにDLおよびULの両方が構成されている場合、このSCellは、他のセルの支援なしに、それらの障害のあるリンクを伝送することができる。したがって、それらの障害のあるリンクインデックスは、MAC CEペイロードにおいて省略される場合がある。それゆえ、MAC CEコンテンツは図22に示すように減らすことができる。
PUSCH使用BFR-MAC CEによる単一の報告によって報告されることになる障害のあるCCインデックス、新しいビーム情報(存在する場合)、またはビーム障害イベント。このケースでは、MAC CEのリソースは、BFRのための専用PUCCHまたはPRACHによってトリガされてよい。障害のあるCCインデックス、新しいビーム情報、またはCORESET IDは、BFRのための専用PUCCHまたはPRACHを用いずにMAC-CEによる単一の報告によって報告される場合があるので、SCell-BFRの遅延が大きくなり、gNBでは制御できない可能性がある。このことは、通常のSRが受信される場合に、gNBが典型的なケースとして即座にPUSCH伝送をスケジュールしない可能性があることが理由である場合がある。このケースでは、例えば、以下に示すようなユースケースが考えられる。
第1のユースケースは、DLのみを有する一部のSCellでのBFRである。BFRおよびPCellでのPUSCH伝送のために利用可能リソースが存在する場合、BFRのためのコンテンションフリーRACHまたは2ステップRACHアプローチを使用することなく、通常のPUSCHによって開示のMsgAコンテンツが搬送されてよい。
Figure 2022545406000066
Figure 2022545406000067
Figure 2022545406000068
ULパネルIDインジケーションに関して、ULパネルIDは、PUSCH用のDM-RSを介して伝達されるか、PUSCHペイロードで明確にシグナリングされてよい。
一部のケースでは、MAC CEは、1つまたは複数のサービングセルでのビーム障害、またはその1つまたは複数のサービングセルの1つまたは複数のリンクを示すために使用されてよい(また、前述したようなRACHベースBFR、例えば2ステップRACHにも適用可能である)。
例えば、セルまたはリンクのビーム障害または非ビーム障害を示す例示的な4オクテットビットマップを含む図23のMAC CEが考えられる。
フィールドは、ビーム障害検出、および例えばServCellIndex mを有するサービングセルに関するACフィールドを含むオクテットの存在を示す。1に設定されたCフィールドは、ビーム障害が検出され、かつACフィールドを含むオクテットがServCellIndex mを有するサービングセルに関して存在することを示す。0に設定されたCフィールドは、ビーム障害は検出されず、かつACフィールドを含むオクテットがServCellIndex mを有するサービングセルに関して存在しないことを示す。ACフィールドを含むオクテットは、ServCellIndexに基づいて昇順で存在する。
この例では、32個のサービングセルまたはリンクが示される場合がある。例えば、16個のサービングセルの場合、各セルは2つのリンクを有すると考えられる。
一例では、C およびC は、第1セル(例えば、最も低いインデックスServCellIndex 0を有するサービングセル)のそれぞれ第1リンク(例えば、i=0)および第2リンク(例えば、i=1)を示す。次のフィールドCおよびCは、それぞれ、第2セルの第1リンクおよび第2リンクなどを示す。
種々の例では、異なるサービングセルは、異なる数の構成されたリンクを有する。低いサービングセルインデックスを有するリンクの数と、サービングセルkの低いリンクインデックスを有するリンクの数との総数がm-1の場合、Cは、セルkのリンクiを示す場合がある。Cは、最も低いインデックスを有するサービングセルの第1リンクを示す場合がある。
別の例では、C、C、...、C15は、それぞれ、サービングセル0、...15の第1リンクを示す。C16、C17、...C31は、それぞれ、サービングセル0、...15の第2リンクを示す。
種々の例では、異なるサービングセルは、異なる数の構成されたリンクを有する。mがMよりも小さい場合(ここでMは、このMACエンティティの最も高いサービングセルインデックスである)、Cは、第1リンクセルmを示す場合がある。mがMよりも大きい場合、Cは、構成された2つ以上のリンクを有するセルの中の第2リンクを示す場合がある。
Figure 2022545406000069
フィールドがビーム障害検出、およびServCellIndex mを有するサービングセルに関するACフィールドを含むオクテットの存在を示す例では、ACフィールドを含むオクテットは、図24に示すようにリンクフィールド(L)も含む場合がある。例えば、対応するサービングセルに単一のリンクが構成される場合、図23に示すように、ACオクテットは、1ビットのR(確保され、0に設定された)フィールドを含む。他方では、対応するサービングセルに複数のリンク、例えば2つのリンクが構成される場合、Lフィールドは、次のACオクテットが、同じセルに対応するが、異なるリンクに対応するかどうかを示す場合がある。例えば、L=0の場合、次のACオクテットは、そのCフィールドによって示されるビーム障害のある次のサービングセルに対応する。L=1の場合、次のACオクテットは、同じサービングセルで検出されたビーム障害のある別のリンクに対応する。異なるリンクが候補RSの異なるセットに関連付けられている場合、障害が起こったリンクのインデックスは、ネットワークによって候補RS IDから削除される場合があることに留意されたい。一部のケースでは、サービングセルの異なるリンクに対応するACオクテットは、リンクインデックスの順番で配置される。その場合、ACフィールドが0に設定され、同じサービングセルの1つまたは複数のリンクに障害が起こり、かつMAC CEに含まれている場合であっても、ネットワークは障害が起こったリンクを削除してよい。一例では、ACフィールドが0に設定される(例えば、対応する候補RS IDが存在しない)場合、確保された(そうでない場合、候補RS IDに使用される)ビットの1つまたは複数は、対応するリンクインデックスを示すために使用される。これにより、対応する候補RS IDが存在しない場合に障害が起こったリンクの不明確さを解決することができる。
Figure 2022545406000070
表6は、本明細書で開示する主題に対する例示的な略称および定義を含む。
Figure 2022545406000071
Figure 2022545406000072
Figure 2022545406000073
例えば図1から図20に示すような、本明細書で示すステップを実施するエンティティは、論理エンティティである場合があることを理解されたい。これらのステップは、図27Cから図27Gに示すような、デバイス、サーバ、またはコンピュータシステムの、メモリに記憶されてよく、また、それらのプロセッサで実行されてよい。本明細書で開示される、例示的方法間で、ステップの省略、ステップの組み合わせ、またはステップの追加が検討される。
図26は、本明細書で論じるような、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復の方法、システムおよびデバイスに基づいて生成される場合がある例示的ディスプレイ(例えば、グラフィカルユーザインターフェース)を示す。ディスプレイインターフェース901(例えば、タッチスクリーンディスプレイ)は、BFDまたはBFR関連パラメータ、方法フロー、および関連する現在の状況など、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復に関連したテキストをブロック902内で提供する場合がある。本明細書で論じるステップのいずれかの進行状況(例えば、メッセージの送信またはステップの成功)が、ブロック902内で表示されてよい。加えて、グラフィカル出力902が、ディスプレイインターフェース901上で表示されてよい。グラフィカル出力903は、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復の方法、システムおよびデバイスを実装するデバイスの幾何学的形状、本明細書で論じる任意の方法またはシステムの進行状況のグラフィカル出力などであってもよい。
第3世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP(登録商標))は、無線アクセス、コアトランスポートネットワーク、およびサービス能力(符復号化、セキュリティ、およびサービス品質に作用するものを含む)を含む、セルラー電気通信ネットワーク技術向けに、技術的規格を策定している。最近の無線アクセス技術(RAT)規格は、WCDMA(登録商標)(一般に、3Gと称される)、LTE(一般に、4Gと称される)、LTE-アドバンスト規格、および「5G」とも称される新無線(NR)を含む。3GPP NR規格開発は、継続され、かつ次世代無線アクセス技術(新しいRAT)の規定を含むことが想定され、これは、7GHzを下回る新規のフレキシブルな無線アクセスのプロビジョンと、7GHzを上回る新規のウルトラモバイルブロードバンド無線アクセスのプロビジョンとを含むことが想定されている。フレキシブルな無線アクセスは、6GHzを下回る新しい周波数帯域における新しい非後方互換性無線アクセスで構成されることが想定され、また同じ周波数帯でまとめて多重化されて、多様な要件を伴う3GPP NRユースケースの広範なセットに対処する場合がある異なる動作モードを含むことが想定されている。ウルトラモバイルブロードバンドは、例えば、屋内用途およびホットスポット向けのウルトラモバイルブロードバンドアクセスの機会を提供する、センチ波およびミリ波の周波数帯域を含むことが想定されている。特に、ウルトラモバイルブロードバンドは、センチ波およびミリ波特有設計最適化を用いて7GHzを下回るフレキシブル無線アクセスと共通設計フレームワークを共有することが想定されている。
3GPPは、データレート、遅延、およびモビリティに対する様々なユーザ体験要件となる、NRでサポートすることが予測される種々のユースケースを特定している。ユースケースの、概略のカテゴリとしては、高度化モバイルブロードバンド(eMBB)、超高信頼・低遅延通信(URLLC)、大規模マシンタイプ通信(mMTC)、ネットワークオペレーション(例えば、ネットワークスライシング、ルーティング、マイグレーションおよびインターワーキング、省エネルギー)、ならびに、ビークル・ツー・ビークル通信(V2V)、ビークル・ツー・インフラストラクチャ通信(Vehicle-To-Infrastructure Communication:V2I)、ビークル・ツー・ネットワーク通信(Vehicle-To-Network Communication:V2N)、ビークル・ツー・ペデストリアン通信(Vehicle-To-Pedestrian Communication:V2P)、およびその他のエンティティとのビークル通信のうちいずれかを含む場合がある高度化ビークル・ツー・エブリシング(enhanced Vehicle-To-Everything:eV2X)通信、が挙げられる。これらのカテゴリにおける具体的サービスおよびアプリケーションとしては、例えば、いくつか例を挙げると、監視およびセンサネットワーク、デバイス遠隔制御、双方向遠隔制御、パーソナルクラウドコンピューティング、ビデオストリーミング、無線クラウドベースのオフィス、緊急対応者コネクティビティ、自動車eコール、災害警告、リアルタイムゲーム、多人数ビデオコール、自律運転、拡張現実、触知インターネット、バーチャルリアリティ、ホームオートメーション、ロボティクスおよび空中ドローンが挙げられる。これらのユースケースの全ておよび他のものが、本明細書で検討される。
図27Aは、本明細書で説明および請求される図1から図20に示すシステムおよび方法などのマルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復の方法および装置が、使用される場合がある通信システム100の一例を示す。通信システム100は、(概して、または集合的に(1つまたは複数の)WTRU102を指す場合がある)無線伝送/受信ユニット(Wireless Transmit/Receive Unit:WTRU)102a、102b、102c、102d、102e、102fまたは102gを含んでもよい。通信システム100は無線アクセスネットワーク(RAN)103/104/105/103b/104b/105b、コアネットワーク106/107/109、公衆交換電話網(Public Switched Telephone Network:PSTN)108、インターネット110、その他のネットワーク112およびネットワークサービス113を含んでもよい。ネットワークサービス113は、例えば、V2Xサーバ、V2X機能、ProSeサーバ、ProSe機能、IoTサービス、動画ストリーミングまたはエッジコンピューティングなどを含んでもよい。
本明細書に開示する概念が、任意の数のWTRU、基地局、ネットワーク、またはネットワーク要素と共に使用される場合があることを理解されよう。WTRU102a、102b、102c、102d、102e、102fまたは102gのそれぞれは、無線環境で動作または通信するように構成される任意のタイプの装置またはデバイスであってよい。各WTRU102a、102b、102c、102d、102e、102fまたは102gは、ハンドヘルド無線通信装置として図27A、図27B、図27C、図27D、図27E、図27Fに描写されているが、5G無線通信で考えられる様々なユースケースで、各WTRUは、無線信号を伝送または受信するように構成された任意のタイプの装置またはデバイスを備えている、またはそれらに実装されている場合があり、そのような装置またはデバイスとしては、一例にすぎないが、ユーザ端末(UE)、移動局、固定またはモバイルサブスクライバユニット、ポケットベル、セルラー電話、携帯情報端末(Personal Digital Assistant:PDA)、スマートフォン、ラップトップ、タブレット、ネットブック、ノートブックコンピュータ、パーソナルコンピュータ、無線センサ、大衆消費電子製品、スマートウォッチまたはスマート衣類などのウェアラブルデバイス、医療またはe健康デバイス、ロボット、産業機器、ドローン、例えば、車、バス、トラック、電車、または飛行機の乗物などが挙げられる、ことを理解されよう。
通信システム100はまた、基地局114aおよび基地局114bを含んでよい。図27Aの例では、各基地局114aおよび基地局114bは、単一の要素として描写されている。実際には、基地局114aおよび114bは、相互接続する任意の数の基地局またはネットワーク要素を含んでいてもよい。基地局114aは、WTRU102a、102bおよび102cのうちの少なくとも1つと無線でインターフェースをとり、コアネットワーク106/107/109、インターネット110、ネットワークサービス113、またはその他のネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを促進するように構成される任意のタイプのデバイスであってもよい。同様に、基地局114bは、遠隔無線ヘッド(Remote Radio Head:RRH)118a、118b、送受信ポイント(TRP)119a、119bまたはロードサイドユニット(RoadSide Unit:RSU)120aおよび120bのうちの少なくとも1つと有線または無線でインターフェースをとり、コアネットワーク106/107/109、インターネット110、その他のネットワーク112、またはネットワークサービス113などの1つまたは複数の通信ネットワークへのアクセスを促進するように構成される任意のタイプのデバイスであってもよい。RRH118a、118bは、WTRU102のうちの少なくとも1つ、例えば、WTRU102cと無線でインターフェースをとり、コアネットワーク106/107/109、インターネット110、ネットワークサービス113、またはその他のネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを促進するように構成される任意のタイプのデバイスであってもよい。
TRP119a、119bは、WTRU102dのうちの少なくとも1つと無線でインターフェースをとり、コアネットワーク106/107/109、インターネット110、ネットワークサービス113、またはその他のネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを促進するように構成される任意のタイプのデバイスであってもよい。RSU120aおよび120bは、WTRU102eまたは102fのうちの少なくとも1つと無線でインターフェースをとり、コアネットワーク106/107/109、インターネット110、その他のネットワーク112、またはネットワークサービス113などの1つまたは複数の通信ネットワークへのアクセスを促進するように構成される任意のタイプのデバイスであってもよい。例として、基地局114a、114bは、送受信機基地局(Base Transceiver Station:BTS)、Node-B、eNode B、ホームNode B、ホームeNode B、次世代Node-B(gNode B)、衛星、サイトコントローラ、アクセスポイント(Access Point:AP)、無線ルータなどであってもよい。
基地局114aは、RAN103/104/105の一部であってもよく、それらRANはまた、基地局コントローラ(Base Station Controller:BSC)、無線ネットワークコントローラ(Radio Network Controller:RNC)、中継ノードなど、他の基地局またはネットワーク要素(図示せず)を含んでよい。同様に、基地局114bは、RAN103b/104b/105bの一部であってもよく、それらRANはまた、BSC、RNC、中継ノードなど、他の基地局またはネットワーク要素(図示せず)を含んでもよい。基地局114aは、セルと呼ばれることもある特定の地理的領域(図示せず)内で無線信号を伝送または受信するように構成されてよい。同様に、基地局114bは、特定の地理的領域内で有線または無線信号を伝送または受信するように構成されてよく、その地理的領域は、本明細書にて開示するような、マルチTRP および マルチパネル伝送を用いるビーム障害検出 および 回復の方法、システム、およびデバイスに関するセル(図示せず)と呼ばれることもある。同様に、基地局114bは、セルと呼ばれることもある特定の地理的領域(図示せず)内で有線または無線信号を伝送または受信するように構成されてよい。セルは、セルセクタにさらに分割されてよい。例えば、基地局114aに関連付けられたセルは、3つのセクタに分割されてよい。したがって、一例では、基地局114aは、例えば、セルのセクタごとに1つの、3つの送受信機を備える場合がある。一例では、基地局114aは、多入力多出力(MIMO)技術を採用する場合があり、したがって、セルのセクタごとに複数の送受信機を利用することがある。
基地局114aは、任意の好適な無線通信リンク(例えば、高周波(Radio Frequency:RF)、マイクロ波、赤外線(InfRared:IR)、紫外線(UltraViolet:UV)、可視光、センチ波、ミリ波など)であることがあるエアインターフェース115/116/117を通してWTRU102a、102b、102cまたは102gのうちの1つまたは複数と通信する場合がある。エアインターフェース115/116/117は、任意の好適な無線アクセス技術(RAT)を使用して確立されてよい。
基地局114bは、任意の好適な有線(例えば、ケーブル、光ファイバーなど)または無線通信リンク(例えば、高周波(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光、センチ波、ミリ波など)であることがある、有線またはエアインターフェース115b/116b/117bを通してRRH118a、118b、TRP119a、119bまたはRSU120a、120bのうち1つまたは複数と通信する場合がある。エアインターフェース115b/116b/117bは、任意の好適な無線アクセス技術(RAT)を使用して確立されてよい。
RRH118a、118b、TRP119a、119bまたはRSU120a、120bは、任意の好適な無線通信リンク(例えば、高周波(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光、センチ波、ミリ波など)であることがある、エアインターフェース115c/116c/117cを通してWTRU102c、102d、102e、102fのうちの1つまたは複数と通信する場合がある。エアインターフェース115c/116c/117cは、任意の好適な無線アクセス技術(RAT)を使用して確立されてよい。
WTRU102a、102b、102c、102d、102eまたは102fは、任意の好適な無線通信リンク(例えば、高周波(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光、センチ波、ミリ波など)であることがある、サイドリンク通信などのエアインターフェース115d/116d/117dを通して相互に通信する場合がある。エアインターフェース115d/116d/117dは、任意の好適な無線アクセス技術(RAT)を使用して確立されてよい。
通信システム100は、複数のアクセスシステムである場合があり、かつCDMA、TDMA、FDMA、OFDMA、SC-FDMAなどの1つまたは複数のチャネルアクセススキームを採用する場合がある。例えば、RAN103/104/105内の基地局114aとWTRU102a、102b、102cとは、または、RAN103b/104b/105b内のRRH118a、118b、TRP119a、119bおよびRSU120a、120bとWTRU102c、102d、102e、102fとは、ユニバーサルモバイル電気通信システム(Universal Mobile Telecommunications System:UMTS)、地上無線アクセス(Universal Terrestrial Radio Access:UTRA)などの無線技術を実装してよく、それにより、広帯域CDMA(Wideband CDMA:WCDMA)を使用して、エアインターフェース115/116/117または115c/116c/117cをそれぞれ確立することができる。WCDMAは、高速パケットアクセス(High-Speed Packet Access:HSPA)または発展型HSPA(Evolved HSPA:HSPA+)などの通信プロトコルを含んでもよい。HSPAは、高速下りリンクパケットアクセス(High-Speed Downlink Packet Access:HSDPA)または高速上りリンクパケットアクセス(High-Speed Uplink Packet Access:HSUPA)を含んでもよい。
一例では、基地局114aとWTRU102a、102b、102cとは、または、RAN103b/104b/105b内のRRH118a、118b、TRP119a、119bまたはRSU120a、120bとWTRU102c、102dとは、発展型UMTS地上無線アクセス(Evolved UMTS Terrestrial Radio Access:E-UTRA)などの無線技術を実装してよく、それにより、ロングタームエボリューション(LTE)またはLTE-アドバンスト(LTE-Advanced:LTE-A)を使用して、エアインターフェース115/116/117または115c/116c/117cをそれぞれ確立することができる。将来、エアインターフェース115/116/117または115c/116c/117cは、3GPP NR技術を実装する可能性がある。LTEおよびLTE-A技術は、(サイドリンク通信などの)LTE D2DおよびV2X技術およびインターフェースを含む場合がある。同様に、3GPP NR技術は、(サイドリンク通信などの)NR V2X技術およびインターフェースを含む場合がある。
RAN103/104/105内の基地局114aと、WTRU102a、102b、102cおよび102gとは、または、RAN103b/104b/105b内のRRH118a、118b、TRP119a、119bおよびRSU120a、120bとWTRU102c、102d、102e、102fとは、IEEE802.16(例えば、ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス(Worldwide Interoperability for Microwave Access :WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫定規格2000(Interim Standard 2000:IS-2000)、暫定規格95(IS-95)、暫定規格856(IS-856)、モバイル通信用グローバルシステム(Global System for Mobile communication:GSM(登録商標))、GSM進化型高速データレート(Enhanced Data rates for GSM Evolution:EDGE)、GSM EDGE(GSM EDGE:GERAN)などの無線技術を実装してもよい。
図27Aにおける基地局114cは、無線ルータ、ホームNode B、ホームeNode B、またはアクセスポイントであってもよく、例えば、事業所、家、車両、列車、航空機、衛星、製造所、キャンパスなどの局所エリア内の無線コネクティビティを促進するために、本明細書で開示するような、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復の方法、システムおよびデバイスを実装するための任意の好適なRATを利用してもよい。一例では、基地局114cとWTRU102、例えば、WTRU102eとは、IEEE802.11などの無線技術を実装して、無線ローカルエリアネットワーク(Wireless Local Area Network:WLAN)を確立してもよい。同様に、基地局114cとWTRU102dとは、IEEE802.15などの無線技術を実装して、無線パーソナルエリアネットワーク(Wireless Personal Area Network:WPAN)を確立してもよい。さらに別の例では、基地局114cとWTRU102、例えば、WTRU102eとは、セルラーベースのRAT(例えば、WCDMA、CDMA2000、GSM、LTE、LTE-A、NRなど)を利用して、ピコセルまたはフェムトセルを確立してもよい。図27Aに示すように、基地局114cは、インターネット110への直接接続を有してもよい。したがって、基地局114cは、コアネットワーク106/107/109を介してインターネット110にアクセスする必要がない場合がある。
RAN103/104/105またはRAN103b/104b/105bは、コアネットワーク106/107/109と通信する場合があり、そのコアネットワークは、音声、データ、メッセージ送信、認可および認証、アプリケーション、またはボイスオーバーインターネットプロトコル(Voice over Internet Protocol:VoIP)サービスをWTRU102a、102b、102c、102dのうちの1つまたは複数に提供するように構成される任意のタイプのネットワークであってもよい。例えば、コアネットワーク106/107/109は、コール制御、請求サービス、モバイル位置ベースサービス、プリペイドコール、インターネット(登録商標)コネクティビティ、パケットデータネットワークコネクティビティ、イーサーネットコネクティビティ、ビデオ配信などを提供するか、またはユーザ認証などの高レベルセキュリティ機能を実施してもよい。
図27Aでは図示されていないが、RAN103/104/105またはRAN103b/104b/105bまたはコアネットワーク106/107/109は、RAN103/104/105またはRAN103b/104b/105bと同じRATまたは異なるRATを採用する他のRANと直接または間接通信してもよいことを理解されよう。例えば、E-UTRA無線技術を利用することがあるRAN103/104/105またはRAN103b/104b/105bに接続されることに加え、コアネットワーク106/107/109はまた、GSMまたはNR無線技術を採用する別のRAN(図示せず)と通信してもよい。
コアネットワーク106/107/109はまた、WTRU102a、102b、102c、102d、102eがPSTN108、インターネット110、またはその他のネットワーク112にアクセスするためのゲートウェイとして機能してもよい。PSTN108は、基本電話サービス(Plain Old Telephone Service:POTS)を提供する回線交換電話ネットワークを含んでもよい。インターネット110は、伝送制御プロトコル(Transmission Control Protocol:TCP)、ユーザデータグラムプロトコル(User Datagram Protocol:UDP)、およびTCP/IPインターネットプロトコルスイートのインターネットプロトコル(Internet Protocol:IP)などの共通通信プロトコルを使用する、相互接続されたコンピュータネットワークおよびデバイスのグローバルシステムを含んでもよい。ネットワーク112は、他のサービスプロバイダによって所有または操作される、有線または無線通信ネットワークを含んでもよい。例えば、ネットワーク112は、任意のタイプのパケットデータネットワーク(例えば、IEEE802.3イーサーネットワーク)、あるいは、RAN103/104/105またはRAN103b/104b/105bと同じRATまたは異なるRATを採用することがある1つまたは複数のRANに接続される別のコアネットワークを含んでもよい。
通信システム100内のWTRU102a、102b、102c、102d、102eおよび102fの一部または全ては、マルチモード能力を備えていてもよく、例えば、WTRU102a、102b、102c、102d、102eおよび102fは、本明細書にて開示するマルチTRP および マルチパネル伝送を用いるビーム障害検出 および 回復の方法、システムおよびデバイスを実装するために、異なる無線リンクを通して異なる無線ネットワークと通信する複数の送受信機を含む場合がある。例えば、図27Aに示されるWTRU102gは、セルラーベースの無線技術を採用する可能性のある基地局114aと、およびIEEE802無線技術を採用する可能性のある基地局114cと通信するように構成されてもよい。
図27Aには図示されていないが、ユーザ端末がゲートウェイへの有線接続を作る場合があることを理解されよう。ゲートウェイは、レジデンシャルゲートウェイ(Residential Gateway:RG)である場合がある。RGは、コアネットワーク106/107/109へのコネクティビティを提供する場合がある。本明細書に含まれる主題の多数が、WTRUであるUEおよびネットワークに接続する有線接続を使用するUEに同様に適用される場合があることを理解されたい。例えば、無線インターフェース115、116、117および115c/116c/117cに適用される着想は、有線接続に同様に適用されてよい。
図27Bは、本明細書にて開示するマルチTRP および マルチパネル伝送を用いるビーム障害検出 および 回復の方法、システム、およびデバイスを実装する場合があるRAN103およびコアネットワーク106の一例のシステム図である。上記のように、RAN103はUTRA無線技術を採用して、エアインターフェース115を通してWTRU102a、102bおよび102cと通信してよい。RAN103はまた、コアネットワーク106と通信してもよい。図27Bに示すように、RAN103は、エアインターフェース115を通してWTRU102a、102bおよび102cと通信するために、1つまたは複数の送受信機をそれぞれが備えることがある、Node-B140a、140bおよび140cを含む場合がある。Node-B140a、140bおよび140cはそれぞれ、RAN103内の特定のセル(図示せず)に関連付けられてよい。RAN103はまた、RNC142a、142bを含んでもよい。RAN103は、任意の数のNode-Bおよび無線ネットワーク制御装置(RNC)を含む場合があることを理解されよう。
図27Bに示すように、Node-B140a、140bは、RNC142aと通信する場合がある。加えて、Node-B140cは、RNC142bと通信してもよい。Node-B140a、140bおよび140cは、Iubインターフェースを介して、対応するRNC142aおよび142bと通信してもよい。RNC142aおよび142bは、Iurインターフェースを介して、相互に通信してもよい。RNC142aおよび142bのそれぞれは、接続されているそれぞれのNode-B140a、140bおよび140cを制御するように構成されてよい。加えて、RNC142aおよび142bのそれぞれは、アウターループ電力制御、負荷制御、受付制御、パケットスケジューリング、ハンドオーバ制御、マクロダイバーシチ、セキュリティ機能、データ暗号化などの他の機能を実行、またはサポートするように構成されてよい。
図27Bに示されるコアネットワーク106は、メディアゲートウェイ(Media GateWay:MGW)144、移動通信交換局(Mobile Switching Center:MSC)146、サービングGPRSサポートノード(Serving GPRS Support Node:SGSN)148、またはゲートウェイGPRSサポートノード(Gateway GPRS Support Node:GGSN)150を含む場合がある。上述の要素のそれぞれが、コアネットワーク106の一部として描写されているが、これらの要素のうちの任意の1つは、コアネットワークオペレータ以外のエンティティによって所有または操作される場合があることを理解されよう。
RAN103内のRNC142aは、IuCSインターフェースを介して、コアネットワーク106内のMSC146に接続されてよい。MSC146は、MGW144に接続されてよい。MSC146およびMGW144は、WTRU102a、102bおよび102cに、PSTN108などの回線交換網へのアクセスを提供し、WTRU102a、102bおよび102cと、従来の地上通信デバイスとの間の通信を促進してもよい。
RAN103内のRNC142aはまた、IuPSインターフェースを介して、コアネットワーク106内のSGSN148に接続されてよい。SGSN148は、GGSN150に接続されてよい。SGSN148およびGGSN150は、WTRU102a、102bおよび102cに、インターネット110などのパケット交換ネットワークへのアクセスを提供し、WTRU102a、102bおよび102cとIP対応デバイスとの間の通信を促進してもよい。
コアネットワーク106はまた、他のサービスプロバイダによって所有または操作される他の有線または無線ネットワークを含むことがあるその他のネットワーク112に接続されてよい。
図27Cは、本明細書にて開示するマルチTRP および マルチパネル伝送を用いるビーム障害検出 および 回復の方法、システム、およびデバイスを実装する場合があるRAN104およびコアネットワーク107の一例のシステム図である。上記のように、RAN104は、E-UTRA無線技術を採用し、エアインターフェース116を通してWTRU102a、102bおよび102cと通信してよい。RAN104はまた、コアネットワーク107と通信してもよい。
RAN104は、eNode-B160a、160bおよび160cを含むことがあるが、RAN104は、任意の数のeNode-Bを含んでもよいことを理解されるであろう。eNode-B160a、160bおよび160cはそれぞれ、エアインターフェース116を通してWTRU102a、102bおよび102cと通信するために、1つまたは複数の送受信機を備えていてもよい。例えば、eNode-B160a、160bおよび160cは、MIMO技術を実装してもよい。したがって、eNode-B160aは、例えば、WTRU102aに無線信号を伝送し、かつWTRU102aから無線信号を受信するために、複数のアンテナを使用することがある。
eNode-B160a、160bおよび160cのそれぞれは、特定のセル(図示せず)に関連付けられてよく、かつ無線リソース管理決定、ハンドオーバ決定、上りリンクまたは下りリンクにおけるユーザのスケジューリングなどを取り扱うように構成されてよい。図27Cに示すように、eNode-B160a、160bおよび160cは、X2インターフェースを通じて相互に通信してもよい。
図27Cに示されるコアネットワーク107は、モビリティ管理ゲートウェイ(Mobility Management Gateway:MME)162、サービングゲートウェイ164、およびパケットデータネットワーク(Packet Data Network:PDN)ゲートウェイ166を含む場合がある。上述の要素のそれぞれが、コアネットワーク107の一部として描写されているが、これらの要素のうちの任意の1つは、コアネットワークオペレータ以外のエンティティによって所有または操作される場合があることを理解されよう。
MME162は、S1インターフェースを介して、RAN104内のeNode-B160a、160bおよび160cのそれぞれに接続されてもよく、制御ノードとして機能してもよい。例えば、MME162は、WTRU102a、102bおよび102cのユーザを認証すること、ベアラアクティブ化/非アクティブ化、WTRU102a、102bおよび102cの初期接続の間に特定のサービングゲートウェイを選択することなどの役割を担ってもよい。MME162はまた、RAN104と、GSMまたはWCDMAなどの他の無線技術を採用する他のRAN(図示せず)との間を切り換えるために、制御プレーン機能を提供してもよい。
サービングゲートウェイ164は、S1インターフェースを介して、RAN104内のeNode-B160a、160bおよび160cのそれぞれに接続されてよい。サービングゲートウェイ164は、概して、WTRU102a、102bおよび102cへ/WTRU102a、102bおよび102cからユーザデータパケットをルーティングおよび転送してよい。サービングゲートウェイ164はまた、eNode-B間ハンドオーバの間のユーザプレーンのアンカ、下りリンクデータがWTRU102a、102bおよび102cに対して利用可能であるときのページングのトリガ、WTRU102a、102bおよび102cのコンテキストの管理および記憶などの他の機能を実施してよい。
サービングゲートウェイ164はまた、WTRU102a、102b、102cに、インターネット110などのパケット交換ネットワークへのアクセスを提供し、WTRU102a、102b、102cと、IP対応デバイスとの間の通信を促進することがあるPDNゲートウェイ166に接続されてよい。
コアネットワーク107は、他のネットワークとの通信を促進してもよい。例えば、コアネットワーク107は、WTRU102a、102bおよび102cに、PSTN108などの回線交換網へのアクセスを提供し、WTRU102a、102bおよび102cと従来の地上通信デバイスとの間の通信を促進してもよい。例えば、コアネットワーク107は、コアネットワーク107とPSTN108との間のインターフェースとして機能する、IPゲートウェイ(例えば、IPマルチメディアサブシステム(IP Multimedia Subsystem:IMS)サーバ)を含むか、またはそれと通信してよい。加えて、コアネットワーク107は、WTRU102a、102bおよび102cに、他のサービスプロバイダによって所有または操作される他の有線または無線ネットワークを含むことがあるネットワーク112へのアクセスを提供してもよい。
図27Dは、本明細書にて開示するマルチTRP および マルチパネル伝送を用いるビーム障害検出 および 回復の方法、システム、およびデバイスを実装する場合があるRAN105およびコアネットワーク109の一例のシステム図である。RAN105はNR無線技術を採用し、エアインターフェース117を通してWTRU102aおよび102bと通信してよい。RAN105はまた、コアネットワーク109と通信してもよい。非3GPPインターワーキング機能(Non-3GPP InterWorking Function:N3IWF)199は、非3GPP無線技術を採用して、エアインターフェース198を通してWTRU102cと通信してもよい。N3IWF199はまた、コアネットワーク109と通信してもよい。
RAN105は、gNode-B180aおよび180bを含んでもよい。RAN105は、任意の数のgNode-Bを含む場合があることを理解されよう。gNode-B180aおよび180bはそれぞれ、エアインターフェース117を通してWTRU102aおよび102bと通信するために、1つまたは複数の送受信機を備えていてもよい。統合アクセスおよびバックホール接続が使用されるときに、同じエアインターフェースが、WTRUと、1つまたは複数のgNBを介したコアネットワーク109である場合があるgNode-Bとの間で使用されてよい。gNode-B180aおよび180bは、MIMO、MU-MIMO、またはデジタルビームフォーミング技術を実装してもよい。したがって、gNode-B180aは、例えば、WTRU102aに無線信号を伝送し、かつWTRU102aから無線信号を受信するために、複数のアンテナを使用することがある。RAN105は、eNode-Bなどの他のタイプの基地局を採用する場合があることが理解されるべきである。RAN105は、2つ以上のタイプの基地局を採用する場合があることも理解されよう。例えば、RANは、eNode-BおよびgNode-Bを採用する場合がある。
N3IWF199は、非3GPPアクセスポイント180cを含む場合がある。N3IWF199は、任意の数の非3GPPアクセスポイントを含む場合があることを理解されよう。非3GPPアクセスポイント180cは、エアインターフェース198を通してWTRU102cと通信するために、1つまたは複数の送受信機を含んでよい。非3GPPアクセスポイント180cは、802.11プロトコルを使用して、エアインターフェース198を通してWTRU102cと通信してもよい。
gNode-B180aおよび180bのそれぞれは、特定のセル(図示せず)に関連付けられてよく、かつ無線リソース管理決定、ハンドオーバ決定、上りリンクまたは下りリンクにおけるユーザのスケジューリングなどを取り扱うように構成されてよい。図27Dに示すように、gNode-B180aおよび180bは、例えば、Xnインターフェースを通して相互に通信してもよい。
図27Dに示されるコアネットワーク109は、5Gコアネットワーク(5G Core network:5GC)である場合がある。コアネットワーク109は、無線アクセスネットワークによって相互接続する顧客に、非常に多くの通信サービスを提供する場合がある。コアネットワーク109は、コアネットワークの機能を実施するいくつかのエンティティを含む。本明細書で使用する場合、用語「コアネットワークエンティティ」または「ネットワーク機能」は、コアネットワークの1つまたは複数の機能を実施する任意のエンティティを意味する。このようなコアネットワークエンティティは、無線もしくはネットワーク通信、または図27Gに示されるシステム90などのコンピュータシステム向けに構成された装置のメモリに記憶され、かつ該装置のプロセッサで実行するコンピュータ実行可能命令(ソフトウェア)の形態で実装される論理的エンティティであってもよいことが理解される。
図27Dの例では、5Gコアネットワーク109は、アクセスモビリティ管理機能(Access and Mobility Management Function:AMF)172、セッション管理機能(Session Management Function:SMF)174、ユーザプレーン機能(User Plane Function:UPF)176aおよび176b、ユーザデータ管理機能(User Data Management Function:UDM)197、認証サーバ機能(AUthentication Server Function:AUSF)190、ネットワーク・エクスポージャ機能(Network Exposure Function:NEF)196、ポリシー制御機能(Policy Control Function:PCF)184、非3GPPインターワーキング機能(N3IWF)199、ユーザデータリポジトリ(User Data Repository:UDR)178を含む場合がある。上述の要素のそれぞれが、5Gコアネットワーク109の一部として描写されているが、これらの要素のうちの任意の1つは、コアネットワークオペレータ以外のエンティティによって所有または操作されてもよいことを理解されよう。5Gコアネットワークが、これらの要素の全てで構成されない場合があり、追加の要素で構成される場合もあり、かつこれらの要素のそれぞれの複数のインスタンスで構成される場合があることを理解されよう。各ネットワーク機能は、互いに直接接続することが図27Dに示されているが、それらは、Diameterルーティングエージェントまたはメッセージバスなどのルーティングエージェントを介して通信する場合があることが理解されるべきである。
図27Dの例では、ネットワーク機能間のコネクティビティは、インターフェースまたは参照点のセットを介して実現されている。ネットワーク機能は、他のネットワーク機能またはサービスによって起動されるか、または呼び出されるサービスのセットとして、モデル化、記述、または実装される場合があることが理解されよう。ネットワーク機能サービスの起動は、ネットワーク機能間の直接接続、メッセージバスでのメッセージング交換、ソフトウェア機能の呼び出しを介して実現することができる。
AMF172は、N2インターフェースを介してRAN105に接続されてよく、制御ノードとして機能してもよい。例えば、AMF172は、登録管理、接続管理、到達可能性管理、アクセス認証、アクセス許可の役割を担ってもよい。AMFは、N2インターフェースを介してRAN105にユーザプレーントンネル構成情報を送達する役割を担ってもよい。AMF172は、N11インターフェースを介してSMFからユーザプレーントンネル構成情報を受信する場合がある。AMF172は、概して、N1インターフェースを介してWTRU102a、102bおよび102cへ/からNASパケットをルーティングおよび転送してもよい。N1インターフェースは、図27Dに示されていない。
SMF174は、N11インターフェースを介してAMF172に接続されてよい。同様に、SMFは、N7インターフェースを介してPCF184に、またN4インターフェースを介してUPF176aおよび176bに接続されてよい。SMF174は、制御ノードとして機能してもよい。例えば、SMF174は、セッション管理、WTRU102a、102bおよび102cに対するIPアドレス割り当て、UPF176aおよびUPF176bにおけるトラフィックを導く規則の管理および構成、ならびにAMF172への下りリンクデータ通知の生成の役割を担ってもよい。
UPF176aおよびUPF176bは、WTRU102a、102bおよび102cに、インターネット110などのパケットデータネットワーク(PDN)へのアクセスを提供し、WTRU102a、102bおよび102cと他のデバイスとの間の通信を促進してもよい。UPF176aおよびUPF176bはまた、WTRU102a、102bおよび102cに、他のタイプのパケットデータネットワークへのアクセスを提供してもよい。例えば、その他のネットワーク112は、イーサネットネットワークまたはデータのパケットを交換する任意のタイプのネットワークであってもよい。UPF176aおよびUPF176bは、N4インターフェースを介して、SMF174からトラフィックを導く規則を受信してもよい。UPF176aおよびUPF176bは、N6インターフェースを用いてパケットデータネットワークを接続することによって、またはN9インターフェースを用いて互いに、かつ他のUPFと接続することによって、パケットデータネットワークへのアクセスを提供してもよい。パケットデータネットワークへのアクセスの提供に加えて、UPF176は、パケットルーティングおよび転送、ポリシー規則施行、ユーザプレーントラフィックに対するサービス品質管理、下りリンクパケットのバッファリングの役割を担ってもよい。
AMF172はまた、例えば、N2インターフェースを介してN3IWF199に接続されてよい。N3IWFは、例えば、3GPP規定ではない無線インターフェース技術を介して、WTRU102cと5Gコアネットワーク170との間の接続を促進する。AMFは、RAN105と相互作用するのと同じかまたは類似の方式でN3IWF199と相互作用する場合がある。
PCF184は、N7インターフェースを介してSMF174に接続されてよく、N15インターフェースを介してAMF172に接続していてもよく、N5インターフェースを介してアプリケーション機能(Application Function:AF)188に接続していてもよい。N15およびN5インターフェースは、図27Dに示されていない。PCF184は、AMF172およびSMF174などの制御プレーンノードにポリシー規則を提供して、各制御プレーンノードが、これらの規則を施行できるようにしてもよい。PCF184は、AMF172に、WTRU102a、102bおよび102c向けのポリシーを送信することがあり、その結果、AMFはN1インターフェースを介してWTRU102a、102bおよび102cにポリシーを配信する場合がある。次に、ポリシーは、WTRU102a、102bおよび102cで施行または適用される場合がある。
UDR178は、認証証明書およびサブスクリプション情報のリポジトリとして機能する。UDRは、ネットワーク機能に接続する場合があり、その結果、ネットワーク機能は、リポジトリ内のデータに追加、データから読み出し、データを修正することができる。例えば、UDR178は、N36インターフェースを介してPCF184に接続する場合がある。同様に、UDR178は、N37インターフェースを介してNEF196に接続し、かつN35インターフェースを介してUDM197に接続する場合がある。
UDM197は、UDR178とその他のネットワーク機能との間のインターフェースとして機能する場合がある。UDM197は、UDR178のアクセスに対してネットワーク機能に権限を与える場合がある。例えば、UDM197は、N8インターフェースを介してAMF172に接続し、N10インターフェースを介してSMF174に接続する場合がある。同様に、UDM197は、N13インターフェースを介してAUSF190に接続する場合がある。UDR178およびUDM197は、密接に統合される場合がある。
AUSF190は、認証関連操作を実施し、かつN13インターフェースを介してUDM178に、N12インターフェースを介してAMF172に接続する。
NEF196は、5Gコアネットワーク109内の能力およびサービスをアプリケーション機能(AF)188にエクスポーズする。エクスポーズは、N33 APIインターフェースで生じる場合がある。NEFは、N33インターフェースを介してAF188に接続する場合があり、かつ他のネットワーク機能に接続して、5Gコアネットワーク109の能力およびサービスをエクスポーズする場合がある。
アプリケーション機能188は、5Gコアネットワーク109内のネットワーク機能と相互作用する場合がある。アプリケーション機能188と、ネットワーク機能との間の相互作用は、ダイレクトインターフェースを介したものであるか、またはNEF196を介して生じる場合がある。アプリケーション機能188は、5Gコアネットワーク109の一部と見なされるか、または5Gコアネットワーク109への外部のものである場合があり、かつモバイルネットワークオペレータと業務的な関係を有する企業によって配備される場合がある。
ネットワークスライシングは、オペレータのエアインターフェースの背後で1つまたは複数の「仮想」コアネットワークをサポートするモバイルネットワークオペレータによって使用される場合があるメカニズムである。これは、異なるRAN、または単一のRANにわたって動作する異なるサービスタイプをサポートするために、コアネットワークを1つまたは複数の仮想ネットワークに「スライシング」することに関連する。ネットワークスライシングは、例えば、機能、性能、および独立性における多様な要件を要求する異なる市場シナリオ向けに、最適化されたソリューションを提供するようにカスタマイズされたネットワークを、オペレータが作成することを可能にする。
3GPPは、ネットワークスライシングをサポートするように5Gコアネットワークを設計してきた。ネットワークスライシングは、ネットワークオペレータが、非常に多様で、かつ多大な要件が求められることが多い5Gユースケースの多様なセット(例えば、大規模IoT、クリティカル通信、V2X、および高度化モバイルブロードバンド)をサポートするために使用することができる良好なツールである。ネットワークスライシング技法の使用なしでは、各ユースケースが、性能、拡張性、および可用性要件のそれ自体固有のセットを有する場合、ネットワークアーキテクチャは、広範なユースケースニーズを効率的にサポートするのに十分な柔軟性および拡張性がない可能性がある。さらに、新しいネットワークサービスの導入は、より効率的に行われなければならない。
図27Dを再度参照し、ネットワークスライシングのシナリオでは、WTRU102a、102bまたは102cは、N1インターフェースを介してAMF172に接続する場合がある。AMFは、論理的に1つまたは複数のスライスの一部である場合がある。AMFは、WTRU102a、102bまたは102cと、1つまたは複数のUPF176aおよび176b、SMF174、およびその他のネットワーク機能との接続または通信を調整する場合がある。UPF176aおよび176b、SMF174、およびその他のネットワーク機能のそれぞれは、同じスライスまたは異なるスライスの一部である場合がある。それらが異なるスライスの一部である場合、それらが異なるコンピューティングリソース、セキュリティ証明書を利用する場合があるという点で、それらは互いに分離されている場合がある。
コアネットワーク109は、他のネットワークとの通信を促進してもよい。例えば、コアネットワーク109は、5Gコアネットワーク109と、PSTN108との間のインターフェースとして機能するIPマルチメディアサブシステム(IMS)サーバなどの、IPゲートウェイを含むか、またはそれと通信する場合がある。例えば、コアネットワーク109は、ショートメッセージサービスを介して通信を促進するショートメッセージサービス(SMS)サービスセンターを含むか、またはそれと通信してもよい。例えば、5Gコアネットワーク109は、WTRU102a、102bおよび102cと、サーバまたはアプリケーション機能188との間の非IPデータパケットの交換を促進する場合がある。加えて、コアネットワーク170は、WTRU102a、102bおよび102cに、他のサービスプロバイダによって所有または操作される他の有線または無線ネットワークを含むことがあるネットワーク112へのアクセスを提供してもよい。
本明細書に記載され、図27A、図27C、図27D、または図27Eに図示される、コアネットワークエンティティは、ある既存の3GPP仕様におけるそれらのエンティティに与えられる名称によって識別されるが、将来において、それらのエンティティおよび機能は、他の名称によって識別される可能性があり、ある種のエンティティまたは機能は、将来的3GPP NR仕様を含む、3GPPによって公開される将来的な仕様において組み合わせられる場合があることを理解されたい。したがって、図27A、図27B、図27C、図27D、または図27Eで、記載および図示される特定のネットワークエンティティおよび機能は、一例としてのみ提供され、本明細書で開示および請求される主題は、現在規定されているか、または将来的に規定されるかどうかにかかわらず、任意の類似通信システムにおいて具現化または実装される場合があることを理解されたい。
図27Eは、本明細書に記載されるマルチTRP および マルチパネル伝送を用いるビーム障害検出および回復を実装するシステム、方法、装置が使用される場合がある通信システム111の例を示す。通信システム111は、無線伝送/受信ユニット(WTRU)A、B、C、D、E、F、基地局gNB121、V2Xサーバ124、およびロードサイドユニット(RSU)123aおよび123bを含む場合がある。実際には、本明細書で提示する概念は、任意の数のWTRU、基地局gNB、V2Xネットワーク、またはその他のネットワーク要素に適用されてよい。1つまたはいくつか、あるいは全てのWTRU A、B、C、D、EおよびFは、アクセスネットワークカバレッジ131の範囲外にある場合がある。V2XグループのWTRU A、BおよびCの中で、WTRU Aはグループを先導するものであり、またWTRU BおよびCはグループメンバである。
WTRU A、B、C、D、EおよびFは、それらがアクセスネットワークカバレッジ131内にある場合、gNB121を介して、Uuインターフェース129を通して互いに通信する場合がある。図27Eの例では、WTRU BおよびFは、アクセスネットワークカバレッジ131内に示されている。WTRU A、B、C、D、EおよびFは、インターフェース125a、125bまたは128などのサイドリンクインターフェース(例えば、PC5またはNR PC5)を介して、それらが、アクセスネットワークカバレッジ131下にある、またはアクセスネットワークカバレッジ131外にあるかどうかに関係なく直接、互いに通信する場合がある。例えば、図27Eの例では、アクセスネットワークカバレッジ131外にあるWTRU Dは、カバレッジ131内にあるWTRU Fと通信する。
WTRU A、B、C、D、EおよびFは、ビークル・ツー・ネットワーク(V2N)133またはサイドリンクインターフェース125bを介して、RSU123aおよび123bと通信する場合がある。WTRU A、B、C、D、EおよびFは、ビークル・ツー・インフラストラクチャ(V2I)インターフェース127を介して、V2Xサーバ124に通信する場合がある。WTRU A、B、C、D、EおよびFは、ビークル・ツー・パーソン(V2P)インターフェース128を介して、別のUEと通信する場合がある。
図27Fは、図27A、図27B、図27C、図27Dもしくは図27E、または、図1から図20のWTRU102(例えば、UE)など、本明細書に記載される、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復を実装するシステム、方法および装置に従って、無線通信および操作向けに構成される場合がある装置またはデバイスWTRU102の例のブロック図である。図27Fに示すように、例示的WTRU102は、プロセッサ118と、送受信機120と、伝送/受信要素122と、スピーカ/マイクロホン124と、キーパッド126と、ディスプレイ/タッチパッド/インジケータ128と、非取り外し可能メモリ130と、取り外し可能メモリ132と、電源134と、全地球測位システム(Global Positioning System:GPS)チップセット136と、他の周辺機器138とを含んでもよい。WTRU102は、上述の要素の任意の副次的組み合わせを備える場合があることを理解されたい。また、限定ではないが、とりわけ、送受信機基地局(BTS)、Node-B、サイトコントローラ、アクセスポイント(AP)、ホームNode-B、発展型ホームNode-B(evolved home Node-B:eNode-B)、ホーム発展型Node-B(Home evolved Node-B:HeNB)、ホーム発展型Node-Bゲートウェイ、次世代node-B(generation Node-B:gNode-B)およびプロキシノードなどの基地局114aおよび114b、または基地局114aおよび114bを意味する場合があるノードは、図27Fに描写されている要素の一部または全部を含む場合があり、本明細書に記載されるマルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復について開示したシステムおよび方法を実施する例示的実装形態である場合がある。
プロセッサ118は、汎用プロセッサ、特殊目的プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、複数のマイクロプロセッサ、DSPコアに関連付けられた1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(Application Specific Integrated Circuits:ASIC)、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA)回路、任意の他のタイプの集積回路(Integrated Circuit:IC)、状態マシンなどであってよい。プロセッサ118は、信号コーディング、データ処理、電力制御、入力/出力処理、またはWTRU102が無線環境内で動作することを可能にする任意の他の機能性を実施してもよい。プロセッサ118は、伝送/受信要素122に連結されることがある、送受信機120に連結されてもよい。図27Fは、別個のコンポーネントとしてプロセッサ118と送受信機120とを示しているが、プロセッサ118と送受信機120とが、電子パッケージまたはチップ内に一緒に統合されてもよいことを理解されよう。
UEの伝送/受信要素122は、エアインターフェース115/116/117を通して基地局(例えば、図27Aの基地局114a)、またはエアインターフェース115d/116d/117dを通して別のUEへ信号を伝送する、またはそこから信号を受信するように構成される場合がある。例えば、伝送/受信要素122は、RF信号を伝送または受信するように構成されたアンテナであってもよい。伝送/受信要素122は、例えば、IR、UV、または可視光信号を伝送または受信するように構成されたエミッタ/検出器であってもよい。伝送/受信要素122は、RFおよび光信号の両方を伝送および受信するように構成されてよい。伝送/受信要素122は、無線または有線信号の任意の組み合わせを伝送または受信するように構成されてもよいことを理解されよう。
加えて、図27Fでは伝送/受信要素122が単一の要素として描写されているが、WTRU102は、任意の数の伝送/受信要素122を含んでよい。より具体的には、WTRU102は、MIMO技術を採用してもよい。したがって、WTRU102は、エアインターフェース115/116/117を通して無線信号を伝送および受信するために、2つ以上の伝送/受信要素122(例えば、複数のアンテナ)を含んでもよい。
送受信機120は、伝送/受信要素122によって伝送されることになる信号を変調し、かつ伝送/受信要素122によって受信される信号を復調するように構成されてよい。上記のように、WTRU102は、マルチモード能力を有する場合がある。したがって、送受信機120は、WTRU102が、複数のRAT、例えば、NRおよびIEEE802.11、またはNRおよびE-UTRAを介して通信するか、または異なるRRH、TRP、RSUまたはノードへの複数のビームを介して同じRATと通信できるようにするために、複数の送受信機を含む場合がある。
WTRU102のプロセッサ118は、スピーカ/マイクロホン124、キーパッド126、またはディスプレイ/タッチパッド/インジケータ128(例えば、液晶ディスプレイ(Liquid Crystal Display:LCD)ディスプレイ装置または有機発光ダイオード(Organic Light-Emitting Diode:OLED)ディスプレイ装置)に連結されて、そこからユーザ入力データを受信してもよい。プロセッサ118はまた、ユーザデータをスピーカ/マイクロホン124、キーパッド126、またはディスプレイ/タッチパッド/インジケータ128に出力してもよい。加えて、プロセッサ118は、非取り外し可能メモリ130または取り外し可能メモリ132などの任意のタイプの好適なメモリから情報にアクセスし、それの中にデータを記憶してもよい。非取り外し可能メモリ130としては、ランダムアクセスメモリ(Random-Access Memory:RAM)、読み取り専用メモリ(Read-Only Memory:ROM)、ハードディスク、または任意の他のタイプのメモリ記憶デバイスを挙げてもよい。取り外し可能メモリ132としては、加入者識別モジュール(Subscriber Identity Module:SIM)カード、メモリスティック、セキュアデジタル(Secure Digital:SD)メモリカードなどを挙げてもよい。プロセッサ118は、クラウドもしくはエッジコンピューティングプラットフォームでホストされるサーバ、またはホームコンピュータ(図示せず)内など、WTRU102上に物理的に設置されていないメモリの情報にアクセスし、そこにデータを記憶してもよい。プロセッサ118は、本明細書に記載される一部の例では、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復のセットアップが成功したか、失敗したかに応じて、ディスプレイまたはインジケータ128上の点灯パターン、画像または色を制御するか、あるいは、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復および関連付けられたコンポーネントのステータスを示すように構成されてよい。ディスプレイまたはインジケータ128上の点灯パターン、画像または色の制御は、本明細書で示すまたは論じる各図(例えば、図1から図25など)の方法フローまたはコンポーネントのいずれかのステータスが反映される場合がある。マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復のメッセージおよびプロシージャが、本明細書にて開示される。ユーザが、入力ソース(例えば、スピーカ/マイクロホン124、キーパッド126、またはディスプレイ/タッチパッド/インジケータ128)を介して、リソースを要求するため、かつ、とりわけ、ディスプレイ128に表示される場合があるマルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復関連情報を要求、構成または問い合わせするために、メッセージおよびプロシージャは、拡張されてインターフェース/APIを提供してもよい。
プロセッサ118は、電源134から電力を得てもよく、WTRU102内のその他のコンポーネントへの電力を分配または制御するように構成されてよい。電源134は、WTRU102に給電する任意の好適なデバイスであってよい。例えば、電源134は、1つまたは複数の乾電池、太陽電池、燃料電池などを含んでもよい。
プロセッサ118はまた、WTRU102の現在位置に関する位置情報(例えば、経度および緯度)を提供するように構成されることがあるGPSチップセット136に連結されてもよい。GPSチップセット136からの情報に加え、またはその代わりに、WTRU102は、エアインターフェース115/116/117を通して基地局(例えば、基地局114a、114b)から位置情報を受信するか、または2つ以上の近傍基地局から受信されている信号のタイミングに基づいて、その場所を決定してもよい。WTRU102は、任意の好適な位置特定方法によって位置情報を取得してもよいことを理解されるであろう。
プロセッサ118はさらに、追加の特徴、機能性、または有線もしくは無線コネクティビティを提供する1つまたは複数のソフトウェアもしくはハードウェアモジュールを含むことができる他の周辺機器138に結合されてもよい。例えば、周辺機器138は、加速度計、バイオメトリック(例えば、指紋)センサなどの種々のセンサ、e-コンパス、衛星送受信機、デジタルカメラ(写真またはビデオ用)、ユニバーサルシリアルバス(Universal Serial Bus:USB)ポートまたは他の相互接続インターフェース、振動デバイス、テレビ送受信機、ハンズフリーヘッドセット、Bluetooth(登録商標)モジュール、周波数変調(Frequency Modulated:FM)無線ユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザなどを含んでもよい。
WTRU102は、センサ、大衆消費電子製品、スマートウォッチまたはスマート衣類などのウェアラブルデバイス、医療またはe健康デバイス、ロボット、産業機器、ドローン、車、トラック、電車、または飛行機などの乗物などの他の装置もしくはデバイスに含まれてもよい。WTRU102は、周辺機器138のうちの1つを備えることがある相互接続インターフェースなどの1つまたは複数の相互接続インターフェースを介して、このような装置もしくはデバイスの他のコンポーネント、モジュール、またはシステムに接続してもよい。
図27Gは、RAN103/104/105、コアネットワーク106/107/109、PSTN108、インターネット110、他のネットワーク112、またはネットワークサービス113内のある種のノードまたは機能エンティティなど、図27A、図27C、図27Dおよび図27Eに示されている通信ネットワーク、ならびに図1から図20に示され、本明細書で記載または請求されるシステムおよび方法などのマルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復の、1つまたは複数の装置内で具現化される場合がある例示的コンピューティングシステム90のブロック図である。コンピューティングシステム90は、コンピュータまたはサーバを含んでもよく、かつソフトウェアの形態である場合があるコンピュータ可読命令によって(かかるソフトウェアが記憶またはアクセスされる場所または手段がいかなるものであっても)主に制御されてよい。このようなコンピュータ可読命令は、コンピューティングシステム90を稼働させるように、プロセッサ91内で実行されてよい。プロセッサ91は、汎用プロセッサ、特殊目的プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアに関連付けられた1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)回路、任意の他のタイプの集積回路(IC)、状態マシンなどであってよい。プロセッサ91は、信号コーディング、データ処理、電力制御、入力/出力処理、またはコンピューティングシステム90が通信ネットワーク内で動作することを可能にする任意の他の機能性を実施してもよい。コプロセッサ81は、主要プロセッサ91とは明確に異なる、任意選択のプロセッサであり、追加の機能を実施するか、またはプロセッサ91を支援する場合がある。プロセッサ91またはコプロセッサ81は、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復について本明細書に記載される方法および装置に関連するデータ、例えばRRC IEを受信、生成および処理する場合がある。
プロセッサ91は、動作時に、命令をフェッチ、復号、および実行し、コンピューティングシステムの主要データ転送パスであるシステムバス80を介して、情報を他のリソースへ転送し、かつ他のリソースから転送する。このようなシステムバスは、コンピューティングシステム90内のコンポーネント同士を接続し、かつデータ交換向けの媒体を定義する。システムバス80は、典型的には、データを送信するためのデータライン、アドレスを送信するためのアドレスライン、および割り込みを送信し、かつシステムバスを操作するための制御ラインを含む。このようなシステムバス80の一例は、PCI(周辺コンポーネント相互接続)バスである。
システムバス80に連結されるメモリは、ランダムアクセスメモリ(RAM)82および読み取り専用メモリ(ROM)93を含む。このようなメモリは、情報の記憶および読み出しを可能にする回路を含む。ROM93は、概して、容易に修正することができない記憶されたデータを含む。RAM82内に記憶されたデータは、プロセッサ91または他のハードウェアデバイスによって読み取られる、または変更されてよい。RAM82またはROM93へのアクセスは、メモリコントローラ92によって制御されてよい。メモリコントローラ92は、命令が実行されると、仮想アドレスを物理的アドレスに変換する、アドレス変換機能を提供する場合がある。メモリコントローラ92はまた、システム内のプロセスを隔離し、かつユーザプロセスからシステムプロセスを隔離するメモリ保護機能を提供する場合がある。したがって、第1のモードで起動するプロフラムは、それ自体のプロセス仮想アドレス空間によってマップされているメモリのみにアクセスする場合があり、プロセス間のメモリ共有が設定されていない限り、別のプロセスの仮想アドレス空間内のメモリにアクセスすることはできない。
加えて、コンピューティングシステム90は、プロセッサ91から、プリンタ94、キーボード84、マウス95およびディスクドライブ85などの周辺機器に命令を通信する役割を担う、周辺機器コントローラ83を含んでもよい。
ディスプレイコントローラ96によって制御されるディスプレイ86は、コンピューティングシステム90によって生成される視覚出力を表示するために使用される。このような視覚出力は、テキスト、グラフィックス、動画グラフィックス、およびビデオを含んでよい。視覚出力は、グラフィカルユーザインターフェース(Graphical User Interface:GUI)の形態で提供されてよい。ディスプレイ86は、CRTベースのビデオディスプレイ、LCDベースのフラットパネルディスプレイ、ガスプラズマベースのフラットパネルディスプレイ、またはタッチパネルで実装される場合がある。ディスプレイコントローラ96は、ディスプレイ86に送信されるビデオ信号を生成するために必要な電子コンポーネントを含む。
さらに、コンピューティングシステム90は、コンピューティングシステム90を、図27A、図27B、図27C、図27Dもしくは図27EのRAN103/104/105、コアネットワーク106/107/109、PSTN108、インターネット110、WTRU102、またはその他のネットワーク112などの外部通信ネットワークまたはデバイスに接続して、コンピューティングシステム90がそれらのネットワークの他のノードまたは機能エンティティと通信することを可能するために使用されることがある、例えば、無線または有線ネットワークアダプタ97などの通信回路を含んでいてもよい。通信回路は、単独で、またはプロセッサ91と組み合わせて、本明細書で記載されるある種の装置、ノード、または機能エンティティの伝送および受信ステップを実施するために使用されてよい。
本明細書に記載される装置、システム、方法およびプロセスのうちいずれかまたは全ては、コンピュータ可読記憶媒体に記憶されたコンピュータ実行可能命令(例えば、プログラムコード)の形態で具現化される場合があり、その命令は、プロセッサ118または91などのプロセッサによって実行されると、プロセッサに、本明細書に記載されるシステム、方法、およびプロセスを実施または実装させることを理解されたい。具体的には、本明細書に記載されるいずれのステップ、動作、または機能も、このようなコンピュータ実行可能命令の形態で実装され、無線または有線ネットワーク通信向けに構成された装置またはコンピューティングシステムのプロセッサで実行されてよい。コンピュータ可読記憶媒体は、情報の記憶のために、任意の非一時的(例えば、有形または物理的)方法もしくは技術に実装される揮発性および不揮発性媒体、取り外し可能および非取り外し可能媒体を含むが、このようなコンピュータ可読記憶媒体には、信号は含まれない。コンピュータ可読記憶媒体としては、RAM、ROM、EEPROM、フラッシュメモリまたは他のメモリ技術、CD-ROM、デジタル多用途ディスク(Digital Versatile Disk:DVD)もしくは他の光学ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶デバイスまたは他の磁気記憶デバイス、または、所望の情報を記憶するために使用されてよく、かつコンピューティングシステムによってアクセスされることがある任意の他の有形もしくは物理的媒体が挙げられるが、それらに限定されない。
各図に示すような、マルチTRPおよびマルチパネル伝送を用いるビーム障害検出および回復の本開示の主題の好ましい方法、システムまたは装置を説明する際に、明確にする目的で特定の用語が用いられる。しかし、請求される主題は、そのような選択された特定の用語に限定されることを意図するものではなく、また各特定の要素は、類似の目的を達成するために類似の方式で動作する全ての技術的等価物を含むことを理解されたい。
本明細書に記載されている種々の技法は、ハードウェア、ファームウェア、ソフトウェア、または適切な場合はこれらの組み合わせと連携して実装されてもよい。このようなハードウェア、ファームウェア、およびソフトウェアは、通信ネットワークの種々のノードで配置される装置に常駐してもよい。本明細書に記載の方法を実施するために、装置は単独でまたは互いに連携して動作してもよい。本明細書で用いられる用語「装置」、「ネットワーク装置」、「ノード」、「デバイス」、「ネットワークノード」、などは、同じ意味で用いられる場合がある。加えて、単語「または」は、別段の定めがある場合を除き包括的に本明細書で全般的に使用される。本明細書で称される「最良」
本明細書は、最良の方式を含む本発明を開示するために、また当業者が任意のデバイスまたはシステムを作製かつ使用し、任意の組み込まれた方法を行うことを含む本発明を実践することを可能にするために、各例を使用する。本発明の特許性のある範囲は、特許請求の範囲によって定義され、かつ当業者に想起される他の例(例えば、本明細書に開示される各例示的方法の間のステップの省略、ステップの組み合わせ、またはステップの追加)を含む場合がある。そのような他の例は、特許請求の範囲の文字通りの言葉とは異ならない構造要素を有する場合、または特許請求の範囲の文字通りの言葉とのごくわずかな差異を伴う同等の構造要素を含む場合、特許請求の範囲の範囲内であることを意図している。
Figure 2022545406000074
Figure 2022545406000075
本明細書に記載の方法、システム、および装置は、特に、ビーム障害検出(BFD)用の参照信号(RS)の第1セットおよびRSの第2セットを構成(検出)し、新しいビーム特定用のRSの第3セットおよびRSの第4セットを構成(検出)し、かつ帯域幅パート(BWP)がアクティブな場合に、RSの第1セットの無線リンク品質、またはRSの第2セットの無線リンク品質に基づいてBFDを実施する手段を提供することができる。本明細書に記載の方法、システム、および装置は、特に、第1TRPからRSの第1セットの第1RSを受信し、かつ第2TRPからRSの第2セットの第2RSを受信する手段を提供することができる。RSの第1セットの無線リンク品質またはRSの第2セットの無線リンク品質は、参照信号の受信電力(RSRP)または参照信号の受信品質(Reference Signal Received Quality:RSRQ)に基づいてよい。RSの第1セットの無線リンク品質は、第1TRPからのものである場合があり、かつRSの第2セットの無線リンク品質は、第2TRPからのものである。本明細書に記載の方法、システム、および装置は、特に、RSの第1セットの1つまたは複数のRSの無線リンク品質を受信し、第1セット内の1つまたは複数のRSの第1閾値数の無線リンク品質が、無線リンク品質閾値を下回ることに基づいて、RSの第1セット内のRSの少なくとも無線リンク品質を他の層に示すインジケーションを提供する手段を提供することができる。インジケーションは、物理層によって提供されてよい。本明細書に記載の方法、システム、および装置は、特に、RSの第1セットの1つまたは複数のRSの無線リンク品質を受信し、第2セット内の1つまたは複数のRSの第2閾値数の無線リンク品質が無線リンク品質閾値を下回ることに基づいて、RSの第2セット内のRSの少なくとも無線リンク品質を他の層に示すインジケーションを提供する手段を提供することができる。本明細書に記載の方法、システム、および装置は、特に、第1TRPからRSの第3セットの第3RSを受信し、かつ第2TRPからRSの第4セットの第4RSを受信する手段を提供することができる。本明細書に記載の方法、システム、および装置は、特に、第1TRPからRSの第3セットの無線リンク品質を受信し、かつ第2TRPからRSの第4セットの無線リンク品質を受信する手段を提供することができる。本明細書に記載の方法、システム、および装置は、特に、要求に応じて(例えば、要求に応答して)、1つまたは複数の閾値に到達するRSの第3セットの無線リンク品質またはRSの第4セットの無線リンク品質に基づいて新しいビーム特定を実施する手段を提供することができる。本明細書に記載の方法、システム、および装置は、特に、第1リンクのビーム障害のインジケーション(例えば、第3セット基づくNBI)に基づいて、PHYのRSの第3セットに対応する第1リンクの新しいビーム特定を実施するようにMAC層がPHY層に要求できる手段を提供することができる。ビーム障害回復の要求は、物理ランダムアクセスチャネル、または物理上りリンク制御チャネル、または物理上りリンク共有チャネルを通して受信されてよい。第1セットに関連するインジケーションに基づいて上位層がビーム障害を判断する場合、上位層は、第3セットに基づいて新しいビーム特定を要求してよい。同様に、第2セットは、第4セットに関連付けられてよい。本明細書段落および以下の明細書段落中の全ての組み合わせ(ステップの省略または追加を含む)は、発明を実施するための形態の他の部分と一致する手段で考えられるものである。
本明細書に記載の方法、システム、および装置は、特に、第1TRPからのRSの第3セット内の1つまたは複数のRSの無線リンク品質を測定する手段を提供することができる。本明細書に記載の方法、システム、および装置は、特に、第2TRPからのRSの第4セットの無線リンク品質を測定する手段を提供することができる。本明細書に記載の方法、システム、および装置は、特に、RSの第3セットの無線リンク品質およびRSの第4セットの無線リンク品質に基づいて新しいビーム特定を実施する手段を提供することができ、ここで、無線リンク品質(例えば、第3または第4セット)は、RSRPに基づいてよい。本明細書に記載の方法、システム、および装置は、特に、RSの第1セットの1つまたは複数のRSの測定された無線リンク品質を評価し、RSの第1セット内の1つまたは複数のRSの測定された無線リンク品質が閾値を下回るかどうかを判断し、かつ第1セット内の1つまたは複数のRSの無線リンク品質が閾値を下回るというインジケーションを別の層に提供する手段を提供することができる。RSの第1セットの無線リンク品質は、第1TRPからのものであってよい。RSの第2セットは、第2TRPからのものであってよい。RSの第1セットの無線リンク品質またはRSの第2セットの無線リンク品質は、仮想的なブロック誤り率に基づいてよい。本明細書段落および上記の明細書段落中の全ての組み合わせ(ステップの省略または追加を含む)は、発明を実施するための形態の他の部分と一致する手段で考えられるものである。

Claims (15)

  1. プロセッサと、前記プロセッサに接続されたメモリとを備えたユーザ端末であって、
    前記メモリは、それ自体に記憶された実行可能命令を含み、前記実行可能命令は、前記プロセッサによって実行されると、前記プロセッサに、
    ビーム障害検出(Beam Failure Detection:BFD)用の参照信号(Reference Signal:RS)の第1セットおよびRSの第2セットを検出することと、
    新しいビーム特定用のRSの第3セットおよびRSの第4セットを検出することと、
    帯域幅パート(BandWidth Part:BWP)がアクティブであるかどうかを判断することと、
    前記帯域幅パート(BWP)がアクティブな場合に、前記RSの第1セットの品質および前記RSの第2セットの品質に基づいてBFDを実施することと、
    を含む操作を実施させる、ユーザ端末。
  2. 前記RSの第1セットの品質または前記RSの第2セットの無線リンク品質は、参照信号の受信電力(Reference Signals Received Power:RSRP)に基づく、請求項1に記載のユーザ端末。
  3. 前記RSの第1セットは、第1TRPからのものであり、前記RSの第2セットは、第2TRPからのものである、請求項1に記載のユーザ端末。
  4. 前記操作は、
    前記RSの第1セットの1つまたは複数のRSの品質を評価することと、
    前記RSの第1セット内の前記1つまたは複数のRSの前記測定された品質が閾値を下回るかどうかを判断することと、
    前記第1セットの前記1つまたは複数のRSの前記測定された品質が前記閾値を下回るというインジケーションを別の層に提供することと、
    をさらに含む、請求項3に記載のユーザ端末。
  5. 前記インジケーションは、前記物理層によって提供される、請求項4に記載のユーザ端末。
  6. 前記操作は、前記第1TRPからの前記RSの第3セット内の前記1つまたは複数のRSの無線リンク品質を測定することをさらに含む、請求項4に記載のユーザ端末。
  7. 要求に応じて、前記RSの第3セットの無線リンク品質および前記RSの第4セットの無線リンク品質に基づいて新しいビーム特定を実施し、前記RSの第3セットの品質は、参照信号の受信電力(RSRP)に基づく、請求項1に記載のユーザ端末。
  8. 第1リンクのビーム障害のインジケーションに基づいて、媒体アクセス制御層は、前記RSの第3セットに基づく新しいビームインジケータに対する新しいビーム特定を実施するように物理層に要求する、請求項6に記載のユーザ端末。
  9. 前記操作は、物理ランダムアクセスチャネルまたは物理上りリンク制御チャネルを通してビーム障害回復の要求を受信することを含む、請求項1に記載のユーザ端末。
  10. ビーム障害検出(BFD)用の参照信号(RS)の第1セットおよびRSの第2セットを構成することと、
    新しいビーム特定用のRSの第3セットおよびRSの第4セットを構成することと、
    帯域幅パート(BWP)がアクティブであるかどうかを判断することと、
    前記帯域幅パート(BWP)がアクティブな場合に、前記RSの第1セットの品質および前記RSの第2セットの品質に基づいてBFDを実施することと、
    を含む、方法。
  11. 前記RSの第1セットの品質または前記RSの第2セットの品質は、仮想的なブロック誤り率に基づく、請求項10に記載の方法。
  12. 前記RSの第1セットは、第1TRPからのものであり、前記RSの第2セットは、第2TRPからのものである、請求項10に記載の方法。
  13. 前記RSの第1セットの1つまたは複数のRSの品質を評価することと、前記RSの第1セット内の前記1つまたは複数のRSの品質が閾値を下回るかどうかを判断することと、前記第1セットの前記1つまたは複数のRSの品質が前記閾値を下回るというインジケーションを別の層に提供することと、をさらに含む、請求項12に記載の方法。
  14. 物理ランダムアクセスチャネルまたは物理上りリンク共有チャネルを通してビーム障害回復の要求を受信することをさらに含む、請求項10に記載の方法。
  15. コンピュータプログラムがそれ自体に記憶されているコンピュータ読み取り可能記憶媒体であって、前記コンピュータプログラムは、データ処理ユニットにロード可能であり、また前記コンピュータプログラムは、前記データ処理ユニットによって実行されると、前記データ処理ユニットに、請求項10から14のいずれか1項に記載の方法ステップを実行させるように適応されている、コンピュータ読み取り可能記憶媒体。
JP2022510121A 2019-08-16 2020-08-14 マルチtrpおよびマルチパネル伝送を用いるビーム障害検出および回復 Pending JP2022545406A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962887917P 2019-08-16 2019-08-16
US62/887,917 2019-08-16
PCT/US2020/046383 WO2021034672A1 (en) 2019-08-16 2020-08-14 Beam failure detection and recovery with multi-trp and multi-panel transmission

Publications (1)

Publication Number Publication Date
JP2022545406A true JP2022545406A (ja) 2022-10-27

Family

ID=72240531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022510121A Pending JP2022545406A (ja) 2019-08-16 2020-08-14 マルチtrpおよびマルチパネル伝送を用いるビーム障害検出および回復

Country Status (6)

Country Link
US (1) US20220295589A1 (ja)
EP (1) EP4014350A1 (ja)
JP (1) JP2022545406A (ja)
KR (1) KR20220044598A (ja)
CN (1) CN115606105A (ja)
WO (1) WO2021034672A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432422A (zh) * 2019-01-10 2020-07-17 索尼公司 电子装置、无线通信方法和计算机可读介质
CN111918416B (zh) * 2019-05-10 2023-10-10 华为技术有限公司 通信方法和通信装置
CN112532357B (zh) * 2019-09-18 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114503724A (zh) * 2019-10-01 2022-05-13 株式会社Ntt都科摩 终端及发送方法
US11985021B2 (en) 2019-10-04 2024-05-14 Qualcomm Incorporated Phase tracking reference signal for multi-transmit/receive points
CN113259973B (zh) * 2020-02-07 2022-11-22 维沃移动通信有限公司 波束失败恢复方法、终端及网络设备
US11902985B2 (en) * 2020-02-14 2024-02-13 Intel Corporation Default PDSCH beam setting and PDCCH prioritization for multi panel reception
WO2021164030A1 (en) * 2020-02-21 2021-08-26 Nokia Shanghai Bell Co., Ltd. Beam failure recovery mechanism
US11930490B2 (en) * 2020-04-01 2024-03-12 Samsung Electronics Co., Ltd. Method and apparatus for idle mode operation in wireless communication system
US20230209634A1 (en) * 2020-05-22 2023-06-29 Nokia Technologies Oy Failure recovery in cellular communication networks
US20210376909A1 (en) * 2020-05-26 2021-12-02 Qualcomm Incorporated Beam failure recovery techniques for multiple transmission-reception points in a secondary cell
US20220014344A1 (en) * 2020-07-10 2022-01-13 Qualcomm Incorporated Mobility reporting for full-duplex communication or simultaneous half-duplex communication with multiple transmit receive points
KR20230058136A (ko) 2020-08-28 2023-05-02 오피노 엘엘씨 제어 채널 반복에서 무선 링크 모니터링
US20220103234A1 (en) * 2020-09-25 2022-03-31 Qualcomm Incorporated Transmission receive point (trp)-specific beam failure recovery request (bfrq)
US20220103232A1 (en) * 2020-09-29 2022-03-31 Qualcomm Incorporated Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
US20220131653A1 (en) * 2020-10-22 2022-04-28 Qualcomm Incorporated Hybrid automatic repeat request (harq) process type configuration
US20220132517A1 (en) * 2020-10-23 2022-04-28 Samsung Electronics Co., Ltd. Method and apparatus for partial beam failure recovery in a wireless communications system
WO2022207117A1 (en) * 2021-04-01 2022-10-06 Nokia Technologies Oy Configuration of beam failure detection in cellular communication networks
US11632750B2 (en) 2021-04-02 2023-04-18 Nokia Technologies Oy Inter-cell multi-TRP operation for wireless networks
WO2022231574A1 (en) * 2021-04-27 2022-11-03 Nokia Technologies Oy Beam failure detection and/or beam failure recovery procedures
US20220360314A1 (en) * 2021-05-10 2022-11-10 Samsung Electronics Co., Ltd. Method and apparatus for recovering beam failure in a wireless communications system
US20240022298A1 (en) * 2021-07-28 2024-01-18 Apple Inc. Enhancement of beam management for multi-trp operation
WO2023132830A1 (en) * 2022-01-06 2023-07-13 Nokia Technologies Oy Ue operation for multi-trp system for wireless networks
US20230224995A1 (en) * 2022-01-07 2023-07-13 Samsung Electronics Co., Ltd. Method and apparatus of beam management and failure recovery under unified tci framework
KR20230113128A (ko) * 2022-01-21 2023-07-28 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보의 송수신을 수행하는 방법 및 장치
WO2024065653A1 (en) * 2022-09-30 2024-04-04 Apple Inc. Methods and systems for enhanced beam management for multiple transmission and reception points
CN117955610A (zh) * 2022-10-31 2024-04-30 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10757615B2 (en) * 2017-09-13 2020-08-25 Comcast Cable Communications, Llc Radio link failure information for PDCP duplication
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
CN110475260B (zh) * 2018-05-10 2021-05-25 维沃移动通信有限公司 处理方法、用户设备和网络侧设备
WO2019216599A1 (ko) * 2018-05-11 2019-11-14 한국전자통신연구원 고신뢰 및 저지연 통신을 위한 신호의 송수신 방법
JP7254784B2 (ja) * 2018-05-18 2023-04-10 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
EP3874612A1 (en) * 2018-11-01 2021-09-08 Convida Wireless, Llc Beam failure recovery on a non-failed cell
KR20210112369A (ko) * 2019-01-10 2021-09-14 콘비다 와이어리스, 엘엘씨 빔 장애 검출을 관리하기 위한 사용자 장비 및 기지국
US20220158715A1 (en) * 2019-05-03 2022-05-19 Apple Inc. Beam switching based on dci indication for multi-trp urllc
WO2022027475A1 (en) * 2020-08-06 2022-02-10 Nec Corporation Method, device and computer readable medium of communication

Also Published As

Publication number Publication date
WO2021034672A1 (en) 2021-02-25
KR20220044598A (ko) 2022-04-08
US20220295589A1 (en) 2022-09-15
CN115606105A (zh) 2023-01-13
EP4014350A1 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
JP2022545406A (ja) マルチtrpおよびマルチパネル伝送を用いるビーム障害検出および回復
US20220399927A1 (en) Link recovery and sidelink beamforming
JP7431229B2 (ja) 障害のないセルでのビーム障害回復
US20220007403A1 (en) Uu based sidelink control for nr v2x
US20220286184A1 (en) Beam management for new radio vehicle communications
JP2022501946A (ja) Nr−u lbt mac手順
US20220322325A1 (en) Apparatus, system, method, and computer-readable medium for performing beam failure recovery
KR20210142714A (ko) Nr v2x에 대한 rlm 및 rlf 절차들
US20220369225A1 (en) Ue power savings in multi-beam operation
US20230371039A1 (en) Downlink control channel for nr from 52.6 ghz and above
EP4014520A1 (en) Nr sidelink group communication
US20240015741A1 (en) Beam management and multi-beam operation for nr from 52.6 ghz and above
US20240172280A1 (en) New radio sidelink sensing
US20240015755A1 (en) Cast type and coordination based inter-ue operation for nr sidelink
KR20230047159A (ko) 사이드링크를 이용한 다중-캐리어 기반 뉴라디오 차량 통신
US20240172245A1 (en) Enhancements for tci activation and application in common tci operation
EP4316169A1 (en) Activation/de-activation mechanism for one scg and scells, and conditional pscell change/addition
WO2023014961A1 (en) Sidelink operation in unlicensed spectrum
WO2023081914A1 (en) Csi and srs update upon tci activation
CN117242825A (zh) 动态用户平面管理

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625