JP2022541271A - 近視進行治療 - Google Patents

近視進行治療 Download PDF

Info

Publication number
JP2022541271A
JP2022541271A JP2022503409A JP2022503409A JP2022541271A JP 2022541271 A JP2022541271 A JP 2022541271A JP 2022503409 A JP2022503409 A JP 2022503409A JP 2022503409 A JP2022503409 A JP 2022503409A JP 2022541271 A JP2022541271 A JP 2022541271A
Authority
JP
Japan
Prior art keywords
user
subsurface
peripheral retina
ophthalmic lens
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022503409A
Other languages
English (en)
Inventor
ゼレズニャク,レオナルド
Original Assignee
クレリオ ビジョン インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クレリオ ビジョン インコーポレイテッド filed Critical クレリオ ビジョン インコーポレイテッド
Publication of JP2022541271A publication Critical patent/JP2022541271A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00461Adjusting the refractive index, e.g. after implanting
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/045Sectorial configuration
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/12Locally varying refractive index, gradient index lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)
  • Eyeglasses (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

近視の進行を抑制するための眼科用レンズは、中央ゾーンと環状ゾーンとを含む。環状ゾーンは、環状ゾーンを形成する材料の屈折率におけるレーザ誘発変化によって形成される表面下光学素子を含む。表面下光学素子は、近視の進行を抑制するべくユーザの周辺網膜への光の分布を変更するように構成される。【選択図】図11

Description

[0001]関連出願の相互参照
本出願は、2019年7月19日に出願された米国仮出願第62/876,126号の35USC§119(e)に基づく利益を主張し、この仮出願の全体の開示内容は、全ての目的のためにその全体が参照により本願に組み入れられる。
[0002]近視(別名近眼)は、近い物体がはっきりと見え且つ遠い物体がぼやけて見える光学的状態である。近視は、眼球が長すぎて及び/又は角膜が湾曲しすぎて遠方の物体からの光が網膜の前方で集束することによって引き起こされ得る。
[0003]近視は、40歳未満の視力障害の最も一般的な形態である。近視の有病率は、驚くべき割合で増加している。2000年の世界中の人々の約25%が近視であったと推定される。2050年には世界の人口の約50%が近視になると予測される。
[0004]一般的には、近視は、小児期に起こる眼の成長に少なくとも部分的に起因して小児期に発症し、約20歳まで進行する。また、近視は、視覚ストレス又は糖尿病などの健康状態に起因して小児期以降に発症する場合もある。
[0005]近視の人は、他の光学的疾病のリスクが高い。例えば、近視者は、白内障、緑内障、及び、網膜剥離を発症するリスクが著しく増加している。更に、強度近視の多くの人々は、レーシック又は他のレーザ屈折矯正手術にはあまり適していない。
[0006]本明細書中に記載の実施形態は、近視の進行を抑制するべく周辺網膜上に形成される像を修正する眼科用レンズ及び関連する方法に関する。多くの実施形態において、眼科用レンズは、屈折率のレーザ誘発変化によって表面下光学素子が形成される環状ゾーンを含む。表面下光学素子は、近視の進行を悪化させると特定された眼の成長に関連する周辺網膜に対する刺激を低減するように眼科用レンズに関連するユーザの周辺網膜への光の分布を変更する。
[0007]したがって、一態様では、眼科用レンズが中央ゾーン及び環状ゾーンを含む。環状ゾーンは、環状ゾーンを形成する材料の屈折率におけるレーザ誘発変化によって形成される表面下光学素子を含む。表面下光学素子は、近視の進行を抑制するべく眼科用レンズと関連付けられるユーザの周辺網膜への光の分布を変更するように構成される。
[0008]表面下光学素子は、近視の進行を抑制するべくコンタクトレンズの着用者の周辺網膜への光の分布に適した任意の光学的変更の任意の1つ以上を行なうように構成され得る。例えば、表面下光学素子は、以下、すなわち、(1)コンタクトレンズの着用者の周辺網膜における径方向対方位角コントラストの非対称性の低減、(2)コンタクトレンズの着用者の周辺網膜における遠視の低減、(3)コンタクトレンズの着用者の周辺網膜における焦点深度の増大、(4)コンタクトレンズの着用者の周辺網膜における焦点深度の減少、及び/又は、(5)コンタクトレンズの着用者の周辺網膜における径方向対方位角コントラストの非対称性の増大のうちのいずれか1つ以上を達成するように構成され得る。
[0009]幾つかの実施形態では、環状ゾーンが2つ以上の環状部を含む。2つ以上の環状部のそれぞれにおける表面下光学素子は、近視の進行を抑制するべくコンタクトレンズの着用者の周辺網膜への光の分布に適した任意の光学的変更のうちの任意の1つ以上を行なうように構成され得る。例えば、2つ以上の環状部のそれぞれにおける表面下光学素子は、以下、すなわち、(1)コンタクトレンズの着用者の周辺網膜における径方向対方位角コントラストの非対称性の低減、(2)コンタクトレンズの着用者の周辺網膜における遠視の低減、(3)コンタクトレンズの着用者の周辺網膜における焦点深度の増大、(4)コンタクトレンズの着用者の周辺網膜における焦点深度の減少、及び/又は、(5)コンタクトレンズの着用者の周辺網膜における径方向対方位角コントラストの非対称性の増大のうちのいずれか1つ以上を達成するように構成され得る。
[0010]他の態様において、眼科用レンズを変更する方法は、近視の進行を抑制するべく眼科用レンズと関連付けられるユーザの周辺網膜への光の分布を変更するように構成される表面下光学素子を形成するために眼科用レンズの環状ゾーンを形成する材料の屈折率における表面下変化を誘発することを含む。多くの実施形態において、屈折率における表面下変化は、材料をレーザ光のパルスに晒すことによって誘発される。
[0011]屈折率における表面下変化は、レーザ光の適切なパルスを使用して誘発され得る。例えば、レーザ光の各パルスは、10フェムト秒~500フェムト秒の範囲の持続時間を有することができる。幾つかの実施形態では、レーザ光が約405nmの波長を有する。幾つかの実施形態では、レーザ光が約810nmの波長を有する。幾つかの実施形態では、レーザ光が約1035nmの波長を有する。幾つかの実施形態において、レーザ光のパルスのそれぞれは、10フェムト秒~50フェムト秒の範囲の持続時間を有する。
[0012]幾つかの実施形態において、方法は、周辺網膜の位置に入射する光の径方向対方位角コントラストを測定することを含む。表面下光学素子は、周辺網膜の位置に入射する光の径方向対方位角コントラストの非対称性を低減するように構成され得る。
[0013]方法の幾つかの実施形態において、表面下光学素子は、近視の進行を抑制するべくユーザの周辺網膜への光の分布に適した任意の光学的変更の任意の1つ以上を行なうように構成され得る。例えば、表面下光学素子は、以下、すなわち、(1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の低減、(2)ユーザの周辺網膜における遠視の低減、(3)ユーザの周辺網膜における焦点深度の増大、(4)ユーザの周辺網膜における焦点深度の減少、及び/又は、(5)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の増大のうちのいずれか1つ以上を達成するように構成され得る。
[0014]方法の幾つかの実施形態では、環状ゾーンが2つ以上の環状部を含む。2つ以上の環状部のそれぞれにおける表面下光学素子は、近視の進行を抑制するべくユーザの周辺網膜への光の分布に適した任意の光学的変更のうちの任意の1つ以上を行なうように構成され得る。例えば、2つ以上の環状部のそれぞれにおける表面下光学素子は、以下、すなわち、(1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の低減、(2)ユーザの周辺網膜における遠視の低減、(3)ユーザの周辺網膜における焦点深度の増大、(4)ユーザの周辺網膜における焦点深度の減少、及び/又は、(5)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の増大のうちのいずれか1つ以上を達成するように構成され得る。
視野の中央に位置される物体から眼科用レンズの中央ゾーンを通って中心窩へ向かう光の透過を示す眼の断面図を示す。 視野の周辺に位置される物体から眼科用レンズの環状ゾーンを通って中心窩へ向かう光の透過を示す眼の断面図を示す。 視野の周辺に位置される物体から、眼科用レンズの中央ゾーン及び環状ゾーンを通って、傍中心窩への光の透過を示す眼の断面図を示す。 眼の一例における中心近視と周辺遠視との共存を示す。 0度、10度、及び、20度の偏心度における網膜内の1人の被検者の点広がり関数を示す。 0度、10度、及び、20度の偏心度における図4の被検者の網膜の波面収差を示す。 実施形態に係る、網膜における選択された位置に関する軸外及び軸上の光学収差を測定するためのシステムの簡略的な概略図である。 網膜の領域を示す簡略的な概略図である。 近視の進行を抑制するように構成されて表面下光学素子を有する4つの環状ゾーンを含む眼科用レンズの一実施形態を示す。 網膜の領域を示す簡略的な概略図である。 近視の進行を抑制するように構成されて表面下光学素子を有する8つの環状ゾーンを含む眼科用レンズの一実施形態を示す。 網膜の領域を示す簡略的な概略図である。 近視の進行を抑制するように構成されて表面下光学素子を有する環状ゾーンを含む眼科用レンズの一実施形態を示す。 実施形態に係る、近視の進行を抑制するように構成される、眼科用レンズ内の表面下光学素子を形成する方法の簡略的な概略図である。 実施形態に係る、近視の進行を抑制するように構成される、眼科用レンズ内の表面下光学素子を形成するために使用され得るシステムの概略図である。 実施形態に係る、近視の進行を抑制するように構成される、眼科用レンズ内の表面下光学素子を形成するために使用され得る他のシステムを概略的に示す。 実施形態に係る、近視の進行を抑制するように構成される、眼科用レンズ内の表面下光学素子を形成するために使用され得る他のシステムを概略的に示す。 実施形態に係る、眼科用レンズ内に形成される表面下光学素子を介した実施のための光学補正の径方向分布の一例を示す。 図15の光補正の例に関する1波位相ラップ分布を示す。 図16の1波位相ラップ分布の1/3波比を示す。 位相高さに対する近焦点及び遠焦点における回折効率をグラフで示す。 結果として得られるレーザパルス列光パワーに応じた位相変化高さに関する較正曲線の一例をグラフで示す。 実施形態に係る、表面下光学構造を含む眼科用レンズの平面図である。 図20の眼科用レンズの表面下光学構造の平面図である。 図20の眼科用レンズの表面下光学構造の側面図である。 眼科用レンズの中央ゾーン及び周辺ゾーンを介した周辺網膜の一部への光の透過を示す。 眼科用レンズの中央ゾーン及び周辺ゾーンを介した周辺網膜の一部への光の透過を示す。 眼科用レンズの中央ゾーン及び周辺ゾーンを介した周辺網膜の一部への光の透過を示す。 異なる視角偏心度に関する眼科用レンズの環状ゾーン例による瞳孔の一例の相対的なカバレッジを示す。 異なる視角偏心度に関する眼科用レンズの環状ゾーン例による瞳孔の一例の相対的なカバレッジを示す。 10人の個体のグループに関する0度~20度の網膜偏心度における光学収差の平均変化の例を示す。 コンタクトレンズ誘発光学補正の例に関するある範囲の遠近調節レベルにわたる周辺網膜像対称性のプロットである。 コンタクトレンズ誘発光学補正の例に関するある範囲の遠近調節レベルにわたる周辺網膜像の質のプロットである。 対照事例の一例に関するある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。 対照事例の例及び円柱補正を行なう表面下屈折光学素子を有する眼科用レンズに関するある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。 対照事例の例及び二焦点補正を行なう表面下屈折光学素子を有する眼科用レンズに関するある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。 対照事例の例及び円柱補正及び二焦点補正を行なう表面下屈折光学素子を有する眼科用レンズに関するある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。
[0048]本明細書中の説明では、様々な実施形態が記載される。説明の目的で、実施形態の完全な理解を与えるべく、特定の形態及び詳細が記載される。しかしながら、当業者でも分かるように、特定の詳細を伴うことなく実施形態が実施されてもよい。更に、記載されている実施形態を曖昧にしないように周知の特徴が省かれる又は簡略化される場合がある。
[0049]本明細書中に記載の眼科用レンズは、近視の進行を低減するために周辺網膜上に集束される光に光学補正を与えるように構成される表面下光学素子を含む。多くの実施形態において、表面下光学素子は、眼科用レンズの環状ゾーンに配置されるとともに、環状ゾーンを形成する材料の屈折率のレーザ誘発変化によって形成される。多くの実施形態において、光学収差は、被検者の周辺網膜における1つ以上の位置に関して測定される。多くの実施形態では、測定された光学収差に基づいて、近視進行抑制光学補正が、被検者の周辺網膜における1つ以上の位置のそれぞれに関して決定される。多くの実施形態において、表面屈折率変化は、周辺網膜における1つ以上の位置のそれぞれに関して近視進行抑制光学補正を行なうように構成される表面下光学素子を形成するために決定される。多くの実施形態において、表面下屈折率変化は、眼科用レンズのそれぞれの1つ以上の環状ゾーン内の対応する表面下位置にレーザ光を集束させることによって誘発される。多くの実施形態において、眼科用レンズの1つ以上の環状ゾーンのそれぞれは、周辺網膜を有する眼の光軸に対して周辺網膜における関連位置とは反対側に位置される。近視の進行を抑制するために本明細書中に記載されるように構成される眼科用レンズは、例えば、眼鏡(別名メガネ)、コンタクトレンズ、角膜、天然レンズ、及び、眼内レンズを含む任意の適切なタイプの眼科用レンズであり得る。
[0050]ここで、同じ又は類似の参照番号が図面の図の同じ又は類似の要素を指す図面の図を参照すると、図1は、眼10の視野の中心にあるように第1の位置に配置された第1の物体14から眼10の網膜16への光12の透過を示す眼10の断面図を示す。網膜16は、中心窩18、傍中心窩20、及び、周中心窩22を含む。中心窩18は、網膜16の中央部である。傍中心窩20及び周中心窩22は、網膜の周辺部を形成する。網膜円錐は中心窩18に集中している。光12は、中心窩18に入射し、それによって視野の中心に最高の視力をもたらす。図示の実施形態において、光12は、眼10に装着されたコンタクトレンズ24の中央部を通過する。コンタクトレンズ24は、本明細書中に記載の近視の進行を抑制するように構成される表面下光学素子を有することができる一種の眼科用レンズの一例である。代わりの実施形態において、眼10の角膜、眼10の水晶体、眼鏡、及び/又は、眼内レンズは、本明細書中に記載されるように(眼10の)近視の進行を抑制するように構成される表面下光学素子を有するように構成され得る。
[0051]図2は、眼10の視野の周辺にあるように第2の位置に配置される第2の物体28から網膜16への光26の透過を示す。眼10は、中心窩18の中心から瞳孔32の中心を通って延びる光軸30を有する。光軸30に対する第2の物体28の周辺位置に起因して、光26は、コンタクトレンズ24の周辺部を通過して、網膜16の周中心窩22部に入射する。また、光26は、眼10の角膜の周辺部を通過するとともに、眼10の水晶体の周辺部を通過する。眼10の水晶体が眼内レンズに置き換えられる場合、光26は眼内レンズの周辺部を通過する。
[0052]図3は、視野の周辺にあるように第3の位置に配置される第3の物体36から網膜16への光34の透過を示す。光軸30に対する第3の物体36の周辺位置に起因して、光34は、コンタクトレンズ24の中央部及び周辺部の両方を通過して、網膜の傍中心窩20部に入射する。同様に、光34は、眼10の角膜の中央部及び周辺部も通過し、眼10の角膜の中央部及び周辺部を通過する。眼10の水晶体が眼内レンズに置き換えられる場合、光34は眼内レンズの中央部及び周辺部を通過する。
[0053]周辺網膜(すなわち、傍中心窩20及び/又は周中心窩22)を介して見られる物体に関する視力は、中心窩18を介して見られる物体に関する視力よりも低い。図3に示されるように、周辺網膜に入射する光は、コンタクトレンズ24の周辺部及び中央部、眼10の角膜の周辺部及び中央部、並びに、眼10の水晶体の周辺部及び中央部又は眼10の水晶体に取って代わる眼内レンズの周辺部及び中央部を通過する光の組み合わせとなり得る。また、眼10は、周辺網膜20、22よりも中心窩18により良好に光を集束させることもでき、それにより、周辺網膜20、22を介して見られる物体に関する視力のレベルを中心窩18を介して見られる物体に対して潜在的に更に低下させる。
[0054]近視の進行は、眼10の中心窩18と水晶体34との間の距離を増大させ得る過剰な眼の成長に関連している。中心窩18と水晶体34との間の距離が増大すると、像が中心窩18の更に前方に合焦され、それにより、近視が高まる。
[0055]研究により、眼の成長が周辺網膜に入射する光によって影響されることが示唆されてきた。例えば、Smith,Earl L.らのある研究「Peripheral vision can influence eye growth and refractive development in infant monkey」Investigative ophthalmology&visual science 46.11(2005):3965-3972は、中心窩を伴わない(すなわち、周辺網膜のみ)乳児サルにおける眼の成長が周辺網膜に対する眼の光学素子によって影響されることを示している。別の例として、別の研究Hiraoka,Takahiroらの「Relationship between higher-order wavefront aberrations and natural progression of myopia in children」Scientific reports 7.1(2017):7876では、64人の子供が2年間にわたって調査された。調査された64人の子供のうち、(より長い焦点深度を与える)高次収差を生まれつき持つ子供は、2年間にわたって近視進行が少なかった。
[0056]眼球の形状は、周辺網膜に入射する光の性質に影響を及ぼし得る。図4に示されるように、扁長形状を有する眼球の場合、周辺遠視が中心近視と共存し得る。周辺遠視は、中心近視を悪化させる眼の継続的な成長にとって潜在的な刺激として特定されてきた。
[0057]本発明者は、周辺視野における異方性が中心近視を悪化させる眼の継続的な成長にとって潜在的な刺激であり得ると考えている。研究により、周辺網膜に入射する光は、眼の周辺光学収差に起因して、ある程度の異方性及び/又は回転非対称性を有することが多いことが分かってきた。例えば、図5は、耳側網膜における0度、10度、及び、20度での1人の被検者に関する点広がり関数を示す。図示のように、20度における点広がり関数は、かなりの量の異方性を示す。図6は、耳側網膜における0度、10度、及び、20度での図5の被検者に関する波面収差を示す。図示のように、耳側網膜における20度に関する波面収差は、かなりの量の異方性を示す。
[0058]図7は、軸外及び軸上の両方の網膜の選択された位置に関する光学収差を測定するためのシステム100を示す簡略的な概略図である。システム100は、波面センサ102と、視覚刺激104と、形状可変ミラー106と、第1のビームスプリッタ108と、固定ターゲット110と、人工瞳112と、干渉フィルタ114と、第2のビームスプリッタ116と、ミラー118,120と、レンズ122,124,126,128,130とを含む。視覚刺激104によって放出される光は、眼10の網膜16上の標的位置に投影される。その後、網膜上の標的位置から反射された結果として生じる光は、眼10によってビームスプリッタ108上に投影され、該ビームスプリッタは、投影された光に反射し、それによって投影された光を波面センサ102へと方向付ける。任意の適切な既存の波面センサを波面センサ102として使用することができる。例えば、今日使用される一般的な波面センサは、Schemerディスク、Shack Hartmann波面センサ、Hartmannスクリーン、並びに、Fizeau及びTwymann-Green干渉計に基づく。Shack-Hartmann波面測定システムは、当技術分野において知られており、米国特許第5,849,006号明細書、米国特許第6,261,220号明細書、米国特許第6,271,914号明細書、及び、米国特許第6,270,221号明細書によって部分的に記載される。そのようなシステムは、眼の網膜を照明して反射された波面を測定することによって動作する。多くの実施形態において、固定ターゲット110は、波面センサ102を介して網膜のそれぞれの選択された位置に関連する光学収差を測定するために、眼10の選択的な再配向をもたらして視覚刺激からの光を中心窩18、傍中心窩20、及び/又は、周中心窩22の選択された位置へ方向付けるべく選択的に再配置可能である。また、眼10と固定ターゲット110との間の異なる視距離を反映するように固定ターゲット110を変化させて、眼10の異なる遠近調節を引き起こし、眼10の任意の適切な範囲の遠近調節に関して眼10の関連する光学収差の測定を可能にすることもできる。形状可変ミラー106を制御して光学補正(例えば、候補光学補正に対応する)を適用し、周辺網膜に形成される像の光学補正の評価を可能にすることができる。
[0059]図8Aは、網膜16の領域を画定するための1つの手法を示す簡略的な概略図である。図8Aでは、傍中心窩20が図示された領域に細分され、これらの領域は、鼻側傍中心窩20N、こめかみ側傍中心窩20T、上側傍中心窩20S、及び、下側傍中心窩20Iを含む。周中心窩22は図示された領域に細分され、これらの領域は、鼻側周中心窩22N、こめかみ側周中心窩22T、上側周中心窩22S、及び、下側周中心窩22Iを含む。
[0060]多くの実施形態において、眼科用レンズの異なる環状領域は、網膜の関連領域上に形成される像に対してそれぞれの屈折光学補正を行なうように構成される。コンタクトレンズのそれぞれの環状領域によって行なわれる光学補正は、コンタクトレンズの中央ゾーンによって行なわれる光学補正に基づいて策定され得る。本明細書中に記載されるように、周辺網膜の幾つかの領域に入射する光は、眼科用レンズ(例えば、眼鏡、コンタクトレンズ、角膜、天然水晶体、又は、眼内レンズ)の中央部を通過する光と眼科用レンズの周辺部を通過する光との組み合わせであってもよい。
[0061]図8Bは、近視の進行を抑制するように構成される眼科用レンズ150(例えば、眼鏡、コンタクトレンズ、角膜、天然水晶体、又は、眼内レンズ)の一実施形態を示す。眼科用レンズ150は、表面下光学素子を有する4つの環状ゾーンを含む。眼科用レンズ150は、中央ゾーン152と、鼻側環状ゾーン154と、こめかみ側環状ゾーン156と、上側環状ゾーン158と、下側環状ゾーン160とを有する。
[0062]多くの実施形態において、中央ゾーン152は、被検者の中心視に適した光学補正を行なうように構成される。例えば、中央ゾーン152には、被検者の中心視に適した光学補正を行なう表面下光学素子を形成することができる。他の例として、中央ゾーン152は、被検者の中心視に適した光学補正を行なうように構成される外形を有することができる。他の例として、中央ゾーン152は、任意の適した組み合わせの表面下光学素子が形成されて成るとともに所定の外形を有し、これらが組み合わさって被検者の中心視に適した光学補正を行なうことができる。
[0063]ゾーン152,154,156,158,160は、近視の進行を抑制するべく周辺網膜の関連領域に入射する光に対してそれぞれの光学補正を行なうように構成され得る。例えば、鼻側環状ゾーン154は、近視の進行を抑制するべくこめかみ側周中心窩領域22Tに入射する光に対して光学補正を行なうように構成され得る。鼻側環状ゾーン154は、近視の進行を抑制するために、中央ゾーン152によって行なわれる光学補正と組み合わせて、こめかみ側傍中心窩領域20T及び/又はこめかみ側周中心窩領域22Tに入射する光に対して複合光学補正を行なうべく光学補正を行なうように構成され得る。こめかみ側環状ゾーン156は、近視の進行を抑制するべく鼻側周中心窩領域22Nに入射する光に対して光学補正を行なうように構成され得る。こめかみ側環状ゾーン156は、近視の進行を抑制するために、中央ゾーン152によって行なわれる光学補正と組み合わせて、鼻側傍中心窩領域20N及び/又は鼻側周中心窩領域22Nに入射する光に対して複合光学補正を行なうべく光学補正を行なうように構成され得る。上側環状ゾーン158は、近視の進行を抑制するべく下側周中心窩領域22Iに入射する光に対して光学補正を行なうように構成され得る。上側環状ゾーン158は、近視の進行を抑制するために、中央ゾーン152によって行なわれる光学補正と組み合わせて、下側傍中心窩領域20I及び/又は下側周中心窩領域22Iに入射する光に対して複合光学補正を行なうべく光学補正を行なうように構成され得る。下側環状ゾーン160は、近視の進行を抑制するべく上側周中心窩領域22Sに入射する光に対して光学補正を行なうように構成され得る。下側環状ゾーン160は、近視の進行を抑制するために、中央ゾーン152によって行なわれる光学補正と組み合わせて、上側傍中心窩領域20S及び/又は上側周中心窩領域22Sに入射する光に対して複合光学補正を行なうべく光学補正を行なうように構成され得る。
[0064]近視の進行を抑制するための光学補正を行なうべく網膜16の領域及び眼科用レンズの関連するゾーンを画定するために、他の適切な手法を使用することができる。例えば、図9Aは、網膜16の領域を画定するための他の適切な手法を示す簡略的な概略図である。図9Aにおいて、網膜16は、中心窩18と8つの周辺網膜ゾーン(A~H)とに細分される。図9Bは、中央ゾーン152と8つの環状ゾーン(A~H)とを有する眼科用レンズ170を示す。図9Bに示される8つの環状ゾーンのそれぞれは、近視の進行を抑制するべく図9Aに示される周辺網膜の関連領域に入射する光に対してそれぞれの光学補正を行なうように構成され得る。例えば、コンタクトレンズ170の環状ゾーン(A)は、図9Aの周辺網膜ゾーン(A)に入射する光に対して光学補正を行なうように構成され得る。環状ゾーン(A)は、中央ゾーン152によって行なわれる光学補正と組み合わせて、図9Aの周辺網膜ゾーン(A)に入射する光に対して複合光学補正を行なうべく光学補正を行なうように構成され得る。
[0065]図10A及び図10Bは、近視の進行を抑制するための光学補正を行なうべく網膜16の領域及び眼科用レンズの関連するゾーンを画定するために使用され得る他の手法を示す。図10Aにおいて、網膜16は、中心窩18と周辺網膜20、22とに細分される。図10Bは、中央ゾーン152及び単一の連続した環状ゾーン182を有する眼科用レンズ180を示す。環状ゾーン182は、近視の進行を抑制するために周辺網膜20、22に入射する光に対してそれぞれの光学補正を行なうように構成され得る。環状ゾーン182は、中央ゾーン152によって行なわれる光学補正と組み合わせて、周辺網膜20、22に入射する光に対して複合光学補正を行なうべく光学補正を行なうように構成され得る。
[0066]図11は、実施形態に係る、眼科用レンズと関連付けられる被検者における近視の進行を抑制するべく眼科用レンズを構成するように眼科用レンズを変更する方法200の簡略的な概略図である。本明細書中に記載されるものを含む任意の適切な光学補正、手法、及び/又は、システムを使用して、方法200を実施することができる。
[0067]動作202では、眼の周辺網膜における1つ以上の位置のそれぞれに関して被検者の眼の光学収差が測定される。例えば、システム100を使用して、眼の周辺網膜における選択された位置に関して光学収差を測定することができる。幾つかの実施形態では、眼の遠近調節レベルの適切な範囲にわたって選択された位置のそれぞれに関して光学収差が測定される。幾つかの実施形態では、眼の中心窩18における1つ以上の位置に関して眼の光学収差が測定される。
[0068]動作204では、眼の周辺網膜における1つ以上の位置のそれぞれに関して近視進行抑制光補正が決定される。多くの実施形態において、決定された近視進行抑制光学補正のそれぞれは、動作202において測定された光学収差に基づく。幾つかの実施形態において、周辺網膜におけるそれぞれの位置に関して決定された近視進行抑制光学補正は、その位置で遠視を補正する。幾つかの実施形態において、周辺網膜におけるそれぞれの位置に関して決定された近視進行抑制光学補正は、0~60サイクル/度の平均伝達関数(MTF)曲線下の垂直面積で水平面積を割った比として定義することができる光学異方性を減少させる。幾つかの実施形態において、周辺網膜におけるそれぞれの位置に関して決定された近視進行抑制光学補正は、周辺網膜におけるそれぞれの位置での焦点深度を増大させる。幾つかの実施形態において、周辺網膜におけるそれぞれの位置に対して決定された近視進行抑制光学補正は、周辺網膜におけるそれぞれの位置での焦点深度を減少させる。
[0069]動作206では、周辺網膜における1つ以上の位置のそれぞれに関して近視進行抑制光学補正を行なうように構成される眼科用レンズにおける表面下要素を形成するために表面下屈折率変化が決定される。表面下屈折率変化は、その全開示内容が参照により本願に組み入れられる米国特許第8,932,352号明細書、米国特許第9,939,558号明細書、及び、米国特許出願公開第2018/0206979号に記載されているような任意の適切な手法を使用して形成され得る。表面下光学素子は、周辺網膜における1つ以上の位置のそれぞれに関して全近視進行抑制光学補正を行なうように構成され得る。或いは、眼科用レンズは、周辺網膜における1つ以上の位置のそれぞれに関して近視進行抑制光学補正を行なうために表面下光学素子と組み合わせて機能する屈折補正を行なう外形を有することができる。
[0070]動作208では、レーザ光を眼科用レンズのそれぞれの1つ以上の環状ゾーンにおける対応する表面下位置に集束させることによって表面下屈折率変化が眼科用レンズに誘発される。1つ以上の環状ゾーンのそれぞれは、眼の光軸に対して周辺網膜における関連する位置とは反対側に配置される。
[0071]表面下光学素子を形成するためのレーザ及び光学システム
[0072]図12は、実施形態に係る、近視の進行を抑制するべく構成されるように眼科用レンズを変更するために使用され得るレーザ・光学システム300の概略図である。システム300は、4Wの周波数二倍化Nd:YVOレーザ314によってポンピングされるKerrレンズモードロックTi:サファイアレーザ312(Kapteyn-Mumane Labs、ボルダー、コロラド州)を含むレーザ源を含む。レーザは、300mWの平均出力、30fsのパルス幅、及び、800nmの波長での93MHzの繰返し率のパルスを生成する。光路内のミラー及びプリズムからの、特に対物レンズ320のパワー損失からの反射パワー損失があるため、材料上の対物レンズ焦点で測定された平均レーザパワーは約120mWであり、これはフェムト秒レーザのパルスエネルギーが約1.3nJであることを示す。
[0073]対物レンズ焦点における制限されたレーザパルスエネルギーに起因して、パルスピーク出力が眼科用レンズの非線形吸収閾値を超えるのに十分強いようにパルス幅を保存することができる。集束対物レンズの内側の大量のガラスがガラスの内側の正の分散に起因してパルス幅を著しく増加させるため、キャビティ外の補償スキームを使用して、集束対物レンズによって導入された正の分散を補償する負の分散を行なうことができる。2つのSF10プリズム324、328と1つの終端ミラー332が2パス1プリズム対形態を構成する。プリズム間の37.5cm分離距離を使用して、顕微鏡対物レンズ及び光路内の他の光学素子の分散を補償することができる。
[0074]三次高調波生成を使用する共線自己相関器340が、対物レンズ焦点におけるパルス幅を測定するために使用される。第2及び第3高調波生成の両方が、低NA対物レンズ又は高NA対物レンズの自己相関測定において使用されている。第3次表面高調波生成(THG)自己相関を選択して、その単純さ、高い信号対雑音比、及び、第2高調波発生(SHG)結晶が通常導入する材料分散のジャックのために、高開口数対物レンズの焦点におけるパルス幅を特徴付けた。THG信号が、空気と普通カバースリップ342(Corning No.0211亜鉛チタニアガラス)との界面で生成されて、光電子増倍管344及びロックイン増幅器346で測定される。異なる高開口数対物レンズのセットを使用し、2つのプリズム間の分離距離及び挿入されたガラスの量を慎重に調整した後、変換制限27fs持続時間パルスを選択した。パルスは、60×0.70NAオリンパスLUCPlanFLN長距離対物レンズ348によって集束される。
[0075]レーザビームはレーザキャビティから出た後に空間的に発散するので、レーザビームが対物開口を最適に満たすことができるようにレーザビームの寸法を調整するために凹面ミラー対350及び352が光路に追加される。3D 100nm解像度DCサーボモータステージ354(Newport VP-25XAリニアステージ)及び2D 0.7nm解像度ピエゾナノポジショニングステージ(P 1 P-622.2CDピエゾステージ)が、眼科用レンズ357を支持及び位置決めするための走査プラットフォームとしてコンピュータ356によって制御及びプログラムされる。サーボステージは、隣接するステージ間を滑らかに移動できるようにDCサーボモータを有する。1msの時間分解能を有するコンピュータによって制御される光シャッタが、レーザ露光時間を正確に制御するためにシステムに設置される。カスタマイズされたコンピュータプログラムでは、光シャッタを走査ステージで動作させて、異なる位置及び深さで且つ異なるレーザ露光時間で異なる走査速度を伴って眼科用レンズ357内に表面下光学素子を形成することができる。更に、リアルタイムでプロセスを監視するために、対物レンズ320の横にCCDカメラ358がモニタ362と共に使用される。システム300を使用して、眼科用レンズの屈折率を修正し、周辺網膜における1つ以上の位置のそれぞれに関して近視進行抑制光学補正を行なう表面下光学素子を形成することができる。
[0076]図13は、実施形態に係る、眼科用レンズ410内に1つ以上の表面下光学構造を形成するための他のシステム430の簡略化された概略図である。システム430は、レーザビーム源432と、レーザビーム強度制御アセンブリ434と、レーザビームパルス制御アセンブリ436と、走査/インタフェースアセンブリ438と、制御ユニット440とを含む。
[0077]レーザビーム源432は、眼科用レンズ410の目標サブボリュームにおける屈折率変化を誘発するのに適した波長を有するレーザビーム446を生成して放出する。本明細書中に記載される例では、レーザビーム446が1035nmの波長を有する。しかしながら、レーザビーム446は、眼科用レンズ410の目標サブボリュームにおける屈折率変化を誘発するのに有効な任意の適切な波長(例えば、400~1100nmの範囲内)を有することができる。
[0078]レーザビーム強度制御アセンブリ434は、レーザビーム446の強度を選択的に変化させて、レーザビームパルス制御アセンブリ436に出力される選択された強度のレーザビーム48を生成するように制御可能である。レーザビーム強度制御アセンブリ434は、結果として生じるレーザビーム448の強度を制御するために、任意の適切な既存の構成を含む任意の適切な構成を有することができる。
[0079]レーザビームパルス制御アセンブリ436は、眼科用レンズ410の目標サブボリュームにおける屈折率変化を誘発するのに適した持続時間、強度、サイズ、及び、空間プロファイルを有するコリメートされたレーザビームパルス450を生成するように制御可能である。レーザビームパルス制御アセンブリ436は、結果として生じるレーザビームパルス450の持続時間を制御するために、任意の適切な既存の構成を含む任意の適切な構成を有することができる。
[0080]走査/インタフェースアセンブリ438は、レーザビームパルス450を選択的に走査して、XYZ走査レーザパルス474を生成するように制御可能である。走査/インタフェースアセンブリ438は、XYZ走査レーザパルス474を生成するための任意の適切な既存の構成(例えば、図14に示される構成)を含む、任意の適切な構成を有することができる。走査/インタフェースアセンブリ438は、レーザビームパルス450を受信し、口径食を最小限に抑えるようにXYZ走査レーザパルス474を出力する。走査/インタフェースアセンブリ438は、眼科用レンズ410内に1つ以上の表面下光学構造を形成するように目標サブボリュームにおけるそれぞれの屈折率変化を誘発するべく眼科用レンズ410の目標サブボリュームに集束されるXYZ走査レーザパルス474を生成するためにレーザビームパルス450のそれぞれを選択的に走査するように制御され得る。多くの実施形態において、走査/インタフェースアセンブリ438は、眼科用レンズ410の位置を適切な程度に拘束して、走査/インタフェースアセンブリ438に対する眼科用レンズ410の目標サブボリュームの位置を適切に制御するように構成される。図14に示される実施形態などの多くの実施形態において、走査/インタフェースアセンブリ438は、XYZ走査レーザパルス474のそれぞれが集束される眼科用レンズ410内の深さを選択的に制御するように制御される電動Zステージを含む。
[0081]制御ユニット440は、レーザビーム源432、レーザビーム強度制御アセンブリ434、レーザビームパルス制御アセンブリ436、及び、走査/インタフェースアセンブリ438のそれぞれと動作可能に結合される。制御ユニット440は、レーザビーム源432、レーザビーム強度制御アセンブリ434、レーザビームパルス制御アセンブリ436、及び、走査/インタフェースアセンブリ438のそれぞれの協調制御を行ない、それにより、XYZ走査レーザパルス474のそれぞれは、眼科用レンズ410内に1つ以上の表面下光学構造を形成するべく、選択された強度及び持続時間を有するとともに、眼科用レンズ410のそれぞれの選択されたサブボリュームに集束される。制御ユニット440は任意の適切な構成を有することができる。例えば、幾つかの実施形態において、制御ユニット440は、それぞれがサブボリューム光学構造の空間位置と同期されるXYZ走査レーザパルス474を生成するべく、レーザビーム源432、レーザビーム強度制御アセンブリ434、レーザビームパルス制御アセンブリ436、及び、走査/インタフェースアセンブリ438の動作を制御ユニット440に制御及び調整させるために、1つ以上のプロセッサと、1つ以上のプロセッサによって実行可能な命令を記憶する有形メモリデバイスとを備える。
[0082]図14は、走査/インタフェースアセンブリ438の一実施形態の簡略化された概略図である。図示の実施形態において、走査/インタフェースアセンブリ438は、XYガルボ走査ユニット442、リレー光学アセンブリ444、Zステージ466、XYステージ468、集束対物レンズ470、及び、患者インタフェース/眼科用レンズホルダ472を含む。XYガルボ走査ユニット438はXYガルボ走査ミラー454,456を含む。リレー光学アセンブリ440は、凹面ミラー460,461と、平面ミラー462,464とを含む。
[0083]XYガルボ走査ユニット442は、レーザビームパルス制御アセンブリ436からレーザパルス450(例えば、1035nm波長のコリメートレーザパルス)を受信する。図示の実施形態では、XYガルボ走査ユニット442は、電動X方向走査ミラー454及び電動Y方向走査ミラー456を含む。X方向走査ミラー454は、X方向走査ミラー454の向きを選択的に変化させて、XY走査レーザパルス458の伝播方向を横切るX方向でXY走査レーザパルス458の方向/位置を変化させるように制御される。Y方向走査ミラー456は、Y方向走査ミラー456の向きを選択的に変化させて、XY走査レーザパルス458の伝播方向を横切るY方向でXY走査レーザパルス458の方向/位置を変化させるように制御される。多くの実施形態では、Y方向がX方向に対して略垂直である。
[0084]リレー光学アセンブリ440は、XYガルボ走査ユニット442からXY走査レーザパルス458を受け、口径食を最小限に抑えるようにXY走査レーザパルス458をZステージ466に送る。凹面ミラー460は、XY走査レーザパルス458のそれぞれを反射して、平面ミラー462に入射する収束レーザパルスを生成する。平面ミラー462は、収束XY走査レーザパルス458を平面ミラー464に向けて反射する。平面ミラー462と平面ミラー464との間で、XY走査レーザパルス458は、収束している状態から発散している状態に移行する。発散レーザパルス458は、平面ミラー464によって凹面ミラー461上に反射される。凹面ミラー461は、レーザパルス458を反射して、Zステージ466に向けられるコリメートされたレーザパルスを生成する。
[0085]Zステージ466は、リレー光学アセンブリ442からXY走査レーザパルス458を受信する。図示の実施形態において、Zステージ466及びXYステージ468は、集束対物レンズ470に結合されるとともに、XYZ走査レーザパルス474を眼科用レンズ410のそれぞれの目標サブボリュームに集束させるように、それぞれのXY走査レーザパルス474ごとに眼科用レンズ410に対して集束対物レンズ470を選択的に位置決めするように制御される。Zステージ466は、レーザパルスが集束される眼科用レンズ410内の深さ(すなわち、目標の表面下ボリュームの屈折率変化を誘発するためにレーザパルスが集束される眼科用レンズ410の表面下ボリュームの深さ)を選択的に制御するように制御される。XYステージ468は、Zステージ466によって受信されたXY走査レーザパルス458のそれぞれの横方向位置に関して集束対物レンズ470が適切に位置決めされるように、XYガルボ走査ユニット442の制御に関連して制御される。集束対物レンズ470は、レーザパルスをレンズ410の目標とする表面下ボリュームに収束させる。患者インタフェース/眼科用レンズホルダ472は、眼科用レンズ410を所定の位置に拘束して、走査/インタフェースアセンブリ438によるレーザパルス474の走査をサポートし、眼科用レンズ410内に表面下光学構造を形成する。
[0086]定められた光学補正のための表面下光学素子の定義
[0087]図15~図22は、特定の光学補正のための表面下光学素子を規定するべく使用され得るプロセスを示す。本明細書中に記載される手法を使用して被検者の近視の進行を抑制するための光学補正は、任意の適切な数の低次光学補正及び/又は任意の適切な数の高次光学補正の組み合わせであってもよいが、単一の単純な2ジオプター光学補正が例示される。しかしながら、同じプロセスを使用して、近視進行を抑制する光学補正(本明細書中に記載される近視抑制光学補正のいずれかなど)を行なうように眼科用レンズを構成するために眼科用レンズのための表面下光学素子を規定することができる。
[0088]図15は、実施形態に係る、2.0ジオプター屈折率分布510の光波単位における径方向の変化を示す。この曲線における光波は、562.5nmの設計波長に対応する。図示の実施形態において、2.0ジオプター屈折率分布510は、眼科用レンズの光軸での最大16.0波から、光軸から3.0cmでの0.0波まで減少する。
[0089]図16は、2.0ジオプター屈折率分布510に対応する1.0波位相ラップ屈折率分布512を示す。1.0波位相ラップ屈折率分布512の各セグメントは、傾斜セグメント(512a~512p)を含む。1.0波位相ラップ屈折率分布512の中心セグメントを除く全てのセグメントのそれぞれは、1.0波に等しい高さを伴う位相不連続部(514b~514p)を含む。傾斜セグメント(512a~512p)のそれぞれは、2.0ジオプター屈折率分布510の対応する上方セグメント(510a~510p)と一致するように成形される。例えば、傾斜セグメント512pは上方セグメント510pと一致し、傾斜セグメント512oは上方セグメント510oから1.0波を引いたものに等しく、傾斜セグメント512nは上方セグメント510nから2.0波を引いたものに等しく、傾斜セグメント512aは上方セグメント510aから15.0波を引いたものに等しい。各傾斜セグメントはフレネルゾーンに対応する。
[0090]分布512における位相不連続部(514b~514p)のそれぞれの1.0波高は、1.0波に等しい最大位相を制限しつつ、2.0ジオプター屈折分布510と同じ2.0ジオプター屈折補正を行なう設計波長で回折をもたらす。
[0091]1.0波位相ラップ屈折率分布512は、2.0ジオプター屈折率分布510と比較して実質的に低い誘発すべき総レーザパルスエネルギーを必要とする。1.0波位相ラップ屈折率分布512の下方の面積は、2.0ジオプター屈折率分布510の下方の面積の約5.2%にすぎない。
[0092]図17は、1.0波位相ラップ屈折率分布512と、1.0波位相ラップ屈折率分布512に対応するスケーリングされた位相ラップ屈折率分布(選択された最大波値に関して)の一例とを示す。図示の実施形態において、スケーリングされた位相ラップ屈折率分布の例は1/3波の最大波値を有する。同様のスケーリングされた位相ラップ屈折率分布は、1.0波未満の他の適切な最大波値(例えば、3/4波、5/8波、1/2波、1/4波、1/6波)に関して生成され得る。1/3光波最大スケーリング位相ラップ屈折率分布516は1.0波位相ラップ屈折率分布512の1/3に等しい。1/3光波最大スケーリング位相ラップ屈折率分布516は、1.0波位相ラップ屈折率分布512の1つの代替物であり、対応する最大1/3波光補正をもたらす最大屈折率値を利用する。
[0093]1/3光波最大スケーリング位相ラップ屈折率分布516は、1.0波位相ラップ屈折率分布512と比較して、誘発するために必要な総レーザパルスエネルギーが少ない。1/3光波最大スケーリング位相ラップ屈折率分布516の下方の面積は、1.0波位相ラップ屈折率分布512の下方の面積の1/3である。1/3波分布516の3つの積層を使用して、1.0波分布512と同じ光学補正をもたらすことができる。
[0094]図18は、位相変化高さに対する近焦点574及び遠焦点576における回折効率をグラフで示す。0.25波未満の相変化高さの場合、近焦点における回折効率はわずか約10%である。しかしながら、実質的に10%を超える近焦点回折効率は、所望の全体的な光学補正をもたらすために積層される表面下光学構造の層の数を制限することが望ましい。眼科用レンズ410の目標サブボリュームにおけるより大きな屈折率変化を誘発することによって、より大きな位相変化高さを達成することができる。眼科用レンズ410の目標サブボリュームに集束されたレーザパルスのエネルギーを増大させることによって、眼科用レンズ410の目標サブボリュームにおけるより大きな屈折率変化を誘発することができる。
[0095]図19は、レーザパルス光パワーに応じた結果として得られる位相変化高さに関する較正曲線578の一例をグラフで示す。較正曲線578は、対応するレーザパルス持続時間、レーザパルス波長、レーザパルス繰返し率、開口数、眼科用レンズ410の材料、目標サブボリュームの深さ、目標サブボリューム間の間隔、走査速度、及び、ライン間隔に関するレーザ平均パワーに応じた結果として得られる位相変化高さ間の対応関係を示す。較正曲線578は、レーザパルスエネルギーの増大が相変化高さの増大をもたらすことを示している。
[0096]しかしながら、レーザパルスエネルギーは、レーザパルスエネルギー及び/又は眼科用レンズ410による或いは更には表面下光学素子の層間の蓄熱によって引き起こされる誘発損傷の伝播を回避するために制限されてもよい。多くの場合、表面下光学素子の最初の2つの層の形成中に損傷は観察されず、表面下光学素子の第3の層の形成中に損傷が発生し始める。そのような損傷を回避するために、眼科用レンズ410の材料のパルスエネルギー閾値未満のレーザパルスエネルギーを使用して、表面下光学素子を形成することができる。しかしながら、より低いパルスエネルギーを使用すると、結果として得られる所望の量の位相変化高さをもたらすのに必要な表面下光学素子の層の数が増大し、それにより、使用される表面下光学素子412の総数を形成するのに必要な時間が増加する。
[0097]図20は、実施形態に係る、屈折率空間変動を伴う1つ以上の表面下光学素子412を含む眼科用レンズ410の平面図である。眼内レンズ、コンタクトレンズ、角膜、眼鏡レンズ、及び、天然のレンズ(例えば、ヒトの天然の水晶体)を含むがこれらに限定されない任意の適切なタイプの眼科用レンズで本明細書中に記載される1つ以上の表面下要素12を形成することができる。屈折率空間変動を伴う1つ以上の表面下光学素子412は、本明細書中に記載されるように近視の進行を抑制するべく構成される適切な屈折補正を行なうように構成され得る。更に、屈折率空間変動を伴う1つ以上の表面下光学素子412は、非点収差、近視、遠視、球面収差、コマ収差、及び、トレフォイル、並びに、それらの任意の適切な組み合わせなどの多くの光学収差のそれぞれに適した屈折補正を行なうように構成され得る。
[0098]図21は、眼科用レンズ410の表面下光学素子412のうちの1つの平面図である。図示の表面下光学素子412は、レンズ410の関連するサブボリュームを含むレンズ410のそれぞれのボリュームを占める。多くの実施形態では、光学素子412のうちの1つによって占められるボリュームは、第1、第2、及び、第3の部分414を含む。第1、第2、及び、第3の部分414のそれぞれは、各部分414がそれぞれの屈折率分布を有するように、それぞれの部分414を構成するレンズ410のサブボリュームにおける屈折率変化を誘発するべくそれぞれの部分414の内側に適切なレーザパルスを集束させることによって形成され得る。
[0099]多くの実施形態では、結果として得られる表面下光学構造412が所望の光学補正を行なうように、表面下光学構造412を形成する各部分414に関して屈折率分布が規定される。各部分414に関する屈折率分布を使用して、各部分414に所望の屈折率分布を誘発するためにそれぞれの部分414に集束されるレーザパルスのパラメータ(例えば、レーザパルスパワー(mW)、レーザパルス幅(fs))を決定することができる。
[0100]図示の実施形態では、表面下光学構造412の部分414が円形形状を有するが、部分414は、屈折率変動の任意の適切な形状及び分布を有することができる。例えば、重なり合う螺旋形状を有する単一の部分414を採用することができる。一般に、任意の適切な形状を有する1つ以上の部分414は、表面下光学構造412に入射する光に関して所望の光学補正を行なうように介在空間と共に分布され得る。
[0101]図22は、表面下光学素子412が介在層空間によって分離される幾つかの積層から構成される実施形態を示す。図示の実施形態では、表面下光学素子412が屈折率変動の空間分布を有する。図22は、表面下光学素子412における屈折率変動の分布の一例の側面図である。図示の実施形態において、表面下光学素子412は、各層が最下層から順に形成されて上方に作用するラスタ走査手法を使用して形成され得る。それぞれの層ごとに、ラスタ走査手法は、結果として得られる層が眼科用レンズ410の断面図を示す図22に示される平坦な断面形状を有するように、Y寸法及びX寸法を変化させながら一定のZ寸法の平面に沿ってレーザパルスの焦点位置を順次走査することができる。ラスタ走査手法において、レーザパルスのタイミングは、各レーザパルスを眼科用レンズ410の目標サブボリュームへ方向付けて眼科用レンズ410の非目標サブボリュームへレーザパルスを方向付けないように制御することができ、非目標サブボリュームは、表面下光学素子412を形成することができる隣接する積層間の介在空間など、表面下光学素子412のいずれも形成しない眼科用レンズ10のサブボリュームを含む。
[0102]図示の実施形態では、屈折率空間変動の分布を伴う3つの環状の表面下光学素子412が存在する。図示の表面下光学素子412のそれぞれは、平坦な層構成を有し、1つ以上の層から構成され得る。表面下光学構造が2つ以上の層から構成される場合、層は、介在層間隔によって互いに分離され得る。しかしながら、各層は、代替的に、限定はしないが、任意の適切な非平面又は平面を含む任意の他の適切な一般的形状を有することができる。図示の実施形態では、表面下光学素子412のそれぞれが円形の外側境界を有する。しかしながら、表面下光学素子412のそれぞれは、代替的に、任意の他の適切な外側境界形状を有することができる。表面下光学素子412のそれぞれは、それぞれが表面下光学素子412の一部を覆う2つ以上の別個の部分14を含むことができる。
[0103]図23A、図23B、及び、図23Cは、眼科用レンズの中央ゾーン及び周辺ゾーンを介した周辺網膜の一部への光の透過を示す。図23Aは、瞳孔38及び周囲の虹彩40を示す眼10の簡略的な正面図である。図23Bは、中央光学ゾーン192、周辺光学ゾーン194、及び、外側ゾーン196を有する眼科用レンズ190の簡略的な正面図である。図23Cは、周辺網膜像に対する周辺光学ゾーン194及び周辺網膜像に対する中央光学ゾーン194の相対的な寄与度を示す簡略化された光軸外図である。周辺網膜像に対する中央光学ゾーン194の寄与度を考慮して、幾つかの実施形態では、中央光学ゾーン194によって行なわれる光学補正は、周辺光学ゾーン194の近視軽減光学補正を決定するときに考慮される。中央光学ゾーン194によって行なわれる光学補正は、中央光学ゾーン194によって行なわれる周辺網膜像に対する所望の補正に部分的に基づくこともできる。
[0104]図24A及び図24Bは、結果として得られる周辺網膜像に対する眼科用レンズの周辺外側ゾーンの例の相対的な寄与度を示す。図24Aは、直径4mmの中央光学ゾーン192に関して直径4mmの瞳孔内にある周辺環状ゾーン194の割合のプロットを示す。最大15度の周辺視野偏心度の場合、直径6mmの周辺環状ゾーン194は、瞳孔38内の周辺環状ゾーン194の割合を最大にするのに十分なサイズである。最大20度の周辺視野偏心度の場合、直径7mmの周辺環状ゾーン194は、瞳孔38内の周辺環状ゾーン194の割合を最大にするのに十分なサイズである。最大30度の周辺視野偏心度の場合、直径8mmの周辺環状ゾーン194は、瞳孔38内の周辺環状ゾーン194の割合を最大にするのに十分なサイズである。瞳孔38内の周辺環状ゾーン194の割合は、コンタクトレンズ24の特定のユーザに関する周辺環状ゾーン194の内径及び外径の選択を導くために使用され得る。
[0105]図25は、10人の正常個体のグループについての0度から20度の網膜偏心度までの収差の平均変化の例を示す。20度鼻側網膜偏心度(すなわち、周辺視野)の場合について、白色光で網膜像の質をスルーフォーカスで計算した。全体的な像の質は、0~60サイクル/度の変調伝達関数(MTF)下の水平及び垂直面積の平均として定義された。光学異方性は、網膜ぼけにおける回転非対称性の度合いの指標である。光学異方性は、本明細書中では、MTF下の垂直面積で水平面積を割った比として定義され、直径4mmの円形瞳孔について計算され、これは近似値である。20度の鼻側網膜偏心度では、直径4mmの瞳孔は、垂直軸が4mm、短(水平)軸が3.8mmの楕円形である。評価されたスルーフォーカス範囲は、0.125ジオプター刻みで-3~+3ジオプターであった。
[0106]近視進行を抑制するための環状ゾーン光学補正の例
[0107]図26、図27、図28、図29、図30、及び、図31にプロットされたスルーフォーカス光学異方性及び20度視野偏心度における像の質は、直径4mmの瞳孔の100%カバレッジをもたらした環状光学ゾーンを使用して4つの場合について計算された。しかしながら、図24Aは、4mmの内径を有する環状光学ゾーンが20度の視野偏心度で瞳孔の約35~45%しかカバーしないことを示す。したがって、図26、図27、図28、図29、図30、及び、図31にプロットされたスルーフォーカス光学異方性及び20度視野偏心度における像の質は、与えられる光学異方性及び像の質の変化を幾分過大評価する。計算を容易にするために、使用される環状光学ゾーンによる直径4mmの瞳孔の100%カバレッジが使用された。計算された4つの条件は、(1)その周辺収差がZheleznyakらのJournal of Vision、20161で公開された10人の正常個体から採取した5mmの瞳孔における平均20度の鼻側波面収差の対照事例402、(2)対照事例のみに適用される円柱補正404、(3)0.4波の光学位相変化を伴う1.5ジオプターの加入度数を有する対照事例に適用される多焦点補正406、(4)対照事例に適用される#3からの円柱補正及び多焦点補正408を含む。
[0108]図26は、コンタクトレンズ誘発光学補正の例に関するある範囲の遠近調節レベルにわたる周辺網膜像非対称性(20度の視野偏心度)のプロットである。x軸は、ジオプター単位の焦点ぼけ又は物体距離である。ジオプターはインバースメータである。y軸は光学異方性であり、MTF(0~60cyc/deg)の下方の垂直面積で水平面積を割った比として定義される。y軸の値が1であることは、回転対称性を示す。y軸の値が1より大きいことは、水平方向のぼけを示す。y軸の値が1未満であることは、垂直方向のぼけを示す。対照事例は、最大の光学異方性を示す。円柱補正により、光学異方性が大きく低下する。
[0109]図27は、コンタクトレンズ誘発光学補正の例に関するある範囲の遠近調節レベルにわたる周辺網膜像の質(20度視野偏心度)のプロットである。x軸は、ジオプター単位の焦点ぼけ又は物体距離である。y軸は網膜像の質であり、MTF(0~60cyc/deg)の下方の水平面積と垂直面積の平均として定義される。y軸の値が大きいほど像の質は良好である。円柱補正は、最良のピーク画質を提供する。円柱補正と多焦点補正との組み合わせは、(図26に示すように)最大の焦点深度及び最小の異方性を提供する。
[0110]図28、図29、図30、及び、図31は、4つの状態についてのある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。図28は、対照事例402におけるある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。図29は、眼科用レンズが円柱補正404を行なう表面下屈折光学素子を有する対照事例に関するある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。図30は、眼科用レンズが二焦点補正406を行なう表面下屈折光学素子を有する対照事例に関するある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。図31は、眼科用レンズが円柱補正及び二焦点補正408を行なう表面下屈折光学素子を有する対照事例に関するある範囲の遠近調節レベルにわたる水平及び垂直周辺網膜像の質のプロットである。円柱補正は、最良のピーク画質を提供する。円柱補正と多焦点補正との組み合わせは、(図26に示すように)最大の焦点深度及び最小の異方性を提供する。
[0111]本明細書中に記載の眼科用レンズ24,150,170,180,190のいずれも、各環状ゾーンが周辺網膜の関連領域と位置合わせされるように適切な配向を確保するべく構成され得る。例えば、コンタクトレンズは、コンタクトレンズを角膜上で適切な向きに回転させる任意の1つ以上の適切な設計特徴を含むことができる。幾つかの実施形態において、コンタクトレンズは、コンタクトレンズを角膜上で適切な向きに回転させ、その向きを維持するために底部で重み付けされ、その結果、コンタクトレンズ内の環状ゾーンのそれぞれは、周辺網膜内の関連領域と位置合わせされる。
[0112]他の変形は、本発明の思想の範囲内である。したがって、開示される技術は様々な改変及び代替構成を受け入れる余地があるが、その特定の例示された実施形態が、図面に示され、先に詳細に説明されてきた。しかしながら、本開示を開示された1つ以上の特定の形態に限定する意図はなく、それどころか、添付の特許請求の範囲に規定される本発明の思想及び範囲内にある全ての改変、代替構成、及び、均等物を網羅しようとする意図があることが理解されるべきである。
[0113]開示された実施形態を説明する文脈における(特に以下の特許請求の範囲の文脈における)用語「1つの(a)」及び「1つの(an)」及び「その(the)」及び同様の指示対象の使用は、本明細書中で別段に示唆されなければ或いは文脈によって明らかに矛盾しなければ、単数形及び複数形の両方を網羅すると解釈されるべきである。「備える」、「有する」、「含む」、及び、「包含する」という用語は、別段言及されなければ、非制約的用語(すなわち、「~を含むがこれらに限定されない」を意味する)として解釈されるべきである。「接続される」という用語は、たとえ何かが介在する場合でも、~内に部分的又は全体的に含まれる、取り付けられる、又は、互いに接合されると解釈されるべきである。本明細書中の値の範囲の列挙は、本明細書中で別段に示唆されなければ、その範囲内にあるそれぞれの別個の値に個別に言及する簡略化された方法として役立つように単に意図されているにすぎず、それぞれの別個の値は、あたかも本明細書中に個別に記載されているかのように本明細書中に組み入れられる。本明細書中に記載される全ての方法は、本明細書中で別段に示唆されなければ或いは文脈によって明らかに矛盾しなければ、任意の適切な順序で行なわれ得る。本明細書中で与えられる任意の全ての例又は典型的な言語(例えば、「など」)の使用は、単に本開示の実施形態をより良く明らかにすることを意図しているにすぎず、特許請求の範囲に別段に記載されなければ、本開示の範囲に制限を課さない。本明細書中の言語は、特許請求の範囲に記載されない任意の要素を本開示の実施に必須であると示すものと解釈されるべきではない。
[0114]表現「X、Y又はZのうちの少なくとも1つ」などの選言的な言語は、別段具体的に明記しなければ、一般に使用される文脈内で、項目、用語などがX、Y又はZ或いはそれらの任意の組み合わせ(例えば、X、Y及び/又はZ)のいずれかであり得ることを提示すように理解されるべく意図される。したがって、そのような選言的な言語は、一般に、Xの少なくとも1つ、Yの少なくとも1つ、又は、Zの少なくとも1つがそれぞれ存在することを特定の実施形態が要することを意味しようとするものではなく且つ意味するべきではない。
[0115]本開示を実施するために発明者らに知られている最良の形態を含むこの開示の好ましい実施形態が本明細書中に記載される。それらの実施形態の変形は、前述の説明を読むと当業者に明らかになり得る。本発明者らは、当業者がそのような変形を必要に応じて使用することを予期し、また、本発明者らは、本明細書中に具体的に記載される以外の方法で本開示を実施することを意図する。したがって、この開示は、適用される法律によって許可されるように、本明細書に添付された特許請求の範囲に列挙される主題の全ての改変及び均等物を含む。更に、その全ての想定し得る変形における前述の要素の任意の組み合わせは、本明細書中で別段に示唆されなければ或いは文脈によって明らかに矛盾しなければ、本開示によって包含される。
[0116]本開示の実施形態の例は、以下の項を考慮して説明することができる。
[0117]項1.中央ゾーン及び環状ゾーンを含む眼科用レンズであって、環状ゾーンは、環状ゾーンを形成する材料の屈折率におけるレーザ誘発変化によって形成される表面下光学素子を含み、表面下光学素子は、近視の進行を抑制するべくユーザの周辺網膜への光の分布を変更するように構成される、眼科用レンズ。
[0118]項2.表面下光学素子は、ユーザの周辺網膜における径方向対方位角コントラストの非対称性を低減するように構成される、項1の眼科用レンズ。
[0119]項3.表面下光学素子は、ユーザの周辺網膜における遠視を低減するように構成される、項1の眼科用レンズ。
[0120]項4.表面下光学素子は、ユーザの周辺網膜における焦点深度を増大させるように構成される、項1の眼科用レンズ。
[0121]項5.表面下光学素子は、ユーザの周辺網膜における焦点深度を減少させるように構成される、項1の眼科用レンズ。
[0122]項6.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の低減、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の増大のうちの2つ以上を達成するように構成される、項1の眼科用レンズ。
[0123]項7.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の低減、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の減少のうちの2つ以上を達成するように構成される、項1の眼科用レンズ。
[0124]項8.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の増大、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の増大のうちの2つ以上を達成するように構成される、項1の眼科用レンズ。
[0125]項9.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の増大、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の減少のうちの2つ以上を達成するように構成される、項1の眼科用レンズ。
[0126]項10.環状ゾーンが2つ以上の環状部を備え、2つ以上の環状部のそれぞれにおける表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の低減、及び/又は、2)ユーザの周辺網膜における遠視の低減のうちの一方又は両方を達成するように構成される、項1の眼科用レンズ。
[0127]項11.2つ以上の環状部のそれぞれにおける表面下光学素子は、ユーザの周辺網膜における焦点深度を増大させるように構成される、項10の眼科用レンズ。
[0128]項12.2つ以上の環状部のそれぞれにおける表面下光学素子は、ユーザの周辺網膜における焦点深度を減少させるように構成される、項10の眼科用レンズ。
[0129]項13.コンタクトレンズとして構成される、項1から項12のいずれか一項の眼科用レンズ。
[0130]項14.眼鏡レンズとして構成される、項1から項12のいずれか一項の眼科用レンズ。
[0131]項15.角膜として構成される、項1から項12のいずれか一項の眼科用レンズ。
[0132]項16.眼の天然レンズとして構成される、項1から項12のいずれか一項の眼科用レンズ。
[0133]項17.眼内レンズとして構成される、項1から項12のいずれか一項の眼科用レンズ。
[0134]項18.眼科用レンズを変更する方法であって、近視の進行を抑制するべくユーザの周辺網膜への光の分布を変更するように構成される表面下光学素子を形成するために眼科用レンズの環状ゾーンを形成する材料の屈折率における表面下変化を誘発することを含む、方法。
[0135]項19.表面下光学素子は、ユーザの周辺網膜における径方向対方位角コントラストの非対称性を低減するように構成される、項18の方法。
[0136]項20.表面下光学素子は、ユーザの周辺網膜における遠視を低減するように構成される、項18の方法。
[0137]項21.表面下光学素子は、ユーザの周辺網膜における焦点深度を増大させるように構成される、項18の方法。
[0138]項22.表面下光学素子は、ユーザの周辺網膜における焦点深度を減少させるように構成される、項18の方法。
[0139]項23.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の低減、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の増大のうちの2つ以上を達成するように構成される、項18の方法。
[0140]項24.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の低減、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の減少のうちの2つ以上を達成するように構成される、項18の方法。
[0141]項25.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の増大、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の増大のうちの2つ以上を達成するように構成される、項18の方法。
[0142]項26.表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性の増大、2)ユーザの周辺網膜における遠視の低減、及び、3)ユーザの周辺網膜における焦点深度の減少のうちの2つ以上を達成するように構成される、項18の方法。
[0143]項27.屈折率の変化は、材料をレーザ光のパルスに晒すことによって誘発される、項18の方法。
[0144]項28.レーザ光のパルスのそれぞれは、10フェムト秒~500フェムト秒の範囲の持続時間を有する、項27の方法。
[0145]項29.レーザ光が約405nmの波長を有する、項28の方法。
[0146]項30.レーザ光が約810nmの波長を有する、項28の方法。
[0147]項31.レーザ光が約1035nmの波長を有する、項28の方法。
[0148]項32.レーザ光のパルスのそれぞれは、15フェムト秒~50フェムト秒の範囲の持続時間を有する、項31の方法。
[0149]項33.周辺網膜の位置に入射する光の径方向対方位角コントラストを測定することを更に含み、表面下光学素子は、周辺網膜の位置に入射する光の径方向対方位角コントラストの非対称性を低減するように構成される、項18の方法。
[0150]項34.周辺網膜の位置に関して遠視を測定することを更に含み、表面下光学素子は、周辺網膜の位置で遠視を低減するように構成される、項18の方法。
[0151]項35.環状ゾーンが2つ以上の環状部を備え、2つ以上の環状部のそれぞれにおける表面下光学素子は、1)ユーザの周辺網膜における径方向対方位角コントラストの非対称性を低減する、及び/又は、2)ユーザの周辺網膜における遠視を低減するように構成される、項18の方法。
[0152]項36.2つ以上の環状部のそれぞれにおける表面下光学素子は、ユーザの周辺網膜における焦点深度を増大させるように構成される、項35の方法。
[0153]項37.2つ以上の環状部のそれぞれにおける表面下光学素子は、ユーザの周辺網膜における焦点深度を減少させるように構成される、項35の方法。
[0154]項38.眼鏡レンズとして構成される、項18から項37のいずれか一項の方法。
[0155]項39.眼科用レンズが角膜である、項18から項37のいずれか一項の方法。
[0156]項40.眼科用レンズが眼の天然レンズである、項18から項37のいずれか一項の方法。
[0157]項41.眼科用レンズが眼内レンズである、項18から項37のいずれか一項の方法。

Claims (41)

  1. 中央ゾーンと、
    環状ゾーンであって、前記環状ゾーンを形成する材料の屈折率におけるレーザ誘発変化によって形成される表面下光学素子を備え、前記表面下光学素子が、近視の進行を抑制するべくユーザの周辺網膜への光の分布を変更するように構成される、環状ゾーンと、
    を備える眼科用レンズ。
  2. 前記表面下光学素子は、ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性を低減するように構成される、請求項1に記載の眼科用レンズ。
  3. 前記表面下光学素子は、ユーザの前記周辺網膜における遠視を低減するように構成される、請求項1に記載の眼科用レンズ。
  4. 前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を増大させるように構成される、請求項1に記載の眼科用レンズ。
  5. 前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を減少させるように構成される、請求項1に記載の眼科用レンズ。
  6. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の低減、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の増大、
    のうちの2つ以上を達成するように構成される、請求項1に記載の眼科用レンズ。
  7. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の低減、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の減少、
    のうちの2つ以上を達成するように構成される、請求項1に記載の眼科用レンズ。
  8. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の増大、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の増大、
    のうちの2つ以上を達成するように構成される、請求項1に記載の眼科用レンズ。
  9. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の増大、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の減少、
    のうちの2つ以上を達成するように構成される、請求項1に記載の眼科用レンズ。
  10. 前記環状ゾーンが2つ以上の環状部を備え、前記2つ以上の環状部のそれぞれにおける前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の低減、および/または、
    ユーザの前記周辺網膜における遠視の低減、
    のうちの一方または両方を達成するように構成される、請求項1に記載の眼科用レンズ。
  11. 前記2つ以上の環状部のそれぞれにおける前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を増大させるように構成される、請求項10に記載の眼科用レンズ。
  12. 前記2つ以上の環状部のそれぞれにおける前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を減少させるように構成される、請求項10に記載の眼科用レンズ。
  13. コンタクトレンズとして構成される、請求項1から12のいずれか一項に記載の眼科用レンズ。
  14. 眼鏡レンズとして構成される、請求項1から12のいずれか一項に記載の眼科用レンズ。
  15. 角膜として構成される、請求項1から12のいずれか一項に記載の眼科用レンズ。
  16. 眼の天然レンズとして構成される、請求項1から12のいずれか一項に記載の眼科用レンズ。
  17. 眼内レンズとして構成される、請求項1から12のいずれか一項に記載の眼科用レンズ。
  18. 眼科用レンズを変更する方法であって、
    近視の進行を抑制するべくユーザの周辺網膜への光の分布を変更するように構成される表面下光学素子を形成するために眼科用レンズの環状ゾーンを形成する材料の屈折率における表面下変化を誘発することを含む、方法。
  19. 前記表面下光学素子は、ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性を低減するように構成される、請求項18に記載の方法。
  20. 前記表面下光学素子は、ユーザの前記周辺網膜における遠視を低減するように構成される、請求項18に記載の方法。
  21. 前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を増大させるように構成される、請求項18に記載の方法。
  22. 前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を減少させるように構成される、請求項18に記載の方法。
  23. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の低減、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の増大、
    のうちの2つ以上を達成するように構成される、請求項18に記載の方法。
  24. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の低減、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の減少、
    のうちの2つ以上を達成するように構成される、請求項18に記載の方法。
  25. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の増大、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の増大、
    のうちの2つ以上を達成するように構成される、請求項18に記載の方法。
  26. 前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性の増大、
    ユーザの前記周辺網膜における遠視の低減、および、
    ユーザの前記周辺網膜における焦点深度の減少、
    のうちの2つ以上を達成するように構成される、請求項18に記載の方法。
  27. 前記屈折率の変化は、前記材料をレーザ光のパルスに晒すことによって誘発される、請求項18に記載の方法。
  28. 前記レーザ光のパルスのそれぞれは、10フェムト秒~500フェムト秒の範囲の持続時間を有する、請求項27に記載の方法。
  29. 前記レーザ光が約405nmの波長を有する、請求項28に記載の方法。
  30. 前記レーザ光が約810nmの波長を有する、請求項28に記載の方法。
  31. 前記レーザ光が約1035nmの波長を有する、請求項28に記載の方法。
  32. 前記レーザ光のパルスのそれぞれは、15フェムト秒~50フェムト秒の範囲の持続時間を有する、請求項31に記載の方法。
  33. 前記周辺網膜の位置に入射する光の径方向対方位角コントラストを測定することを更に含み、前記表面下光学素子は、前記周辺網膜の位置に入射する光の前記径方向対方位角コントラストの非対称性を低減するように構成される、請求項18に記載の方法。
  34. 前記周辺網膜の位置に関して遠視を測定することを更に含み、前記表面下光学素子は、前記周辺網膜の位置で遠視を低減するように構成される、請求項18に記載の方法。
  35. 前記環状ゾーンが2つ以上の環状部を備え、前記2つ以上の環状部のそれぞれにおける前記表面下光学素子は、
    ユーザの前記周辺網膜における径方向対方位角コントラストの非対称性を低減する、および/または、
    ユーザの前記周辺網膜における遠視を低減する、
    ように構成される、請求項18に記載の方法。
  36. 前記2つ以上の環状部のそれぞれにおける前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を増大させるように構成される、請求項35に記載の方法。
  37. 前記2つ以上の環状部のそれぞれにおける前記表面下光学素子は、ユーザの前記周辺網膜における焦点深度を減少させるように構成される、請求項35に記載の方法。
  38. 前記眼科用レンズが眼鏡レンズである、請求項18から37のいずれか一項に記載の方法。
  39. 前記眼科用レンズが角膜である、請求項18から37のいずれか一項に記載の方法。
  40. 前記眼科用レンズが眼の天然レンズである、請求項18から37のいずれか一項に記載の方法。
  41. 前記眼科用レンズが眼内レンズである、請求項18から37のいずれか一項に記載の方法。
JP2022503409A 2019-07-19 2020-07-14 近視進行治療 Pending JP2022541271A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962876126P 2019-07-19 2019-07-19
US62/876,126 2019-07-19
PCT/US2020/041934 WO2021015993A1 (en) 2019-07-19 2020-07-14 Myopia progression treatment

Publications (1)

Publication Number Publication Date
JP2022541271A true JP2022541271A (ja) 2022-09-22

Family

ID=74192658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022503409A Pending JP2022541271A (ja) 2019-07-19 2020-07-14 近視進行治療

Country Status (7)

Country Link
US (2) US11693257B2 (ja)
EP (1) EP3998990A4 (ja)
JP (1) JP2022541271A (ja)
KR (1) KR20220061098A (ja)
CN (1) CN114630640A (ja)
CA (1) CA3147871A1 (ja)
WO (1) WO2021015993A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529068A (ja) 2018-07-07 2021-10-28 アキュセラ インコーポレイテッド 網膜低酸素症を防止するためのデバイス
EP3830636A4 (en) 2018-07-30 2022-04-13 Acucela Inc. ELECTRONIC CONTACT LENS OPTICAL DESIGNS TO SLOW THE PROGRESSION OF MYOPIA
WO2021022193A1 (en) 2019-07-31 2021-02-04 Acucela Inc. Device for projecting images on the retina
JP2022547621A (ja) 2019-09-16 2022-11-14 アキュセラ インコーポレイテッド 近視の進行を阻害するように設計される、電子ソフトコンタクトレンズのための組立プロセス
WO2021168481A1 (en) 2020-02-21 2021-08-26 Acucela Inc. Charging case for electronic contact lens
KR20230003191A (ko) 2020-05-13 2023-01-05 어큐셀라 인코포레이티드 근시 치료를 위한 전자식 스위칭 가능한 안경
AU2021287803A1 (en) 2020-06-08 2022-10-27 Acucela Inc. Stick on devices using peripheral defocus to treat progressive refractive error
CN115698832A (zh) 2020-06-08 2023-02-03 奥克塞拉有限公司 用于治疗散光的非对称投影透镜
AU2021289593A1 (en) 2020-06-08 2022-10-20 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
US11281022B2 (en) 2020-06-10 2022-03-22 Acucela Inc. Apparatus and methods for the treatment of refractive error using active stimulation
CN116134371A (zh) 2020-07-08 2023-05-16 克莱里奥视觉股份有限公司 用于老花眼校正的优化的多焦点波前
CA3192992A1 (en) * 2020-08-25 2022-03-03 Clerio Vision, Inc. Subsurface optical structure with enhanced distribution of refractive index values
CN117083039A (zh) * 2021-03-23 2023-11-17 克莱里奥视觉股份有限公司 用于在眼科透镜中形成结构的激光的协同扫描和功率控制
US11209672B1 (en) 2021-04-06 2021-12-28 Acucela Inc. Supporting pillars for encapsulating a flexible PCB within a soft hydrogel contact lens
US11366341B1 (en) 2021-05-04 2022-06-21 Acucela Inc. Electronic case for electronic spectacles
US20230032140A1 (en) * 2021-07-28 2023-02-02 Coopervision International Limited Methods of increased contact lens rotation and related contact lenses
WO2023177740A1 (en) * 2022-03-18 2023-09-21 Clerio Vision, Inc. Myopia control treatments
CN115097651A (zh) * 2022-07-15 2022-09-23 西安交通大学 一种对称式复眼结构的防近视眼镜镜片及其制备方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849006A (en) 1994-04-25 1998-12-15 Autonomous Technologies Corporation Laser sculpting method and system
US6271914B1 (en) 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US7281795B2 (en) 1999-01-12 2007-10-16 Calhoun Vision, Inc. Light adjustable multifocal lenses
US6297103B1 (en) 2000-02-28 2001-10-02 Micron Technology, Inc. Structure and method for dual gate oxide thicknesses
US9545338B2 (en) * 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
NZ573194A (en) * 2006-06-08 2011-12-22 Vision Crc Ltd A non-multifocal contact lens comprising a central optical zone and a peripheral optical zone
US20080001320A1 (en) 2006-06-28 2008-01-03 Knox Wayne H Optical Material and Method for Modifying the Refractive Index
US7789910B2 (en) 2006-06-28 2010-09-07 Bausch & Lomb Incorporated Optical material and method for modifying the refractive index
US8617147B2 (en) 2007-06-26 2013-12-31 University Of Rochester Method for modifying the refractive index of ocular tissues
US8486055B2 (en) 2007-06-26 2013-07-16 Bausch & Lomb Incorporated Method for modifying the refractive index of ocular tissues
US9545340B1 (en) 2007-06-26 2017-01-17 University Of Rochester Multi-photon absorption for femtosecond micromachining and refractive index modification of tissues
TWI467266B (zh) 2007-10-23 2015-01-01 Vision Crc Ltd 眼科鏡片元件
WO2009070438A1 (en) 2007-11-30 2009-06-04 Bausch & Lomb Incorporated Optical material and method for modifying the refractive index
US9060847B2 (en) 2008-05-19 2015-06-23 University Of Rochester Optical hydrogel material with photosensitizer and method for modifying the refractive index
CN102369476B (zh) * 2009-02-05 2014-04-30 Hoya株式会社 眼镜镜片的评价方法、眼镜镜片的设计方法、眼镜镜片的制造方法、眼镜镜片的制造系统及眼镜镜片
US9144491B2 (en) 2011-06-02 2015-09-29 University Of Rochester Method for modifying the refractive index of an optical material
US10813791B2 (en) 2011-06-02 2020-10-27 University Of Rochester Method for modifying the refractive index of ocular tissues and applications thereof
TWI588560B (zh) * 2012-04-05 2017-06-21 布萊恩荷登視覺協會 用於屈光不正之鏡片、裝置、方法及系統
US9201250B2 (en) * 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9541773B2 (en) * 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10399292B2 (en) 2013-07-08 2019-09-03 University Of Rochester High numerical aperture optomechanical scanner for layered gradient index microlenses, methods, and applications
EP2923826B1 (fr) 2014-03-28 2018-11-07 Essilor International Lentille ophtalmique et procédé de fabrication d'une telle lentille
US9594259B2 (en) * 2014-08-29 2017-03-14 Johnson & Johnson Vision Care, Inc. Mask lens design and method for preventing and/or slowing myopia progression
WO2016070243A1 (en) * 2014-11-05 2016-05-12 Brien Holden Vision Institute Systems and methods involving single vision and multifocal lenses for inhibiting myopia progression
WO2016196200A1 (en) 2015-05-29 2016-12-08 University Of Rochester Optical device for off-axis viewing
US10838233B2 (en) 2015-12-15 2020-11-17 University Of Rochester Refractive corrector incorporating a continuous central phase zone and peripheral phase discontinuities
US11382795B2 (en) 2016-07-19 2022-07-12 University Of Rochester Apparatus and method for enhancing corneal lenticular surgery with laser refractive index changes
US10531950B2 (en) * 2016-11-16 2020-01-14 Tatvum LLC Intraocular lens having an extended depth of focus
US10932901B2 (en) * 2017-02-10 2021-03-02 University Of Rochester Vision correction with laser refractive index changes
CN110573119B (zh) 2017-03-31 2022-09-02 罗切斯特大学 用于在光学材料中写入折射率变化的光束多路复用器
EP3649499A1 (en) 2017-07-07 2020-05-13 University of Rochester Optical design for a two-degree-of-freedom scanning system with a curved sample plane
CN107861262B (zh) 2017-12-10 2024-04-09 段亚东 扇环形同心圆周边离焦眼镜片
CN111936095B (zh) 2018-01-26 2023-09-01 罗切斯特大学 折射率整形激光写入过程控制
WO2019222268A1 (en) 2018-05-14 2019-11-21 University Of Rochester Vision correction with laser refractive index changes
CN113939378A (zh) 2018-11-16 2022-01-14 罗切斯特大学 利用激光诱导折射率变化的可扩展制造
WO2021108585A1 (en) 2019-11-25 2021-06-03 University Of Rochester Material and biological response of femtosecond photo-modification in hydrogel and cornea

Also Published As

Publication number Publication date
US11693257B2 (en) 2023-07-04
US20210018762A1 (en) 2021-01-21
EP3998990A1 (en) 2022-05-25
KR20220061098A (ko) 2022-05-12
CN114630640A (zh) 2022-06-14
EP3998990A4 (en) 2023-08-23
CA3147871A1 (en) 2021-01-28
WO2021015993A1 (en) 2021-01-28
US20230280600A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US11693257B2 (en) Myopia progression treatment
US11896478B2 (en) Vision correction with laser refractive index changes
KR102341449B1 (ko) 근시 진행을 예방하고/하거나 늦추기 위한 다초점 렌즈 설계 및 방법
KR102444986B1 (ko) 근시 진행을 예방하고/하거나 늦추기 위한 다초점 렌즈 설계 및 방법
KR102140425B1 (ko) 근시 진행을 예방하고/하거나 늦추기 위한 비대칭 렌즈 설계 및 방법
EP2148628B1 (en) A method and a system for laser photoablation within a lens
JP2016051180A (ja) 近視の進行の防止及び/又は遅延のための自由形式レンズの設計及び方法
KR20120104327A (ko) 치료 광학 구조체 및 발현 근시 조절 방법
US20130335701A1 (en) Lenses, systems and methods for providing custom aberration treatments and monovision to correct presbyopia
CA2539395A1 (en) Method and apparatus for enhanced corneal accommodation
US11571336B2 (en) Refractive index shaping laser writing process control
WO2011035033A1 (en) Simultaneous vision lenses, design strategies, apparatuses, methods, and systems
CA3115626A1 (en) Extended depth of focus intraocular lens
US20230296919A1 (en) Myopia Control Treatments
US20230204978A1 (en) Subsurface Optical Structure With Enhanced Distribution of Refractive Index Values
US20210181528A1 (en) Devices and methods for correcting high-order optical aberrations for an eye using light
US20210386538A1 (en) Accommodating Intraocular Lens with Combination of Variable Aberrations for Extension of Depth of Field
WO2024020078A1 (en) Methods and devices for chromatic aberration correction

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240329