JP2022541116A - 磁気エンコーダー較正 - Google Patents

磁気エンコーダー較正 Download PDF

Info

Publication number
JP2022541116A
JP2022541116A JP2021576732A JP2021576732A JP2022541116A JP 2022541116 A JP2022541116 A JP 2022541116A JP 2021576732 A JP2021576732 A JP 2021576732A JP 2021576732 A JP2021576732 A JP 2021576732A JP 2022541116 A JP2022541116 A JP 2022541116A
Authority
JP
Japan
Prior art keywords
data
measurement data
robot
position measurement
periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021576732A
Other languages
English (en)
Inventor
クリピン,アレックス
Original Assignee
ボストン ダイナミクス,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボストン ダイナミクス,インコーポレイテッド filed Critical ボストン ダイナミクス,インコーポレイテッド
Publication of JP2022541116A publication Critical patent/JP2022541116A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Manipulator (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】 ロボットの関節又は付属物内に設置される軸外位置測定システムの較正を容易にすることである。【解決手段】 位置測定システム(200)を較正する方法(1000)は、位置測定システムから測定データ(224、230)を受信することと、測定データが周期的歪みデータ(232)を含むと判定することとを含む。位置測定システムは、ノニウストラック(212b、212d)とマスタートラック(212a、212c)とを含む。方法は、周期的歪みデータを周期的成分に分解し、周期的成分を測定データから除去することによって、測定データを修正することを更に含む。【選択図】 図1

Description

技術分野
[0001] この開示は、磁気エンコーダー較正に関する。
背景
[0002] 現在、ロボットは、様々な作業環境(例えば、工場、倉庫、事務所用ビル、及び病院)で仕事を実行する。ロボット制御システムは、様々なセンサーから収集される測定データを当てにして、ロボットの現在の状態を判定し、ロボットの今後の状態を制御する。ロボットの状態を正確に監視して制御するために、ロボットにおける実装に対してセンサーを較正する必要がある。従って、センサー較正は、ロボットシステムによって取り込まれる偏差(例えば、装着形状、及びロボットの構成要素内の機械的変動)を考慮する必要がある。
概要
[0003] 開示の1つの態様は、センサーを較正する方法を提供する。方法は、位置測定システムから測定データを、データ処理ハードウェアで受信することを含むことであって、位置測定システムは、ノニウストラックとマスタートラックとを含む。方法は、測定データが周期的歪みデータを含むと、データ処理ハードウェアによって判定することを更に含む。更に、方法は、周期的歪みデータを周期的成分に分解し、周期的成分を測定データから除去することによって、測定データを、データ処理ハードウェアによって修正することを含む。
[0004] 開示の実装は、下記の任意選択特徴のうち1つ又は複数の特徴を含んでもよい。幾つかの実装において、測定データが周期的歪みデータを含むと判定することは、測定データの低周波数成分をフィルター除去して、測定データの高周波数成分を分離することを含み、測定データの高周波数成分は、周期的歪みデータを含む。更に又は代わりに、測定データは、時間に応じた速度測定データに対応する。
[0005] 幾つかの例において、方法は、測定データを修正した後、修正測定データに対応する較正プロファイルを、データ処理ハードウェアによって生成することと、較正プロファイルを用いて位置測定システムを、データ処理ハードウェアによって較正することとを含む。更に又は代わりに、周期的歪みデータは、利得誤差、センサー飽和、又は位置測定システムにおける磁極間隔の物理的変動のうち少なくとも1つに対応する。幾つかの実装において、測定データは、マスタートラックに対する第1の測定データと、ノニウストラックに対する第2の測定データとを含む。ここで、周期的歪みデータは、第1の測定データ及び第2の測定データの各々に存在する。幾つかの実装において、位置測定システムを、ロボットの関節に結合する。
[0006] 幾つかの例において、位置測定システムから測定データを受信することは、ロボットに結合される位置測定システムを較正する較正モードを実行することであって、関節の周りの可動域までロボットの肢を作動させるように較正モードを構成することを含む。ここで、測定データを受信することは、位置測定システムから測定データを受信することであって、測定データをロボットの肢の作動に関連付けることを含んでもよい。
[0007] 開示の別の態様は、データ処理ハードウェアと、データ処理ハードウェアと通信しているメモリハードウェアであって、データ処理ハードウェアで実行される場合、動作をデータ処理ハードウェアに実行させる命令を記憶するメモリハードウェアとを有するシステムを提供する。データ処理ハードウェアによって実行される動作は、位置測定システムから測定データを受信することを含むことであって、位置測定システムは、ノニウストラックとマスタートラックとを含む。動作は、測定データが周期的歪みデータを含むと判定することと、周期的歪みデータを周期的成分に分解し、周期的成分を測定データから除去することによって、測定データを修正することとを更に含む。
[0008] この態様は、下記の任意選択特徴のうち1つ又は複数の特徴を含んでもよい。幾つかの実装において、測定データが周期的歪みデータを含むと判定することは、測定データの低周波数成分をフィルター除去して、測定データの高周波数成分を分離することを含み、測定データの高周波数成分は、周期的歪みデータを含む。更に又は代わりに、測定データは、時間に応じた速度測定データに対応してもよい。
[0009] 幾つかの例において、動作は、測定データを修正した後、修正測定データに対応する較正プロファイルを生成することと、較正プロファイルを用いて位置測定システムを較正することとを更に含む。任意選択的に、周期的歪みデータは、利得誤差、センサー飽和、又は位置測定システムにおける磁極間隔の物理的変動のうち少なくとも1つに対応する。幾つかの例において、測定データは、マスタートラックに対する第1の測定データと、ノニウストラックに対する第2の測定データとを含み、周期的歪みデータは、第1の測定データ及び第2の測定データの各々に存在する。
[0010] 幾つかの実装において、位置測定システムを、ロボットの関節に結合する。ここで、位置測定システムから測定データを受信することは、ロボットに結合される位置測定システムを較正する較正モードを実行することであって、関節の周りの可動域までロボットの肢を作動させるように較正モードを構成することを含む。測定データをロボットの肢の作動に関連付ける。
[0011] 開示の別の態様は、センサーを較正する方法を提供する。方法は、軸外位置測定システムに関連付けられる位置測定データを、データ処理ハードウェアで受信することを含む。方法は、位置測定データが周期的歪みデータを含むと、データ処理ハードウェアによって判定することを更に含む。方法は、周期的歪みデータを周期的成分に、データ処理ハードウェアによって分解することを更に含む。方法は、周期的歪みデータの周期的成分を位置測定データから除去することに基づいて較正プロファイルを、データ処理ハードウェアによって生成することを更に含む。方法は、較正プロファイルを用いて軸外位置測定システムを、データ処理ハードウェアによって較正することを更に含む。
[0012] この態様は、下記の任意選択特徴のうち1つ又は複数の特徴を含んでもよい。幾つかの実装において、位置測定データが周期的歪みデータを含むと判定することは、位置測定データの低周波数成分をフィルター除去して、位置測定データの高周波数成分を分離することを含み、位置測定データの高周波数成分は、周期的歪みデータを有する。更に又は代わりに、周期的歪みデータを周期的成分に分解することは、位置測定データの高調波の導関数を用いて周期的歪みデータをマップすることを含む。
[0013] 幾つかの例において、軸外位置測定システムを、ロボットの関節に結合する。幾つかの例において、位置測定データを受信することは、軸外位置測定システム用の較正モードを実行することであって、関節の周りの可動域までロボットの肢を作動させるように較正モードを構成することを含む。ここで、方法は、軸外位置測定システムから位置測定データを受信することであって、位置測定データをロボットの肢の作動に関連付けることを含む。
[0014] 開示の別の態様は、データ処理ハードウェアと、データ処理ハードウェアと通信しているメモリハードウェアであって、データ処理ハードウェアで実行される場合、動作をデータ処理ハードウェアに実行させる命令を記憶するメモリハードウェアとを有するシステムを提供する。動作は、軸外位置測定システムに関連付けられる位置測定データを受信することと、位置測定データが周期的歪みデータを含むと判定することとを含む。動作は、周期的歪みデータを周期的成分に分解することと、周期的歪みデータの周期的成分を位置測定データから除去することに基づいて較正プロファイルを生成することと、較正プロファイルを用いて軸外位置測定システムを較正することとを更に含む。
[0015] この態様は、下記の任意選択特徴のうち1つ又は複数の特徴を含んでもよい。幾つかの例において、測定データが周期的歪みデータを含むと判定することは、位置測定データの低周波数成分をフィルター除去して、位置測定データの高周波数成分を分離することを含み、位置測定データの高周波数成分は、周期的歪みデータを含む。幾つかの実装において、周期的歪みデータを周期的成分に分解することは、位置測定データの高調波の導関数を用いて周期的歪みデータをマップすることを含む。
[0016] 幾つかの実装において、位置測定システムを、ロボットの関節に結合する。ここで、位置測定システムから測定データを受信することは、ロボットに結合される位置測定システムを較正する較正モードを実行することであって、関節の周りの可動域までロボットの肢を作動させるように較正モードを構成することを含む。測定データをロボットの肢の作動に関連付ける。
[0017] 開示の1つ又は複数の実装の詳細を、下記の添付図面及び説明で示す。他の態様、特徴、及び利点は、説明及び図面、及び特許請求の範囲から明白になるであろう。
図面の説明
[0018]ロボットシステムの例の略図である。 [0019]位置測定システムの第1の例の斜視図である。 [0020]位置測定システムの第2の例の斜視図である。 [0021]回転位置測定システムのマスタートラック(図3A)に関連付けられた位置測定データを示すプロットを示す。 [0021]回転位置測定システムのノニウストラック(図3B)に関連付けられた位置測定データを示すプロットを示す。 [0022]回転位置測定システムのマスタートラック及びノニウストラックに対するマスター位相データ(図3C)を示すプロットを示す。 [0022]回転位置測定システムのマスタートラック及びノニウストラックに対するノニウス位相データ(図3D)を示すプロットを示す。 [0023]図3Cのマスター位相データ及び図3Dのノニウス位相データに基づく理想的な条件下での位置測定システムに対する絶対位置の判定を示すプロットを示す。 [0024]周期的歪みデータを有する回転位置測定システムのマスタートラック(図4A)に関連付けられた位置測定データを示すプロットを示す。 [0024]周期的歪みデータを有する回転位置測定システムのノニウストラック(図4B)に関連付けられた位置測定データを示すプロットを示す。 [0025]周期的歪みデータを有する回転位置測定システムのマスタートラック及びノニウストラックに対するマスター位相データ(図4C)を示すプロットを示す。 [0025]周期的歪みデータを有する回転位置測定システムのマスタートラック及びノニウストラックに対するノニウス位相データ(図4D)を示すプロットを示す。 [0026]図4Cのマスター位相データ及び図4Dのノニウス位相データに基づく理想的でない条件下での位置測定システムに対する絶対位置の判定を示すプロットを示す。 [0027]ロボットシステムとインターフェースをとる較正システムの略図である。 [0028]位置測定システムに対する生測定速度データの例を示すプロットである。 [0029]歪みデータに対応する、図6の生測定速度データの高周波数成分を示すプロットである。 [0030]周期的成分への歪みデータの分解を示す図7のプロットのボックス800内の詳細図である。 [0031]生測定速度データと比較した較正測定速度データを示すプロットである。 [0032]軸外位置測定システムを較正する方法用の動作の構成例のフローチャートである。 [0033]本明細書に記載のシステム及び方法を実施するために使用可能な計算デバイスの例の略図である。
[0034] 様々な図面における同じ参照符号は、同じ要素を示す。
詳細な説明
[0035] 軸外位置測定システムを、位置依存測定データをシステム制御器に供給する様々な用途で使用し、これによって、制御器は、用途の動作パラメータ(例えば、絶対位置、速度)を監視して制御することができる。しかし、位置測定システムの製造業者は、各用途への実装の前に、位置測定システムを較正するように要求する較正手順を与えることが多い。従って、製造業者によって与えられる較正手順は、位置測定システムの用途への設置に起因する歪み及び誤差を考慮することができないことがある。特定の例において、位置測定システムは、ロボットの関節内の装着形状に基づいて歪みが増加することがある。従って、ロボット内の設置の後に、位置測定システムを較正する必要があり、位置測定システム製造業者によって提案される較正手順は、もはや実用的でない。
[0036] 本明細書の実装は、ロボットの関節又は付属物内に設置される軸外位置測定システムの較正を容易にすることを目的とする。ここで、位置測定システムを、較正モードに置き、ロボットの関節又は付属物を、可動域まで循環させる。位置測定システムによって収集される生位置測定データを、生位置測定データ又は速度測定データとして較正システムに伝送する。次に、較正システムは、ロボットの実際の運動に関連付けられた低周波数測定データをフィルター処理することによって測定データ内の歪みを分離し、これによって、周期的歪みに関連付けられた高周波測定データだけを残す。次に、高周波測定データ又は歪みデータを、測定データの高調波の導関数に対応する周期的成分に分解する。次に、周期的成分を測定データから除去し、ロボットの実際の運動に関連付けられた低周波数測定データだけを含む修正測定データを供給する。従って、本明細書で提供される実装は、ロボットシステム内に組み込まれる軸外位置測定システムの較正を容易にする。
[0037] 図1Aを参照すると、ロボット10、10a~10cの様々な例が示されている。ロボット10の例は、2足歩行ヒューマノイドロボット10a、4足歩行ロボット10b、及び車輪付きロボット10c(但し、これらに限定されない)を含む。ロボット10は、本体12、及び制御システム100と通信している複数の付属物14、14a~14eを含む。ロボット10の本体12は、付属物14に接続し、ロボット10の様々な構成要素(例えば、制御システム100の構成要素)を収容してもよい。
[0038] 付属物14は、ロボット10がロボットの環境に対して移動することができる脚14b~14dを含んでもよい。脚14b~14dは、走行の異なる技法を可能にする多自由度で動作するように構成されている。更に又は代わりに、ロボット10a、10cの付属物14は、物体操作、載荷、及び/又はロボット10に対するバランスを容易にする腕14a、14eを含んでもよい。各付属物は、手、足、又は回転部材(例えば、車輪又はトラック)などの取り付け具を含んでもよい。
[0039] 付属物14の各々は、付属物14又は付属物14の一部がロボット10の本体12に対して移動することができるように構成されている1つ又は複数の関節16を含んでもよい。例えば、各付属物14は、関節16、16a~16eによって接続され、互いに様々な自由度で動作するように構成されている1つ又は複数の部材18、18a~18hを含んでもよい。図示の例において、各関節16は、部材18のうち2つの部材間の相対回転運動を可能にする回転又は枢動関節に対応する。しかし、他の例において、ロボット10は、部材18のうち2つ以上の部材間の相対並進運動(例えば、伸長又は後退)を可能にするように構成されている直線関節を含んでもよい。各関節16の位置を、制御システム100によって測定して制御する。
[0040] 引き続き、図1を参照すると、制御システム100の構成の例は、ロボット10の動作を監視して制御するように構成されている。幾つかの実装において、ロボット10は、自律的に及び/又は半自律的に動作するように構成されている。しかし、ユーザは、コマンド/指示をロボット10に与えることによって、ロボット10を動作させてもよい。図示の例において、制御システム100は、制御器102(例えば、データ処理ハードウェア)、メモリハードウェア104、慣性測定ユニット(IMU)106、アクチュエータ108、1つ又は複数のセンサー110、及び1つ又は複数の電源112を含む。制御システム100は、図示の構成要素に限定されず、本開示の範囲から逸脱することなく、追加の又はより少ない構成要素を含んでもよい。構成要素は、無線又は有線接続を介して通信してもよく、ロボット10の多くの場所にわたって分布されてもよい。幾つかの構成において、制御システム100は、遠隔計算デバイス及び/又はユーザとインターフェースをとる。例えば、制御システム100は、ロボット10と通信する様々な構成要素(例えば、ジョイスティック、ボタン、有線通信ポート、及び/又は遠隔計算デバイス及び/又はユーザから入力を受信し、遠隔計算デバイス及び/又はユーザにフィードバックを与える無線通信ポート)を含んでもよい。
[0041] 制御器102は、1つ又は複数の汎用プロセッサ、デジタル信号プロセッサ、及び/又は特定用途向け集積回路(ASIC)を含むことができるデータ処理ハードウェアに対応する。幾つかの実装において、制御器102は、ロボット10の1つ又は複数のサブシステムで特定の動作を実行するように構成されている専用組み込みデバイスである。メモリハードウェア104は、制御器102と通信しており、1つ又は複数の持続性コンピュータ可読記憶媒体(例えば、揮発性及び/又は不揮発性記憶構成要素)を含んでもよい。例えば、メモリハードウェア104は、互いに通信している1つ又は複数の物理的デバイスに関連付けられてもよく、光、磁気、有機、又は他のタイプのメモリ又は記憶装置を含んでもよい。メモリハードウェア104は、制御器102によって命令を実行する場合、多くの動作(例えば、バランスを維持するためにロボット10の姿勢を変更する動作、地面を横切ってロボット10を操縦する動作、物体を移送する動作、及び/又は座位から立位のルーチンを実行する動作(これらに限定されない))を制御器102に実行させる命令(例えば、コンピュータ可読プログラム命令)をとりわけ記憶するように構成されている。
[0042] 制御器102は、ロボット10の動作を監視して制御するために、慣性測定ユニット106、アクチュエータ108、センサー110、及び電源112と直接的又は間接的に対話してもよい。制御器102は、ロボット10を動作させるために、慣性測定ユニット106、アクチュエータ108、及びセンサー110に関するデータを処理するように構成されている。制御器102は、ロボット10に配置された慣性測定ユニット106及び1つ又は複数のセンサー110から測定値を受信し、アクチュエータ108のうち少なくとも1つの作動を指示して、ロボットの位置を変更する。
[0043] 慣性測定ユニット106は、ロボット10の姿勢に対する変更をもたらすロボット10の移動を示す慣性測定値を測定するように構成されている。慣性測定ユニット106によって測定される慣性測定値は、ロボット10の質量中心の並進又はシフトを示してもよい。質量中心の並進又はシフトは、縦軸(x軸)、横軸(y軸)、又は垂直軸(z軸)のうち1つ又は複数の軸に沿って生じることがある。例えば、慣性測定ユニット106は、慣性基準系として初期姿勢を用いて、慣性測定値として、ロボット10の加速度、傾斜、横揺れ、縦揺れ、回転、又は偏揺れを検出して測定してもよい。
[0044] 制御システム100のアクチュエータ108は、空気圧アクチュエータ、液圧アクチュエータ、電気機械アクチュエータなどのうち1つ又は複数のアクチュエータ(これらに限定されない)を含んでもよい。更に、アクチュエータ108を、線形アクチュエータ、回転アクチュエータ、又はこれらの組み合わせとして構成してもよい。ロボット10の運動を引き起こすために、アクチュエータ108を、様々な場所でロボット10に配置してもよい。例えば、付属物14の1つ又は複数の関節16の構成を変更するために、ロボット10の各肢(即ち、腕、脚)は、複数のアクチュエータ108を含んでもよい。
[0045] 制御システム100のセンサー110は、力センサー、トルクセンサー、速度センサー、加速度センサー、位置センサー(線形及び/又は回転位置センサー)、運動センサー、場所センサー、負荷センサー、温度センサー、触覚センサー、深度センサー、超音波距離センサー、赤外線センサー、物体センサー、及び/又はカメラのうち1つ又は複数のセンサー(これらに限定されない)を含んでもよい。センサー110を、様々な場所(例えば、本体12及び/又は付属物14)でロボット10に配置してもよく、環境内でロボット10の動作を監視して制御するために、対応するセンサーデータを制御器102に供給するように、センサー110を構成する。幾つかの例において、制御器102は、ロボット10から物理的に分離されたセンサー110からセンサーデータを受信するように構成されている。例えば、制御器102は、ロボット10の対象物体に配置された近接センサーから、又はロボット10の環境内の遠隔センサーからセンサーデータを受信してもよい。
[0046] センサー110からのセンサーデータにより、制御器102は、ロボット10を操縦する状態、ロボット10の姿勢を変更する状態、及び/又は機械的構成要素(例えば、付属物14のうち1つ)を移動/回転させる様々なアクチュエータ108を作動させる状態を評価することができる。幾つかの例において、制御システム100は、ロボット10を移動させるアクチュエータ108に対する負荷を測定する1つ又は複数の力センサーを使用する。更に、センサー110は、本体12及び/又は付属物14の伸長、後退、及び/又は回転の状態を検出する位置センサーを含んでもよい。
[0047] 他のセンサー110は、環境認識及びナビゲーションを支援するために、環境及び/又は隣接物体/障害物の地形に対応するセンサーデータを取り込んでもよい。例えば、幾つかのセンサー110は、RADAR(例えば、長距離物体検出、距離測定、及び/又は速度測定用)、LIDAR(例えば、短距離物体検出、距離測定、及び/又は速度測定用)、VICON(登録商標)(例えば、運動取り込み用)、1つ又は複数の撮像装置(例えば、三次元視覚用の立体カメラ)、知覚センサー、全地球測位システム(GPS)デバイス、及び/又はロボット10が動作している環境の情報を取り込む他のセンサーを含んでもよい。
[0048] 幾つかの実装において、制御システム100は、ロボット10の様々な構成要素に電力を供給するように構成されている1つ又は複数の電源112を含む。ロボット10によって使用される電源112は、液圧システム、電気システム、エネルギー貯蔵デバイス(例えば、バッテリー)、及び/又は空気圧デバイス(これらに限定されない)を含んでもよい。例えば、1つ又は複数のエネルギー貯蔵デバイスは、ロボット10の様々な構成要素(例えば、アクチュエータ108)に電力を供給してもよい。幾つかの例において、本体12は、エネルギー貯蔵デバイスを格納して保持する仕切りを規定する。エネルギー貯蔵デバイスは、有線接続部又は無線(例えば、誘導)接続部を介して外部電源に充電可能であってもよい。太陽エネルギー(例えば、ロボット10に配置された太陽電池パネルを介して生成される)を用いて、エネルギー貯蔵デバイスを充電することもできる。幾つかの例において、消耗エネルギー貯蔵デバイスを満充電エネルギー貯蔵デバイスと交換することができるように、エネルギー貯蔵デバイスは、取り外し可能である。ガソリンエンジンを使用することもできる。液圧システムは、ロボット10の様々な構成要素を動作させる加圧流体を伝える液圧モーター及びシリンダーを使用してもよい。
[0049] 図2A及び図2Bを参照すると、ロボット10の関節16の絶対位置を測定する位置測定システム200、200a~bの例が示されている。位置測定システム200を、ロボットのセンサー110のうち1つ又は複数のセンサーとして組み込んでもよい。ここで、位置測定システム200は、1対の磁気エンコーダートラック212、212a~dを有する磁気コード担体210、及びエンコーダートラック212のうち1つに各々が対応する1対の位置センサー222を有するエンコーダー220を含む軸外位置測定システム200として構成されている。一般的に、位置測定システム200は、位置測定データ224を生成し、位置測定データ224(図1)を制御器102に伝送する。次に、制御器102は、位置測定システム200に基づいてロボット10の関連構成要素に対する位置依存データ(例えば、速度、絶対位置)を生成する。
[0050] 図2Aは、例えば、図1に示すようなロボット10の回転関節の絶対回転位置を測定するように構成されている回転位置測定システム200aを示す。図2Bは、ロボット10の並進関節における絶対線形位置を測定するように構成されている線形位置測定システム200bを示す。しかし、各位置測定システム200a、200bの動作原理は、基本的に同様であり、そのようなものとして説明する。
[0051] 位置測定システム200の各例において、磁気コード担体210は、陽極214a及び陰極214bを含む偶数の交互磁極対214を有する第1の磁気エンコーダートラック212a、212cを含む。第1の磁気エンコーダートラック212a、212cを、マスタートラックと呼んでもよい。更に、磁気コード担体210の各例は、マスタートラック212a、212cに隣接して配置され、マスタートラック212a、212cよりも1つ少ない極対214を有するノニウストラックと呼ばれる第2の磁気エンコーダートラック212b、212dを含む。例えば、例示の回転位置測定システム200aにおいて、外マスタートラック212aは、32個の極対214を含む一方、ノニウストラック212bは、マスタートラック212aの半径方向内向きに配置され、31個の極対を含む。同様に、図2Bにおいて、線形位置測定システム200bは、16個の極対を含む一方、隣接ノニウストラック212dは、15個の極対を有する。図示の例は、対応するノニウストラック212b、212dよりも1つ多い極対214を有するマスタートラック212a、212cを示すけれども、マスタートラック212a、212cにおける極対214の数がノニウストラックにおける極対214の数の共通因数を有しない限り、任意の数の極対214を、トラック212a~212dの何れかに組み込んでもよい。より詳細に後述するように、マスタートラック212a、212cは、高精度位置定義のために使用される一方、ノニウストラック212b、212dの測定値は、磁気コード担体210に対する絶対位置を計算するために、マスタートラックの測定値に対して参照される。
[0052] 更に、図2A及び図2Bを参照すると、エンコーダー220は、1対の位置センサー222を含み、位置センサー222のうち第1の位置センサーをマスタートラック212a、212cに整列させ、位置センサー222のうち第2の位置センサーをノニウストラック212b、212dに整列させる。図示の例において、極対214の磁場の大きさを測定するように構成されているホールセンサーとして、位置センサー222を具体化する。しかし、マスタートラック及びノニウストラックの概念を利用する他のタイプのセンサー(例えば、視覚ベースの測定システム)と併用して、本開示の原理を実施してもよい。
[0053] 各位置センサー222は、各磁気トラック212の1つの極対214に及ぶ長さを有する。マスタートラック212a、212cにおける極対214は、ノニウストラック212b、212dにおける極対214よりも1つ多いので、マスタートラックの極対214は、ノニウストラック212b、212dの極対214の極幅未満の極幅を有する。エンコーダー220が磁気コード担体210を横断する時に、エンコーダー220上の各位置センサー222は、各極対214の極幅に対応するサイクル長で、極対によって生成される磁場の大きさに対応する周期的正弦及び余弦信号を含む位置測定データ224を生成する。従って、マスタートラック212a、212cの正弦及び余弦信号のサイクル長は、ノニウストラック212b、212dによって生成される正弦及び余弦信号のサイクル長未満である。
[0054] 図3A~図3Dは、4つの極対214を含むマスタートラック212aと3つの極対214を含むノニウストラック212bとを有する回転位置測定システム200aからの生位置測定データ224の出力を示すプロット300a~dの例を示す。図3Aのプロット300aは、4つの極対214によって生成される周期的正弦及び余弦信号を含むマスタートラック212aに関連付けられた位置測定データ224aを示す。図示のように、360度の回転(x軸)中に、マスタートラック212aの4つの極対214にわたるエンコーダー220の横断により、90度(360度/4極対)のサイクル長を各々が有する4つのサイクルが得られる。図3Bのプロット300bは、3つの極対214によって生成される周期的正弦及び余弦信号を含むノニウストラック212bに関連付けられた位置測定データ224bを示す。図示のように、ノニウストラック212bにわたるエンコーダー220の横断により、120度(360度/3極対)のサイクル長を各々が有する3つのサイクルが得られる。位置測定データ224(即ち、正弦及び余弦信号)を用いて、制御器102は、マスタートラック212a及びノニウストラック212bの各々に対する各位相データ226を判定する。例えば、図3Cのプロット300cは、マスタートラック212aに対するマスター位相データ226aを示す一方、図3Dのプロット300dは、ノニウストラック212bに対するノニウス位相データ226bを示す。従って、エンコーダー220が各極対214を横断する時に、位相の大きさは、エンコーダー220によって横断される各極対214に対して0度から360度に増加する。
[0055] 図3Eは、図3C(x軸)のマスター位相データ226aを図3D(y軸)の対応するノニウス位相データ226bに対してプロットすることによって生成される絶対位置データ228を示す位相プロット300eを示す。ここで、絶対位置データ228は、磁気コード担体210上のエンコーダー220の絶対位置(例えば、角度、位置)を含む。例えば、交差破線で例示のように、エンコーダー220が240度のマスター位相角度及び180度のノニウス位相角度を示す場合、絶対位置データ228は、約60度に等しいエンコーダー220の絶対位置(角度)を含む。実際に、制御器102は、位置測定システム200から受信される位置測定データ224に基づいてエンコーダー220の絶対位置を判定するように構成されている。
[0056] 図3A~図3Eは、理想的な条件下で絶対位置データ228を表すが、実際に、エンコーダー220によって取り込まれる測定値は、不完全であることがあり、制御器102は、歪んだ(例えば、ずれた、ゆがんだ、及び/又は不連続な)位置測定データ224を受信することになる。例えば、図4A~図4Dは、歪んだ位置測定データ224を示すプロット400a~dの例を示す。歪んだ位置測定データ224を、4つの極対214を含むマスタートラック212aと3つの極対214を含むノニウストラック212bとを有する回転位置測定システム200aから得てもよい。図4Aのプロット400aは、4つの極対214によって生成される周期的正弦及び余弦信号を含むマスタートラック212aに関連付けられた位置測定データ224aを示す一方、図4Bのプロット400bは、3つの極対214によって生成される周期的正弦及び余弦信号を含むノニウストラック212bに関連付けられた位置測定データ224bを示す。特に、図4Aは、余弦信号に対する最大振幅(頂点)を示し、マスタートラック212aの位置測定データ224aの正弦信号に対する最小振幅を、切り取り又は切り詰めとして示す。同様に、図4Bは、ノニウストラック212bの位置測定データ224bの余弦信号及び正弦信号に対する最小振幅を切り取ることを示す。これらの測定誤差は、例えば、電気的オフセット又は利得誤差、センサー飽和、及び/又は異なる物理的磁極間隔によって生じることがある。図4Cのプロット400cは、マスタートラック212aに対するマスター位相データ226aを示す一方、図4Dのプロット400dは、ノニウストラック212bに対するノニウス位相データ226bを示す。原因にかかわらず、位置測定データ224の誤差は、マスタートラック212aに対するプロット400c(図4C)の対応するマスター位相データ226a及びノニウストラック212bに対するプロット400d(図4D)の対応するノニウス位相データ226b内の歪みになることがある。その結果、エンコーダー220(及び関節16)の絶対位置を判定する場合、マスター位相データ226a及びノニウス位相データ226b内の歪みは、誤りを最終的に引き起こす。例えば、図4Eは、図4C(x軸)の歪みマスター位相データ226aを図4D(y軸)の対応する歪みノニウス位相データ226bに対してプロットすることによって生成される絶対位置データ228を示す位相プロット400eを示す。従って、ロボット10における位置測定システム200の使用の前に、位置測定システム200を較正して、測定誤差を最小化する必要がある。
[0057] 製造業者は、測定システムにおける位置を較正する方法を提供することが多いが、これらの方法は、ロボット用途における設置の前に、周辺試験機器で較正を実行するように要求することが多いので、これらの方法は、ロボット用途に実用的でなく、その結果、較正は、ロボット10上の装着形状に起因する測定誤差を考慮しない。従って、ロボット10上の装着形状に対して位置測定システム200を最適化するために、関節16に対する位置測定システム200の設置の後に、較正工程を実行する必要がある。
[0058] 理論的に、関節16を一定の速度で移動させ、関節16の計算位置を位置測定システム200に割り当てることによって、位置測定システム200を較正することができる。しかし、これは、関節16の運動中に一定の速度を維持するのが難しいので、実用的でない。例えば、多くのロボット関節16は、方向を変更するように関節16に要求する限定可動域を有する。当然、関節16が、終点に近づき、終点から離れる時に、方向の変更は、速度の変更を必要とする。代わりに、ロボットにおける他の位置センサー110(例えば、アクチュエータ108又は電源112に関連付けられた位置センサー110)から供給されるデータと相互参照することによって、位置測定システム200を較正することができる。しかし、個々の構成要素内の機械的変動(例えば、偏り、製造公差)は、センサー110間の誤差範囲を取り込む。更に、位置測定システム200を較正するのに必要である必須の位置センサー110は、これらの構成要素に存在しないことがあり、又はセンサー110自体は、較正がずれていることがある。
[0059] 図5を参照すると、較正システム500は、ロボット10に設置された位置測定システム200に接続され、位置測定システム200のセンサー222から受信される生位置測定データ224を用いて位置測定システム200を較正するように構成されている。従って、上述の実用的でない較正方法と違って、較正システム500は、位置測定システム200によって得られる位置測定データ224だけを用いてロボット10に設置された位置測定システム200を較正するように構成されている較正モードを実行する。一旦位置測定システム200が較正システム500によって較正されると、位置測定システム200は、位置測定データ224が、正確であり、電気的オフセット又は利得誤差、センサー飽和、及び/又は異なる物理的磁極間隔(但し、これらに限定されない)を含む誤差のないように、ロボット10の動作中に後の位置測定データ224を測定することができる。幾つかの例において、較正システム500及び制御システム100は、互いに選択的通信している別々の構成要素である。例えば、較正システム500は、位置測定システム200に接続し、較正モードの実行中に生位置測定データ224を受信することができる遠隔システムであってもよい。他の例において、較正システム500は、ロボットの制御システム100と一体であり、必要に応じて、ロボット10の位置測定システム200を較正することができる。
[0060] 更に、図5を参照すると、較正システム500は、プロセッサ502(例えば、データ処理ハードウェア)及びメモリハードウェア504を含む。プロセッサ502は、1つ又は複数の汎用プロセッサ、デジタル信号プロセッサ、及び/又は特定用途向け集積回路(ASIC)を含むことができるデータ処理ハードウェアに対応する。幾つかの実装において、プロセッサ502は、ロボット10の1つ又は複数のサブシステムで特定の動作を実行するように構成されている専用組み込みデバイスである。メモリハードウェア504は、プロセッサ502と通信しており、1つ又は複数の持続性コンピュータ可読記憶媒体(例えば、揮発性及び/又は不揮発性記憶構成要素)を含んでもよい。例えば、メモリハードウェア504は、互いに通信している1つ又は複数の物理的デバイスに関連付けられてもよく、光、磁気、有機、又は他のタイプのメモリ又は記憶装置を含んでもよい。メモリハードウェア504は、プロセッサ502によって命令を実行する場合、多くの動作をプロセッサ502に実行させる命令(例えば、コンピュータ可読プログラム命令)をとりわけ記憶するように構成されている。
[0061] 更に、較正システム500は、ロボット10の位置測定システム200と通信している位置測定モジュール506を含む。位置測定モジュール506は、マスタートラック212a、212c及びノニウストラック212b、212dの各々から正弦及び余弦信号の形の位置測定データ224、224a~bを受信する。位置測定データ224を用いて、位置測定モジュール506は、最初に、マスタートラック212a、212c及びノニウストラック212b、212dの各々に対する位相データ226、226a~bを生成し、次に、各トラック212に対する位相データ226に基づいて時間にわたってエンコーダー220の絶対位置データ228を判定する。更に、位置測定モジュール506は、時間にわたって各位相角の変化率を計算することによって、マスタートラック212a、212c及びノニウストラック212b、212dの各々に対する速度測定データ230を生成/導出してもよい。代わりに、速度測定データ230を、ロボット制御器102で導出し、較正システム500に伝送してもよい。
[0062] 図6は、図2Aの回転位置測定システム200aに関連付けられたマスタートラック212a及びノニウストラック212bの各々に対して時間にわたる速度測定データ230を示すプロット600の例を示す。y軸は、ラジアン/秒(rad/s)で位相速度を示し、x軸は、秒(s)で時間を示す。プロット600は、約0.8秒から約2.5秒の第1の時間中に磁気コード担体210に沿った第1の順方向、次に、約3.3秒から約4.8秒の第2の時間中に第2の逆の第2の方向におけるエンコーダー220による移動を示す。速度測定データ230を生成することによって、位置測定データ224における位置依存歪みは、より明らかになり、位置測定データ224における歪みを、より高速で増幅する。例えば、約0.8秒から約2.5秒の第1の時間中に生じる順方向におけるエンコーダーによる移動について説明する。速度測定データ230の歪みは、マスタートラック及びノニウストラック212の各々の全体速度に比例し、曲線に沿った歪み(即ち、リップル)の振幅は、より高速(例えば、約1.3秒及び2.0秒)でより大きい。
[0063] 図5に戻って参照すると、較正モジュール500は、歪みデータ232を速度測定データ230から抽出するように構成されている歪み分離モジュール508を更に含む。歪み分離モジュール508は、各トラック212に対する速度測定データ230を受信し、速度測定データ230をフィルター処理し、速度の実際の変化に関連付けられた低周波数を除去し、これによって、周期的歪みに関連付けられた歪みデータ232に対応する速度測定データ230の高周波数成分を分離する。例えば、図7は、図6のプロット600の速度測定データ230の高周波数成分だけに対応する周期的歪みに関連付けられた歪みデータ232を示すプロット700を示す。y軸は、ラジアン/秒(rad/s)で位相速度を示し、x軸は、秒(s)で時間を示す。
[0064] 較正システム500の分解モジュール510は、分離歪みデータ232をマップする関数を生成するように構成されている。従って、歪み分離モジュール508で歪みデータ232を分離することによって、分解モジュール510は、各トラック212に対する歪みデータ232を高調波に分解することによって、歪みデータ232をマップし始める。上述のように、周期的歪みは、マスタートラック及びノニウストラック212の各々に対するエンコーダー220の位置に依存する。従って、周期的歪みを、生位置測定データ224の高調波に分解することができる。式1は、位置対時間データの高調波を含む関数の例を示す。
f(x)=x+a cos(x)+b sin(x)+c cos(2x)+d sin(2x)+… (1)
[0065] しかし、周期的歪みを、速度測定データ230で倍率変更又は増幅するので、位置測定データ224の高調波の導関数を速度測定データ230に適合させることによって、速度測定データ230に存在する周期的歪みを分解することは、有利である。式2は、速度測定データ230を分解する較正導関数又は較正パラメータ234の形式の例を示す。得られる関数f’(x)(即ち、較正パラメータ234)が歪みデータ232を一致させるまで、位置測定データの高調波の導関数を加算することによって、関数f’(x)(即ち、較正パラメータ234)を構成する(例えば、av sin(x)、bv cos(x)、2cv sin(2x)+2dv cos(2x))。
f’(x)=v-av sin(x)+bv cos(x)-2cv sin(2x)+2dv cos(2x)+… (2)
[0066] 分解モジュール510は、周期的歪みの周期的成分を判定するために、式2を用いて較正パラメータ234を反復的に構成する。図8を参照すると、図7のプロット700のボックス800内の詳細図は、歪みデータ232に対する最適曲線になる高調波232a、232bの導関数に重ね合わせられたマスタートラック212aの歪みデータ232を示している。高調波の導関数を歪みデータ232に適合させることによって、分解モジュール510は、周期的成分(即ち、高調波232a、232bの導関数)で周期的歪みの周波数及び振幅をより正確にマップする。
[0067] 歪みデータ232に対する最適周期的成分232a、232bを判定した後、分解モジュール510は、周期的成分232a、232bを位置測定データ224から除去することによって位置測定データ224を修正する歪み除去モジュール512に、周期的成分232a、232bを含む較正パラメータ234を供給する。特に、歪み除去モジュール512は、修正位置測定データ224に基づいてセンサー較正プロファイル236を判定し、位置測定システム200を較正する制御器102にセンサー較正プロファイル236を供給してもよい。一旦位置測定システム200が較正されると、位置測定システム200は、ロボット10の動作(例えば、肢又は付属物の作動)を制御する制御器102に正確な測定データ224を供給してもよい。更に又は代わりに、較正システム500は、制御器102に較正パラメータ232を供給してもよく、制御器102は、較正パラメータ232を用いて位置測定システム200を較正してもよい。例えば、制御器102は、位置測定システム200から得られる速度測定データ230を修正し、修正速度測定データ230に基づいてロボットを制御してもよい。
[0068] 図9は、回転位置測定システム200a及び修正速度測定データ230’に関連付けられたマスタートラック212aに対して時間にわたる生速度測定データ230を示すプロット900の例を示す。ここで、修正速度測定データ230’は、生速度測定データ230から除去された歪みデータ232を有する歪み除去モジュール512から出力されたセンサー較正プロファイル236に対応する。修正速度測定データ230’を使用して、対応する修正位置測定データ224を得てもよい。従って、較正プロファイル236を、較正システム500で生成し、制御器102における実装用の制御システム100に伝送してもよく、又は、較正プロファイル236を、較正パラメータ234に基づいて制御器102によって生成してもよい。
[0069] 図10は、マスタートラック212a、212c及びノニウストラック212b、212dを有する軸外位置測定システム200を較正する方法1000用の動作の構成例を提供する。較正システム500は、軸外位置測定システム200を含むロボット10の制御システム100に接続し、軸外位置測定システム200を較正する較正モードを実行してもよい。位置測定システム200は、回転位置測定システム200a(図2A)又は線形位置測定システム200b(図2B)を含んでもよい。動作1002で、方法1000は、位置測定システム200用の較正モードを、較正システム500のデータ処理ハードウェア502によって初期化することを含む。
[0070] 動作1004で、方法1000は、ロボット10の付属物14(例えば、肢)を作動させ、所望の速度でロボット10の関節16の周りの所定の可動域まで付属物14を移動させるように制御システム100に、データ処理ハードウェア502によって指示することを含む。方法1000は、動作1002及び1004を同時に実行してもよい。可動域及び運動速度を最大化して、測定データの最大サンプルサイズを与え、位置測定システム200によって得られる測定データ224、230に存在することがある任意の周期的歪みを増幅する。しかし、可動域及び運動速度は、位置測定システム200の動作限界を超えることができない。従って、各可動域及び運動速度を、最小及び最大限度内に維持する必要がある。
[0071] 動作1006で、方法1000は、位置測定システム200から測定データ224、230を、データ処理ハードウェア502で受信することを含む。幾つかの例において、測定データは、位置測定データ224を含み、位置測定モジュール506は、時間にわたって位置測定データ224の変化率を計算することによって、速度測定データ230を得るように構成されている。代わりに、較正システム500は、ロボット10の制御システム100から生速度測定データ230を直接受信してもよい。本明細書で使用されるように、用語「測定データ」は、位置測定データ224及び速度測定データ230の一方又は両方を意味してもよい。
[0072] 動作1008で、方法1000は、速度測定データ230の高周波数成分を分離することによって、速度測定データ230が周期的歪みデータ232を含むと、データ処理ハードウェア502によって判定することを含む。例えば、歪み分離モジュール508は、速度測定データ230の低周波数成分をフィルター除去して、高周波数成分を分離してもよく、高周波数成分は、周期的歪みデータ232に対応する。ここで、速度測定データ230からフィルター除去する限界周波数レベルを、歪み分離モジュール508によって選択し、速度測定データ230の低周波数成分を、関節16の作動中に速度の変化に関連付ける。例えば、関節16の作動の始動及び停止に関連付けられた、又は関節の作動中の運動速度の変動によって引き起こされた速度の変化を、速度測定データ230から除去する。速度測定データ230の残りの高周波数成分は、速度測定データ230に存在する歪みデータ232に対応する。
[0073] 動作1010で、方法1000は、歪みデータ232を一連の周期的成分に、データ処理ハードウェア502によって分解することを含む。周期的成分は、位置測定データ224に対応する位置関数の高調波の導関数を含んでもよい。ここで、分解モジュール510は、歪みデータ232に最適になる周期的成分を含む較正パラメータ234を反復的に判定する。
[0074] 動作1012で、方法1000は、周期的成分を位置測定データ224及び/又は速度測定データ230から除去し、位置測定データ224及び/又は速度測定データ230を、データ処理ハードウェア502によって修正することを含む。従って、較正システム500の歪み除去モジュール512は、修正位置測定データ224及び/又は修正速度測定データ230に対応する較正プロファイル236を生成してもよい。
[0075] ブロック1014で、方法1000は、較正プロファイル236を用いて位置測定システム200を、データ処理ハードウェア502によって較正することを含む。ここで、ロボット10の動作中に位置測定システム200によって得られる後の位置測定データ224又は速度測定データ230が歪みデータ232を含まないように、位置測定システム200を較正するために、較正プロファイル236を制御器102によって使用してもよい。
[0076] 図11は、この文書に記載のシステム及び方法を実施するために使用可能な計算デバイス1100の例の略図である。計算デバイス1100は、様々な形態のデジタルコンピュータ(例えば、ラップトップ、デスクトップ、ワークステーション、個人用携帯情報端末、サーバー、ブレードサーバー、メインフレーム、及び他の適切なコンピュータ)を表すように意図されている。ここに示す構成要素、構成要素の接続及び関係、及び構成要素の機能は、単に例示であるように意図されており、この文書に記載及び/又は主張の発明の実装を限定するように意図されていない。
[0077] 計算デバイス1100は、プロセッサ1110(例えば、データ処理ハードウェア502)、メモリ1120、記憶デバイス1130、メモリ1120及び高速拡張ポート1150に接続する高速インターフェース/制御器1140、並びに低速バス1170及び記憶デバイス1130に接続する低速インターフェース/制御器1160を含む。各構成要素1110、1120、1130、1140、1150及び1160は、様々なバスを用いて相互接続され、共通マザーボードに、又は必要に応じて他の方法で装着されてもよい。プロセッサ1110は、高速インターフェース1140に結合された外部入出力デバイス(例えば、ディスプレイ1180)にグラフィカルユーザインターフェース(GUI)用の図形情報を表示するために、メモリ1120又は記憶デバイス1130に記憶された命令を含む、計算デバイス1100内の実行用の命令を処理することができる。他の実装において、多くのプロセッサ及び/又は多くのバスを、多くのメモリ及び多くの種類のメモリと一緒に、必要に応じて使用してもよい。更に、多くの計算デバイス1100を、(例えば、サーバーバンク、ブレードサーバーのグループ、又はマルチプロセッサシステムとして)必要な動作の一部を与える各デバイスに接続してもよい。
[0078] メモリ1120(例えば、メモリハードウェア504)は、情報を計算デバイス1100内に持続的に記憶する。メモリ1120は、コンピュータ可読媒体、揮発性メモリユニット、又は不揮発性メモリユニットであってもよい。持続性メモリ1120は、計算デバイス1100で用いるために、一時的に又は永続的にプログラム(例えば、一連の命令)又はデータ(例えば、プログラム状態情報)を記憶するのに使用される物理的デバイスであってもよい。不揮発性メモリの例は、フラッシュメモリ、及び読み出し専用メモリ(ROM)、プログラマブル読み出し専用メモリ(PROM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)(例えば、ファームウェア用に典型的に使用される(例えば、ブートプログラム))(但し、これらに限定されない)を含む。揮発性メモリの例は、ランダムアクセスメモリ(RAM)、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、相変化メモリ(PCM)、及びディスク又はテープ(但し、これらに限定されない)を含む。
[0079] 記憶デバイス1130(例えば、メモリハードウェア504)は、計算デバイス1100用の大容量記憶装置を提供することができる。幾つかの実装において、記憶デバイス1130は、コンピュータ可読媒体である。様々な異なる実装において、記憶デバイス1130は、フロッピーディスクデバイス、ハードディスクデバイス、光ディスクデバイス、又はテープデバイス、フラッシュメモリ又は他の同様なソリッドステートメモリデバイス、又はストレージエリアネットワークにおけるデバイス又は他の構成を含むデバイスのアレイであってもよい。追加の実装において、コンピュータプログラム製品を、情報担体を明白に具体化する。コンピュータプログラム製品は、実行される場合、例えば、上述のような1つ又は複数の方法を実行する命令を含む。情報担体は、コンピュータ可読媒体又は機械可読媒体(例えば、メモリ1120、記憶デバイス1130、又はプロセッサ1110上のメモリ)である。
[0080] 高速制御器1140は、計算デバイス1100用の帯域集中動作を管理する一方、低速制御器1160は、より低い帯域集中動作を管理する。負荷のこのような割り当ては単に例示である。幾つかの実装において、高速制御器1140を、メモリ1120、ディスプレイ1180(例えば、グラフィックプロセッサ又はアクセラレータを介して)、及び様々な拡張カード(図示せず)を受け入れることができる高速拡張ポート1150に結合する。幾つかの実装において、低速制御器1160を、記憶デバイス1130及び低速拡張ポート1190に結合する。様々な通信ポート(例えば、USB、ブルートゥース、イーサネット、無線イーサネット)を含むことができる低速拡張ポート1190を、1つ又は複数の入出力デバイス(例えば、キーボード、ポインティングデバイス、スキャナー、又は例えばネットワークアダプターを介したスイッチ又はルーターなどのネットワーキングデバイス)に結合してもよい。
[0081] 計算デバイス1100を、図示のように、多くの異なる形態で実施してもよい。例えば、標準サーバー1100aとして又はこのようなサーバー1100aのグループで何度も、ラップトップコンピュータ1100bとして、又はラックサーバーシステム1100cの一部として、計算デバイス1100を実施してもよい。
[0082] 本明細書に記載のシステム及び技法の様々な実装を、デジタル電子及び/又は光回路、集積回路、専用ASIC(特定用途向け集積回路)、コンピュータハードウェア、ファームウェア、ソフトウェア、及び/又はこれらの組み合わせにおいて実現することができる。これらの様々な実装は、記憶システム、少なくとも1つの入力デバイス及び少なくとも1つの出力デバイスからデータ及び命令を受信し、記憶システム、少なくとも1つの入力デバイス及び少なくとも1つの出力デバイスにデータ及び命令を送信するように結合された少なくとも1つの(専用又は汎用)プログラマブルプロセッサを含むプログラマブルシステムで実行可能及び/又は解釈可能である1つ又は複数のコンピュータプログラムにおいて実装を含むことができる。
[0083] これらのコンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション又はコードとしても知られている)は、プログラマブルプロセッサ用の機械命令を含み、高水準手続き及び/又はオブジェクト指向プログラミング言語、及び/又はアセンブリ/機械言語で実施可能である。本明細書で使用されるように、用語「機械可読媒体」及び「コンピュータ可読媒体」は、機械命令を機械可読信号として受信する機械可読媒体を含む、プログラマブルプロセッサに機械命令及び/又はデータを提供するために使用される任意のコンピュータプログラム製品、持続性コンピュータ可読媒体、装置及び/又はデバイス(例えば、磁気ディスク、光ディスク、メモリ、プログラマブル論理デバイス(PLD))を意味する。用語「機械可読信号」は、プログラマブルプロセッサに機械命令及び/又はデータを提供するために使用される任意の信号を意味する。
[0084] この明細書に記載の処理及び論理フローを、入力データで動作して出力を生成することによって機能を果たす1つ又は複数のコンピュータプログラムを実行する1つ又は複数のプログラマブルプロセッサによって実行することができる。処理及び論理フローを、専用論理回路、例えば、FPGA(フィールドプログラマブルゲートアレイ)又はASIC(特定用途向け集積回路)によって実行することもできる。コンピュータプログラムの実行に適しているプロセッサは、一例として、汎用及び専用マイクロプロセッサ、及び任意の種類のデジタルコンピュータの1つ又は複数のプロセッサを含む。一般的に、プロセッサは、読み出し専用メモリ又はランダムアクセスメモリ又は両方のメモリから命令及びデータを受信する。コンピュータの重要な要素は、命令を実行するプロセッサ、及び命令及びデータを記憶する1つ又は複数のメモリである。一般的に、更に、コンピュータは、データを記憶する1つ又は複数の大容量記憶デバイス(例えば、磁気ディスク、磁気光学ディスク、又は光ディスク)を含み、又は、大容量記憶デバイスからデータを受信し、又は大容量記憶デバイスにデータを転送し、又はデータを受信及び転送するように動作可能に結合される。しかし、コンピュータは、このようなデバイスを有する必要がない。コンピュータプログラム命令及びデータを記憶するのに適しているコンピュータ可読媒体は、半導体メモリデバイス(例えば、EPROM、EEPROM、及びフラッシュメモリ)、磁気ディスク(例えば、内蔵ハードディスク又はリムーバブルディスク)、磁気光学ディスク、及びCD ROM及びDVD-ROMディスクを一例として含む、全ての形態の不揮発性メモリ、媒体及びメモリデバイスを含む。プロセッサ及びメモリを、専用論理回路によって補足する、又は専用論理回路に組み込むことができる。
[0085] ユーザとの対話を提供するために、表示デバイス、例えば、CRT(陰極線管)、LCD(液晶ディスプレイ)モニター、又はユーザに情報を表示するタッチスクリーン、及び任意選択的に、ユーザが入力をコンピュータに与えることができるキーボード及びポインティングデバイス(例えば、マウス又はトラックボール)を有するコンピュータで、開示の1つ又は複数の態様を実施することができる。同様にユーザとの対話を提供するために、他の種類のデバイスを使用することができる。例えば、ユーザに与えられるフィードバックは、任意の形態の感覚フィードバック(例えば、視覚フィードバック、聴覚フィードバック、又は触覚フィードバック)であることができる。ユーザからの入力を、音響、音声、又は触覚入力を含む任意の形態で受信することができる。更に、ユーザによって使用されるデバイスに文書を送信し、このデバイスから文書を受信することによって、例えば、ウェブブラウザから受信された要求に応じてユーザのクライアントデバイス上のウェブブラウザにウェブページを送信することによって、コンピュータは、ユーザと対話することができる。
[0086] 多くの実装が説明されている。それにもかかわらず、開示の精神及び範囲から逸脱することなく、様々な修正を行うことができるものとする。従って、他の実装は、下記の特許請求の範囲の範囲内にある。

Claims (26)

  1. 位置測定システム(200)から測定データ(224、230)を、データ処理ハードウェア(502)で受信することであって、前記位置測定システム(200)は、ノニウストラック(212b、212d)とマスタートラック(212a、212c)とを含む、前記測定データ(224、230)を受信することと、
    前記測定データ(224、230)が周期的歪みデータ(232)を含むと、前記データ処理ハードウェア(502)によって判定することと、
    前記周期的歪みデータ(232)を周期的成分に分解し、及び、
    前記周期的成分を前記測定データ(224、230)から除去する
    ことによって、前記測定データ(224、230)を、前記データ処理ハードウェア(502)によって修正することと
    を含む方法(1000)。
  2. 前記測定データ(224、230)が前記周期的歪みデータ(232)を含むと判定することは、前記測定データ(224、230)の低周波数成分をフィルター除去して、前記測定データ(224、230)の高周波数成分を分離することを含み、前記測定データ(224、230)の前記高周波数成分は、前記周期的歪みデータ(232)を含む、請求項1に記載の方法(1000)。
  3. 前記測定データ(224、230)は、時間に応じた速度測定データ(230)に対応する、請求項1又は2に記載の方法(1000)。
  4. 前記測定データ(224、230)を修正した後、
    修正した前記測定データ(224、230)に対応する較正プロファイル(236)を、前記データ処理ハードウェア(502)によって生成することと、
    前記較正プロファイル(236)を用いて前記位置測定システム(200)を、前記データ処理ハードウェア(502)によって較正することと
    を更に含む、請求項1~3のいずれか一項に記載の方法(1000)。
  5. 前記周期的歪みデータ(232)は、利得誤差、センサー飽和、又は前記位置測定システム(200)における磁極間隔の物理的変動のうち少なくとも1つに対応する、請求項1~4のいずれか一項に記載の方法(1000)。
  6. 前記測定データ(224、230)は、前記マスタートラック(212a、212c)に対する第1の測定データ(224、230)と、前記ノニウストラック(212b、212d)に対する第2の測定データ(224、230)とを含み、
    前記周期的歪みデータ(232)は、前記第1の測定データ(224、230)及び前記第2の測定データ(224、230)の各々に存在する、請求項1~5のいずれか一項に記載の方法(1000)。
  7. 前記位置測定システム(200)を、ロボット(10)の関節(16)に結合する、請求項1~6のいずれか一項に記載の方法(1000)。
  8. 前記位置測定システム(200)から測定データ(224、230)を受信することは、
    前記ロボット(10)に結合される前記位置測定システム(200)を較正する較正モードを実行することであって、前記関節(16)の周りの可動域まで前記ロボット(10)の肢(14)を作動させるように前記較正モードを構成する、前記較正モードを実行することと、
    前記位置測定システム(200)から前記測定データ(224、230)を受信することであって、前記測定データ(224、230)を前記ロボット(10)の前記肢(14)の作動に関連付ける、前記測定データ(224、230)を受信することと
    を含む、請求項7に記載の方法(1000)。
  9. データ処理ハードウェア(502)と、
    前記データ処理ハードウェア(502)と通信しているメモリハードウェア(504)であって、前記データ処理ハードウェア(502)で実行される場合、
    位置測定システム(200)から測定データ(224、230)を受信することであって、前記位置測定システム(200)は、ノニウストラック(212b、212d)とマスタートラック(212a、212c)とを含む、前記測定データ(224、230)を受信することと、
    前記測定データ(224、230)が周期的歪みデータ(232)を含むと判定することと、
    前記周期的歪みデータ(232)を周期的成分に分解し、及び、
    前記周期的成分を前記測定データ(224、230)から除去する
    ことによって、前記測定データ(224、230)を修正することと
    を含む動作を前記データ処理ハードウェア(502)に実行させる命令を記憶するメモリハードウェア(504)と
    を含むシステム(100)。
  10. 前記測定データ(224、230)が前記周期的歪みデータ(232)を含むと判定することは、前記測定データ(224、230)の低周波数成分をフィルター除去して、前記測定データ(224、230)の高周波数成分を分離することを含み、前記測定データ(224、230)の前記高周波数成分は、前記周期的歪みデータ(232)を含む、請求項9に記載のシステム(100)。
  11. 前記測定データ(224、230)は、時間に応じた速度測定データ(230)に対応する、請求項9又は10に記載のシステム(100)。
  12. 前記動作は、前記測定データ(224、230)を修正した後、
    修正した前記測定データ(224、230)に対応する較正プロファイル(236)を生成することと、
    前記較正プロファイル(236)を用いて前記位置測定システム(200)を較正することと
    を更に含む、請求項9~11のいずれか一項に記載のシステム(100)。
  13. 前記周期的歪みデータ(232)は、利得誤差、センサー飽和、又は前記位置測定システム(200)における磁極間隔の物理的変動のうち少なくとも1つに対応する、請求項9~12のいずれか一項に記載のシステム(100)。
  14. 前記測定データ(224、230)は、前記マスタートラック(212a、212c)に対する第1の測定データ(224、230)と、前記ノニウストラック(212b、212d)に対する第2の測定データ(224、230)とを含み、
    前記周期的歪みデータ(232)は、前記第1の測定データ(224、230)及び前記第2の測定データ(224、230)の各々に存在する、請求項9~13のいずれか一項に記載のシステム(100)。
  15. 前記位置測定システム(200)を、ロボット(10)の関節(16)に結合する、請求項9~14のいずれか一項に記載のシステム(100)。
  16. 前記位置測定システム(200)から測定データ(224、230)を受信することは、
    前記ロボット(10)に結合される前記位置測定システム(200)を較正する較正モードを実行することであって、前記関節(16)の周りの可動域まで前記ロボット(10)の肢(14)を作動させるように前記較正モードを構成する、前記較正モードを実行することと、
    前記位置測定システム(200)から前記測定データ(224、230)を受信することであって、前記測定データ(224、230)を前記ロボット(10)の前記肢(14)の作動に関連付ける、前記測定データ(224、230)を受信することと
    を含む、請求項15に記載のシステム(100)。
  17. 軸外位置測定システム(200)に関連付けられる位置測定データ(224)を、データ処理ハードウェア(502)で受信することと、
    前記位置測定データ(224)が周期的歪みデータ(232)を含むと、前記データ処理ハードウェア(502)によって判定することと、
    前記周期的歪みデータ(232)を周期的成分に、前記データ処理ハードウェア(502)によって分解することと、
    前記周期的歪みデータ(232)の前記周期的成分を前記位置測定データ(224)から除去することに基づいて較正プロファイル(236)を、前記データ処理ハードウェア(502)によって生成することと、
    前記較正プロファイル(236)を用いて前記軸外位置測定システム(200)を、前記データ処理ハードウェア(502)によって較正することと
    を含む方法(1000)。
  18. 前記位置測定データ(224)が周期的歪みデータ(232)を含むと判定することは、前記位置測定データ(224)の低周波数成分をフィルター除去して、前記位置測定データ(224)の高周波数成分を分離することを含み、前記位置測定データ(224)の前記高周波数成分は、前記周期的歪みデータ(232)を含む、請求項17に記載の方法(1000)。
  19. 前記周期的歪みデータ(232)を周期的成分に分解することは、前記位置測定データ(224)の高調波の導関数を用いて前記周期的歪みデータ(232)をマップすることを含む、請求項17又は18に記載の方法(1000)。
  20. 前記軸外位置測定システム(200)を、ロボット(10)の関節(16)に結合する、請求項17~19のいずれか一項に記載の方法(1000)。
  21. 前記位置測定データ(224)を受信することは、
    前記軸外位置測定システム(200)用の較正モードを実行することであって、前記関節(16)の周りの可動域まで前記ロボット(10)の肢(14)を作動させるように前記較正モードを構成する、前記較正モードを実行することと、
    前記軸外位置測定システム(200)から前記位置測定データ(224)を受信することであって、前記位置測定データ(224)を前記ロボット(10)の前記肢(14)の作動に関連付ける、前記位置測定データ(224)を受信することと
    を含む、請求項20に記載の方法(1000)。
  22. データ処理ハードウェア(502)と、
    前記データ処理ハードウェア(502)と通信しているメモリハードウェア(504)であって、前記データ処理ハードウェア(502)で実行される場合、
    軸外位置測定システム(200)に関連付けられる位置測定データ(224)を受信することと、
    前記位置測定データ(224)が周期的歪みデータ(232)を含むと判定することと、
    前記周期的歪みデータ(232)を周期的成分に分解することと、
    前記周期的歪みデータ(232)の前記周期的成分を前記位置測定データ(224)から除去することに基づいて較正プロファイル(236)を生成することと、
    前記較正プロファイル(236)を用いて前記軸外位置測定システム(200)を較正することと
    を含む動作を前記データ処理ハードウェア(502)に実行させる命令を記憶するメモリハードウェア(504)と
    を含むシステム(100)。
  23. 前記測定データ(224、230)が前記周期的歪みデータ(232)を含むと判定することは、前記位置測定データ(224)の低周波数成分をフィルター除去して、前記位置測定データ(224)の高周波数成分を分離することを含み、前記位置測定データ(224)の前記高周波数成分は、前記周期的歪みデータ(232)を含む、請求項22に記載のシステム(100)。
  24. 前記周期的歪みデータ(232)を周期的成分に分解することは、前記位置測定データ(224)の高調波の導関数を用いて前記周期的歪みデータ(232)をマップすることを含む、請求項22又は23に記載のシステム(100)。
  25. 前記軸外位置測定システム(200)を、ロボット(10)の関節(16)に結合する、請求項22~24のいずれか一項に記載のシステム(100)。
  26. 前記位置測定データ(224)を受信することは、
    前記軸外位置測定システム(200)用の較正モードを実行することであって、前記関節(16)の周りの可動域まで前記ロボット(10)の肢(14)を作動させるように前記較正モードを構成する、前記較正モードを実行することと、
    前記軸外位置測定システム(200)から前記位置測定データ(224)を受信することであって、前記位置測定データ(224)を前記ロボット(10)の前記肢(14)の作動に関連付ける、前記位置測定データ(224)を受信することと
    を含む、請求項25に記載のシステム(100)。
JP2021576732A 2019-07-22 2020-07-09 磁気エンコーダー較正 Pending JP2022541116A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/518,191 2019-07-22
US16/518,191 US11353345B2 (en) 2019-07-22 2019-07-22 Magnetic encoder calibration
PCT/US2020/041304 WO2021015954A1 (en) 2019-07-22 2020-07-09 Magnetic encoder calibration

Publications (1)

Publication Number Publication Date
JP2022541116A true JP2022541116A (ja) 2022-09-22

Family

ID=71833480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021576732A Pending JP2022541116A (ja) 2019-07-22 2020-07-09 磁気エンコーダー較正

Country Status (6)

Country Link
US (3) US11353345B2 (ja)
EP (1) EP4004494B1 (ja)
JP (1) JP2022541116A (ja)
KR (1) KR20220078559A (ja)
CN (1) CN114174770A (ja)
WO (1) WO2021015954A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4187209A1 (en) * 2021-11-25 2023-05-31 Melexis Technologies SA Position sensor with master and nonius tracks
US11994411B2 (en) * 2022-02-25 2024-05-28 Semiconductor Components Industries, Llc Vernier sensor with self calibration
CN114734435B (zh) * 2022-03-24 2023-09-19 苏州艾利特机器人有限公司 一种基于超球面的编码器校准方法、装置及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207496A (ja) * 1989-02-06 1990-08-17 Fuji Electric Co Ltd 振動検出形回転計
JP2001033277A (ja) * 1999-07-19 2001-02-09 Yaskawa Electric Corp 磁気式エンコーダ
WO2006043403A1 (ja) * 2004-10-20 2006-04-27 Kabushiki Kaisha Yaskawa Denki エンコーダ信号処理装置およびその信号処理方法
JP2006150556A (ja) * 2004-12-01 2006-06-15 Toyota Motor Corp 多関節ロボット
JP2008526457A (ja) * 2005-01-19 2008-07-24 本田技研工業株式会社 閉形式ダイナミクスのアプローチを用いて関節荷重を推定するシステム及び方法
JP2012192498A (ja) * 2011-03-17 2012-10-11 Denso Wave Inc ロボット制御装置およびキャリブレーション方法
JP2014134480A (ja) * 2013-01-11 2014-07-24 Katsutoshi Mibu 変位量検出装置、およびその誤差・検出・評価方法
JP2015085421A (ja) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 ロボット、制御装置、ロボットシステム
JP2015206614A (ja) * 2014-04-17 2015-11-19 株式会社ニコン エンコーダ装置および補正方法
JP2016197015A (ja) * 2015-04-02 2016-11-24 株式会社明電舎 電動機制御装置の回転子位置検出器異常判定装置
WO2018190019A1 (ja) * 2017-04-13 2018-10-18 ソニー株式会社 位置検出装置及び位置検出方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19506938A1 (de) * 1995-02-28 1996-08-29 Bosch Gmbh Robert Verfahren und Vorrichtung zur Winkelmessung bei einem drehbaren Körper
US6049757A (en) * 1998-08-25 2000-04-11 Schlumberger Technology Corporation Parametric modeling of well log data to remove periodic errors
DE10041089A1 (de) 2000-08-22 2002-03-07 Bosch Gmbh Robert Verfahren zur Korrektur einer Winkelmessung
DE10041096A1 (de) 2000-08-22 2002-03-07 Bosch Gmbh Robert Verfahren zur Korrektur von Winkelmessungen mittels wenigstens zweier Codespuren
DE10218332B4 (de) 2002-04-10 2005-06-16 rotec GmbH Prüfsysteme für den Maschinenbau Verfahren zur Analyse von Schwingungen rotierender oder oszillierender Teile
JP5198761B2 (ja) * 2006-12-11 2013-05-15 株式会社ミツトヨ 回転変位補正装置、および、変位検出装置
CN100498229C (zh) * 2007-04-16 2009-06-10 北京航空航天大学 一种惯性器件中周期性误差处理方法
WO2010138155A2 (en) * 2009-05-27 2010-12-02 Active Precision, Inc. Encoder interpolator with enhanced precision
CN101709971B (zh) * 2009-11-11 2011-08-03 哈尔滨工程大学 一种抑制光纤陀螺振动误差的信号解调方法
TWI516746B (zh) * 2012-04-20 2016-01-11 賽格股份有限公司 在干涉編碼系統中執行非諧循環錯誤補償的方法、裝置及計算機程式產品,以及微影系統
KR101456882B1 (ko) 2012-05-18 2014-11-03 서울대학교산학협력단 버니어 방식 광학 엔코더의 비트 오차 보정을 위한 디지털 옵토-일렉트리컬 펄스 적용 방법
SE536708C2 (sv) * 2012-10-23 2014-06-10 Cognibotics Ab Metod och system för bestämning av minst en egenskap hos enmanipulator
JP2014163854A (ja) * 2013-02-26 2014-09-08 Canon Inc 測定装置
CN103322904B (zh) * 2013-06-09 2015-04-22 中国科学院长春光学精密机械与物理研究所 基于谐振滤波和内积法消除非线性误差的光外差干涉法
JP6313571B2 (ja) 2013-11-12 2018-04-18 キヤノン株式会社 位置検出装置及びそれを有するレンズ装置及び撮影装置
US9948155B2 (en) * 2013-11-13 2018-04-17 Brooks Automation, Inc. Sealed robot drive
TWI695447B (zh) 2013-11-13 2020-06-01 布魯克斯自動機械公司 運送設備
US9425751B2 (en) * 2013-11-25 2016-08-23 The Aerospace Corporation System linearization assembly and method for use in modifying distortion components
US9291602B1 (en) * 2013-12-24 2016-03-22 Google Inc. Mass measurement
US9465008B2 (en) * 2014-06-13 2016-10-11 General Electric Company Method and system for eddy current device dynamic gain adjustment
US10321114B2 (en) * 2016-08-04 2019-06-11 Google Llc Testing 3D imaging systems
JP2018059714A (ja) * 2016-09-30 2018-04-12 キヤノン株式会社 偏芯算出方法、ロータリエンコーダ、ロボットアーム及びロボット装置
GB2595065B (en) * 2017-10-31 2022-05-11 Amer Sports Digital Services Oy Method and system for tracking and determining an indoor position of an object

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207496A (ja) * 1989-02-06 1990-08-17 Fuji Electric Co Ltd 振動検出形回転計
JP2001033277A (ja) * 1999-07-19 2001-02-09 Yaskawa Electric Corp 磁気式エンコーダ
WO2006043403A1 (ja) * 2004-10-20 2006-04-27 Kabushiki Kaisha Yaskawa Denki エンコーダ信号処理装置およびその信号処理方法
JP2006150556A (ja) * 2004-12-01 2006-06-15 Toyota Motor Corp 多関節ロボット
JP2008526457A (ja) * 2005-01-19 2008-07-24 本田技研工業株式会社 閉形式ダイナミクスのアプローチを用いて関節荷重を推定するシステム及び方法
JP2012192498A (ja) * 2011-03-17 2012-10-11 Denso Wave Inc ロボット制御装置およびキャリブレーション方法
JP2014134480A (ja) * 2013-01-11 2014-07-24 Katsutoshi Mibu 変位量検出装置、およびその誤差・検出・評価方法
JP2015085421A (ja) * 2013-10-30 2015-05-07 セイコーエプソン株式会社 ロボット、制御装置、ロボットシステム
JP2015206614A (ja) * 2014-04-17 2015-11-19 株式会社ニコン エンコーダ装置および補正方法
JP2016197015A (ja) * 2015-04-02 2016-11-24 株式会社明電舎 電動機制御装置の回転子位置検出器異常判定装置
WO2018190019A1 (ja) * 2017-04-13 2018-10-18 ソニー株式会社 位置検出装置及び位置検出方法

Also Published As

Publication number Publication date
US20210025736A1 (en) 2021-01-28
KR20220078559A (ko) 2022-06-10
US20220260398A1 (en) 2022-08-18
US20240003721A1 (en) 2024-01-04
CN114174770A (zh) 2022-03-11
US11796357B2 (en) 2023-10-24
EP4004494B1 (en) 2023-11-08
WO2021015954A1 (en) 2021-01-28
US11353345B2 (en) 2022-06-07
EP4004494A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP2022541116A (ja) 磁気エンコーダー較正
Meng et al. Iterative-learning error compensation for autonomous parking of mobile manipulator in harsh industrial environment
CN107607113B (zh) 一种两轴姿态倾角测量方法
Lee et al. Mobile robot localization using optical flow sensors
CN102608351B (zh) 机械臂三维姿态的检测方法和系统、及控制其运行的系统
US20230278214A1 (en) Robot localization using variance sampling
CN108274467A (zh) 机器人走直线的控制方法和芯片及机器人
Shen et al. Research and implementation of SLAM based on LIDAR for four-wheeled mobile robot
US20220390954A1 (en) Topology Processing for Waypoint-based Navigation Maps
Žlajpah et al. Kinematic calibration for collaborative robots on a mobile platform using motion capture system
CN112706165A (zh) 一种面向轮式移动机械臂的跟踪控制方法及系统
CN113126638B (zh) 姿态控制方法、装置、双足机器人及可读存储介质
Yang et al. Enhanced 6D measurement by integrating an Inertial Measurement Unit (IMU) with a 6D sensor unit of a laser tracker
Won et al. Improving mobile robot navigation performance using vision based SLAM and distributed filters
Marques et al. Autonomous robot for mapping using ultrasonic sensors
Srinivasan et al. Multiple sensor fusion in mobile robot localization
HALABİ et al. A multiple sensor fusion based drift compensation algorithm for mecanumwheeled mobile robots
Tan et al. Research on Omnidirectional Indoor Mobile Robot System Based on Multi-sensor Fusion
Schmitt et al. Estimation of the absolute camera pose for environment recognition of industrial robotics
Zhai et al. A novel Stereo-IMU system based on accurate pose parameterization of two-wheeled inverted pendulum (TWIP) robot in localization and mapping
Guráň et al. Localization of iRobot create using inertial measuring unit
Jaroszek et al. Localization of the wheeled mobile robot based on multi-sensor data fusion
Feng et al. Measurement of mobile manipulator chassis pose change caused by suspension deformation and end-effector accuracy improvement based on multi-sensor fusion
Rustam et al. Linear Differential Driven Wheel Mobile Robot Based on MPU9250 and Optical Encoder
CN213748481U (zh) 一种同构多机器人协作系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240624