JP2022535648A - Use of thermostable β-glucosidase in the production of gentiooligosaccharides - Google Patents

Use of thermostable β-glucosidase in the production of gentiooligosaccharides Download PDF

Info

Publication number
JP2022535648A
JP2022535648A JP2021558012A JP2021558012A JP2022535648A JP 2022535648 A JP2022535648 A JP 2022535648A JP 2021558012 A JP2021558012 A JP 2021558012A JP 2021558012 A JP2021558012 A JP 2021558012A JP 2022535648 A JP2022535648 A JP 2022535648A
Authority
JP
Japan
Prior art keywords
glucosidase
tsbgl
gene
glucose
gentio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021558012A
Other languages
Japanese (ja)
Other versions
JP7297924B2 (en
Inventor
呉敬
夏偉
盛玲玲
黄燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Publication of JP2022535648A publication Critical patent/JP2022535648A/en
Application granted granted Critical
Publication of JP7297924B2 publication Critical patent/JP7297924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Abstract

ゲンチオオリゴ糖の製造における耐熱性β-グルコシダーゼTSBGlの使用。該耐熱性β-グルコシダーゼTSBGlはThermotoga sp.KOL6に由来し、Bacillus subtilis WSHI Iを発現宿主とすることにより、枯草菌におけるtsbgl遺伝子の高効率発現を実現する。前記β-グルコシダーゼTSBGlは、最適温度が90℃、最適pHが6.0であり、90℃では高い熱安定性を有する。1200g/Lグルコースを基質とする反応系に前記β-グルコシダーゼを添加して、pH6.0、90℃で酵素反応を行うと、ゲンチオオリゴ糖の収率は178.2g/Lに達する。この酵素は、食品などの産業への利用に適しており、ゲンチオオリゴ糖の工業的生産に適用できる。【選択図】図7Use of thermostable β-glucosidase TSBGl in the production of gentiooligosaccharides. The thermostable β-glucosidase TSBGl is Thermotoga sp. It is derived from KOL6 and uses Bacillus subtilis WSHI I as an expression host to realize highly efficient expression of the tsbgl gene in Bacillus subtilis. The β-glucosidase TSBGl has an optimum temperature of 90°C and an optimum pH of 6.0, and has high thermostability at 90°C. When the β-glucosidase is added to a reaction system using 1200 g/L glucose as a substrate and the enzymatic reaction is carried out at pH 6.0 and 90° C., the yield of gentiooligosaccharide reaches 178.2 g/L. This enzyme is suitable for use in industries such as foods, and can be applied to industrial production of gentio-oligosaccharides. [Selection drawing] Fig. 7

Description

本発明は、ゲンチオオリゴ糖の製造における耐熱性β-グルコシダーゼの使用に関し、遺伝子工学及び酵素工学の分野に属する。 The present invention relates to the use of thermostable β-glucosidase in the production of gentiooligosaccharides, and belongs to the fields of genetic engineering and enzyme engineering.

β-グルコシダーゼ(EC 3.2.1.21)は非還元末端のβ-D-グルコシド結合を特異的に加水分解してグルコースと対応する配位基を放出し得るグルコシド加水分解酵素(Glycoside hydrolysase、GH)である。β-グルコシダーゼは生体内に広く存在し、重要な作用を発揮し、そのアミノ酸配列の特徴の違いにより、主にGH1、GH3、GH5、GH9、GH30及びGH116の6つのファミリーに分布し、その中のほとんどのβ-グルコシダーゼはGH1、GH3ファミリーに属する。GH1とGH3ファミリーのβ-グルコシダーゼは、タンパク質フォールディング、理化学的性質、触媒特性や基質特異性などに差異がある。β-グルコシダーゼは様々な業界に適用でき、例えば、バイオエタノール業界でセロビオースを分解して、生成物の阻害作用を除去したり、加水分解果汁中の風味前駆体である配糖体の呈味増強剤として機能したり、一部のβ-グルコシダーゼは配糖体転化能を有するため一定の合成活性を有しており、従来の化学的方法の代わりとして希少オリゴ糖やアルキルグリコシドなどを合成して食品や化粧品工業に適用でき、その中でも、β-グルコシダーゼにより産生されるゲンチオオリゴ糖は人体の腸内プロバイオティクスの成長を誘導することができ、人体に有益である。 β-glucosidase (EC 3.2.1.21) is a glucoside hydrolysase that can specifically hydrolyze non-reducing terminal β-D-glucosidic bonds to release glucose and the corresponding ligand group. , GH). β-Glucosidase exists widely in vivo and exerts important actions, and is mainly distributed into six families, GH1, GH3, GH5, GH9, GH30 and GH116, depending on the difference in amino acid sequence characteristics. most of the β-glucosidases belong to the GH1, GH3 family. GH1 and GH3 family β-glucosidases differ in protein folding, physicochemical properties, catalytic properties, substrate specificity, and the like. β-Glucosidase can be applied in various industries, for example, in the bioethanol industry to degrade cellobiose to remove the inhibitory effects of the product, or to enhance the taste of glycosides, which are flavor precursors in hydrolyzed fruit juices. Some β-glucosidases have a certain level of synthetic activity due to their ability to convert glycosides. It can be applied to the food and cosmetics industry, among which the gentio-oligosaccharides produced by β-glucosidase can induce the growth of intestinal probiotics in the human body, which is beneficial to the human body.

ゲンチオオリゴ糖は、2つ以上のβ-1.6-グルコシド結合により連結されるグルコースからなり、ゲンチオビオースと少量のゲンチオトリオースとゲンチオテトラオースを主成分とする新規機能性オリゴ糖である。ゲンチオオリゴ糖はカロリーが低く、食品に使用するとう虫歯のリスクが低く、また、腫瘍を抑制したり、栄養吸収や代謝などを促進したりする機能もある。 Gentio-oligosaccharides are novel functional oligosaccharides composed of glucose linked by two or more β-1.6-glucoside bonds, and mainly composed of gentiobiose and small amounts of gentiobiose and gentiotetraose. Gentioligosaccharides are low in calories and have a low risk of tooth decay when used in food. They also have the function of suppressing tumors and promoting nutrient absorption and metabolism.

ゲンチオオリゴ糖の製造方法は多く、初期の研究では、リンドウ属植物の根、茎から抽出するが、還元ビターアーモンドベンゼン法と酸法を利用してデンプンを加水分解した後、その副産物から精製して獲得することもでき、しかし、原料、市場価格などの制限により、その工業化生産が困難になっている。酵素法による製造は、現在、ゲンチオオリゴ糖の工業的生産の主要な手段であり、その常用の反応条件は、低水分活性、高基質濃度下で、β-グルコシダーゼの配糖体転化活性を利用してゲンチオオリゴ糖を合成することであり、得られたゲンチオオリゴ糖の収率はいずれも低く、ほぼ50g/Lであり、転化率は8%程度である。ゲンチオオリゴ糖の収率に影響する2つの重要な要素は反応温度と酵素の配糖体転化活性である。ゲンチオオリゴ糖の収率は温度が高くなるにつれて増加し、その主な理由は、基質であるブドウ糖が高い温度で溶解度が増加し、且つ、受容体である水分子もそれに応じて減少し、それにより、配糖体転化反応の発生を促進し、ゲンチオオリゴ糖の蓄積量を増加させ、同時に高温でも雑菌汚染を防止できることであり、工業的生産の観点から、長時間運転の連続生産系では、酵素の不活性化現象がより顕著になり、生産に深刻な影響を与える。したがって、高温に自然に耐えるβ-グルコシダーゼは工業的生産に非常に重要である。また、現在、ほとんどの研究では、ゲンチオオリゴ糖の製造には主にGH3ファミリーのβ-グルコシダーゼが使用されているが、GH1ファミリーのβ-グルコシダーゼに対する研究は非常に少なく、ゲンチオオリゴ糖の製造におけるGH1ファミリーのβ-グルコシダーゼの使用はまだ開発されていない。 There are many methods for producing gentio-oligosaccharides. In early research, it was extracted from the roots and stems of gentian plants, but after hydrolyzing the starch using the reduced bitter almond benzene method and the acid method, it was purified from its by-products. It can be obtained, but restrictions on raw materials, market prices, etc. make its industrial production difficult. Enzymatic production is currently the main means of industrial production of gentiooligosaccharides, and the usual reaction conditions are low water activity, high substrate concentration, and utilize the glycoside conversion activity of β-glucosidase. The yield of gentio-oligosaccharides obtained is low, about 50 g/L, and the conversion rate is about 8%. Two important factors affecting the yield of gentio-oligosaccharides are the reaction temperature and the glycoside-converting activity of the enzyme. The yield of gentio-oligosaccharides increases with increasing temperature, mainly because the solubility of the substrate, glucose, increases at higher temperatures, and the acceptor, water molecules, decreases accordingly. , promotes the occurrence of glycoside conversion reaction, increases the accumulation of gentio-oligosaccharides, and at the same time prevents contamination by bacteria even at high temperatures. The deactivation phenomenon becomes more pronounced, seriously affecting production. β-glucosidases that naturally withstand high temperatures are therefore of great importance for industrial production. At present, most studies mainly use GH3 family β-glucosidases for the production of gentiooligosaccharides, but there are very few studies on GH1 family β-glucosidases. use of β-glucosidase has not yet been developed.

本発明は、ヌクレオチド配列が配列番号1で示されるβ-グルコシダーゼTSBGlをコードする遺伝子を提供する。 The present invention provides a gene encoding β-glucosidase TSBGl whose nucleotide sequence is shown in SEQ ID NO:1.

本発明の一実施形態においては、前記β-グルコシダーゼTSBGlのアミノ酸配列は配列番号2で示される。 In one embodiment of the invention, the amino acid sequence of said β-glucosidase TSBGl is shown in SEQ ID NO:2.

本発明は、β-グルコシダーゼTSBGlをコードする遺伝子を運ぶベクターを提供する。 The present invention provides vectors carrying the gene encoding β-glucosidase TSBGl.

本発明の一実施形態においては、前記ベクターの出発ベクターは発現ベクターpBSMμL3であり、ベクター配列は公開番号CN107058205Aの特許に記載されている。 In one embodiment of the present invention, the starting vector of said vector is the expression vector pBSMμL3 and the vector sequence is described in the patent with publication number CN107058205A.

本発明は、枯草菌を発現宿主として、アミノ酸配列が配列番号2で示されるβ-グルコシダーゼTSBGlを発現する組換え菌を提供する。 The present invention provides a recombinant bacterium that expresses the β-glucosidase TSBGl whose amino acid sequence is shown in SEQ ID NO:2 using Bacillus subtilis as an expression host.

本発明の一実施形態においては、前記枯草菌は公開番号CN108102997Aの特許に記載のBacillus subtilis WSH11である。 In one embodiment of the present invention, the Bacillus subtilis is Bacillus subtilis WSH11 as described in patent publication number CN108102997A.

本発明はβ-グルコシダーゼの生産方法を提供し、前記方法の具体的なステップは以下のとおりである。
(1)前記組換え菌を35~40℃で2~5時間培養して、菌液を得る。
(2)菌液を2500~3500rpmで3~6分遠心分離して、60~90体積%の上清を除去し、残りの10~40体積%の上清をLBプレートに塗布し、35~40℃のインキュベータで10~16時間培養する。
(3)LBプレートから単一コロニーをLB液体培地に採取して7~11時間培養した後、2~6mLの培養液を100mL TB培地に播種し、35~40℃で1.5~3時間培養し、さらに30~34℃で45~50時間培養する。
(4)培養終了後、培養して得た菌液を7000~9000rpmで15~25分遠心分離し、菌体を収集する。
(5)菌体に45~55mLのクエン酸-リン酸二ナトリウム緩衝液を加えて、菌体を再懸濁する。
(6)高圧ホモジナイザーを用いて細胞壁を破壊し、9000~12000rpmで15~25分遠心分離した後、細胞壁破壊上清液である粗酵素液を収集する。
The present invention provides a method for producing β-glucosidase, and the specific steps of the method are as follows.
(1) The recombinant bacterium is cultured at 35-40°C for 2-5 hours to obtain a bacterial solution.
(2) Centrifuge the bacterial solution at 2500-3500 rpm for 3-6 minutes, remove 60-90% by volume of the supernatant, apply the remaining 10-40% by volume of the supernatant to the LB plate, and Culture in an incubator at 40° C. for 10-16 hours.
(3) Collect a single colony from the LB plate into LB liquid medium and culture for 7-11 hours, then inoculate 2-6 mL of the culture solution into 100 mL TB medium and heat at 35-40° C. for 1.5-3 hours. Cultivate and further culture at 30-34° C. for 45-50 hours.
(4) After completion of culturing, the cultured cell suspension is centrifuged at 7,000 to 9,000 rpm for 15 to 25 minutes to collect cells.
(5) Add 45 to 55 mL of citric acid-disodium phosphate buffer to the cells and resuspend the cells.
(6) Using a high-pressure homogenizer to disrupt cell walls, centrifuge at 9,000 to 12,000 rpm for 15 to 25 minutes, and collect the crude enzyme solution, which is the cell wall disruption supernatant.

本発明の一実施形態においては、ステップ(2)及び(3)培地中、5~15μg/mLのテトラサイクリンが含有される。 In one embodiment of the invention, 5-15 μg/mL of tetracycline is contained in the step (2) and (3) media.

本発明の一実施形態においては、ステップ(5)では、クエン酸-リン酸二ナトリウム緩衝液の濃度は40~60mM、pHは5.0~7.0である。 In one embodiment of the present invention, in step (5), the citrate-disodium phosphate buffer has a concentration of 40-60 mM and a pH of 5.0-7.0.

本発明はゲンチオオリゴ糖の収率向上方法を提供し、前記方法は、前記組換え菌を発酵して得たβ-グルコシダーゼを、グルコースを基質とした系にて反応させて反応液を得、反応液を精製してゲンチオオリゴ糖を得ることである。 The present invention provides a method for improving the yield of gentiooligosaccharides, in which the β-glucosidase obtained by fermenting the recombinant bacteria is reacted in a system using glucose as a substrate to obtain a reaction solution, and the reaction is performed. It is to obtain gentio-oligosaccharides by purifying the liquid.

本発明の一実施形態においては、前記β-グルコシダーゼの添加量は300~700U/gである。 In one embodiment of the present invention, the amount of β-glucosidase added is 300-700 U/g.

本発明の一実施形態においては、前記β-グルコシダーゼの添加量は400~600U/gである。 In one embodiment of the present invention, the amount of β-glucosidase added is 400-600 U/g.

本発明の一実施形態においては、前記グルコースの濃度は800~1500g/Lである。 In one embodiment of the invention, the glucose concentration is between 800 and 1500 g/L.

本発明の一実施形態においては、前記グルコースの濃度は1000~1300g/Lである。 In one embodiment of the invention, the glucose concentration is between 1000 and 1300 g/L.

本発明の一実施形態においては、前記方法は、60~100℃で20~30時間反応させることである。 In one embodiment of the present invention, the method is reacting at 60-100° C. for 20-30 hours.

本発明の一実施形態においては、前記方法は、80~100℃で22~25時間反応させることである。 In one embodiment of the present invention, the method is reacting at 80-100° C. for 22-25 hours.

本発明は、また、食品及び化粧品の分野でのゲンチオオリゴ糖の製造における前記遺伝子の使用を保護する。 The present invention also protects the use of said gene in the production of gentio-oligosaccharides in the food and cosmetic fields.

本発明は、また、食品及び化粧品の分野でのゲンチオオリゴ糖含有製品の製造における前記ベクターpBSMμL3-tsbglの使用を保護する。 The present invention also protects the use of said vector pBSMμL3-tsbgl in the production of gentio-oligosaccharide-containing products in the food and cosmetic field.

本発明は、また、食品及び化粧品の分野でのゲンチオオリゴ糖含有製品の製造における前記β-グルコシダーゼの生産方法の使用を保護する。 The present invention also protects the use of said β-glucosidase production process in the production of gentio-oligosaccharide-containing products in the food and cosmetic fields.

本発明は、また、食品及び化粧品の分野でのゲンチオオリゴ糖含有製品の製造における前記ゲンチオオリゴ糖の収率向上方法の使用を保護する。 The present invention also protects the use of said gentio-oligosaccharide yield enhancing method in the manufacture of gentio-oligosaccharide-containing products in the food and cosmetic fields.

本発明は、また、食品及び化粧品の分野でのゲンチオオリゴ糖の製造における前記組換え菌の使用を保護する。 The present invention also protects the use of said recombinant bacteria in the production of gentio-oligosaccharides in the field of food and cosmetics.

本発明の有益な效果は以下のとおりである。本発明は、β-グルコシダーゼの高効率発現方法を提供する。化学法によりThermotoga sp. KOL6に由来するβ-グルコシダーゼTSBGlをコードするヌクレオチド配列を合成し、シャトルプラスミドpBSMμL3を発現ベクター、Bacillus subtilis WSH11を発現宿主とすることによって、枯草菌におけるtsbgl遺伝子の高効率発現を可能とし、β-グルコシダーゼTSBGlは、最適温度が90~100℃、最適pHが6.0であり、90℃では高い熱安定性を有する。β-グルコシダーゼTSBGlは、グルコースを利用して転化しゲンチオオリゴ糖を生成することができ、特に1200g/Lグルコースという高濃度条件下でグルコースを利用して生産することができ、この場合、ゲンチオオリゴ糖の収率は178.2g/Lに達し、β-グルコシダーゼ法によりゲンチオオリゴ糖を合成する場合の最高収率である。したがって、この酵素は食品、医薬などの産業への利用に適しており、ゲンチオオリゴ糖の工業的生産に適用できる。 Beneficial effects of the present invention are as follows. The present invention provides a highly efficient method for expressing β-glucosidase. Thermotoga sp. By synthesizing a nucleotide sequence encoding β-glucosidase TSBGl derived from KOL6, using the shuttle plasmid pBSMμL3 as an expression vector and Bacillus subtilis WSH11 as an expression host, the tsbgl gene in Bacillus subtilis can be expressed with high efficiency, and β- Glucosidase TSBGl has a temperature optimum of 90-100°C, a pH optimum of 6.0, and high thermostability at 90°C. β-Glucosidase TSBGl can be converted using glucose to produce gentiooligosaccharides, and in particular, can be produced using glucose under high concentration conditions of 1200 g/L glucose. The yield reaches 178.2 g/L, which is the highest yield when synthesizing gentiooligosaccharides by the β-glucosidase method. Therefore, this enzyme is suitable for use in industries such as food and medicine, and can be applied to industrial production of gentiooligosaccharides.

tsbgl遺伝子発現ベクターの構築過程である。Construction process of the tsbgl gene expression vector. β-グルコシダーゼ精製前後の電気泳動図であり、Mはmarkerであり、レーン1は精製前のβ-グルコシダーゼTSBGl粗酵素液であり、レーン2は精製後のβ-グルコシダーゼTSBGl純酵素である。It is an electropherogram before and after β-glucosidase purification, M is a marker, lane 1 is the β-glucosidase TSBGl crude enzyme solution before purification, and lane 2 is the β-glucosidase TSBGl pure enzyme after purification. 様々な温度でのβ-グルコシダーゼの相対酵素活性である。Relative enzymatic activity of β-glucosidase at various temperatures. 様々なpHでのβ-グルコシダーゼの相対酵素活性である。Relative enzymatic activity of β-glucosidase at various pH. 様々な温度でのβ-グルコシダーゼの酵素活性安定性である。Enzymatic activity stability of β-glucosidase at various temperatures. 様々な添加量でのβ-グルコシダーゼのゲンチオオリゴ糖の転化率である。Gentioligosaccharide conversion of β-glucosidase at various dosages. 様々な基質濃度でのβ-グルコシダーゼによるゲンチオオリゴ糖製造の転化率である。Conversion of gentio-oligosaccharide production by β-glucosidase at various substrate concentrations.

β-グルコシダーゼの酵素活性の分析:
(1)酵素活性単位の定義:1mlの酵素液がpNPGを1分加水分解して1μmolのp-ニトロフェノールを生成する酵素活性を1酵素活性単位とする。
相対酵素活性の計算方法:酵素活性=(A405+0.002)*反応系*希釈倍数/(0.0074*反応時間*酵素添加量)。
(2)酵素活性の測定ステップ
反応系を1mLとして、pH5.0の酢酸緩衝液960μLに、適切に希釈した(好ましくは、反応停止時の反応液の405nm吸光度が0.2~1.2の範囲である)粗酵素液20μLを加え、次に100mmol/L pNPGを20μL加え、60℃の恒温ウォーターバスにて10分反応させ、10分後、直ぐ1mol/L NaCO溶液200μLを加えて反応を停止し、氷浴で5分処理し、405nmで光吸収値を測定する。加熱により不活化した酵素液を同様な方法で処理してブランクコントロールとする。
LB培地:酵母粉5g/L、トリプトン10g/L、NaCl 10g/L。
TB培地:酵母粉24g/L、グリセリン5g/L、トリプトン12g/L、KHPO・3HO 16.43g/L、KHPO 2.31g/L。
RM培地:酵母エキス5.0g/L、トリプトン10.0g/L、NaCl 10.0g/L、ソルビトール90.0g/L、マンニトール70.0g/L。
Analysis of the enzymatic activity of β-glucosidase:
(1) Definition of enzymatic activity unit: The enzymatic activity of hydrolyzing pNPG in 1 ml of the enzyme solution for 1 minute to produce 1 μmol of p-nitrophenol is defined as 1 enzymatic activity unit.
Calculation method for relative enzyme activity: Enzyme activity = (A 405 +0.002)*reaction system*dilution rate/(0.0074*reaction time*enzyme added amount).
(2) Enzyme activity measurement step The reaction system was made 1 mL and diluted appropriately with 960 μL of acetate buffer of pH 5.0 (preferably, when the reaction was stopped, the absorbance at 405 nm of the reaction solution was 0.2 to 1.2. 20 μL of crude enzyme solution was added, then 20 μL of 100 mmol/L pNPG was added, reacted in a constant temperature water bath at 60° C. for 10 minutes, and immediately after 10 minutes, 200 μL of 1 mol/L Na 2 CO 3 solution was added. The reaction is stopped with a water bath, treated with an ice bath for 5 minutes, and the light absorption value is measured at 405 nm. An enzyme solution inactivated by heating is treated in the same manner as a blank control.
LB medium: Yeast flour 5 g/L, Tryptone 10 g/L, NaCl 10 g/L.
TB medium: yeast flour 24 g/L, glycerin 5 g/L, tryptone 12 g/L, K2HPO4.3H2O 16.43 g/L, KH2PO4 2.31 g/L.
RM medium: yeast extract 5.0 g/L, tryptone 10.0 g/L, NaCl 10.0 g/L, sorbitol 90.0 g/L, mannitol 70.0 g/L.

β-グルコシダーゼTSBGlの精製:
(1)組換え菌の細胞壁破壊上清液500mLに35%の固体硫酸アンモニウム50mLを加えて一晩(12時間)塩析する。
(2)塩析後の粗酵素液を4℃、10000rpmで20分遠心分離し、20mMリン酸ナトリウム、0.5M塩化ナトリウム、20mMイミダゾールを含有するpH7.4の緩衝液Aで沈殿を溶解し、緩衝液Aにて一晩(12時間)透析した後、0.22μm膜でろ過し、注入(充填)サンプルとする。
(3)Niアフィニティーカラムを緩衝液Aで平衡化した後、注入サンプルをNiカラムに吸い込み、完全に吸着した後、緩衝液Aを100mL、20~480mMイミダゾールを含有する緩衝液Aを100mL、480mMイミダゾールを含有する緩衝液Aを100mLのそれぞれを用いて、流速1mL/分で溶出することで、480mMイミダゾールを含有する緩衝液Aで目的蛋白であるβ-グルコシダーゼを溶出し、この画分の溶出液を収集する。
(4)上述480mMイミダゾールを含有する蛋白溶出液をpH6.0、50mMのリン酸ナトリウム緩衝液にて一晩透析して、精製したβ-グルコシダーゼの酵素製品を得る。
(5)精製後の組換えβ-グルコシダーゼを電気泳動する。精製後の電気泳動図を図2に示す。
Purification of β-Glucosidase TSBGl:
(1) Add 50 mL of 35% solid ammonium sulfate to 500 mL of the cell wall-broken supernatant of recombinant bacteria and salt out overnight (12 hours).
(2) The crude enzyme solution after salting out was centrifuged at 10,000 rpm at 4° C. for 20 minutes, and the precipitate was dissolved with pH 7.4 buffer solution A containing 20 mM sodium phosphate, 0.5 M sodium chloride, and 20 mM imidazole. , overnight (12 hours) dialysis against buffer A, followed by filtration through a 0.22 μm membrane to obtain an injection (loading) sample.
(3) After equilibrating the Ni affinity column with buffer A, the injected sample was sucked onto the Ni column and after complete adsorption, 100 mL of buffer A, 100 mL of buffer A containing 20-480 mM imidazole, 480 mM By using 100 mL each of buffer A containing imidazole and eluting at a flow rate of 1 mL/min, the target protein β-glucosidase was eluted with buffer A containing 480 mM imidazole, and this fraction was eluted. Collect fluid.
(4) The above protein eluate containing 480 mM imidazole is dialyzed overnight against pH 6.0, 50 mM sodium phosphate buffer to obtain a purified β-glucosidase enzymatic product.
(5) electrophoresis of the purified recombinant β-glucosidase; An electropherogram after purification is shown in FIG.

実施例1:tsbgl遺伝子含有発現ベクターの構築
Genbankデータベースにおけるサーモトガ(Thermotoga sp KOL6)β-グルコシダーゼTsbglのアミノ酸配列(WP_101510358)に従って、ヌクレオチド配列が配列番号1で示される遺伝子を化学的に合成した。
合成した遺伝子断片とpET-24aを酵素消化後(酵素消化部位:Nde IとEcoR I)、連結して連結産物を得て、連結産物を熱ショック形質転換法により大腸菌E.coli.JM109に形質転換した。形質転換産物を得て、形質転換産物をLB固体培地(0.05mg/mLカナマイシン含有)に塗布し、37℃の恒温インキュベータで8~12時間倒置培養し、形質転換体を得た。
熱ショック形質転換法:
(1)E.coli.JM109コンピテント細胞を氷に5分放置しておき、コンピテント細胞が完全に溶けた後、完全なプラスミド又はPCR産物を10μL加え、優しくピペッティングして均一にした後、氷に45分放置した。
(2)コンピテント細胞を42℃の水浴鍋に入れて90秒熱ショックし、熱ショック終了後、氷に5分放置した。
(3)氷浴終了後、コンピテント細胞にLB液体培地0.8mLを加え、均一に混合した後、37℃のシェーカーに入れて約60分振とう培養した。
(4)培養が終了したコンピテント細胞を3000rpmで5分遠心分離し、一部の上清液を捨てて、200μL程度の発酵液を残して菌体を再びピペッティングして再懸濁させ、10μg/mLアンピシリン抗生物質含有のLB固体プレートに塗布し、37℃インキュベータで約10時間静置培養し、プレートに単一コロニーを成長させた。
モノクローナルコロニーを10μg/mLアンピシリン含有の耐性LB液体培地に播種し、37℃、120~180rpmの条件下、振とうフラスコ培養を8~12時間行った後、プラスミドを抽出して酵素消化による検証及び配列決定による検証を行い、検証が正確であると組換えプラスミドpET24a-tsbglが得られた。
プラスミドpET24a-tsbglとpBSMμL3をテンプレートとして、上下流に15bpホモロジーアームを含む目的遺伝子プライマーとベクタープライマーをそれぞれ設計し、ホモロジーアームを備える目的遺伝子断片tsbgl(プライマー1と2)及びテンプレート断片pBSMμL3(プライマー3と4)をPCRにより増幅した。
プライマー1:TAAGGAGTGTCAAGAATGAGCATGAAAAAGTTTCCGGAAG(配列番号3);
プライマー2:TTTATTACCAAGCTTTTAATCTTCCAGGCCGTTATTTTTAATAAC(配列番号4);
プライマー3:AAGCTTGGTAATAAAAAAACACCTC(配列番号5);
プライマー4:CATTCTTGACACTCCTTATTTG(配列番号6)。
PCR系:2×Super PfxMasterMix25μL、2本のプライマー各1.25μL、ddHO 22μL、テンプレート0.5μL。
反応条件:(1)94℃、4分、(2)94℃、1分、(3)55℃、1分、(4)72℃、2分、(2)~(4)を35サイクル増幅後、(5)72℃、5分、(6)4℃で温度を保持し;それぞれ増幅して目的遺伝子断片tsbgl及びテンプレート断片pBSMμL3を得た。
増幅した断片をゲル回収キット(天根生化科技有限公司)で回収し、配列決定による検証を行い、配列決定による検証の結果が正確である2本の回収断片を、In-Fusion HD Cloning Plus kitキットで連結し、連結系として遺伝子断片400 ng、ベクター断片200ng、5×In-Fusion HD Enzyme Premix2μLを用いて、水で10μLとなるまで補充し、連結系を50℃で25分反応し、連結産物を得て、連結産物をクローン宿主JM109(具体的な実施形態は以上の熱ショック形質転換法を参照)に形質転換して、LB固体培地(10μg/mLアンピシリン含有)に塗布し、37℃で8~10時間培養後、単一コロニーをピックアップして100mg/Lアンピシリン含有のLB液体培地に播種し、37℃で10時間培養後、菌体を収集してプラスミドを抽出し(プラスミド抽出キットは天根生化科技有限公司から購入)、pBSMμL3-tsbglプラスミド(図1)を得、酵素消化により検証をして専門会社に配列決定による検証をしてもらった。
Example 1 Construction of tsbgl Gene-Containing Expression Vector A gene whose nucleotide sequence is shown in SEQ ID NO: 1 was chemically synthesized according to the amino acid sequence of Thermotoga sp KOL6 β-glucosidase Tsbgl in the Genbank database (WP_101510358).
After enzymatic digestion of the synthesized gene fragment and pET-24a (enzymatic digestion sites: Nde I and EcoR I), ligation was performed to obtain a ligation product. coli. Transformed into JM109. A transformant was obtained, the transformant was plated on an LB solid medium (containing 0.05 mg/mL kanamycin), and inverted culture was performed in a constant temperature incubator at 37°C for 8 to 12 hours to obtain a transformant.
Heat shock transformation method:
(1) E.I. coli. JM109 competent cells were left on ice for 5 minutes, and after the competent cells were completely thawed, 10 μL of the complete plasmid or PCR product was added, gently pipetted to homogenize, and left on ice for 45 minutes. .
(2) Competent cells were placed in a water bath pan at 42° C. and heat-shocked for 90 seconds. After the heat-shock was completed, the cells were left on ice for 5 minutes.
(3) After finishing the ice bath, 0.8 mL of LB liquid medium was added to the competent cells, mixed uniformly, placed in a shaker at 37°C, and cultured with shaking for about 60 minutes.
(4) Centrifuge the competent cells that have been cultured at 3000 rpm for 5 minutes, discard a part of the supernatant, leave about 200 μL of the fermentation liquid, and resuspend the cells by pipetting again, It was plated on an LB solid plate containing 10 μg/mL ampicillin antibiotic and cultured statically in a 37° C. incubator for about 10 hours to grow a single colony on the plate.
Monoclonal colonies were inoculated into a resistant LB liquid medium containing 10 μg/mL ampicillin, shake flask culture was performed at 37° C., 120 to 180 rpm for 8 to 12 hours, and plasmids were extracted and verified by enzymatic digestion. Verification by sequencing was performed and, if the verification was correct, the recombinant plasmid pET24a-tsbgl was obtained.
Using the plasmids pET24a-tsbgl and pBSMμL3 as templates, target gene primers and vector primers containing 15 bp homology arms upstream and downstream were designed, respectively. and 4) were amplified by PCR.
Primer 1: TAAGGAGTGTCAAGAATGAGCATGAAAAAGTTTCCGGAAG (SEQ ID NO: 3);
Primer 2: TTTATTACCAAGCTTTTAATCTTCCAGGCCGTTATTTTTAATAAC (SEQ ID NO: 4);
Primer 3: AAGCTTTGGTAATAAAAAAAACACCTC (SEQ ID NO: 5);
Primer 4: CATTCTTGACACTCCTTATTTG (SEQ ID NO: 6).
PCR system: 25 μL 2×Super PfxMasterMix, 1.25 μL each of the two primers, 22 μL ddH 2 O, 0.5 μL template.
Reaction conditions: (1) 94°C, 4 minutes, (2) 94°C, 1 minute, (3) 55°C, 1 minute, (4) 72°C, 2 minutes, 35 cycles of amplification from (2) to (4) After that, (5) 72° C. for 5 minutes, (6) holding the temperature at 4° C.; and amplified respectively to obtain the target gene fragment tsbgl and the template fragment pBSMμL3.
The amplified fragments were recovered with a gel recovery kit (Amane Seika Technology Co., Ltd.) and verified by sequencing, and the two recovered fragments for which the results of the verification by sequencing were correct were collected using the In-Fusion HD Cloning Plus kit. Ligate with a kit, use 400 ng of gene fragment, 200 ng of vector fragment, and 2 μL of 5×In-Fusion HD Enzyme Premix as a ligation system, supplement with water to 10 μL, react the ligation system at 50° C. for 25 minutes, and ligate. The product was obtained and the ligation product was transformed into clone host JM109 (see heat shock transformation method above for specific embodiments), plated on LB solid medium (containing 10 μg/mL ampicillin) and incubated at 37°C. After culturing for 8 to 10 hours, a single colony was picked and inoculated in LB liquid medium containing 100 mg/L ampicillin, cultured at 37°C for 10 hours, the cells were collected, and the plasmid was extracted (plasmid extraction kit was purchased from Tian Ne Seika Technology Co., Ltd.), pBSM μL3-tsbgl plasmid (Fig. 1) was obtained, verified by enzymatic digestion and verified by sequencing by a professional company.

実施例2:枯草菌発現宿主の形質転換培養及び粗酵素液の抽出
酵素消化による検証及び配列決定の結果が正確である組換えプラスミドpBSMμL3-tsbglを線形化した後、Bacillus subtilis WSH11(Bacillus subtilis WSH11は公開番号CN108102997Aの特許に記載)にエレクトロプロレーションした。組換えプラスミドpBSMμL3-tsbglをBacillus subtilis WSH11コンピテント細胞に電気ショックで形質転換した:
(1)Bacillus subtilis WSH11コンピテント細胞を氷上に5分放置しておき、コンピテント細胞が完全に溶けた後、組換えプラスミド10μLを加え、優しくピペッティングして均一にした後、氷上に15分放置した。
(2)エレクトロポレーターを予め起動して30分予熱し、電気ショック電圧を2400Vに設定して、氷浴が終了したコンピテント細胞を、事前に予冷した直径2mmのエレクトロポレーションキュベットに加え、エレクトロポレーションキュベットの外壁に付いた水を拭いた後、エレクトロポレーションキュベットをエレクトロポレーターに入れて電気ショック(エレクトロポレーション)をした。
(3)電気ショック終了後、事前に予冷したRM培地1mLを素早く加え、均一にピペッティングした後、菌液を殺菌したEP管1.5mLに移し、37℃のシェーカーに入れて、200rpmで3時間振とう培養した。
(4)培養が終了した菌液を3000rpmで5分遠心分離し、一部の上清液を捨てて、200μL程度の上清液を残して菌体を改めてピペッティングして再懸濁させ、テトラサイクリン耐性を有するLB固体プレートに塗布し、37℃のインキュベータで約10時間培養し、プレートに単一コロニーを成長させた。
(5)単一コロニーを取り、配列決定により検証をして、プラスミドpBSMμL3-tsbglを含有する陽性形質転換体を得た。
組換えプラスミドpBSMμL3-tsbglを含有する陽性形質転換体をLB液体培地(10μg/mLテトラサイクリン含有)に播種して8~10時間培養した後、培養液5mLをTB培地100mLに播種し、37℃で2時間培養し、さらに33℃で48時間培養し、発酵終了後、8000rpmで20分遠心分離して菌体を収集した。50mM、pH6.0クエン酸-リン酸二ナトリウム緩衝液50mLを菌体に加え、菌体を十分に再懸濁させた後、高圧ホモジナイザーを用いて細胞壁を破壊し、10000rpmで20分遠心分離後、細胞壁破壊上清液である粗酵素液を収集し、OD600が5である粗酵素液の酵素活性は10.41U/mLであった。
収集した粗酵素液を精製して、電気泳動を行い、精製後の電気泳動図を図2に示す。
Example 2: Transformation culture of Bacillus subtilis expression host and extraction of crude enzyme solution (described in patent publication number CN108102997A). The recombinant plasmid pBSMμL3-tsbgl was transformed into Bacillus subtilis WSH11 competent cells by electric shock:
(1) Leave the Bacillus subtilis WSH11 competent cells on ice for 5 minutes. After the competent cells are completely thawed, add 10 μL of the recombinant plasmid, homogenize by gentle pipetting, and then place on ice for 15 minutes. I left it.
(2) Pre-start the electroporator and preheat for 30 minutes, set the electric shock voltage to 2400 V, add the ice-bathed competent cells to a pre-cooled 2 mm diameter electroporation cuvette, After wiping off the water on the outer wall of the electroporation cuvette, the electroporation cuvette was placed in the electroporator and subjected to an electric shock (electroporation).
(3) After the end of the electric shock, quickly add 1 mL of pre-cooled RM medium, pipet evenly, transfer the bacterial solution to 1.5 mL of sterilized EP tube, place it in a shaker at 37°C, and shake it at 200 rpm for 3 times. Cultured with shaking for hours.
(4) Centrifuge the cultured bacterial solution at 3000 rpm for 5 minutes, discard a part of the supernatant, leave about 200 μL of the supernatant, resuspend the bacterial cells by pipetting again, It was plated on a tetracycline-resistant LB solid plate and cultured in an incubator at 37° C. for about 10 hours to grow a single colony on the plate.
(5) A single colony was picked and verified by sequencing to obtain a positive transformant containing plasmid pBSMμL3-tsbgl.
A positive transformant containing the recombinant plasmid pBSMμL3-tsbgl was inoculated in LB liquid medium (containing 10 μg/mL tetracycline) and cultured for 8 to 10 hours. After culturing for 2 hours and further culturing at 33° C. for 48 hours, the cells were collected by centrifugation at 8000 rpm for 20 minutes after completion of fermentation. After adding 50 mL of 50 mM pH 6.0 citric acid-disodium phosphate buffer to the cells and sufficiently resuspending the cells, the cell walls were disrupted using a high-pressure homogenizer and centrifuged at 10,000 rpm for 20 minutes. , the crude enzyme solution, which is the cell wall disruption supernatant, was collected, and the enzyme activity of the crude enzyme solution with an OD 600 of 5 was 10.41 U/mL.
The collected crude enzyme solution was purified and subjected to electrophoresis. The electrophoretogram after purification is shown in FIG.

実施例3:β-グルコシダーゼTSBGlの使用条件の決定
(1)β-グルコシダーゼTSBGlの最適温度
pNPGを基質として、実施例2で得た精製後のβ-グルコシダーゼを酵素活性測定反応系に加え、pHを6.0として様々な温度で反応させ、酵素活性を測定し、その相対酵素活性を算出して、結果を図3に示し、具体的なデータを表1に示し、以上から、β-グルコシダーゼの最適温度は90℃であることが分かり、90~100℃では、相対酵素活性は85%以上に達する。

Figure 2022535648000002
(2)β-グルコシダーゼTSBGlの最適pH
pNPGを基質として、実施例2で得た精製後のβ-グルコシダーゼを酵素活性測定反応系に加え、様々なpH下、90℃の恒温水浴にて10分反応させた。反応後の酵素活性を測定し、その相対酵素活性を算出し、結果を図4に示し、具体的なデータを表2に示し、以上から、β-グルコシダーゼの最適pHは6.0であることが分かった。
Figure 2022535648000003
(3)β-グルコシダーゼTSBGlの熱安定性
pNPGを基質として、実施例3で得た精製後のβ-グルコシダーゼを酵素活性測定反応系に加え、pH6.0では、それぞれ70℃、80℃、90℃の温水浴にて60分間反応させ、60分間内に酵素の酵素活性を測定し、その相対酵素活性を算出し、結果を図5に示し、60分間になったときには、β-グルコシダーゼTSBGlは、70℃、80℃、90℃での相対酵素活性がそれぞれ99.18%、99.31%、99.81%であった。β-グルコシダーゼは、90℃では高い熱安定性を有した。
Figure 2022535648000004
Example 3: Determining Conditions for Using β-Glucosidase TSBGl (1) Optimum Temperature for β-Glucosidase TSBGl Using pNPG as a substrate, the purified β-glucosidase obtained in Example 2 was added to the enzyme activity measurement reaction system, and pH is 6.0 and reacted at various temperatures, the enzyme activity was measured, the relative enzyme activity was calculated, the results are shown in FIG. 3, and the specific data are shown in Table 1. The optimum temperature for is found to be 90°C, and at 90-100°C the relative enzymatic activity reaches over 85%.
Figure 2022535648000002
(2) Optimum pH of β-glucosidase TSBGl
Using pNPG as a substrate, the purified β-glucosidase obtained in Example 2 was added to the enzyme activity measurement reaction system, and reacted in a constant temperature water bath at 90° C. for 10 minutes under various pH values. The enzymatic activity after the reaction was measured, the relative enzymatic activity was calculated, the results are shown in FIG. I found out.
Figure 2022535648000003
(3) Thermostability of β-Glucosidase TSBGl Using pNPG as a substrate, the purified β-glucosidase obtained in Example 3 was added to the reaction system for measuring enzyme activity. ℃ warm water bath for 60 minutes, the enzymatic activity of the enzyme was measured within 60 minutes, the relative enzyme activity was calculated, the results are shown in FIG. , 70°C, 80°C and 90°C were 99.18%, 99.31% and 99.81%, respectively. β-glucosidase had high thermostability at 90°C.
Figure 2022535648000004

実施例4:ゲンチオオリゴ糖の製造におけるβ-グルコシダーゼTSBGlの使用
800g/Lのグルコースを基質として、pH6、90℃で24時間時間反応させ、酵素添加量を300U/g、400U/g、500U/g、600U/g、700U/gとして、高濃度グルコースを基質として逆加水分解活性によりゲンチオオリゴ糖を合成する場合の酵素添加量を研究した。
図6に示す実験結果から、所定の範囲では、基質の転化率は酵素添加量の増加に伴い向上し続けて、酵素添加量が500U/gグルコースに達すると、基質の転化率は10.94%に達し、さらに酵素添加量を増加させると、転化率はほぼ変わらなかった。総合的に考慮すると、500U/gの酵素添加量を選択し、この場合、基質の転化率は10.94%、ゲンチオオリゴ糖の収率は73g/Lに達する。
Example 4: Use of β-glucosidase TSBGl in the production of gentiooligosaccharide Using 800 g/L of glucose as a substrate, the reaction was carried out at pH 6 and 90°C for 24 hours. , 600 U/g, and 700 U/g, the amount of enzyme added was studied when synthesizing gentio-oligosaccharides by reverse hydrolysis activity using high-concentration glucose as a substrate.
From the experimental results shown in FIG. 6, it can be seen that within a given range, the substrate conversion rate continued to improve as the amount of enzyme added increased, and when the added enzyme amount reached 500 U/g glucose, the substrate conversion rate was 10.94. % and further increasing the amount of enzyme added resulted in almost no change in conversion. Taken together, an enzyme loading of 500 U/g is selected, in which case the substrate conversion rate reaches 10.94% and the gentiooligosaccharide yield reaches 73 g/L.

実施例5:β-グルコシダーゼTSBGlの高基質濃度でのゲンチオオリゴ糖の製造における使用
具体的な実施方法は実施例4を参照できるが、酵素添加量を500U/gグルコースとし、且つβ-グルコシダーゼTSBGlの高温反応の特性により高温でより高い基質濃度下の逆加水分解合成反応を可能とする点が異なり、このため、グルコース基質の濃度(それぞれ800g/L、900g/L、1000g/L、1100g/L、1200g/L)によるゲンチオオリゴ糖の逆加水分解合成の場合の収率及び転化率への影響を調べた。
図7に示す実験結果から、グルコース基質の最終濃度が800g/L、900g/L、1000g/L及び1100g/Lである場合、基質の転化率はそれぞれ10.42%、12.72%、14.43%、14.82%であり、グルコース基質の最終濃度が1200g/Lである場合、ゲンチオオリゴ糖の収率は178.2g/Lに達し、基質の転化率は14.85%であり、これは、今まで該方法によりゲンチオオリゴ糖を合成する最高収率であった。
Example 5: Use of β-glucosidase TSBGl in the production of gentiooligosaccharides at a high substrate concentration. The nature of the high temperature reaction differs in that it allows reverse hydrolysis synthesis reactions at higher temperatures and higher substrate concentrations, thus increasing the concentration of the glucose substrate (800 g/L, 900 g/L, 1000 g/L, 1100 g/L, respectively). , 1200 g/L) on yield and conversion for reverse hydrolytic synthesis of gentio-oligosaccharides.
From the experimental results shown in FIG. 7, when the final concentration of glucose substrate is 800 g/L, 900 g/L, 1000 g/L and 1100 g/L, the conversion of substrate is 10.42%, 12.72%, 14%, respectively. .43%, 14.82%, when the final concentration of glucose substrate is 1200 g/L, the yield of gentio-oligosaccharides reaches 178.2 g/L, the conversion of substrate is 14.85%, This was the highest yield to date for synthesizing gentio-oligosaccharides by this method.

好適な実施例をもって本発明を以上のように開示したが、本発明を限定するものではなく、当業者であれば、本発明の趣旨及び範囲を逸脱することなく、各種の変化や修正を行うことができ、このため、本発明の特許範囲は特許請求の範囲により定められるべきである。 Although the present invention has been disclosed with preferred embodiments, it is not intended to limit the invention, and various changes and modifications can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the patentable scope of the present invention should be determined by the following claims.

Claims (12)

組換え菌が発現するβ-グルコシダーゼを利用してグルコースによるゲンチオオリゴ糖の生成を触媒し、前記組換え菌は枯草菌を発現宿主として、アミノ酸配列が配列番号2で示されるβ-グルコシダーゼを発現することを特徴とする、ゲンチオオリゴ糖の収率向上方法。 The β-glucosidase expressed by the recombinant bacterium is used to catalyze the production of gentiooligosaccharides from glucose, and the recombinant bacterium expresses β-glucosidase whose amino acid sequence is represented by SEQ ID NO: 2 using Bacillus subtilis as an expression host. A method for improving the yield of gentiooligosaccharides, characterized by: 前記β-グルコシダーゼの添加量が300~800U/gグルコースであることを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the amount of β-glucosidase added is 300-800 U/g glucose. 前記グルコースの濃度は800~1500g/Lであることを特徴とする、請求項1に記載の方法。 The method according to claim 1, characterized in that the concentration of glucose is 800-1500 g/L. 60~100℃、pH5.0~7.0で20~30時間反応させることを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the reaction is carried out at 60-100°C and pH 5.0-7.0 for 20-30 hours. β-グルコシダーゼをコードする遺伝子であって、
前記遺伝子のヌクレオチド配列が配列番号1で示されることを特徴とする遺伝子。
A gene encoding β-glucosidase,
A gene, wherein the nucleotide sequence of said gene is shown in SEQ ID NO:1.
請求項5に記載の遺伝子を運ぶベクター。 A vector carrying the gene of claim 5. pBSMμL3であることを特徴とする、請求項6に記載のベクター。 7. A vector according to claim 6, characterized in that it is pBSM[mu]L3. 枯草菌を発現宿主として、アミノ酸配列が配列番号2で示されるβ-グルコシダーゼを発現することを特徴とする、組換え菌。 A recombinant bacterium characterized by expressing a β-glucosidase whose amino acid sequence is represented by SEQ ID NO:2 using Bacillus subtilis as an expression host. 枯草菌を発現宿主とし、請求項5又は7に記載のベクターを含有することを特徴とする、組換え菌。 A recombinant bacterium characterized by using Bacillus subtilis as an expression host and containing the vector according to claim 5 or 7. 請求項8に記載の組換え菌の発酵によりβ-グルコシダーゼを生産することを特徴とする、β-グルコシダーゼを生産する方法。 A method for producing β-glucosidase, which comprises producing β-glucosidase by fermentation of the recombinant bacterium according to claim 8. 食品及び化粧品の分野におけるゲンチオオリゴ糖含有製品の調製における請求項1~4又は請求項10のいずれか1項に記載の方法の使用。 Use of the method according to any one of claims 1 to 4 or claim 10 in the preparation of gentio-oligosaccharide-containing products in the food and cosmetic field. 食品及び化粧品の分野におけるゲンチオオリゴ糖含有製品の調製における請求項5に記載の遺伝子、又は請求項6又は7に記載のベクター、又は請求項8又は9に記載の組換え菌の使用。 Use of the gene according to claim 5 or the vector according to claim 6 or 7 or the recombinant bacterium according to claim 8 or 9 in the preparation of products containing gentio-oligosaccharides in the field of food and cosmetics.
JP2021558012A 2020-04-27 2020-08-18 Use of thermostable β-glucosidase in the production of gentiooligosaccharides Active JP7297924B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010342196.8A CN111411117B (en) 2020-04-27 2020-04-27 Application of heat-resistant beta-glucosidase in preparation of gentiooligosaccharide
CN202010342196.8 2020-04-27
PCT/CN2020/109763 WO2021217960A1 (en) 2020-04-27 2020-08-18 APPLICATION OF HEAT-RESISTANT β-GLUCOSIDASE IN PREPARATION OF GENTIOOLIGOSACCHARIDE

Publications (2)

Publication Number Publication Date
JP2022535648A true JP2022535648A (en) 2022-08-10
JP7297924B2 JP7297924B2 (en) 2023-06-26

Family

ID=71490172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021558012A Active JP7297924B2 (en) 2020-04-27 2020-08-18 Use of thermostable β-glucosidase in the production of gentiooligosaccharides

Country Status (3)

Country Link
JP (1) JP7297924B2 (en)
CN (1) CN111411117B (en)
WO (1) WO2021217960A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355275B (en) * 2018-11-21 2021-08-20 中山大学 Beta-glucosidase mutant with high thermal stability and application thereof
CN109456954B (en) * 2018-11-21 2021-08-20 中山大学 Beta-glucosidase mutant with improved thermal stability and application thereof
CN111411117B (en) * 2020-04-27 2020-12-01 江南大学 Application of heat-resistant beta-glucosidase in preparation of gentiooligosaccharide
CN111500560B (en) * 2020-04-27 2022-12-27 江南大学 Preparation and application of thermophilic beta-glucosidase
CN112063605B (en) * 2020-09-24 2022-03-04 江南大学 Method for preparing gentiooligosaccharide by catalyzing cellulose with complex enzyme and application of method
CN112094835B (en) * 2020-09-24 2022-09-06 江南大学 Application of beta-glucosidase mutant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725535A (en) * 1983-02-22 1988-02-16 Sonenshein Abraham L Promoter probe vectors
JPH09259A (en) * 1995-06-20 1997-01-07 Yakult Honsha Co Ltd Beta-galactosidase-producing plasmid and production of beta-galactosidase
CN107236696A (en) * 2017-07-31 2017-10-10 江南大学 A kind of sucrose phosphorylase recombined bacillus subtilis in expression L. mesenteroides sources
CN108384769A (en) * 2018-02-05 2018-08-10 南京林业大学 A kind of high temperature resistant complex enzyme and its application
WO2018187524A1 (en) * 2017-04-07 2018-10-11 Dupont Nutrition Biosciences Aps BACILLUS HOST CELLS PRODUCING β-GALACTOSIDASES AND LACTASES IN THE ABSENCE OF P-NITROBENZYLESTERASE SIDE ACTIVITY
CN109371006A (en) * 2018-12-12 2019-02-22 江南大学(如皋)食品生物技术研究所 A kind of process for fixation of sucrose phosphorylase
CN109628435A (en) * 2019-01-10 2019-04-16 江南大学 A kind of cellobiose epimerism enzyme mutant and its application in galactopoiesis fructose

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671660A (en) * 2009-09-30 2010-03-17 陕西省微生物研究所 Production method for refining beta-glucosaccharase fermentation liquor
CN107099565B (en) * 2017-06-23 2020-09-04 江南大学 Preparation method of gentiooligosaccharide
CN108102997A (en) * 2017-10-25 2018-06-01 江南大学 A kind of bacillus subtilis for Pullulanase high efficient expression and High Density Cultivation
CN109355275B (en) * 2018-11-21 2021-08-20 中山大学 Beta-glucosidase mutant with high thermal stability and application thereof
CN111411117B (en) * 2020-04-27 2020-12-01 江南大学 Application of heat-resistant beta-glucosidase in preparation of gentiooligosaccharide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725535A (en) * 1983-02-22 1988-02-16 Sonenshein Abraham L Promoter probe vectors
JPH09259A (en) * 1995-06-20 1997-01-07 Yakult Honsha Co Ltd Beta-galactosidase-producing plasmid and production of beta-galactosidase
WO2018187524A1 (en) * 2017-04-07 2018-10-11 Dupont Nutrition Biosciences Aps BACILLUS HOST CELLS PRODUCING β-GALACTOSIDASES AND LACTASES IN THE ABSENCE OF P-NITROBENZYLESTERASE SIDE ACTIVITY
CN107236696A (en) * 2017-07-31 2017-10-10 江南大学 A kind of sucrose phosphorylase recombined bacillus subtilis in expression L. mesenteroides sources
CN108384769A (en) * 2018-02-05 2018-08-10 南京林业大学 A kind of high temperature resistant complex enzyme and its application
CN109371006A (en) * 2018-12-12 2019-02-22 江南大学(如皋)食品生物技术研究所 A kind of process for fixation of sucrose phosphorylase
CN109628435A (en) * 2019-01-10 2019-04-16 江南大学 A kind of cellobiose epimerism enzyme mutant and its application in galactopoiesis fructose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MHAINDARKAR D. ET AL.: "Loss of a conserved salt bridge in bacterial glycosyl hydrolase BgIM-G1 improves substrate binding i", COMMUNICATIONS BIOLOGY, 2018, 1: 171, DOI: 10.1038/S42003-018-0167-7, JPN6022045423, ISSN: 0005001400 *

Also Published As

Publication number Publication date
JP7297924B2 (en) 2023-06-26
CN111411117A (en) 2020-07-14
WO2021217960A1 (en) 2021-11-04
CN111411117B (en) 2020-12-01

Similar Documents

Publication Publication Date Title
JP7297924B2 (en) Use of thermostable β-glucosidase in the production of gentiooligosaccharides
CN110066777B (en) Endo-inulase and application thereof in production of fructo-oligosaccharide
WO2015007033A1 (en) Mutant of xylanase xynas9-m with improved thermal stability and gene and use thereof
CN114317498B (en) Alpha-glucose transglycosylase mutant and application thereof
CN113801240B (en) D-psicose-3-epimerase activity aggregate and preparation method and application thereof
CN113106112B (en) Genetically engineered bacterium for heterologously expressing xanthan endonuclease and application thereof
JPH0884586A (en) Recombinant type thermostable enzyme capable of producing nonreducing glucide having trehalose structure at terminal from reducing starch sugar
CN111500555B (en) Chitosanase OUC-CsnCA and application thereof
CN112301012A (en) Cyclodextrin glucosyltransferase mutant and construction method thereof
CN114277022B (en) Nitrile hydratase mutant with high activity and high thermal stability
CN115960879A (en) High-throughput screening method of D-psicose 3-epimerase mutant library and obtained mutant
US6300115B1 (en) Pullulanase expression constructs containing α-amylase promoter and leader sequences
CN108998403A (en) A kind of bacillus subtilis recombinant bacterium and its application
CN111534498B (en) Cyclodextrin glucosyltransferase mutant with improved disproportionation specific activity and AA-2G yield
CN111471636B (en) Genetically engineered bacterium for expressing human epidermal growth factor and application thereof
CN106978410B (en) Bifunctional glucanase with chitosan hydrolysis activity, gene, vector, engineering bacterium and application thereof
CN108034649B (en) Glucose isomerase mutant and application thereof
CN112575022A (en) Construction method of in-vitro artificial scaffold protein-mediated trehalose multienzyme complex
CN113528487B (en) Method for improving xylanase thermal stability through iterative saturation mutation
NL2030021B1 (en) L-ARABINOSE ISOMERASE (L-Al) DERIVED FROM LACTOCOCCUS LACTIS (L. LACTIS), AND USE THEREOF IN PREPARATION OF RARE SUGAR
CN111471667B (en) Chitosanase Csn-PT and application thereof
CN110066814B (en) beta-D-glucosidase gene and encoding protein thereof
CN114107270B (en) L-aspartic acid beta-decarboxylase mutant
CN114958894B (en) Construction method and application of spermidine synthetic multienzyme complex based on CcmK2 fibrous protein
CN116855432A (en) Bacillus subtilis for catalyzing and synthesizing trehalose by multienzyme co-production and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230614

R150 Certificate of patent or registration of utility model

Ref document number: 7297924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150