JP2022518668A - 超音波マトリクスセンサを用いた三次元表面の再構成方法 - Google Patents

超音波マトリクスセンサを用いた三次元表面の再構成方法 Download PDF

Info

Publication number
JP2022518668A
JP2022518668A JP2021534759A JP2021534759A JP2022518668A JP 2022518668 A JP2022518668 A JP 2022518668A JP 2021534759 A JP2021534759 A JP 2021534759A JP 2021534759 A JP2021534759 A JP 2021534759A JP 2022518668 A JP2022518668 A JP 2022518668A
Authority
JP
Japan
Prior art keywords
row
image
dimensional
column
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021534759A
Other languages
English (en)
Inventor
ヤコフレバ,エカテリーナ
ルー,ダビド
Original Assignee
コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ filed Critical コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ
Publication of JP2022518668A publication Critical patent/JP2022518668A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/045External reflections, e.g. on reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2632Surfaces flat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2638Complex surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本発明は超音波マトリクスセンサを用いて部品の三次元表面を再構成する方法に関する。本発明によれば、方法(10)は、・マトリクスセンサを使用して、走査行Liと増分行Ljの交点に位置する異なる測定点O(i,j)で三次元表面を走査し(11)、・各測定点において、マトリクスセンサの選択行msから各要素によって受信された反射波振幅を表す時間行画像SLi,j(ms,t)を取得し(12)、また、マトリクスセンサの選択列nsから各要素によって受信された反射波振幅を表す時間列画像SCi,j(ns,t)を取得し(14)、・時間行画像SLi,j(ms,t),に基づいて、各走査行Liの二次元行画像Xiを構成し(17)、・時間列画像SCi,j(ns,t)に基づいて、各増分行Ljの二次元列画像Yjを構成し(18)、・二次元行画像Xiと二次元列画像Yjに基づいて三次元画像を構成する(19)、ことを含む。

Description

本発明は、超音波による非破壊検査の分野にある。本発明は、超音波マトリクスセンサを用いて部品の三次元表面を再構成する方法に関するものである。
本発明は、特に、超音波非破壊検査を実施するために、工業部品の表面を再構成することに適用される。非破壊検査の目的は、工業部品、例えばブレードのような航空機タービンエンジンの要素の欠陥を検出することである。
超音波非破壊検査の分野では、検査対象となる部品の表面状態が検査品質に大きく影響する。マトリクスセンサを使用すると、このパラメータの影響が軽減される。そのようなセンサは実際、超音波信号の送受信に遅延法則を適用して、超音波ビームの伝搬軸を衝撃点である部品の表面に垂直に配向させることができる。このとき、マトリクスセンサで受信した反射超音波信号の振幅は最大となる。とはいえ、超音波ビームを適応させるには、部品の形状を正確に把握する必要がある。そのため、厳密に言えば非破壊検査を実施する前に、検査対象となる部品の表面の形状を決定する必要がある。
これまでに、産業規模で使用可能な様々なソリューションが提案されてきた。これらのソリューションの大部分は、リニア多素子センサに基づいており、表面の二次元的な変化のみを調査することが可能である。言い換えれば、表面の高さの変化は1つの軸に沿ってのみ決定される。例えば、非特許文献1では、浸漬型リニア多素子センサを用いた適応型の超音波探傷法を説明している。部品の二次元表面を「フルマトリクスキャプチャ」(FMC)と呼ばれる技術でリアルタイムに抽出し、次に「トータルフォーカシングメソッド」(TFM)と呼ばれる技術で部品の体積の超音波画像を再構成する。この方法では、超音波画像はセンサの表面下に位置する体積のみを表す。非特許文献2には、部品に接触する線形多素子トランスデューサを用いた適応型超音波探傷法が記載されている。光学測定システムを用いて二次元表面を抽出し、その後、遅延法則をリアルタイムで適応させて、斜め入射で集束した超音波ビームを生成する。
三次元表面を再構成するためのソリューションも提案されている。例えば、特許文献1には、静止位置にあるマトリクスセンサを用いて、または平面の2軸に沿って移動する単素子センサを用いて、三次元表面を再構成する方法が記載されている。第1のケースでは、マトリクスセンサは、マトリクスセンサの表面に実質的に対応する比較的小さな表面のみを撮像できる。第2のケースでは、センサを多数の位置に移動させる必要があるため、広い面を撮影する場合には撮影期間が比較的長くなる。さらに、高精度の位置決めシステムを使ってセンサを移動させる必要がある。そうしないと、再構成の精度が低下してしまうからである。実際には、いずれの場合も、拡張された三次元表面を再構成するのは複雑な作業になる。別の解決策は、マトリクスセンサを使用し、2つの移動軸に沿って様々な測定位置に移動させることからなる。各位置でFMCデータを取得し、すべてのFMCデータを用いてTFM技術による再構成を行うことが可能である。しかし、FMCの取得には、各測定位置において、マトリクスセンサの各要素が個別に超音波信号を送信し、マトリクスセンサのすべての要素がこの超音波信号のエコーを受信することが必要となる。このように、N個の要素を持つセンサでは、各測定位置に一連のN基本信号が発生する。処理されるデータ量は、1つのマトリクスセンサや拡張された表面の場合、すぐにかなりの量になるため、この方法は産業用途には適していない。
国際公開第2015/075121号パンフレット
レオナルド・ル・ジューヌ(Leonard Le Jeune)、博士論文「Planar wave emission ultrasonic imaging for testing complex structures in immersion」、(パリ第7大学) F.ラッセレ(F.Lasserre)ほか、論文「Industrialization of a Large Advanced Ultrasonic Flexible Probe for Non-destructive Testing of Austenitic Steel Pieces with Irregular Surface」、Journal of Civil Engineering and Architecture 2017年11月号、p.933-942
そこで、本発明の1つの目的は、超音波マトリクスセンサを用いて、比較的拡張された三次元表面を再構成する技術を提案することである。
この目的のために、本発明は、マトリクスセンサによる三次元表面の走査と、各測定点における「クロスでの」データの収集とに基づいている。実際には、各測定点において、本発明による再構成方法は、マトリクスセンサの行の1つ以上の要素によって第1入射波が送信され、この第1入射波の反射(「第1反射波」と呼ばれる)が、この行のすべての要素によって受信され、時間信号に変換されることを含む。次に、マトリクスセンサの列の1つ以上の要素によって第2入射波が送信され、この第2入射波の反射(「第2反射波」と呼ばれる)が、この列のすべての要素によって受信され、時間信号に変換される。次に、再構成方法は、マトリクスセンサの要素の行に平行な第1の平面に二次元行画像を生成し、マトリクスセンサの要素の列に平行な第2の平面に列の二次元画像を生成することを含む。各二次元行画像は、当該第1の平面に対応する時間信号から生成される。同様に、各二次元の列は、当該第2の平面に対応する時間信号から生成される。最後に、二次元行画像と二次元列画像を合成することで、三次元画像が構成される。
より詳細には、本発明の目的は、行と列に配置された複数の要素E(m,n)を含むマトリクスセンサを用いて部品の三次元表面を再構成する方法であって、各要素は、前記部品の方向に入射波を放出でき、また、前記要素によって受信された反射波を表す信号を生成するように配置されている。前記方法は以下のステップを含む:
・前記マトリクスセンサで前記三次元表面を走査し、前記マトリクスセンサを複数の測定点O(i,j)で移動させ、各測定点は、前記マトリクスセンサの前記要素の行に平行な一連の走査線のうち一走査線Lと、前記マトリクスセンサの前記要素の列に平行な一連の増分線のうち一増分線Lとの交点で定義され、
・前記各測定点O(i,j)において以下を連続して実施する
○前記マトリクスセンサの選択行mの1つ以上の要素による入射波の放出と、前記選択行の各要素E(m,n)に関する、前記要素によって受信された反射波の経時振幅を表す時間信号の生成とを含む時間行画像SLi,j(m,t)の取得、前記時間行画像SLi,j(m,t)は、前記選択行mの前記要素のすべての前記時間信号によって形成される、
○前記マトリクスセンサの選択列nの1つ以上の要素による入射波の放出と、前記選択列の各要素E(m,n)に関する、前記要素によって受信された反射波の経時振幅を表す時間信号の生成とを含む時間列画像SCi,j(n,t)の取得、前記時間列画像SCi,j(n,t)は、前記選択列nの前記要素のすべての前記時間信号によって形成される、
・各走査線Lに関して、前記走査線Lに対応するすべての前記時間行画像SLi,j(m,t)から、前記選択行mの要素を通過する平面P(m)内の二次元行画像Xを構成し、前記各二次元行画像Xは、前記平面P(m)の様々な点における反射波振幅によって定義され、
・各増分線Lに関して、前記増分線Lに対応するすべての前記時間列画像SCi,j(n,t)から、前記選択列nの要素を通過する平面P(n)内の二次元列画像Yを構成し、前記各二次元列画像Yは、前記平面P(n)の様々な点における反射波振幅によって定義され、
・前記二次元行画像Xおよび前記二次元列画像Yから、前記部品の三次元画像を構成し、前記三次元画像は、前記二次元行画像Xと前記二次元列画像Yを含む体積の各点における反射波振幅によって定義される。
マトリクスセンサの要素は、例えば、平面上に配列され、要素の行と列は直線上に並んでいる。マトリクスセンサは、例えば、16行16列に位置する要素のセットで構成されている。しかし、一般的には、センサは、3以上のMとNの2整数でのM行N列に配置された要素のセットE(m,n)を含む。
各測定点O(i,j)において、同じ行と同じ列の要素が、時間行画像SLi,j(m,t)と時間列画像SCi,j(n,t)を取得するために選択され得ることに留意すべきである。したがって、この行とこの列の要素のみが、本発明による三次元表面再構成法に有用である。マトリクスセンサの代わりに、例えば十字型やT字型などの単一の行と単一の列の要素を含むセンサを使用することも可能である。それにもかかわらず、マトリクスセンサは、部品の三次元表面を再構成するためにも、その後の部品の超音波非破壊検査のステップにも使用できるという利点がある。
本発明による方法は、平面および曲面の再構成に適しており、それらが局所三次元変形を有する場合も含まれる。走査線および増分線は、好ましくはそれに応じて適合される。特に、走査線は直線でも曲線でもよい。同様に、増分線は、直線または曲線であってもよい。各走査線および/または各増分線は、例えば、楕円、円、楕円の一部分、または円の一部分を形成する。例えば、回転円筒面の場合、走査線は円筒面の回転軸に平行な直線であり、増分線は回転軸を中心とする円であってもよい。Oリング表面の場合、走査線は大曲率半径の回転軸を中心とした円、増分線は小曲率半径の回転軸を中心とした円であってもよい。走査線および/または増分線が湾曲している場合、センサの要素との平行性は、センサにおいて局所的に考慮される。
走査は、マトリクスセンサが各測定点に一度だけ配置されるように実施されるのが望ましい。したがってマトリクスセンサは、各走査線に沿って移動し、増分線との各交点で停止され得る。マトリクスセンサの位置は、その要素の1つ、例えば選択行と列の交点にある要素の位置によって定義され得る。
特定の実施形態によれば、前記三次元表面の走査は、前記マトリクスセンサの要素の列の長さよりも小さい走査ステップp、および/または、前記マトリクスセンサの要素の行の長さよりも小さい増分ステップpで実施される。走査ステップpは、隣接する2本の走査線の間隔として定義され、増分ステップpは、隣接する2本の増分線の間隔として定義される。要素の長さよりも小さいステップを使用することで、2つの隣接する測定点の間に撮像されたゾーンのオーバーラップを得ることが可能になり、したがって再構成の品質を向上させ得る。
第1の変形実施形態によれば、前記時間行画像SLi,j(m,t)の各取得は、前記選択行mの前記各要素E(m,n)による連続的な入射波の放出を含むとともに、前記要素E(m,n)が、前記入射波を放出した行mと列nに位置する要素を示し、要素E(m,n)が、前記反射波を受信した行mと列nに位置する要素を示している前記選択行mの各要素ペア{E(m,n);E(m,n)}に関して、前記要素E(m,n)によって受信された反射波の経時振幅を表す時間信号SLi,j(m,n,n,t)の生成を含み、前記時間行画像SLi,j(m,t)は前記選択行mのすべての前記時間信号SLi,j(m,n,n,t)によって形成される。
第1の変形例と互換の第2の変形実施形態によれば、前記時間列画像SCi,j(n,t)の各取得は、前記選択列nの前記各要素E(m,n)による連続的な入射波の放出を含むとともに、前記要素E(m,n)が、前記入射波を放出した行mと列nに位置する要素を示し、要素E(m,n)が、前記反射波を受信した行mと列nに位置する要素を示している前記選択列nの各要素ペア{E(m,n);E(m,n)}に関して、前記要素E(m,n)が受信した反射波の経時振幅を表す時間信号SCi,j(m,m,n,t)の生成を含み、前記時間列画像SCi,j(n,t)は、前記選択列nのすべての前記時間信号SCi,j(m,m,n,t)によって形成される。
第1および第2の変形実施形態の取得は、選択された行と列のみでセンサが構成されていることを考慮すると、フルマトリクスキャプチャ(FMC)と呼ぶことができる。
これらの第1および第2の変形実施形態によれば、平面P(m)内の各二次元行画像Xの構成はトータルフォーカシングメソッド(TFM)を実施することを含んでもよく、平面P(n)内の各二次元列画像Yの構成はトータルフォーカシングメソッド(TFM)を実施することを含んでもよい。平面におけるトータルフォーカシングメソッドの実施については、特にキャロリン・ホルムス(Caroline Holmes)らの文献「Post-processing of the full-matrix of ultrasonic transmit-receive array data for non-destructive evaluation」、NDT&E International 38、2005年、701-711を参照されたい。
第3の変形実施形態によれば、前記時間行画像SLi,j(m,t)の各取得は、前記選択行mの複数の要素による複数の入射波の連続的な放出を含み、各入射波は所定の入射角θ放出され、さらに、前記選択行mの前記各要素E(m,n)および前記所定の入射角θの各入射波に関する時間信号SLi,j(m,n,θ,t)の生成を含み、前記要素E(m,n)は、前記反射波を受信した前記行mおよび前記列nに位置する要素を示し、前記時間行画像SLi,j(m,t)は、前記選択列mのすべての時間信号SLi,j(m,n,θ,t)によって形成される。
第4の変形実施形態によれば、前記時間列画像SCi,j(n,t)の各取得は、前記選択列nの複数の要素による複数の入射波の連続的な放出を含み、各入射波は所定の入射角θで放出され、さらに、前記選択列の前記各要素E(m,n)および前記所定の入射角θの各入射波に関する時間信号SCi,j(m,n,θ,t)の生成を含み、前記要素E(m,n)は、前記反射波を受信した行mおよび列nに位置する要素を示し、前記時間列画像SCi,j(n,t)は、前記選択列nのすべての前記時間信号SCi,j(m,n,θ,t)によって形成される。
第3および第4の変形実施形態は、様々な入射角の入射波を生成し、様々な受信点に集束させることを可能にする。
これらの第3および第4の変形実施形態によれば、各二次元行画像Xを構成し、各二次元列画像Yを構成することは、平面波イメージング(PWI)法の実施を含み得る。平面波イメージング法の一平面内での実施については、特に、L.ル・ジューヌ(L.Le Jeuneらの文献:「Plane Wave Imaging for Ultrasonic Inspection of Irregular Structures with High Frame Rates」、AIP Conference予稿集1706、2016年を参照されたい。
各二次元行画像Xを構成することは、前記二次元行画像Xの前記平面P(m)内の前記部品のプロファイルを決定するために輪郭を検出することを含み得る、および/または、各二次元列画像Yを構成することは、前記二次元列画像Yの前記平面P(n)内の前記部品のプロファイルを決定するために輪郭を検出することを含み得る。特定の実施形態によれば、輪郭は閾値処理によって検出され、平面P(m)またはP(n)の各点における反射波振幅が所定の閾値以下の場合はゼロに設定され、そうでない場合は変化しない。所定の閾値は、例えば、当該平面P(m)またはP(n)における最大反射波振幅の半分に等しいものとして決定される。
本発明による再構成方法は、各測定点O(i,j)において、様々な選択行mskに関する複数の時間行画像SLi,j(msk,t)の取得、および/または、様々な選択列nskに関する複数の時間列画像SCi,j(nsk,t)の取得を含み得る。このようにして、選択行mskの要素を通過する平面P(msk)内で、各走査線Lおよび各選択行mskに関する二次元行画像Xi,kが構成され得る。同様に、各増分線Lと、選択列nskの要素を通過する平面P(nsk)内の各選択列nskに関する二次元列画像Yj,kが構成され得る。各測定点に関して、複数の時間行および/または列画像を取得することで、再構成の精度を向上させる、および/または、走査ステップや増分ステップを改善することが可能となる。
従って、より正確には、再構成方法は以下のステップを含み得る:
・前記各測定点O(i,j)において、様々な選択行mskに関する複数の時間行画像SLi,j(msk,t)の取得を連続的に実施し、前記時間行画像SLi,j(msk,t)の各取得は、前記マトリクスセンサの前記選択行mskの1つ以上の要素E(msk,n)による入射の放出と、前記選択行mskの各要素E(msk,n)に関して前記要素によって受信された反射波の経時振幅を表す時間信号の生成を含み、各々の前記時間行画像SLi,j(msk,t)は、前記選択行mskの要素のすべての時間信号によって形成され、
・前記各走査線Lおよび前記選択行mskそれぞれに関して、前記走査線Lおよび前記選択行mskに対応する線のすべての時間画像SLi,j(msk,t)から、前記選択行mskの要素を通過する平面P(msk)内の二次元行画像Xi,kを構成し、各々の前記二次元行画像Xi,kは、前記平面P(msk)の様々な点における反射波振幅によって定義される。
また、再構成方法は、以下のステップも含み得る:
・前記各測定点O(i,j)において、様々な選択列nskに関する複数の時間列画像SCi,j(nsk,t)の取得を連続的に実施し、前記時間列画像SCi,j(nsk,t)の各取得は、前記マトリクスセンサの前記選択列nskの1つ以上の要素による入射波の放出を含むとともに、前記選択列nskの各要素E(m,nsk)に関して、前記要素によって受信された反射波の経時振幅を表す時間信号の生成を含み、各々の前記時間列画像SCi,j(nsk,t)は、前記選択列nskの要素のすべての時間信号によって形成され、
・前記各増分線Lおよび前記選択列nskそれぞれに関して、前記増分線Lおよび前記選択列nskに対応するすべての前記時間列画像SCi,j(nsk,t)から、前記選択列nskの要素を通過する平面P(nsk)内の二次元列画像Yj,kを構成し、各々の前記二次元列画像Yj,kは、前記平面P(nsk)の様々な点における反射波振幅によって定義される。
本発明の他の特徴、詳細、および利点は、例示としてのみ与えられた以下の説明を読み、添付の図面を参照することで明らかとなろう。
マトリクスセンサを示し、本発明による再構成方法を実施するためにマトリクスセンサの行が選択されている状態の図である。 図1Aのマトリクスセンサの一例を示し、本発明による部分の三次元表面を再構成する方法を実施するためにマトリクスセンサの列が選択されている状態の図である。 本発明による再構成方法の手順の一例を示した図である。 平面の走査の一例を示す図である。 トーラスの一部を構成する面の走査の一例の図である。 二次元行画像と二次元列画像の形成の模式図である。 図3Bの表面に関して、局所変形を通過しない走査線で得られた二次元行画像の一例を示す図である。 図3Bの表面に関して、局所変形を通過する走査線で得られた二次元行画像の一例を示す図である。 図3Bの表面に関して、局所変形を通過しない増分線で得られた二次元列画像の一例を示す図である。 図3Bの表面に関して、局所変形を通過する増分線で得られた二次元列画像の一例を示す図である。 図3Bの表面に関して、二次元行画像と二次元列画像から得られた三次元画像の一例を示す図である。 図7の三次元画像から得られた、外挿三次元画像の一例を示す図である。
図1Aおよび図1Bは、本発明による部品の三次元表面を再構成するための方法で使用され得る超音波マトリクスセンサ1の一例を示す。マトリクスセンサ1は、16行×16列の一連の要素E(m,n)を含み、mとnは、1≦m16且つ1≦n≦16となるような2つの整数である。一般論として、本発明は一連のM行×N列の要素を含み、MとNが3以上の2つの整数である任意の超音波マトリクスセンサに基づいてもよい。マトリクスセンサ1の各要素E(m,n)は、再構成対象の部品の表面の方向に、入射波の形で入射信号を放出することができ、また、反射波を受信して、この反射波の経時振幅を表す信号に変換することができるように配置されている。入射波の放出中に要素を考慮する場合、要素はE(m,n)と表記され、反射波の受信中に要素を考慮する場合、要素はE(m,n)と表記される。本発明による再構成方法では、行のうち一行と列のうち一列が選択される。本説明の残りの部分では、選択行はmと表記され、選択列はnと表記される。任意で、複数の行mskと複数の列nskが連続して選択されてもよい。図1Aは9番目の行(m=9)の選択を示し、図1Bは8番目の列(n=8)の選択を示している。
図2は、本発明による部品の三次元表面を再構成する方法の一例を示す。方法10は、様々な測定点O(i,j)に対する以下のステップの反復を含む:マトリクスセンサ1を当該測定点O(i,j)に移動させるステップ11、時間行画像SLi,jを取得するステップ12、局所二次元行画像Xi,jを構成するステップ13、時間列画像SCi,jを取得するステップ14、局所二次元列画像Yi,jを構成するステップ15、および走査の完全性をチェックするステップ16。各測定点O(i,j)でこれらのステップ11~15を繰り返した後、すなわち、再構成対象の三次元表面の全体を走査した後で、方法は、二次元行画像Xを構成するステップ17と、二次元列画像Yを構成するステップ18と、三次元画像を構成するステップ19を含む。
ステップ11および16は、マトリクスセンサ1による三次元表面の走査をもたらす。この走査は、各測定点O(i,j)においてマトリクスセンサ1を移動させることを含み、iは互いに平行な一連の走査線のうち一走査線Lを示し、jは互いに平行な一連の増分線のうち一増分線Lを示す。したがって各測定点O(i,j)は、走査線Lと増分線Lの交点として定義される。走査線Lと増分線Lは、再構成対象の三次元表面に適合していることが好ましい。
図3Aは、実質的に平面の三次元表面2の場合のマトリクスセンサ1による三次元表面の走査の第1の例を示し、図3Bは、トーラスの一部を形成する三次元表面3の場合の走査の第2の例を示している。三次元表面3は、中空による局所変形ゾーン4を含んでいる。それぞれの場合において、様々な測定点O(i,j)を通過するためにマトリクスセンサ1が行うこの移動は、様々な走査線Lに連続的に追従し、取得ステップ12および14は、マトリクスセンサの各移動の後に増分ステップPによって実行される。各走査線Lの終わりに、マトリクスセンサは次の走査線Li+1に移動し、隣接する走査線Lは図4に示すように走査ステップpで区切られている。図3Aでは、走査線Lは互いに平行であり且つマトリクスセンサ1の要素E(m,n)の行に平行な直線であり、増分線Lは互いに平行であり且つマトリクスセンサ1の要素E(m,n)の列に平行な直線である。図3Bでは、走査線Lは、トーラスの大曲率半径の回転軸を中心とする円の一部を形成し、増分線Lは、トーラスの小曲率半径の回転軸を中心とする円の一部を形成している。マトリクスセンサ1とトーラスのそれぞれの寸法を考慮すると、走査線Lはマトリクスセンサ1の要素E(m,n)の行に平行であると考えられ、増分線Lは要素E(m,n)の列に平行であると考えられる。マトリクスセンサ1は、走査中に増分線Lを物理的に追従しないことに留意されたい。それにもかかわらず、マトリクスセンサ1は、走査線Lに沿って規則的な増分ステップPで移動し、増分線Lに沿って各測定点O(i,j)を通過する。図4に示す増分ステップPは、2つの隣接する増分線間の距離を定義している。
当該測定点O(i,j)の時間行画像SLi,jを取得するステップ12は、マトリクスセンサ1の選択行mの各要素E(m,n)に連続的に入射波を放出し、選択行mの各要素のペア{E(m,n);E(m,n)}に関して時間信号SLi,j(m,n,n,t)を生成することを含み、要素E(m,n)は、入射波を放出した行mと列nに位置する要素を示し、要素E(m,n)は、反射波を受信した行mと列nに位置する要素を示す。信号SLi,j(m,n,n,t)は、要素E(m,n)によって受信され要素E(m,n)によって放出された入射波の反射から生じた反射波の経時振幅tを表す。SLi,j(m,t)と表記され略記SLi,jである測定点O(i,j)の時間行画像は、選択行mの様々な要素のペア{E(m,n);E(m,n)}に関して生成されたすべての時間信号SLi,j(m,n,n,t)によって形成される。
当該点O(i,j)の局所二次元行画像Xi,jを構成するステップ13は、対応する時間行画像SLi,j(m,t)から、選択行mの要素E(m,n)を通過する平面P(m)の様々な点における反射波の振幅を決定することを含む。平面P(m)は、マトリクスセンサ1の列に垂直である。特定の実施形態によれば、局所二次元行画像Xi,jは、トータルフォーカシングメソッド(TFM)によって構成される。
当該測定点O(i,j)の時間列画像SCi,jを取得するステップ14は、マトリクスセンサ1の選択列nの各要素E(m,n)によって連続的に入射波を送信し、前記選択列nの各要素のペア{E(m,n);E(m,n)}に関して時間信号SCi,j(m,m,n,t)を生成することを含み、要素E(m,n)は、入射波を放出した行mと列nに位置する要素を示し、要素E(m,n)は、反射波を受信した行mと列nに位置する要素を示す。信号SCi,j(m,m,n,t)は、要素E(m,n)によって受信され要素E(m,n)によって放出された入射波の反射から生じた反射波の経時振幅tを表す。SCi,j(n,t)と表記され略記SCi,jである測定点O(i,j)の時間列画像は、選択列nの様々な要素のペア{E(m,n);E(m,n)}に関して生成されたすべての時間信号SCi,j(m,m,n,t)によって形成される。
当該測定点O(i,j)の局所二次元列画像Yi,jを構成するステップ15は、対応する時間列画像SCi,j(n,t)から、選択列nの要素E(m,n)を通過する平面P(n)の様々な点における反射波振幅を決定することを含む。平面P(n)はマトリクスセンサ1の行に垂直である。特定の実施形態によれば、局所二次元列画像Yi,jは、トータルフォーカシングメソッド(TFM)によって構成される。
所定の測定点O(i,j)に関する時間行画像SLi,jを取得するステップ12と時間列画像SCi,jを取得するステップ14は、選択行の要素によって放出された波と選択列の要素によって放出された波との間の干渉を回避するために連続して実施される。もちろん、これらのステップの順序は逆でもよい。
さらに、時間行または列の画像を取得する各ステップでは、選択行または列の要素のそれぞれによって、入射波が連続的に放出されると考えられてきた。しかしながら、時間行画像SLi,jを取得する各ステップ12は、選択行mの複数の要素による複数の入射波の連続的な放出を含んでもよく、各入射波は所定の入射角θで放出され、さらに、選択行の各要素E(m,n)および各入射波に関する時間信号SLi,j(m,n,θ,t)の生成を含んでいてもよい。入射波は、特に、互いに異なる入射角で放出されてもよい。次に、SLi,j(m,t)とも表記され略記SLi,jである、測定点O(i,j)の時間行画像が、選択行の様々な要素のペアE(m,n)と入射波に関して生成されたすべての時間信号SLi,j(m,n,θ,t)によって形成される。測定点O(i,j)の局所二次元行画像Xi,jを構成するステップ13は、対応する時間行画像SLi,j(m,t)から構成される。同様に、時間列画像SCi,jを取得する各ステップ14は、選択列nの複数の要素による複数の入射波の連続的な放出を含み、各入射波が所定の入射角θで放出され、さらに、選択列の各要素E(m,n)および各入射波に関して時間信号SCi,j(m,n,θ,t)を生成することを含んでいてもよい。入射波は、特に、互いに異なる入射角で放出されてもよい。次に、SCi,j(n,t)とも表記され略記SCi,jである、測定点O(i,j)に関する時間列画像が、選択列の要素の様々なペアE(m,n)および入射波に関して生成されたすべての時間信号SCi,j(m,n,θ,t)によって形成される。当該点O(i,j)に関する局所二次元列画像Yi,jを構成するステップ15は、対応する時間列画像SCi,j(n,t)から構成される。
走査の完全性をチェックするステップ16は、各測定点O(i,j)でマトリクスセンサが移動されたこと、また、これらの点のそれぞれで局所二次元行画像Xi,jと局所二次元列画像Yi,jが構成されていることをチェックすることからなる。
二次元行画像Xを構成するステップ17は、各走査線Lに関して、当該走査線Lのすべての局所二次元画像Xi,jを連結することを含む。すると各二次元行画像Xは、選択行mの要素E(m,n)を通過する平面P(m)の様々な点における反射波振幅を表す。連結は、例えば、平面P(m)の様々な点における反射波振幅を加算することによって実施される。
同様に、二次元列画像Yを構成するステップ18は、各増分線Lに関して、当該増分線Lのすべての局所二次元画像Xi,jを連結することを含む。すると各二次元列画像Yは、選択列nの要素E(m,n)を通過する平面P(n)の様々な点における反射波振幅を表す。連結は、例えば、平面P(n)の様々な点における反射波の振幅を加算することによって行われる。
図4は、マトリクスセンサ1を様々な走査線Lと増分線Lに沿って走査した後の、二次元行Xと列Yの画像の形成を模式的に示す。二次元行画像Xは、部品の表面に局所的に実質的に垂直な面を構成する平面P(m)における入射波の反射の振幅を表している。二次元列画像Yは、部品の表面に対して、および平面P(m)に対して、局所的に実質的に垂直な面を構成する平面P(n)における入射波の反射の振幅を表している。
図5Aおよび図5Bは、図3Bに示され、トーラスの一部を形成する三次元表面3に関して得られた二次元行画像Xの2つの例を示す。これらの画像は、トータルフォーカシングメソッドを用いた上述の方法のステップ11~18によって得られる。図5Aは、局所変形ゾーン4を通過しない走査線Lに関する二次元行画像Xを示し、図5Bは、局所変形ゾーン4を通過する走査線Lに関する二次元行画像Xを示す。
図6Aおよび図6Bは、三次元表面3に関して得られた二次元列画像Yの2つの例を示す。これらの画像は、トータルフォーカシングメソッドを用いた上述の方法のステップ11~18によって得られる。図6Aは、局所変形ゾーン4を通過しない増分線Lに関する二次元列画像Yを示し、図6Bは、局所変形ゾーン4を通過する増分線Lに関する二次元列画像Yを示す。
三次元画像を構成するステップ19は、すべての二次元行画像Xとすべての二次元列画像Yから、これらの二次元画像の様々な平面P(m)およびP(n)を包含する体積の様々な点における反射波振幅を決定することを含む。この場合、体積は、最初の平面と最後の平面P(m)、および最初の平面と最後の平面P(n)によって区切られる。三次元画像は、体積の様々な点におけるこれらの反射波振幅によって形成される。実際には、三次元画像を構成することは、例えば、二次元行画像Xと列画像Yを合成することで行われる。
図7は、図3Bに示した三次元表面3に関して得られた三次元画像の一例を示す。この図では、二次元行画像Xおよび二次元列画像Yが、より具体的には局所変形ゾーン4において、三次元画像を構成するための補完的なデータを提供していることが観察できるが、局所変形ゾーン4については、この行を通過する平面P(m)に垂直ではない平面にあるマトリクスセンサ1の下に配置された三次元表面3の傾斜故に、マトリクスセンサの一行のすべての要素に関して反射波の欠如が観察される。
また、本発明による再構成方法は、三次元画像を構成するステップ19に続いて、この三次元画像を外挿するステップを含んでいてもよく、反射波振幅が、波の振幅が決定された体積の点の間に位置する体積の様々な補完的な点に関して決定される。図8は、図7の三次元画像から得られた外挿三次元画像の一例を示す。
1 マトリクスセンサ
2、3 三次元表面

Claims (12)

  1. 行と列に配置された複数の要素E(m,n)を含むマトリクスセンサ(1)を用いて部品の三次元表面を再構成する方法であって、各要素は、前記部品の方向に入射波を放出でき、また、前記要素によって受信された反射波を表す信号を生成するように配置されており、前記方法(10)が、
    ・前記マトリクスセンサを用いて前記三次元表面(2、3)を走査し(11)、前記マトリクスセンサ(1)を複数の測定点O(i,j)で移動させ、各測定点は、前記マトリクスセンサの前記要素の行に平行な一連の走査線のうち一走査線Lと、前記マトリクスセンサの前記要素の列に平行な一連の増分線のうち一増分線Lとの交点で定義され、
    ・前記各測定点O(i,j)において以下を連続して実施する:
    ○前記マトリクスセンサの選択行mの1つ以上の要素による入射波の放出と、前記選択行の各要素E(m,n)に関する、前記要素によって受信された反射波の経時振幅を表す時間信号の生成とを含む時間行画像SLi,j(m,t)の取得(12)、前記時間行画像SLi,j(m,t)は、前記選択行mの前記要素のすべての前記時間信号によって形成される、
    ○前記マトリクスセンサの選択列nの1つ以上の要素による入射波の放出と、前記選択列の各要素E(m,n)に関する、前記要素によって受信された反射波の経時振幅を表す時間信号の生成を含む時間列画像SCi,j(n,t)の取得(14)、前記時間列画像SCi,j(n,t)は、前記選択列nの前記要素のすべての前記時間信号によって形成される、
    ・各走査線Lに関して、前記走査線Lに対応するすべての前記時間行画像SLi,j(m,t)から、前記選択行mの要素を通過する平面P(m)内の二次元行画像Xを構成し(17)、前記各二次元行画像Xは、前記平面P(m)の様々な点における反射波振幅によって定義され、
    ・各増分線Lに関して、前記増分線Lに対応するすべての前記時間列画像SCi,j(n,t)から、前記選択列nの要素を通過する平面P(n)内の二次元列画像Yを構成し(18)、前記各二次元列画像Yは、前記平面P(n)の様々な点における反射波振幅によって定義され、
    ・前記二次元行画像Xおよび前記二次元列画像Yから、前記部品の三次元画像を構成し(19)、前記三次元画像は、前記二次元行画像Xと前記二次元列画像Yを含む体積の各点における反射波振幅によって定義される、再構成方法。
  2. 前記走査線Lが直線または曲線である、および/または前記増分線Lが直線または曲線である、請求項1に記載の再構成方法。
  3. 前記三次元表面(2,3)の走査が、前記マトリクスセンサ(1)の要素の行の長さよりも小さい走査ステップpで実施される、および/または、前記マトリクスセンサ(1)の要素の列の長さよりも小さい増分ステップP(n)で実施される請求項1または2に記載の再構成方法。
  4. 前記時間行画像SLi,j(m,t)の各取得(12)が、前記選択行mの前記各要素E(m,n)による連続的な入射波の放出を含むとともに、前記要素E(m,n)が、前記入射波を放出した行mと列nに位置する要素を示し、要素E(m,n)が、前記反射波を受信した行mと列nに位置する要素を示している前記選択行mの各要素ペア{E(m,n);E(m,n)}に関して、前記要素E(m,n)によって受信された反射波の経時振幅を表す時間信号SLi,j(m,n,n,t)の生成を含み、前記時間行画像SLi,j(m,t)は、前記選択行mのすべての前記時間信号SLi,j(m,n,n,t)によって形成される、請求項1から3のいずれか1項に記載の再構成方法。
  5. 前記時間列画像SCi,j(n,t)の各取得(14)が、前記選択列nの前記各要素E(m,n)による連続的な入射波の放出を含むとともに、前記要素E(m,n)が、前記入射波を放出した行mと列nに位置する要素を示し、要素E(m,n)が、前記反射波を受信した行mと列nに位置する要素を示している前記選択列nの各要素ペア{E(m,n);E(m,n)}に関して、前記要素E(m,n)によって受信された反射波の経時振幅を表す時間信号SCi,j(m,m,n,t)の生成を含み、前記時間列画像SCi,j(n,t)は、前記選択列nのすべての前記時間信号SCi,j(m,m,n,t)によって形成される、請求項1から4のいずれか1項に記載の再構成方法。
  6. 各二次元行画像Xを構成すること(17)はトータルフォーカシングメソッドを実施することを含み、各二次元列画像Yを構成すること(18)はトータルフォーカシングメソッドを実施することを含む請求項4および5に記載の再構成方法。
  7. 前記時間列画像SLi,j(m,t)の各取得(12)は、前記選択行mの複数の要素による複数の入射波の連続的な放出を含み、各入射波は所定の入射角θで放出され、さらに、前記選択行mの前記各要素E(m,n)および前記所定の入射角θの各入射波に関する時間信号SLi,j(m,n,θ,t)の生成を含み、前記要素E(m,n)は、前記反射波を受信した前記行mおよび前記列nに位置する要素を示し、前記時間列画像SLi,j(m,t)は、前記選択行mのすべての前記時間信号SLi,j(m,n,θ,t)によって形成される、請求項1から3のいずれか1項に記載の再構成方法。
  8. 前記時間列画像SCi,j(n,t)の各取得(140)が、前記選択列nの複数の要素による複数の入射波の連続的な放出を含み、各入射波が所定の入射角θで放出され、さらに、前記選択行の前記各要素E(m,n)および前記所定の入射角θの各入射波に関する時間信号SCi,j(m,n,θ,t)の生成を含み、前記要素E(m,n)は、前記反射波を受信した行mおよび列nに位置する要素を示し、前記時間列画像SCi,j(n,t)は、前記選択列nのすべての前記時間信号SCi,j(m,n,θ,t)によって形成される、請求項1から3および請求項7のうちいずれか1項に記載の再構成方法。
  9. 各二次元行画像Xを構成すること(17)は、平面波イメージング法を実施することを含み、各二次元列画像Yを構成すること(18)は、平面波イメージング法を実施することを含む請求項7および8に記載の再構成方法。
  10. 前記各二次元行画像Xを構成すること(17)は、前記二次元行画像Xの前記平面P(m)内の前記部品のプロファイルを決定するために輪郭を検出することを含む、および/または、前記各二次元列画像Yを構成すること(18)は、前記二次元列画像Yの前記平面P(n)内の前記部品のプロファイルを決定するために輪郭を検出することを含む請求項1から9のいずれか1項に記載の再構成方法。
  11. ・前記各測定点O(i,j)において、様々な選択行mskに関する複数の時間行画像SLi,j(msk,t)の取得を連続的に実施し、前記時間行画像SLi,j(msk,t)の各取得は、前記マトリクスセンサの前記選択行mskの1つ以上の要素E(msk,n)による入射波の放出を含むとともに、前記選択行mskの各要素E(msk,n)に関する、前記要素によって受信された反射波の経時振幅を表す時間信号の生成を含み、各々の前記時間行画像SLi,j(msk,t)は、前記選択行mskの要素のすべての時間信号によって形成され、
    ・前記各走査線Lおよび前記選択行mskそれぞれに関して、前記走査線Lおよび前記選択行mskに対応する前記行のすべての時間画像SLi,j(msk,t)から、前記選択行mskの要素を通過する平面P(msk)内の二次元行画像Xi,kを構成し、各々の前記二次元行画像Xi,kは、前記平面P(msk)の様々な点における反射波振幅によって定義される、請求項1から10のいずれか1項に記載の再構成方法。
  12. ・前記各測定点O(i,j)において、様々な選択列nskに関する複数の時間列画像SCi,j(nsk,t)の取得を連続的に実施し、前記時間列画像SCi,j(nsk,t)の各取得は、前記マトリクスセンサの前記選択列nskの1つ以上の要素による入射波の放出を含むとともに、前記選択列nskの各要素E(m,nsk)に関して、前記要素によって受信された反射波の経時振幅を表す時間信号の生成を含み、各々の前記時間列画像SCi,j(nsk,t)は、前記選択列nskの要素のすべての時間信号によって形成され、
    ・前記各増分線Lおよび前記選択列nskそれぞれに関して、前記増分線Lおよび前記選択列nskに対応するすべての前記時間列画像SCi,j(nsk,t)から、前記選択列nskの要素を通過する平面P(nsk)内の二次元列画像Yj,kを構成し、各々の前記二次元列画像Yj,kは、前記平面P(nsk)の様々な点における反射波振幅によって定義される、請求項1から11のいずれか1項に記載の再構成方法。
JP2021534759A 2018-12-17 2019-12-17 超音波マトリクスセンサを用いた三次元表面の再構成方法 Pending JP2022518668A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1873113 2018-12-17
FR1873113A FR3090123B1 (fr) 2018-12-17 2018-12-17 Procédé de reconstruction d’une surface tridimensionnelle par un capteur matriciel ultrasonore
PCT/FR2019/053100 WO2020128285A1 (fr) 2018-12-17 2019-12-17 Procédé de reconstruction d'une surface tridimensionnelle par un capteur matriciel ultrasonore

Publications (1)

Publication Number Publication Date
JP2022518668A true JP2022518668A (ja) 2022-03-16

Family

ID=66676678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021534759A Pending JP2022518668A (ja) 2018-12-17 2019-12-17 超音波マトリクスセンサを用いた三次元表面の再構成方法

Country Status (6)

Country Link
US (1) US20220042951A1 (ja)
EP (1) EP3877758A1 (ja)
JP (1) JP2022518668A (ja)
CA (1) CA3123111A1 (ja)
FR (1) FR3090123B1 (ja)
WO (1) WO2020128285A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004924B4 (de) * 2013-03-22 2018-05-03 GE Sensing & lnspection Technologies GmbH Bildgebungssystem und -verfahren
FR3013850B1 (fr) 2013-11-22 2017-07-21 Commissariat Energie Atomique Procede de reconstruction d'une surface d'une piece
US9789515B2 (en) * 2014-05-30 2017-10-17 Fujifilm Dimatix, Inc. Piezoelectric transducer device with lens structures
DE102015210700B4 (de) * 2015-06-11 2023-11-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Detektion von Fehlern oder Defekten an Bauteilen unter Einsatz von Ultraschallwandlern

Also Published As

Publication number Publication date
WO2020128285A1 (fr) 2020-06-25
FR3090123B1 (fr) 2021-01-15
CA3123111A1 (fr) 2020-06-25
US20220042951A1 (en) 2022-02-10
FR3090123A1 (fr) 2020-06-19
EP3877758A1 (fr) 2021-09-15

Similar Documents

Publication Publication Date Title
Bulavinov et al. Sampling phased array a new technique for signal processing and ultrasonic imaging
JP6073389B2 (ja) 任意の表面輪郭を有する部材の超音波浸漬検査
JP4679504B2 (ja) 媒体内の不連続部を検出する方法および装置
CN104898123B (zh) 基于角域虚拟源的水浸超声合成孔径聚焦成像方法
JP5731765B2 (ja) 超音波探傷装置および超音波探傷方法
KR101308071B1 (ko) 곡률 쐐기를 가지는 위상배열 초음파 탐촉자의 빔 집속점 보정 방법
KR20100101683A (ko) 초음파 계측 장치 및 초음파 계측 방법
Bulavinov et al. Industrial application of real-time 3D imaging by sampling phased array
AU2017285945A1 (en) Three-dimensional imaging method and system
US11933765B2 (en) Ultrasound inspection techniques for detecting a flaw in a test object
US20160349217A1 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
Robert et al. Surface estimation methods with phased-arrays for adaptive ultrasonic imaging in complex components
Verkooijen et al. Sampling phased array-a new technique for ultrasonic signal processing and imaging
CN117030856A (zh) 一种动态聚焦相控阵超声检测方法、装置、设备及介质
JP2022518668A (ja) 超音波マトリクスセンサを用いた三次元表面の再構成方法
JP5959677B2 (ja) 超音波探傷装置および超音波探傷方法
Krieg et al. SAFT processing for manually acquired ultrasonic measurement data with 3D smartInspect
US20210096246A1 (en) Method and system for generating a merged b-scan for assisted ultrasonic inspection flaw screening
Sutcliffe et al. Virtual source aperture image processing methods for non-destructive testing
Hoyle et al. Virtual Source Aperture with Real Time Focussing of Known Geometry Through Dual Layered Media
Rodrigues Filho et al. Global total focusing method through digital twin and robotic automation for ultrasonic phased array inspection of complex components
Schickert Three-dimensional ultrasonic imaging of concrete elements using different SAFT data acquisition and processing schemes
JP2017500553A (ja) 断片の表面を再構築する方法
JP2016161423A (ja) 超音波探傷装置及び方法
Hoyle et al. Virtual source aperture imaging for the detection and sizing of vertically aligned flaws in non-destructive testing