JP2022509520A - 電力節約のための無線リンクモニタリング強化 - Google Patents

電力節約のための無線リンクモニタリング強化 Download PDF

Info

Publication number
JP2022509520A
JP2022509520A JP2021548542A JP2021548542A JP2022509520A JP 2022509520 A JP2022509520 A JP 2022509520A JP 2021548542 A JP2021548542 A JP 2021548542A JP 2021548542 A JP2021548542 A JP 2021548542A JP 2022509520 A JP2022509520 A JP 2022509520A
Authority
JP
Japan
Prior art keywords
scaling factor
rlm
circuit
evaluation period
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021548542A
Other languages
English (en)
Other versions
JP7303890B2 (ja
Inventor
マナサ ラガヴァン
フア リ
ジエ クイ
ホン フ
ヤン タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of JP2022509520A publication Critical patent/JP2022509520A/ja
Application granted granted Critical
Publication of JP7303890B2 publication Critical patent/JP7303890B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Figure 2022509520000001
無線リンクモニタリング(RLM)評価期間及び層1(L1)指示間隔強化のためのシステム、装置、方法、及びコンピュータ可読媒体が提供される。ユーザ機器(UE)は、スケーリングファクタを使用して、RLM評価期間及び/又はL1指示間隔をスケーリングする。異なるスケーリングファクタは、異なるシナリオ、条件、又は基準に使用されることができる。同じ又は異なるスケーリングファクタは、RLM評価期間及びL1指示間隔に使用されてもよい。スケーリングファクタ又はスケーリングファクタインデックスは、上位層シグナリングによってUEにシグナリングされてもよい。他の実施形態も記載され、且つ/又は特許請求され得る。

Description

(関連出願)
本出願は、2018年11月2日に出願された米国特許仮出願第62/755,188号の優先権を主張するものであり、その内容全体が参照により本明細書に組み込まれる。
本出願の様々な実施形態は、一般に、無線通信の分野に関し、具体的には、無線リンクモニタリングを強化することに関する。
第5世代(5G)又は新無線(NR)システムと称される、次世代無線通信システムは、ユーザ機器が、より上位層への同期外及び同期内状態を示す目的でダウンリンク無線リンク品質をモニタリングする無線リンクモニタリング機能を含む。報告された同期外及び同期内状態は、無線リンク障害を検出するために使用される。
いくつかの実施形態に係るネットワークのシステムのアーキテクチャを示している。 様々な実施形態に係る例示的なインフラストラクチャ機器を示している。 様々な実施形態に係るプラットフォームの例を示している。 本明細書で論じる実施形態を実践するために使用されることができる通信回路の例を示している。 本明細書で論じる様々な実施形態を実践するための例示的なプロセスを示している。 本明細書で論じる様々な実施形態を実践するための例示的なプロセスを示している。 本明細書で論じる様々な実施形態を実践するための例示的なプロセスを示している。
本明細書で論じる実施形態は、ユーザ機器の電力を節約する又は浪費しないために、無線リンクモニタリング(RLM)評価期間及び層1(L1)指示間隔を強化することを提供する。様々な実施形態において、ユーザ機器(UE)は、スケーリングファクタを使用して、RLM評価期間及び/又はL1指示間隔をスケーリングする。異なるスケーリングファクタは、例えば、UEのモビリティ又はUEのカバレッジ、無線条件、及び/又は同様のものに基づいて、異なるシナリオに使用されることができる。同じ又は異なるスケーリングファクタは、RLM評価期間及びL1指示間隔に使用されてもよい。スケーリングファクタ又はスケーリングファクタインデックスは、上位層シグナリングによってUEにシグナリングされてもよい。スケーリングファクタインデックスは、UEがスケーリングファクタの数値を見つけるか又は他の方法で決定するために使用されることができるインデックスである。他の実施形態も記載され、且つ/又は特許請求され得る。
ここで図1を参照すると、様々な実施形態に係るネットワークのシステム100の例示的なアーキテクチャが示されている。3GPP技術仕様によって提供される第5世代(5G)又は新無線(NR)システム規格又はロングタームエボリューション(LTE)システム規格と連携して動作する例示的なシステム100について、以下の説明が提供される。しかしながら、例示的な実施形態は、この点に関して限定されず、説明される実施形態は、将来の3GPPシステム(例えば、第6世代(6G))システム、IEEE802.16プロトコル(例えば、Wireless Metropolitan Area Network(WMAN)、Worldwide Interoperability for Microwave Access(WiMAX)など)、又は同様のものなど、本明細書に記載の原理から恩恵を受ける他のネットワークに適用することができる。
図1に示すように、システム100は、ユーザ機器(UE)101a及びUE 101b(「UEs101」又は「UE101」と総称される)を含む。UE101は、無線通信インタフェースなどの無線通信能力を有する任意のデバイスであり、通信ネットワーク内のネットワークリソースのリモートユーザを説明する。この例では、UE101は、スマートフォンとして例示されるが、消費者タブレットコンピュータ、ウェアラブルデバイス、デスクトップコンピュータ、ラップトップコンピュータ、車載インフォテインメント(IVI)デバイス、ヘッドアップディスプレイ(HUD)デバイス、モノのインターネット(IoT)デバイス、埋め込みシステム若しくはマイクロコントローラ、ネットワーク化された若しくは「スマート」装置、及び/又は同様のものなど、任意のモバイル又は非モバイルコンピューティングデバイスを含むことができる。UE101は、ベースバンド回路、メモリ回路、高周波(RF)回路、及びインタフェース回路(例えば、入出力(I/O)インタフェース)などの様々なハードウェア要素を含み、それらの一部又は全ては、好適な相互接続(IX)技術を介して互いに結合されてもよい。RF回路は、非固体媒体を通じた変調電磁放射を使用して無線ネットワークとの通信を可能にするように構成された様々なハードウェア要素(例えば、スイッチ、フィルタ、増幅器、デジタル信号プロセッサ(DSP)など)を含む。電子素子は、受信信号経路(又は受信(Rx)RFチェーン)として配置されて、受信されたRF信号をダウンコンバートし、ベースバンド回路にベースバンド信号を提供し、送信信号経路として配置されて、ベースバンド回路によって提供されるベースバンド信号をアップコンバートし、送信のためのフロントエンドモジュールを介してアンテナアレイにRF出力信号を提供することができる。ベースバンド回路及びRF回路は、UE101が無線アクセスネットワーク(RAN)110と接続又は通信可能に結合することを可能にする。様々な実施形態では、UE101は、複数のパネル又は複数のアンテナアレイを有してもよく、複数のDCIベースのマルチTRP/パネル送信において、異なるTRP111から複数の独立してスケジュールされたデータストリームを受信するように構成される。これらの態様は、以下においてより詳細に説明される。
UE101bは、接続107を介してアクセスポイント(AP)106にアクセスするように構成されるように示されている。接続107は、任意のIEEE802.11プロトコルと一致するローカル無線エリアネットワーク(WLAN)接続を含むことができ、AP106は、WiFi(登録商標)ルータ、ゲートウェイ装置などであってもよい。本例では、AP106は、図示するように、ワイヤレスシステムのコアネットワークに接続せずにインターネットに接続される(以下で更に詳細に説明する)。様々な実施形態では、UE101b、RAN110、及びAP106は、LTE-WLANアグリゲーション(LWA)動作及び/又はIPsec Tunnel(LWIP)動作を有するLTE/WLAN無線レベル統合を利用するように構成されてもよい。
RAN110は、無線アクセス技術(RAT)を実装するRANノード111のセットであり、本明細書で使用される場合、用語「RAT」は、NR、E-UTRA、WiFi/WLAN、及び/又は同様のものなどの無線アクセスに使用される技術の種類を指す。RAN110内のRANノード111のセットは、インタフェース112を介して互いに接続され、インタフェース113を介してCN120に接続される。実施形態では、RAN110は、システム100がUTRAN若しくはGERANシステムであるとき、地上波無線アクセスネットワーク(UTRAN)又はグループスペシャルモバイル(GSM)/GSM用の拡張データレート(EDGE)RAN(GERAN)とすることができ、システム100がLTE若しくは4Gシステムである場合には、進化型UTRAN(E-UTRAN)とすることができ、又はシステム100がNR/5Gシステムであるとき、次世代(NG)RAN若しくは5G RANとすることができる。UE101は、接続(又はチャネル)103及び104を各々利用し、これらは、各々、物理通信インタフェース又は層を含む。本明細書で使用される場合、用語「チャネル」又は「リンク」は、データ又はデータストリームを通信するために使用される有形又は非有形のいずれかの伝送媒体を指す。更に、本明細書で使用される場合、用語「リンク」は、情報を送受信する目的で、RATを介した2つのデバイス間の接続を指す。図1では、接続103及び104は、通信可能な結合を可能にするためのエアインタフェースとして示されており、セルラー(POC)、UMTS、LTE、5G/NR、及び/又は同様のものを介したGSM、符号分割多重アクセス(CDMA)、Push-Talk(PTT)及び/又はPPTなどのセルラー通信プロトコルと一致することができる。UE101はまた、1つ以上の物理的及び/又は論理SLチャネルを含む、近接サービス(ProSe)又はサイドリンク(SL)インタフェース105を介してデータを直接交換してもよい。
RAN110は、接続103、104を可能にする1つ以上のRANノード111a及び111b(「RANノード111」又は「RANノード111」と総称される)を含む。RANノード111は、ネットワーク(例えば、コアネットワーク(CN)120)と1人以上のユーザ(例えば、UE101)との間のデータ及び/又は音声接続のための無線ベースバンド機能を提供するインフラストラクチャ機器である。RANノード111は、UMTSシステムにおけるNodeB111、LTEシステムにおける進化型NodeB(eNB)111、次世代NodeB(gNB)111、又は5G/NRシステムにおける次世代eNB(ng-eNB)、ブイ-ツー-エックス(V2X)実装のためのロードサイドユニット(RSU)などと称されることができる。いくつかの実施形態では、各RANノード111は、送信/受信ポイント(TRP)とすることができる。他の実施形態では、各RANノード111は、複数のアンテナ素子を有してもよく、各アンテナ素子は、個別のTRPとすることができる。
RANノード111は、地理的エリア(例えば、セル)内にカバレッジを提供する、基地局(例えば、地上アクセスポイント)又は衛星ステーションを含むことができる。RANノード111は、マクロセル基地局などの1つ以上の専用の物理デバイス、及び/又は、マクロセルと比較してより小さいカバレッジ領域、より小さいユーザ容量、若しくはより高い帯域幅を有する、フェムトセル、ピコセル、又は他の同様のセルを提供するための低電力基地局として実装されてもよい。RANノード111のいずれかは、エアインタフェースプロトコルを終結させることができ、UE101の第1の接触点とすることができる。いくつかの実施形態では、RANノード111のいずれかは、限定されないが、無線ベアラ管理、UL及びDL動的無線リソース管理、並びにデータパケットスケジューリング、並びにモビリティ管理などの無線ネットワークコントローラ(RNC)機能を含むRAN110のための様々な論理機能を果たすことができる。
いくつかの実施形態では、RANノード111の全て又は一部は、仮想ネットワーク(例えば、クラウドRAN(CRAN)、仮想ベースバンドユニットプール(vBBUP)など)の一部としてサーバコンピュータ上で実行される1つ以上のソフトウェアエンティティとして実装されてもよい。これらの実施形態では、RANノード111は、異なるプロトコルエンティティが異なる要素によって動作されるRAN機能分割を実装することができる。本明細書で使用される場合、用語「要素」は、所与のレベルの抽象化で不可分であり、明確に定義された境界を有するユニットを指す。1つ以上のRANノード111は、各々のFlインタフェース(図1に示されていない)を介して集中ユニット(CU)に接続された個別の分散ユニット(DU)を表すことができる。これらの実装では、gNB-DUsは、1つ以上のリモート無線ヘッド又はRFEMを含んでもよく、gNB-CUは、RAN110(図示せず)内に位置するサーバによって、又はCRAN/vBBUPと同様の方法でサーバプールによって動作されてもよい。
RANノード111は、インタフェース112を介して互いに通信するように構成されることができる。インタフェース112は、RANノード111間でユーザプレーンデータを搬送するためのユーザプレーンインタフェースと、RANノード111間で制御信号伝達を搬送するための制御プレーンインタフェースとを含んでもよい。インタフェース112は、システム100がLTEシステムであるとき、X2インタフェース112であってもよく、インタフェース112は、システム100が5G/NRシステムであるとき、Xnインタフェース112であってもよい。いくつかの実施形態では、インタフェース112は、無線バックホール接続であってもよい。
実施形態では、UE101は、限定されないが、(例えば、DL通信のための)OFDMA通信技術又は(例えば、ULリンク及びProSe/SL通信のための)シングルキャリア周波数分割多元接続(SC-FDMA)通信技術などの様々な通信技術に係るマルチキャリア通信チャネルを介して、直交周波数分割多重(OFDM)通信信号を用いて、互いに又はRANノード111のいずれかと通信するように構成されることができるが、実施形態の範囲は、この点に関して限定されるものではない。OFDM信号は、複数の直交サブキャリアを含むことができる。
DL及びUL送信は、10msの持続時間を有するフレームに編成されてもよく、各フレームは、10個の1msのサブフレームを含み、各サブフレームは、整数のスロット数を含む。時間周波数無線リソースグリッドは、対応するスロット内のDL又はUL内の物理的リソースを示すために使用されることができる。DLリソースグリッドの各列及び各行は、各々1つのOFDMシンボル及び1つのOFDMサブキャリアに対応し、ULリソースグリッドの各列及び各行は、各々1つのSC-FDMAシンボル及び1つのSC-FDMAサブキャリアに対応する。所与のアンテナポートp}、サブキャリア間隔(SCS)構成μ、及び送信方向(DL又はUL)について1つのリソースグリッドが存在する。サブキャリアの周波数位置は、そのサブキャリアの中心周波数を指す。アンテナポートp及びSCS構成μについてのリソースグリッド内の各要素は、リソース要素(RE)と呼ばれ、(k,l)p,μによって一意に識別され、kは、周波数領域内のインデックスであり(例えば、kは、基準又は基準点に対するサブキャリアインデックスである)、Iは、いくつかの基準点に対する時間領域内のシンボル位置を指す(例えば、Iは、基準又は基準点に対するOFDMシンボルインデックスである)。RE(k,l)p,μは、物理リソース及び複素値
Figure 2022509520000002
に対応する。換言すれば、
Figure 2022509520000003
は、アンテナポートp及びSCS構成μのRE(k,l)の値である。アンテナポートは、アンテナポート上のシンボルが搬送されるチャネルが、同じアンテナポート上の別のシンボルが搬送されるチャネルから推測されることができるように画定される。1つのアンテナポート上のシンボルが搬送されるチャネルの大規模特性が、他のアンテナポート上のシンボルが搬送されるチャネルから推測されることができる場合、2つのアンテナポートは、擬似コロケート(QCLed)であると言われる。大規模特特性は、遅延拡散、ドップラースプレッド、ドップラーシフト、平均ゲイン、平均遅延、及び空間Rxパラメータのうちの1つ以上を含む。
REの集合は、通常、周波数領域内の
Figure 2022509520000004
個の連続するサブキャリアとして定義されるリソースブロック(RB)を構成する。サブキャリア構成μの物理RB(PRB)ブロックは、帯域幅部分(BWP)内に定義され、0から
Figure 2022509520000005
で番号付けされ、ここで、iは、BWPの数である。仮想RB(VRB)は、BWP内に定義され、0から
Figure 2022509520000006
で番号付けされ、ここで、iは、BWPの数である。
BWPは、所与のキャリア上のBWPiにおける所与のヌメロロジμiの連続した共通のRBのサブセットである。UE101は、単一のDL BWPが所与の時間にアクティブである状態で、DL内で最大4つのBWPを有するように構成されることができる。UE101は、アクティブBWPの外側でPDSCH、PDCCH、又はCSI-RS(RRMを除く)を受信することが予期されない。UE101は、単一のUL BWPが所与の時間にアクティブである状態で、UL内で最大4つのBWPを有するように構成されることができる。UE101は、アクティブBWPの外部でPUSCH又はPUCCHを送信しない。アクティブセルの場合、UE101は、アクティブBWPの外側でSRSを送信しない。
共通のRBは、SCS構成μの周波数領域において0から上方に番号付けされる。SCS構成μの共通のRB 0のサブキャリア0の中心は、「点A」と一致する。周波数領域における共通のRB番号
Figure 2022509520000007
とSCS構成μのリソース要素(k,l)との間の関係は、
Figure 2022509520000008
によって与えられ、kは、k=0が点Aを中心とするサブキャリアに対応するように、点Aに対して定義される。
点Aは、RBグリッドの共通基準点として機能し、全ての他の事例について、パラメータoffsetToPointA PCell DL及びabsoluteFrequencyPointAから取得される。パラメータoffsetToPointAは、FR1については15kHz、FR2については60kHzのSCSを仮定したRBの単位で表される、上位層パラメータsubCarrierSpacingCommonによって提供されるSCSを有し且つ初期セル選択のためにUE101によって使用されるSS/PBCHブロックと重なる、最低RBの点Aと最低サブキャリアとの間の周波数オフセットを表す。他の全ての場合のパラメータabsoluteFreqUEncyPointAは、absoluteFreqUEncyPointAが絶対放射周波数チャネル番号(ARFCN)で表される点Aの周波数位置を表す。
RB、PRB、及び/又は個々のREを使用して搬送される、いくつかの異なる物理チャネル及び物理信号が存在する。物理チャネルは、上位層から生じる情報を搬送する1組のREに対応する。物理チャネルは、物理ULチャネル(例えば、物理UL共用チャネル(PUSCH)、物理UL制御チャネル(PUCCH)、物理ランダムアクセスチャネル(PRACH)など)及び物理DLチャネル(例えば、物理DL共有チャネル(PDSCH)、物理DL制御チャネル(PDCCH)、物理ブロードキャストチャネル(PBCH)など)を含む。物理信号は、物理層(PHY)によって使用されるが、上位層から生じる情報を搬送しない。物理信号は、物理UL信号(例えば、復調基準信号(DMRS又はDMRS)、位相追跡基準信号(PTRS)、サウンディング基準信号(SRS)など)及び物理DL信号(例えば、DMRS、PTRS、チャネル状態情報基準信号(CSI-RS)、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)など)を含む。
PDSCHは、UE101へのユーザデータ及び上位層シグナリングを搬送し、PDCCHは、PDSCHを受信するためのDLリソース割り当て情報を搬送する。各UE101は、制御情報(例えば、ダウンリンク制御情報(DCI))に対する上位層シグナリングによって設定された1つ以上のアクティブ化されたサービングセルに対するPDCCH候補のセットをモニタリングし、モニタリングは、1つ以上のモニタリングされるDCIフォーマット(例えば、3GPP TS 38.212 v15.3.0(2018-09)のセクション5.3.3において記載されているDCIフォーマット0から6-2)(以下、「TS 38.212 v15.3.0」)、TS 38.212 v15.3.0のセクション7.3において記載されているようなDCIフォーマット0_0から2_3など)に従ってPDCCH候補のセットを復号しようとすることを暗示する。DCIは、とりわけ、他の情報/コマンドの中でも、例えば、変調及び符号化フォーマット、リソース割り当て、及びHARQ情報を含むDL割り当て及び/又はULスケジューリングの許可を含む。各UE101は、UE又はセル固有サーチスペース(LTE/4Gについて)に従って、1つ以上の構成されたモニタリング機会におけるPDCCH候補の各々のセットをモニタリングし(又は、復号しようと試みる)、又は対応するサーチスペース構成(NR/5Gについて)に従って、1つ以上の構成された制御リソースセット(CORESET)における1つ以上の構成されたモニタリング機会におけるPDCCH候補の各々のセットをモニタリングする(又は復号しようと試みる)。CORESETは、1から3個のOFDMシンボルの時間持続時間を有するPRBのセットを含む。REG及びCCEは、1組のREGを含む各CCEを有するCORESET内で定義される。インターリーブ及び非インターリーブCCE-REGマッピングは、CORESET内でサポートされる。PDCCHを搬送する各REGは、それ自体のDMRSを搬送する。
PDSCH送信は、DCIフォーマット1_0及びDCIフォーマット1_1によってスケジュールされる。DCIフォーマット1_0は、1つのセルにおけるPDSCHのスケジューリングに用いられ、DCIフォーマット1_1は、1つのセルにおけるPDSCHのスケジューリングに用いられる。DCIフォーマット1_0は、とりわけ、周波数領域リソース割り当て、時間領域リソース割り当て、及びTS 38.212 v15.3.0において記載される他のフィールド/要素を含む。DCIフォーマット1_1は、とりわけ、帯域幅部分指示器、周波数領域リソース割り当て、時間領域リソース割り当て、アンテナポートを含み、値1、2、及び3のデータを有しないCDMグループの数は、各々、CDMグループ{0}、{0,1}、及び{0,1,2}を指し、アンテナポート{p0,・・・,pv-1}は、TS 38.212 v15.3.0の表7.3.1.2.2-1/2/3/4によって与えられたDMRSポート及びTS 38.212 v15.3.0に記載されている他のフィールド/要素の順序に従って決定される。
UE101とRAN110との間の無線インタフェース103、104は、無線リソース制御(RRC)プロトコルによって管理される。RRCは、とりわけ、RRC接続制御、測定構成、及び報告を含む機能を提供する。RRC接続制御は、とりわけ、ページング手順、無線構成制御、及びRRC接続確立、修正、中断、再開、及び解放を含む。RRC接続確立の間、ネットワーク(NW)は、測定レポート又は他の同様の機能を実行するようにUE101を構成してもよい。RRCは、RRC_CONNECTED、RRC INACTIVE、及びRRC IDLEを含む様々なUE101の動作状態を含む。UE101は、RRC接続が確立されていないときにRRC_IDLEにあり、UE101は、接続が確立されているときにRRC_CONNECTED及びRRC_INACTIVEにある。RRC_CONNECTEDのUE101は、ユニキャストデータを転送し、共有データチャネルに関連付けられた制御チャネルをモニタリングして、UE101に対してデータがスケジュールされているかどうかを判定し、チャネル品質及びフィードバック情報を提供し、隣接セル測定及び測定報告を実行し、システム情報(SI)を取得する。
RRC接続制御機能は、とりわけ、無線リンク障害(RLF)機能、リンク回復機能、ビーム障害検出(BFD)機能、及びビーム障害回復(BFR)機能を含む。RRC接続では、UE101は、基準信号(例えば、SSB、CSI-RSなど)及びNWによって構成される信号品質閾値に基づいて、アクティブBWP内でRLMを実行する。SSBベースRLMは、初期DL BWPに関連付けられたSSBに基づくものであり、初期DL BWP及び初期DL BWPに関連付けられたSSBを含むDL BWPに対してのみ構成されることができる。他のDL BWPについては、RLMは、CSI-RSに基づいて実行される。UE101は、以下の基準のうちの1つが満たされたときにRLFを宣言する:物理層からの無線の問題が示された後にタイマーの有効期限が開始したとき(タイマーが切れる前に無線の問題が回復した場合、UEはタイマーを停止する)、ランダムアクセス(RA)手順の失敗が検出されたとき、及び/又は無線リンク制御(RLC)障害の検出時。RLFが宣言された後、UE101は、RRC_CONNECTEDに留まり、好適なセルを選択し、RRC接続再確立手順を開始し、及び/又はRLFが宣言された後の特定の時間内に好適なセルが見つからなかった場合、RRC_IDLEに移行する。
RRC_CONNECTEDにおける物理層の問題を検出するために、UE101は、タイマーT300、T301、T304、T311及びT319のいずれも実行されていない間に、下位層からSPCellについてのN310個の連続的な「同期外」指示を受信すると、対応する特殊セル(SpCell)のタイマーT310を開始する。ここで、「N310」は、下位層から受信したSpCellの連続する「同期外」指示の最大数であり、カウンタN310の値も指すこともできる。物理層の問題の回復のために、タイマーT310が実行されている間に、SpCellについてのN311個の連続した「同期内」指示を受信すると、UE101は、対応するSpCellについてのタイマーT310を停止する。ここで、「N311」は、下位層から受信したSpCellの連続する「同期内」指示の最大数であり、カウンタN311の値も指すこともできる。この場合、UE101は、明示的なシグナリングなしにRRC接続を維持し、UE101は、無線リソース構成全体を維持する。「同期内」又は「同期外」のいずれもが、L1によって報告されていない期間は、連続する「同期内」又は「同期外」指示の数の評価に影響を与えない。
RLFの検出のために、タイマーT310がPCellにおいて終了すると、MCG MAC層インスタンスからランダムアクセス問題指示を受信すると、タイマーT300、T301、T304、T311及びT319のいずれも実行されていない。又は、最大数の再送信に到達したこと、及び対応する論理チャネルallowedServingCellsのみがSCellを含む旨のMCG RLC層インスタンスからの指示を受信すると、UE101は、3GPP TS 38.331 v15.3.0(2018-09)(以下、「TS 38.331」)のセクション5.7.5において規定されたような障害情報手順を開始して、指示がMCG RLC層インスタンスからの場合にRLCの障害を報告し、CA重複が構成及びアクティブ化される。そうでなければ、UE101は、MCGについて検出されるRLFを検討し、アクセス層(AS)セキュリティがアクティブ化されていない場合には、TS 38.331のセクション5.3.11において規定されたように、RRC_IDLEに進むとアクションを実行し、ASセキュリティがアクティブ化されているがSRB2及び少なくとも1つのDRBが設定されていない場合には、「RRC接続障害」を引き起こし、又はTS 38.331のセクション5.3.11において規定されたように、RRC_IDLEに進むとアクションを実行し、又はTS 38.331のセクション5.3.7において規定されたように、接続再確立手順を開始する。
タイマーT310がPSCellにおいて満了すると、SCG MAC層インスタンスからランダムアクセス問題指示を受信すると、又は、最大数の再送信に到達したこと、及び対応する論理チャネルallowedServingCellsのみがSCellを含む旨のSCG RLC層インスタンスからの指示を受信すると、UE101は、38.331のセクション5.7.5において規定されたように障害情報手順を開始して、その指示がSCG RLC層インスタンスからのものの場合、RLC障害を報告し、CA重複が構成及びアクティブ化され、SCGについて検出されるRLFを検討し、38.331のセクション5.7.3において規定されたSCG障害情報手順を開始して、SCG RLFを報告する。
BFDに関しては、RANノード111(例えば、gNB)は、BFD基準信号(例えば、SSB、CSI-RSなど)をUE101に設定し、UE101は、設定されたタイマーが満了する前に、物理層(PHY)からのいくつかのビーム障害インスタンス指示が設定された閾値に到達すると、ビーム障害を宣言する。SSBベースのBFDは、初期DL BWPに関連付けられたSSBに基づくものであり、初期DL BWP及び初期DL BWPに関連付けられたSSBを含むDL BWPに対してのみ構成されることができる。他のDL BWPについては、BFDは、CSI-RSに基づいて実行される。ビーム障害が検出された後、UE101は、PCellに対してRA手順を開始することによってBFR手順をトリガし、適切なビームを選択してBFRを実行する(例えば、gNB111が特定のビームに対して専用のRAリソースを提供した場合、それらは、UE101によって優先される)。RA手順が完了すると、BFRは完了したと考えられる。
RRC_INACTIVE及びRRC_IDLEにおけるUE101はまた、他の機能の中でも、隣接セル測定及びセル(再)選択を実行する。セル選択は、「セルにキャンプオン」を含み、UE101は、適切なセルを探索し、利用可能なサービスを提供するために適切なセルを選択し、適切なセルの制御チャネルをモニタリングする。セル選択プロセスは、3GPP TS 38.304 v15.0.0(2018-06)(以下、「TS 38.304」)に記載されるように行われる。セル再選択は、UE101がセル再選択基準に従ってより適切なセルを見つけ、より適切なセルを再選択及びキャンプオンすることを含む。UE101が、セル上のCamped Normally状態又はCamped on Any Cell状態のいずれかにあるとき、UE101は、サービングセルによって指示された周波数内、周波数間、及びRAT間セルを検出、同期、及びモニタリングしようと試みる。UE101の測定活動はまた、UE101がその測定活動を制限することを可能にするTS 38.304内に定義された測定規則によって制御される。
セル(再)選択プロセスは、速度依存性であってもよく、UE101は、UE101が移動している速さ又は速度に基づいて実行することができる再選択の数に制限されてもよい。これらの実施形態では、UE101は、それらの各々のモビリティ状態を推定することができる。UEのモビリティ状態は、頻繁なセル(再)選択及びハンドオーバー(HOs)を回避するために使用されることができ、他の特徴を強化するために使用されることができる。UE101は、選択された期間又は時間ウィンドウ内でハンドオーバー及び/又はセル(再)選択の数をカウントすることによって、それらの各々のモビリティ状態を推定することができる。この点に関して、UE101は、時間ウィンドウのNW及び各々のモビリティ状態を判定するために使用されるカウント閾値から、指示又は構成を受信することができる。いくつかの実施形態では、モビリティ状態推定は、UE101の以前のハンドオーバー又は(再)選択の履歴を追跡することによってNWによって実施されることができる。それらの各々のモビリティ状態を推定又は判定するためにUE101(又はNW)によって使用される処理又は手順は、モビリティ状態推定(MSE)と称されることができる。
モビリティ状態は、通常のモビリティ状態、中程度のモビリティ状態、及び高いモビリティ状態を含むことができる。前述のカテゴリのうちの1つへのUEのモビリティ状態の分類は、サービングセルのシステム情報ブロードキャストで送信される、TCRmax、NCR_H、NCR_M、及びTCRmaxHystを含むモビリティ状態パラメータに基づいてもよい。TCRmaxは、モビリティ状態(例えば、前述した期間又は時間ウィンドウ)に入る基準を評価するための持続時間であり、NCR_Hは、高いモビリティ状態に入るためのセル(再)選択の閾値数であり、NCR_Mは、媒体モビリティ状態に入るためのセル(再)選択の数であり、TCRmaxHystは、基準を評価して通常のモビリティ状態に入るための追加の持続時間(期間、時間ウィンドウなど)である。例えば、UE101は、期間TCRmaxの間のセル再選択の数がNCR_Mを超えているがNCR_Hを超えないときに、そのモビリティ状態を媒体モビリティと推定することができる。別の例では、UE101は、期間TCRmaxの間のセル再選択の数がNCR_Hを超えるときに、そのモビリティ状態を高モビリティ状態と推定することができる。UE101は、UEのモビリティ状態が媒体又は高モビリティ状態のうちのいずれでもないときに、そのモビリティ状態を通常のモビリティ状態と推定することができる。加えて、UE101は、同じセルが1つの他の再選択の直後に再選択される場合、同じ2つのセル間の連続する再選択をモビリティ状態検出基準にカウントしなくてもよい。UE101が高モビリティ状態の基準を検出した場合、UE101は、高モビリティ状態に移行するか又は遷移する。UE101が中程度のモビリティ状態の基準を検出した場合、UE101は、媒体モビリティ状態に移行するか又は遷移する。そうでなければ、期間TCRmaxHystの間に媒体又は高モビリティ状態のいずれかの基準が検出されない場合、UE101は、通常のモビリティ状態に移行するか又は遷移する。
RAN110は、RAN110を介してCN120に接続された顧客/加入者(例えば、UE101のユーザ)に様々なデータ及び電気通信サービスを提供するように構成された1つ以上のネットワーク要素122を含むコアネットワーク(CN)120に通信可能に結合されることが示されている。本明細書で使用される場合、用語「ネットワーク要素」は、有線又は無線通信ネットワークサービスを提供するために使用される物理的又は仮想化された機器及び/又はインフラストラクチャを指し、ネットワーク化されたコンピュータ、ネットワークハードウェア、ネットワーク機器、ネットワークノード、ルータ、スイッチ、ハブ、ブリッジ、無線ネットワークコントローラ(RNC)、RANデバイス、RANノード、ゲートウェイ、サーバ、クラウドノード、仮想ネットワーク機能(VNF)、NFVインフラストラクチャ(NFVI)、及び/又は同様のものと同義と考えることができるか、及び/又はネットワーク化されたコンピュータと称されることができる。ネットワーク要素122は、本明細書において記載されるものなど、様々なCN要素(例えば、ネットワーク機能(NF)及び/又はアプリケーション機能(AF))を実装することができる1つ以上のサーバコンピュータシステムであってもよい。CN120の構成要素は、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取って実行するための構成要素を含む、1つの物理ノード又は別個の物理ノードで実装されてもよい。いくつかの実施形態では、ネットワーク機能仮想化(NFV)は、1つ以上のコンピュータ可読記憶媒体に記憶された実行可能命令を介して、任意の又は全てのネットワークノード機能を仮想化するために利用されることができる(以下に更に詳細に記載される)。CN120の論理インスタンス化は、ネットワークスライスと称されてもよく、CN120の一部の論理インスタンス化は、ネットワークサブスライスと称されることができる。本明細書で使用される場合、用語「インスタンス」、「インスタンス化」などは、インスタンスの作成を指し、「インスタンス」は、例えば、プログラムコードの実行中に発生することができるオブジェクトの具体的な発生を指す。NFVアーキテクチャ及びインフラストラクチャは、1つ以上のNFを仮想化するために使用されてもよく、代替的に専有ハードウェアによって実行されて、業界標準のサーバハードウェア、記憶ハードウェア、又はスイッチの組み合わせを含む物理的リソース上に仮想化されてもよい。換言すれば、NFVシステムを使用して、1つ以上のNF/AFの仮想又は再構成可能な実装を実行することができる。
CN120がLTEシステムの進化型パケットコア(EPC)である実施形態では、1つ以上のネットワーク要素122は、1つ以上のモビリティ管理エンティティ(MME)、サービングゲートウェイ(S-GW)、PDNゲートウェイ(P-GW)、ホーム加入者サーバ(HSS)、ポリシー制御及びチャージングルール機能(PCRF)、及び/又は他の同様のLTE CN要素を含むか、又は動作してもよい。これらの実施形態では、E-UTRAN110は、S1インタフェース113を介してEPC120と接続されてもよい。これらの実施形態では、S1インタフェース113は、2つの部分に、すなわち、RANノード111とS-GWとの間のトラフィックデータを搬送するためのS1-Uインタフェース114、及びRANノード111とMMEの間のシグナリングインタフェースであるS1-MMEインタフェース115と、に分割される。加えて、EPC120内のP-GWは、インターネットプロトコル(IP)インタフェース125を介してEPC120とパケットデータネットワーク(PDN)130を含むネットワークなどの外部ネットワークとの間でデータパケットをルーティングすることができる。PDN130は、オペレータ外部のパブリック、プライベートPDN(例えば、企業ネットワーク、クラウドコンピューティングサービスなど)、又はイントラオペレータPDN(例えば、IMS及び/又はIP-CANサービスをプロビジョニングするための)であってもよい。
CN120が5GC 120である実施形態では、ネットワーク要素122は、認証サーバ機能(AUSF)、アクセス及びモビリティ管理機能(AMF)、セッション管理機能(SMF)、ネットワーク露出機能(NEF)、ポリシー制御機能(PCF)、NFリポジトリ機能(NRF)、統合データ管理(UDM)エンティティ、AF、ユーザプレーン機能(UPF)、ショートメッセージサービス機能(SMSF)、非3GPP相互作用機能(N3IWF)、ネットワークスライス選択機能(NSSF)、及び/又は他の同様のNR NFの1つ以上のインスタンスを実装してもよい。そのような実施形態では、NG RAN110は、NGインタフェース113を介して5GC 120と接続されることができる。これらの実施形態では、NGインタフェース113は、2つの部分、RANノード111とUPFとの間でトラフィックデータを搬送するNG-Uインタフェース114と、RANノード111とAMFとの間のシグナリングインタフェースであるNG-Cインタフェース115とに分割されることができる。加えて、5GC 120内のUPFは、パケットルーティング、フィルタリング、検査、転送などを、5GC 120と、IPインタフェース125を介してデータネットワーク(DN)130などの外部ネットワークとの間で実行することができる。DN130は、1つ以上のローカルエリアDN(LADN)を含む1つ以上のDNを表してもよく、前述のように、オペレータ外部のパブリック、プライベートPDN、イントラオペレータPDNであってもよい。
CN120は、IP通信インタフェース125を介してPDN/DN130に通信可能に結合されるように示されている。PDN/DN130は、1つ以上のアプリケーションサーバ(AS)を含んでもよい。アプリケーションサーバ(及びネットワーク要素122)は、ネットワークを介して1つ以上のクライアント(例えば、UE101)に機能(又はサービス)を提供するための1つ以上の物理的及び/又は仮想化システムを備える。そのようなサーバは、ラックコンピューティングアーキテクチャ構成要素、タワー型コンピューティングアーキテクチャ構成要素、ブレードコンピューティングアーキテクチャ構成要素、及び/又は同様のものを有する様々なコンピュータデバイスを含むことができる。サーバは、1つ以上のデータセンター内に配置されることができるサーバのクラスタ、サーバファーム、クラウドコンピューティングサービス、又はサーバの他のグルーピング若しくはプールを表してもよい。サーバはまた、1つ以上のデータ記憶装置(図示せず)に接続されるか、又は別の方法で関連付けられてもよい。一般に、AS130は、IP/ネットワークリソースを使用するアプリケーション又はサービスを提供する。例として、サーバは、トラフィック管理サービス、クラウドコンピューティングサービス、コンテンツストリーミングサービス、没入型ゲーム体験、ソーシャルネットワーキング及び/又はマイクロブロギングサービス、1つ以上の通信サービス(例えば、VoIPセッション、PTTセッション、グループ通信セッション、ソーシャルネットワーキングサービスなど)、及び/又はCN120を介したUE101のための他の同様のサービスを提供することができる。
UE101は、様々なRLM手順を実行するように構成されてもよい。RLMは、同期外状態/同期内状態を上位層に示す目的で、プライマリセル(PCell)のDL無線リンク品質(RLQ)をモニタリングするためにUE101によって使用されるメカニズムを指す。「プライマリセル」又は「PCell」という用語は、UE101が初期接続確立手順を実行するか又は接続再確立手順を開始する、プライマリ周波数で動作するマスターセルグループ(MCG)セルを指す。UE101は、PCell上のアクティブDL BWP以外には、DL BWPにおけるDL RLQをモニタリングする必要はない。アクティブなDL BWPが初期DL BWPであり、同期信号ブロック(SSB)及びCORESET多重化パターン2又は3についての場合、UE101は、関連付けられたSSBインデックスがパラメータ/IE RadioLinkMonitoringRSによって提供されるときに、関連付けられたSSBを使用してRLMを実行することが予期される。用語「SSB」は、同期信号(SS)/PBCHブロックを指す。
UEがセカンダリセルグループ(SCG)(例えば、TS 38.331を参照されたい)によって構成され、パラメータrlf-TimersAndConstantsが上位層によって提供される場合、SCGのプライマリSCG Cell(PSCell)(「プライマリセカンダリセル」とも呼ばれる)のDL RLQは、L1指示器(例えば、同期外/同期内状態)を上位層に指示する目的でUE101によってモニタリングされる。UE101は、PSCell上のアクティブDL BWP以外には、DL BWPにおけるDL RLQをモニタリングする必要はない。UE101がデュアルコネクティビティのために構成されている場合、SCGは、PSCell及びゼロ以上のセカンダリセルを含むサービングセルのサブセットである。
UE101は、failureDetectionResourcesによってRLMについての対応するRadioLinkMonitoringRSのセットを介して、リソースインデックスのセットを有するSpCell(例えば、3GPP TS 38.321 v15.3.0(2018-09)を参照)の各DL BWPについて構成されることができる。UE101は、CSI-RSリソース構成インデックス(例えば、csi-RS-インデックス)又はSS/PBCHブロックインデックス(例えば、ssb-インデックス)のいずれかで提供される。UE101は、3GPP TS 38.213 v15.3.0(2018-09)(以下、「TS 38.213」)のサブ項目6に記載されているように、リンク回復手順、及びRLMのために、最大NLR-RLM RadioLinkMonitoringRSによって構成されることができる。NLR-RLM RadioLinkMonitoringRSからNRLM RadioLinkMonitoringRSまでは、TS 38.213のサブ項目4.1に記載されているようにハーフフレームあたりの候補SSBの最大数Lmaxに応じてRLMのために使用されることができ、最大2つのRadioLinkMonitoringRSがリンク回復手順のために使用されることができる。
UE101にRadioLinkMonitoringRSが提供されておらず、UE101にCSI-RSの1つ以上を含むTCI状態がPDCCH受信に提供されている場合、UE101は、PDCCH受信のアクティブTCI状態が1つのRSのみを含む場合、RLMのためにPDCCH受信のアクティブTCI状態について提供されるRSを使用し、PDCCH受信のアクティブTCI状態が2つのRSを含む場合、UE101は、1つのRSがQCL-TypeD(例えば、TS 38.214を参照されたい)を有し、UE101がRLMのQCL-TypeDを有するRSを使用することを予期し、UE101は、双方のRSがQCL-TypeDを有することを予期しない。UE101は、RLMに非周期的又は半永続的なRSを使用する必要はない。Lmax=4について、UE101は、探索空間セットに関連付けられたCORESETにおけるPDCCH受信のためのアクティブTCI状態について提供されたNRLM RSを、最短のモニタリング周期性からの順序で選択する。2つ以上のCORESETが同じモニタリング周期性を有する探索空間セットに関連付けられている場合、UE101は、TS 38.213のサブ項目10.1に記載されているように、最高CORESETインデックスからCORESETの順序を判定する。UE101は、UE101にRadioLinkMonitoringRSが提供されないとき、RLMに対してNRLM RadioLinkMonitoringRSを超える使用を予期しない。Lmaxの異なる値に対するNLR-RLM及びNRLMの値が表5-1によって与えられる。
Figure 2022509520000009
CSI-RSリソース構成では、powerControlOffsetSSは、適用可能ではなく、UEは、cdm-Typeから「noCDM」のみ、densityから「1つ」及び「3つ」のみ、及びnrofPortsから「1つのポート」のみが提供されるように予期する(例えば、TS 38.214を参照されたい)。
UE101がサービングセルに対する複数のDL BWPによって構成されている場合、UE101は、アクティブなDL BWPのためにRadioLinkMonitoringRSによって提供されるリソースインデックスに対応するRSを使用して、又はアクティブなDL BWPに対してRadioLinkMonitoringRSが提供されていない場合には、アクティブなDL BWP上のCORESETにおけるPDCCH受信のためのアクティブTCI状態のために提供されたRSを使用して、RLMを実行する。
非DRXモード動作においては、UE101内の物理層は、指示期間あたり1回、rlmInSyncOutOfsyncThresholdによって構成された閾値(Qout及びQin)に対してTS 38.133において定義された前期間にわたって評価された、無線リンク品質を診断する。UE101は、指示期間を、RLMリソースの最短周期と10ミリ秒との間の最大値として判定する。
DRXモード動作においては、UE内の物理層は、指示期間あたり1回、rlmlnSyncOutOfilyncThresholdによって提供される閾値(Qout及びQin)に対してTS 38.133において定義される前期間にわたって評価された、無線リンク品質を診断する。UE101は、指示期間を、RLMリソースの最短周期とDRX期間との間の最大値として判定する。
UE101内のPHYは、RLQが評価されるフレームにおいて、RLQがRLMのリソースのセット内の全てのリソースについて閾値Qoutよりも悪い場合に、より上位層に同期していないことを示す。RLQが、RLMのためのリソースのセット内の任意のリソースについての閾値Qinよりも良い場合、UE101における物理層は、RLQが診断されるフレームにおいて、より上位層に対して同期内であることを示す。
RLMについては、UE101は、TS 38.213において規定されたPCell及びPSCellのDL RLQを検出するために、RLM-RSリソースとして構成された基準信号に基づいてDL RLQをモニタリングする。RLM-RSリソースは、TS 38.213において定義されるように、上位層パラメータRLM-RS-List及び/又はRadioLinkMonitoringConfigパラメータ/情報要素(IE)(例えば、TS 38.331及び3GPP TS 38.321 v15.3.0(2018-09)を参照されたい)によってRLM用に構成されたリソースのセットからのリソースである。NW(例えば、RAN110又はRANノード111)は、ビーム障害及び/又はセルレベルRLFを検出するための基準信号のリストを提供する。NWが構成可能な基準信号の制限は、TS 38.213、表5-1において規定される。NWは、beamFailure又はその双方の目的で、BWPあたり最大2つのdetectionResourcesを構成する。ビーム障害検出の目的のためにRSが提供されない場合、UEは、TS 38.213、項目6に記載されているように、PDCCHのアクティブ化されたTCI状態に基づいてビームモニタリングを実行する。RLF検出の目的で、このリストにRSが提供されていない場合、UEは、TS 38.213、項目5に記載されているように、PDCCHのアクティブ化されたTCI状態に基づいて、Cell-RLMを実行する。NWは、UEが、Cell-RLMを実行するための好適な基準信号のセットを有することを保証する。構成されたRLM-RSリソースは、全てのSSBとすることができ、全てのチャネル状態情報基準信号(CSI-RS)とすることができ、又はSSBとCSI-RSとの混合とすることができる。UE101は、アクティブなDL BWP外でRLMを実行する必要はない。
各RLM-RSリソース上で、UE101は、DL RLQを推定し、セルのDL RLQをモニタリングする目的で、推定されたDL RLQを閾値Qout及びQinと比較する。閾値Qoutは、DL無線リンクが確実には受信されることができないレベルとして定義され、3GPP TS 38.133 V15.3.0(2018-10)(以下、「TS 38.133」)の表8.1.1-1において定義される同期外ブロック誤り率(BLERout)に対応するものとする。SSBベースのRLMについて、Qout_SSBは、TS 38.133の表8.1.2.1-1に列挙されている仮定的なPDCCH送信パラメータに基づいて導出される。CSI-RSベースのRLMについて、Qout_CSI-RSは、TS 38.133の表8.1.3.1-1に列挙されている仮定的なPDCCH送信パラメータに基づいて導出される。閾値Qinは、Qoutよりも大幅に高い信頼性でDL RLQが受信されることができるレベルとして定義され、TS 38.133の表8.1.1-1において定義される同期内ブロック誤り率(BLERin)に対応するものとする。SSBベースのRLMの場合、Qin_SSBは、TS 38.133の表8.1.2.1-2に列挙された仮定的なPDCCH送信パラメータに基づいて導出される。CSI-RSベースのRLMの場合、Qin_CSI-RSは、TS 38.133の表8.1.3.1-2に列挙される仮想的なPDCCH送信パラメータに基づいて導出される。
同期外ブロック誤り率(BLERout)及び同期内ブロック誤り率(BLERin)は、上位層によってシグナリングされるパラメータrlmlnSyncOutOfiyncThresholdを介してNW構成から決定される。UEがNWからのrlmlnSyncOutOfilyncThresholdを用いて構成されていない場合、UE101は、デフォルトとしてTS 38.133の表8.1.1-1の構成#0から同期外ブロック誤り率及び同期内ブロック誤り率を決定する。
UE101は、TS 38.213に従って、ハーフフレームあたりの候補SSBの最大数Lmaxに応じて、各々の対応するキャリア周波数範囲内の同じ又は異なるタイプのNRLM RLM-RSリソースをモニタリングすることができ、ここで、NRLMは、TS 38.133の表8.1.1-2において規定され、TS 38.133の項目8.1において規定された要件を満たす。UE101は、RLM-RSが構成されておらず、PDCCHのTCI状態がアクティブ化されていない場合、TS 38.133の項目8.1の要件を満たす必要はない。
SSBベースのRLMの同期外評価に関するPDCCH送信パラメータは、TS 38.133の表8.1.2.1-1によって記載され、SSBベースのRLMの同期内評価に関するPDCCH送信パラメータは、TS 38.133の表8.1.2.1-2によって記載される。(RLMについて構成されたSSBが、TS 38.133の項目8.1.2.2において規定される全評価期間の間に、UEのアクティブなDL BWP内で実際に送信される場合)PCell又はPSCellについて構成された各SSBベースのRLM-RSリソースの最小要件は、以下のとおりである。
UE101は、最後のTEvaluate_out_SSB[ms]期間にわたって推定された構成されたRLM-RSリソースにおけるDL RLQが、TEvaluate_out_SSB[ms]評価期間内の閾値Qout_SSBよりも悪くなるかどうかを評価することができる。UE101は、最後のTEvaluate_in_SSB[ms]期間にわたって推定された、構成されたRLM-RSリソースにおけるDL RLQが、TEvaluate_in_SSB[ms]評価期間内の閾値Qin_SSBよりも良くなるかどうかを評価することができる。TEvaluate_out_SSB及びTEvaluate_in_SSBは、FR1の場合、表8.1.2.2-1において定義され、TEvaluate_out_SSB及びTEvaluate_in_SSBは、FR2の場合、スケーリングファクタN=8で表8.1.2.2-2において定義される。
FR1に関して、モニタリングされたセルにおいて、周波数内、周波数間、又はRAT間測定のために構成された測定ギャップが存在し、これらの測定ギャップが、SSBの全ての機会ではなく一部と重複している場合、
Figure 2022509520000010
であり、モニタリングされたセルにおいて、SSBの任意の機会と重複する測定ギャップは存在しない場合、P=lである。
FR2に関して、RLM-RSが測定ギャップと重複せず、RLM-RSがSMTC機会と部分的に重複する(TSSB<TSMTCperiod)場合、
Figure 2022509520000011
である。RLM-RSが測定ギャップと重複せず、RLM-RSがSMTC期間と完全に重複している(TSSB=TSMTCperiod)場合、PはP共有ファクタである。RLM-RSが測定ギャップと部分的に重複し、RLM-RSが、SMTC機会と部分的に重複しており(TSSB<TSMTCperiod)、SMTC機会が測定ギャップと重複せず、TSMTCperiod≠MGRPであり、TSMTCperiod=MGRPであり且つTSSB<0.5*SMTCperiodである場合、
Figure 2022509520000012
である。
RLM-RSが測定ギャップと部分的に重複し、RLM-RSが、SMTC機会と部分的に重複しており(TSSB<TSMTCperiod)、SMTC機会が測定ギャップと重複せず、TSMTCperiod=MGRPであり、TSSB=0.5* TSMTCperiodである場合、
Figure 2022509520000013
である。RLM-RSが測定ギャップと部分的に重複し、RLM-RSがSMTC機会と部分的に重複しており(TSSB<TSMTCperiod)、SMTC機会が測定ギャップと部分的に又は完全に重複している場合、
Figure 2022509520000014
である。RLM-RSが測定ギャップと部分的に重複しており、RLM-RSがSMTC機会と部分的に重複しており(TSSB=TSMTCperiod)、SMTC機会が測定ギャップと部分的に重複している(TSMTCperiod<MGRP)場合、
Figure 2022509520000015
はである。加えて、RLM外部測定ギャップについて構成された基準信号の全てが、周波数内SMTC機会によって完全に重複していない場合、あるいは、RLM外部測定ギャップについて構成され且つ周波数内SMTC機会によって完全に重複する基準信号の全てが、SSB-ToMeasure及び1シンボルによって示される各連続SSBシンボルの前に且つSSB-ToMeasureによって示される各連続SSBシンボルの後に、SSB-ToMeasure及び1シンボルによって示されるSSBシンボルと重複しない場合、SSB-ToMeasureが構成されるならば、P共有ファクタ=1であり、P共有ファクタ=3である。
smtc2のTS 38.331シグナリングにおける上位層が存在する場合、TSMTCperiodは、smtc2に従う。そうでなければ、TSMTCperiodは、smtc1に従う。RLM-RS、SMTC機会及び測定ギャップ構成の組み合わせが前の条件を満たさない場合、より長い評価期間が予期されるであろう。
Figure 2022509520000016
Figure 2022509520000017
UE101は、測定ギャップなしにRLMのSSBを測定することができる。UE101はまた、以下の測定制限を用いてSSB測定を実行する:FR1については、RLMのSSBがRLM、BFD、候補ビーム検出(CBD)又はL1基準信号受信電力(RSRP)測定のためのCSI-RSと同じOFDMシンボルにある場合、及びSSB及びCSI-RSが同じSCSを有する場合、UE101は、いかなる制限もなしにRLMに対するSSBを測定することができる。SSB及びCSI-RSが異なるSCSを有する場合、及びUE101がsimultaneousRxDataSSB-DiffNumerologyをサポートする場合、UE101は、いかなる制限もなしにRLMに対するSSBを測定することができる。UE101がsimultaneousRxDataSSB-DiffNumerologyをサポートしない場合、UE101は、RLM及びCSI-RSに対するSSBのうちの1つを測定するが、双方は測定しない。SSBベースのRLMに対するより長い測定期間が予期されるが、必要ではない。FR2については、RLMのSSBが、RLM、BFD、CBD、又はL1-RSRP測定のためのCSI-RSと同じOFDMシンボルにあるとき、UE101は、RLM及びCSI-RSのSSBのうちの1つを測定するが、双方は測定しない。SSBベースのRLMに対するより長い測定期間が予期されるが、必要ではない。
CSI-RSベースのRLMの同期外評価のためのPDCCH送信パラメータは、TS 38.133の表8.1.3.1-1によって記載され、SCI-RSベースのRLMの同期内評価のためのPDCCH送信パラメータは、TS 38.133の表8.1.3.1-2によって記載される。(RLMについて構成されたCSI-RSが、TS 38.133の項目8.1.3.2において規定される全評価期間の間に、UEのアクティブなDL BWP内で実際に送信される場合)PCell又はPSCellについて構成された各CSI-RSベースのRLM-RSリソースの最小要件は、以下のとおりである。
UE101は、CSI-RSがUEアクティブBWPにおいて構成された任意のCORESETのアクティブTCI状態にない場合、RLM-RSとして構成されたCSI-RSに対するRLM測定を実行することは予期されない。
UE101は、最後のTEvaluate_out_CSI-RS[ms]期間にわたって推定された構成されたRLM-RSリソースにおけるDL RLQが、TEvaluate_out_CSI-RS[ms]評価期間内の閾値Qout_CSI-RSよりも悪くなるかどうかを評価することができる。UE101は、最後のTEvaluate_in_CSI-RS[ms]期間にわたって推定された、構成されたRLM-RSリソースにおけるDL RLQが、TEvaluate_in_CSI-RS[ms]評価期間内の閾値Qin_CSI-RSよりも良くなるかどうかを評価することができる。TEvaluate_out_CSI-RS及びTEvaluate_in_CSI-RSは、FR1の場合、TS 38.133の表8.1.3.2-1において定義される。TEvaluate_out_CSI-RS及びTEvaluate_in_CSI-RSは、FR2の場合、スケーリングファクタN=1で、TS 38.133の表8.1.3.2-2において定義される。
Evaluate_out_CSI-RS及びTEvaluate_in_CSI-RSの要件は、RLMに対するCSI-RSが反復オンで構成されたリソースセットではないことを条件として適用される。CORESETのアクティブTCI状態におけるCSI-RSリソースが、RLMの同じCSI-RSリソースであり且つCSI-RSリソースのTCI状態情報が与えられない場合、要件は適用されず、TCI状態情報は、反復オンのL1-RSRP又はCSI-RSについてのSSBに対するQCL Type-Dを意味する。
FR1に関して、モニタリングされたセルにおいて、周波数内、周波数間、又はRAT間測定のために構成された測定ギャップが存在し、これらの測定ギャップが、CSI-RSの全ての機会ではなく一部と重複している場合、
Figure 2022509520000018
であり、モニタリングされたセルにおいて、CSI-RSの任意の機会と重複する測定ギャップは存在しない場合、P=1である。
FR2に関して、RLM-RSが測定ギャップと重複せず、またSMTC機会とも重複しない場合、P=1である。RLM-RSが測定ギャップと部分的に重複し、RLM-RSがSMTC機会と重複していない(TCSI-RS<MGRP)場合、
Figure 2022509520000019
はである。RLM-RSが測定ギャップと重複せず、RLM-RSがSMTC機会と部分的に重複する(TCSI-RS<TSMTCperiod)場合、
Figure 2022509520000020
である。RLM-RSが測定ギャップと重複せず、RLM-RSがSMTC機会と完全に重複する(TCSI-RS<TSMTCperiod)場合、P=3である。RLM-RSが測定ギャップと部分的に重複し、RLM-RSがSMTC機会と部分的に重複しており(TCSI-RS<TSMTCperiod)、SMTC機会が測定ギャップと重複しない場合、
Figure 2022509520000021
であり、RLM-RSが測定ギャップと部分的に重複し、RLM-RSがSMTC機会と部分的に重複しており(TCSI-RS<TSMTCperiod)、SMTC機会が測定ギャップと重複せず、TSMTCperiod≠MGRP又はTSMTCperiod=MRGP及びTCSI-RS=0.5*SMTCperiodである場合、TSMTCperiod≠MGRP又はTSMTCperiod=MRGP及びTCSI-RS<0.5*SMTCperiod
Figure 2022509520000022
である。RLM-RSが測定ギャップと部分的に重複し、RLM-RSがSMTC機会と部分的に重複しており(TCSI-RS<TSMTCperiod)、SMTC機会が測定ギャップと部分的に又は完全に重複している場合、
Figure 2022509520000023
である。RLM-RSが測定ギャップと部分的に重複しており、RLM-RSがSMTC機会と部分的に重複しており(TCSI-RS=TSMTCperiod)、SMTC機会が測定ギャップと部分的に重複している(TSMTCperiod<MGRP)場合、
Figure 2022509520000024
はである。smtc2のTS 38.331シグナリングにおける上位層が存在する場合、TSMTCperiodは、smtc2に従う。そうでなければ、TSMTCperiodは、smtc1に従う。RLM及びSMTCに対するCSI-RS間の重複は、CSI-RSベースのRLMがSMTCウィンドウ持続時間内にあることを意味する。RLM-RS、SMTC機会及び測定ギャップ構成の組み合わせが前の条件を満たさない場合、より長い評価期間が予期されるであろう。
表8.1.3.2-1及び表8.1.3.2-2において使用されるMout及びMinの値は、RLMについて構成されたCSI-RSリソースが3に設定され且つ帯域幅≧24PRBsにわたって上位層のCSI-RSパラメータ密度で送信される場合には、Mout=20及びMin=10として定義される(例えば、3GPP TS 38.211 v15.3.0(2018-09)、項目7.4.1を参照)。
Figure 2022509520000025
Figure 2022509520000026
UE101は、測定ギャップなしにRLMのCSI-RSを測定することができる。UE101は、以下の測定制限を用いてCSI-RS測定を実行する:FR1及びFR2の双方について、RLMに対するCSI-RSが、RLM、BFD、CBD、又はL1-RSRP測定のためのSSBと同じOFDMシンボルにある場合、UEは、SSBと重複するPRBにおけるRLMに対するCSI-RSを受信する必要はない。FR1については、RLM、BFD、CBD、又はL1-RSRP測定のSSBがアクティブBWP内にあり、RLMに対するCSI-RSと同じSCSを有する場合、UEは、制限なしにCSI-RS測定を行うことができるものとする。FR1については、RLM、BFD、CBD、又はL1-RSRP測定のSSBがアクティブBWP内にあり、RLMに対するCSI-RSとは異なるSCSを有する場合、UEは、その能力に応じて制限を有するCSI-RS測定を実行することができるものとする:UEがsimultaneousRxDataSSB-DiffNumerologyをサポートする場合、UE101は、制限なしにRLM測定のためのCSI-RSを実行することができ、及び/又は、UE101がsimultaneousRxDataSSB-DiffNumerologyをサポートしない場合、UE101は、RLM及びSSBについてのCSI-RSの一方を測定し、双方は測定しない。CSI-RSベースのRLMについては、より長い測定期間が予期されるが、必要ではない。FR1については、RLMに対するCSI-RSが、RLM、BFD、CBD、又はL1-RSRP測定のための別のCSI-RSと同じOFDMシンボルにある場合、UE101は、いかなる制限もなしにRLMに対するCSI-RSを測定することができる。FR2については、RLMに対するCSI-RSが、RLM、BFD、又はL1-RSRP測定のためのSSBと同じOFDMシンボルにある場合、又は、CBDのためのSSBと同じシンボルにある場合、又は、ビーム障害が検出されるとき、UE101は、RLM及びSSBに対するCSI-RSのうちの一方を測定するが、双方は測定しない。CSI-RSベースのRLMについては、より長い測定期間が予期されるが、必要ではない。FR2については、RLMに対するCSI-RSが、RLM、BFD、CBD、又はL1-RSRP測定のための別のCSI-RSと同じOFDMシンボルにある場合、UE101は、RLMに対するCSI-RS及び他のCSI-RSのうちの一方を測定するが、双方は測定しない。より長いCSI-RSベースのRLMの測定期間が予期され、要件は以下のように定義されない:RLMに対するCSI-RS、又は、反復オンで構成されたリソースセットにおける他のCSI-RS。他のCSI-RSは、q1で構成され、ビーム障害が検出される。あるいは、2つのCSI-RSは、QCL-TypeDに関して(w.r.t.)QCL-edではなく、又はQCL情報は、UEにとって既知ではない。そうでなければ、UE101は、いかなる制限もなしにRLMのCSI-RSを測定することができる。
全ての構成されたRLM-RSリソースにおけるDL RLQがQoutよりも悪い場合、UE101における層1(L1)は、セルに関する同期外指示を上位層に送信する。構成されたRLM-RSリソースのうちの少なくとも1つにおけるDL RLQがQinよりも良い場合、UEのL1は、セルに関する同期内指示を上位層に送信するものとする。構成されたRLM-RSリソースに関する同期外及び同期内の評価は、TS 38.213における項目5において規定されたように実行されるものとする。L1からの2つの連続的な指示は、少なくともL1の指示間隔(TIndication_interval)によって分離される。
DRXが使用されない場合、TIndication_intervalは、max(10ms,TRLM-RS,M)であり、TRLM,Mは、RLM-RSリソースがSSBである場合には、TS 38.113の項目8.1.2において規定されたTSSBに対応する、又はRLM-RSリソースがCSI-RSである場合には、TS 38.133の項目8.1.3において規定されたTcsi-RSに対応する、全ての構成されたRLM-RSリソースの最も短い周期性である。
DRXが使用される場合、TIndication_intervalは、DRX_cycle_lengthが320ms以下である場合、Max(10ms,1.5*DRX_cycle_length,1.5*RLM-RS,M)であり、TIndication_intervalは、DRX_cycle_lengthが320msを超える場合、DRX_cycle_lengthである。TS 38.331において規定されたT310タイマーが開始されると、UE101は、非DRXモードに対応する評価期間及び層1指示間隔を使用して、構成されたRLM-RSリソースをT310タイマーの終了又は停止まで、回復のためにモニタリングする。
本明細書の実施形態は、様々な条件、基準、パラメータ、UE状態などに基づくことができる、異なるシナリオにおけるUE電力消費を更に節約するために、評価期間及びL1指示間隔を再検討及び/又は向上させる。例えば、異なるシナリオは、UEモビリティ状態(例えば、静止状態、低モビリティ状態、中モビリティ状態、又は高モビリティ状態)、RRC状態(例えば、RRC_IDLE、RRCE_INACTIVE、又はRRC_CONNECTED状態)、登録管理(RM)及び/又は接続管理(CM)状態及び/又は関連情報(例えば、3GPP TS 23.501 v15.3.0(2019-09))、セッション管理(SM)状態及び/又は関連情報(例えば、3GPP TS 23.501 V15.3.0(2019-09)を参照されたい)、TS 38.331のセクション6.3.3及び/又はTS 38.213のセクション8.1及び8.5において記載されているものなどのUE能力、加入データ、及び/又は同様のもの、及び/又はこれらの任意の組み合わせに基づくことができる。様々な実施形態によれば、UE101は、スケーリングファクタを使用して、RLM評価期間(例えば、TEvaluate_out_SSB、TEvaluate_in_SSB、TEvaluate_out_CSI-RS、及び/又はTEvaluate_in_CSI-RS)及び/又はL1指示間隔(例えば、TIndication_interval)をスケーリングする(例えば、延長又は縮小/短縮)。スケーリングファクタは、DL RLQを評価するための要件に適用されるスケーリング、及び/又はL1指示(例えば、同期外指示及び/又は同期内指示)を上位層に送信するための要件に適用されるようにスケーリングを定義する。実施形態では、UE101は、例えば、スケーリングファクタを計算されたRLM評価期間及び/又はL1指示間隔に乗算又は加算することによって、既定の若しくは所定のRLM評価期間及び/又は既定の若しくは所定のL1指示間隔にスケーリングファクタを適用する。
異なるスケーリングファクタを異なるシナリオに使用することができ、例えば、UEが低モビリティ状態にあるときに第1のスケーリングファクタを使用することができ、UEが低モビリティ状態よりも大きい媒体モビリティ状態にあるときに第2のスケーリングファクタを使用することができ、UEが媒体モビリティ状態よりも高い高モビリティ状態にあるときに第3のスケーリングファクタを使用することができる。いくつかの実施形態では、単一又は同じスケーリングファクタが、RLM評価期間及びL1指示間隔の双方をスケーリングするために使用される。いくつかの実施形態では、RLM評価期間及びL1指示間隔のために異なるスケーリングファクタを使用してもよく、例えば、第1のスケーリングファクタを使用して、RLM評価期間をスケーリングすることができ、第2のスケーリングファクタを使用して、L1指示間隔をスケーリングすることができる。いくつかの実施形態では、個々のスケーリングファクタは、異なる評価期間に使用されてもよい。第1の例では、第1のスケーリングファクタを使用して、TEvaluate_out_SSB及びTEvaluate_in_SSBをスケーリングすることができ、第2のスケーリングファクタを使用して、TEvaluate_out_CSI-RS及びTEvaluate_in_CSI-RSをスケーリングすることができる。第2の例では、第1のスケーリングファクタを使用してTEvaluate_out_SSBをスケーリングすることができ、第2のスケーリングファクタを使用して、TEvaluate_in_SSBをスケーリングすることができ、第3のスケーリングファクタを使用して、TEvaluate_out_CSI-RSをスケーリングすることができ、第4のスケーリングファクタを使用して、TEvaluate_in_CSI-RSをスケーリングすることができる。上述した実施形態及び実施例はまた、スケーリングファクタインデックスが使用される場合にも適用可能である。スケーリングファクタ又はスケーリングファクタインデックスは、例えば、好適なRRCメッセージなどにおいて、上位層シグナリングによってUE101にシグナリングされてもよい。スケーリングファクタインデックスは、UE101がスケーリングファクタの数値を見つけるか又は他の方法で決定するために使用することができるインデックスである。
第1の実施形態によれば、NW(例えば、RAN110又はRANノード111)は、RLM評価期間を拡張又は短縮するために、UE101に対するスケーリングファクタ又はスケーリングファクタインデックスを示す。第1の実施形態では、UE101は、スケーリングファクタを使用して、それに応じてそのRLM評価期間を延長又は短縮する。例えば、NWは、前述の基準、条件などに基づいてUE101の状態を判定することができ、UE電力を節約するために/浪費しないために、適切なスケーリングファクタ又はスケーリングファクタインデックスを判定して、RLM評価期間をスケーリングすることができる。この例では、UE101は、NWからスケーリングファクタ又はスケーリングファクタインデックスを受信し、NWの指示に従い、示されたスケーリングファクタ又はスケーリングファクタインデックスを使用することによって、そのRLM評価期間をスケーリングする。第1実施形態では、スケーリングファクタXは、表8.1.2.2-1x、8.1.2.2-2x、8.1.3.2-1x、及び8.1.3.2-2xによって示されるように、評価期間に適用されてもよい。
Figure 2022509520000027
Figure 2022509520000028
Figure 2022509520000029
Figure 2022509520000030
第2の実施形態によれば、NWは、RLM L1指示間隔をスケーリング(例えば、延長又は短縮)するためのUE101に対するスケーリングファクタ又はスケーリングファクタインデックスを示す。第2の実施形態では、UE101は、それに応じて、スケーリングファクタを使用して、そのRLM L1指示間隔を延長又は短縮する。例えば、NWは、前述のものなどの様々な状態、条件、基準、能力などに基づいて、UE101の状態を判定することができる。この例では、NWは、UE101 RLM L1指示間隔をスケーリングしてUE電力を節約し/浪費せず、UE101にスケーリングファクタ又はスケーリングファクタインデックスをシグナリングする/指示するために、スケーリングファクタ又はスケーリングファクタインデックスを決定することができる。この例では、UEは、示されたスケーリングファクタ又はスケーリングファクタインデックスを使用することによって、そのRLM L1指示間隔をスケーリングするために、NW指示に従う。第2の実施形態では、スケーリングファクタXは、以下のように、L1指示の最小要件に適用されてもよい:
DRXが使用されない場合、TIndication_intervalは、X*max(10ms,TRLM-RS,M)であり、TRLM,Mは、RLM-RSリソースがSSBである場合には、TS 38.133のセクション8.1.2において規定されたTSSBに対応する、又はRLM-RSリソースがCSI-RSである場合には、TS 38.133のセクション8.1.3において規定されたTCSI-RSに対応する、全ての構成されたRLM-RSリソースの最も短い周期性である。DRXが使用される場合、TIndication_intervalは、DRX_cycle_lengthが320ms以下である場合、X*max(10ms,1.5*DRX_cycle_length,1.5*RLM-RS,M)であり、TIndication_intervalは、DRX_cycle_lengthが320msを超える場合、DRX_cycle_lengthである。
第3の実施形態によれば、NWは、RLM評価期間をスケーリングする(例えば、延長又は短縮する)ことを可能にするか又はUE101に指示する。第3の実施形態では、UE101は、NWから受信した指示又は構成に基づいて、そのRLM評価期間をスケーリング(例えば、延長又は短縮)するようにスケーリングファクタを決定又は判定する。例えば、NWは、いくつかのトリガイベント(例えば、前述の条件、基準、状態などのうちの1つ以上)に基づいて、そのRLM評価期間をスケーリングする能力又は許可を用いてUE101を構成することができ、NWは、それに応じてUE101を(例えば、上位層シグナリングなどを介して)構成する。この例では、UE101は、構成されたトリガイベントが検出されたときに、RLM評価期間をスケーリングするためにスケーリングファクタを決定又は判定する。
第3の実施形態では、UE101が、そのRLM評価期間をスケーリングするように決定すると、UE101は、スケーリング情報をNWに報告することができる。スケーリング情報は、例えば、スケーリングされたRLM評価期間、スケーリングファクタ(又はスケーリングファクタインデックス)、検出されたトリガイベント、及び/又は任意の他のスケーリング関連情報を含むことができる。スケーリング情報は、RLF報告、RRC再構成確立メッセージなどの好適なメッセージで報告されてもよい。
第4の実施形態によれば、NWは、UE101に、そのL1指示間隔を調整(例えば、延長又は短縮)するように指示する。第4の実施形態では、UE101は、NWから受信した指示又は構成に基づいて、そのL1指示間隔をスケーリングする(例えば、拡張又は短縮する)ようにスケーリングファクタを決定又は判定する。例えば、NWは、いくつかのトリガイベント(例えば、前述の条件、基準、状態などのうちの1つ以上)に基づいて、そのRLM L1指示間隔をスケーリングする能力又は許可を用いてUE101を構成することができ、NWは、それに応じてUE101を(例えば、上位層シグナリングなどを介して)構成する。L1指示間隔をスケーリングするためのトリガイベントは、前述のRLM評価期間をスケーリングするためのトリガイベントと同じであっても異なっていてもよい。この例では、UE101は、構成されたトリガイベントが検出されたときに、RLM L1指示間隔をスケーリングするようにスケーリングファクタを決定又は判定する。
第4の実施形態では、UE101がそのRLM L1指示間隔をスケーリングするように決定すると、UE101は、スケーリング情報をNWに報告することができる。スケーリング情報は、例えば、スケーリングされたRLM L1指示間隔、スケーリングファクタ(又はスケーリングファクタインデックス)、検出されたトリガイベント、及び/又は任意の他のスケーリング関連情報を含むことができる。スケーリング情報は、RLF報告、RRC再構成確立メッセージなどの好適なメッセージで報告されてもよい。L1指示間隔スケーリングのスケーリング情報は、前述したRLM評価期間をスケーリングするためのスケーリング情報と同じであっても異なっていてもよく、RLM評価期間スケーリング情報を伝達するために用いられるメッセージと同じか又は異なるメッセージで報告されてもよい。
第3及び第4の実施形態では、トリガイベントは、決定されたMSEに基づいて特定のモビリティ状態に移行又は遷移することなど、任意の好適なイベントであってもよく、特定のRRC、RM、CM、及び/又はSM状態に移行又は遷移することであってもよく、1つ以上の信号強度測定値、信号品質測定値、及び/又は他の同様の測定値であってもよく、TS 38.331のセクション5.5.4に記載されるように測定報告イベントA1~A6又はB1~B2のうちのいずれか1つ以上であってもよく、及び/又は任意の他のトリガイベント又はこれらの組み合わせであってもよい。信号強度、信号品質、及び/又は他の測定値は、例えば、BW測定、ネットワーク又はセル負荷、待ち時間、ジッタ、ラウンドトリップタイム(RTT)、割り込みの回数、データパケットの順序から外れた送達、送信電力、ビット誤り率、ビット誤り比(BER)、ブロック誤り率(BLER)、パケット損失率、パケット受信率(PRR)、信号対雑音比(SNR)、信号対雑音及び干渉比(SINR)、信号-プラス-ノイズ-プラス-歪み対ノイズ-プラス-歪み(SINAD)比、ピーク対平均電力比(PAPR)、基準信号受信電力(RSRP)、受信信号強度インジケータ(RSSI)、基準信号受信品質(RSRQ)、E-UTRAN又は5G/NRについてのUE位置決めのためのセルフレームのGNSSタイミング(例えば、RANノード111の基準時間と所与のGNSSに関するGNSS固有基準時間)、GNSSコード測定値(例えば、i番目のGNSS衛星信号の拡散コードのGNSSコード位相(整数及び分数部)、GNSSキャリア位相測定値(例えば、信号上にロックされているために測定されるi番目のGNSS衛星信号のキャリア位相サイクル(整数及び分数部)の数)、また、いわゆる累積デルタ範囲(ADR)、チャネル干渉測定値、熱雑音電力測定値、受信干渉電力測定値、及び/又は他の同様の測定値を含むことができる。RSRP、RSSI、及び/又はRSRQ測定値は、セル固有基準信号、CSI-RS、SSB、及び/又は様々なビーコン信号/フレーム、高速初期リンク設定(FILS)発見フレーム、又はIEEE802.11 WLAN/WiFiネットワーク用のプローブ応答フレームを含んでもよい。他の測定値は、3GPP TS 36.214 v15.3.0(2018-09)、3GPP TS 38.215 V15.3.0(2018-09)、IEEE802.11、PART 11:「無線LANメディアアクセスコントロール(MAC)及び物理層(PHY)仕様、IEEE規格」などに記載されるものなど、追加的に又は代替的に使用されることができる。
例示的なシステム及び改善
図1~図7に関して前述したUE101、RANノード111、AP106、ネットワーク要素122、アプリケーションサーバ130、及び/又は任意の他のデバイス若しくはシステムの各々は、図2~図4に関して記載されたものなどの様々なハードウェア及び/又はソフトウェア要素を含んでもよい。
図2は、様々な実施形態に係る例示的なインフラストラクチャ機器200を示している。インフラストラクチャ機器200(又は「システム200」)は、基地局、無線ヘッド、前述のRANノード111及び/又はAP106などのRANノード、アプリケーションサーバ130、及び/又は本明細書に記載の任意の他の要素/デバイスとして実装されることができる。他の実施例では、システム200は、UE内又はUEによって実装されることができる。
システム200は、アプリケーション回路205、ベースバンド回路210、1つ以上の無線フロントエンドモジュール(RFEM)215、メモリ回路220、電力管理集積回路(PMIC)225、電力ティー回路230、ネットワークコントローラ回路235、ネットワークインタフェースコネクタ240、衛星測位回路245、及びユーザインタフェース250を含む。いくつかの実施形態では、デバイス200は、例えば、メモリ/記憶装置、ディスプレイ、カメラ、センサ、又は入出力(I/O)インタフェースなどの追加の要素を含んでもよい。他の実施形態では、以下に記載される構成要素は、2つ以上のデバイスに含まれてもよい。例えば、当該回路は、CRAN、vBBU、又は他の同様の実装のための2つ以上のデバイスに別々に含まれてもよい。本明細書で使用される場合、用語「回路」は、電子デバイス内で特定の機能を実行するように構成された回路又は複数の回路のシステムを指す。回路又は回路のシステムは、記載された機能を提供するように構成された論理回路、プロセッサ(共有、専用、若しくはグループ)及び/又はメモリ(共有、専用、又はグループ)、集積回路(IC)、特定用途向けIC(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)などの1つ以上のハードウェア構成要素の一部とすることができるか、又はそれらを含むことができる。加えて、「回路」という用語はまた、1つ以上のハードウェア要素と、そのプログラムコードの機能を実行するために使用されるプログラムコードとの組み合わせを指すことができる。いくつかの種類の回路は、1つ以上のソフトウェア又はファームウェアプログラムを実行して、記載された機能の少なくとも一部を提供することができる。ハードウェア要素とプログラムコードとのそのような組み合わせは、特定の種類の回路と称されてもよい。本明細書で使用される場合、用語「プロセッサ回路」は、逐次的に且つ自動的に一連の演算又は論理演算を実行することができる回路、又はデジタルデータを記録、記憶、及び/又は転送することができる回路、及び/又はプログラムコード、ソフトウェアモジュール、及び/又は機能プロセスなどのコンピュータ実行可能命令を実行するか、又は他の方法で動作させることができる任意の他のデバイスを指すか、その一部であるか、又はそれを含む。本明細書で使用される場合、用語「モジュール」は、コンピュータシステム内に基本機能を提供するように構成された、回路基板、FPGA、ASIC、SoC、SiPなど上にパッケージ化された1つ以上の独立した電子回路を指す。「モジュール」は、1つ以上のソフトウェア若しくはファームウェアプログラムを実行するプロセッサ回路(共有、専用、若しくはグループ)及び/又はメモリ回路(共有、専用、若しくはグループ)など、組み合わせ論理回路、及び/又は記載された機能を提供する他の好適な構成要素を含むことができる。本明細書で使用される場合、用語「インタフェース回路」は、2つ以上の構成要素又はデバイス間での情報の交換を提供する回路を指すか、それらの一部であるか、又はそれらを含む。用語「インタフェース回路」は、1つ以上のハードウェアインタフェース、例えば、バス、入出力(I/O)インタフェース、周辺構成要素インタフェース、ネットワークインタフェースカード、及び/又は同様のものを指す。
アプリケーション回路205は、限定されないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、及び低降圧電圧調整器(LDO)、割り込みコントローラ、SPI、I2C若しくはユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、リアルタイムクロック(RTC)、間隔及びウォッチドッグタイマーを含むタイマー-カウンタ、汎用入力/出力(I/O又はIO)、セキュアデジタル(SD)MultiMediaCard(MMC)などのメモリカードコントローラ、ユニバーサルシリアルバス(USB)インタフェース、モバイル業界プロセッサインタフェース(MIPI)インタフェース、及びJoint Test Access Group(JTAG)試験アクセスポートのうちの1つ以上などの回路を含む。アプリケーション回路205のプロセッサ(又はコア)は、メモリ/記憶装置に結合されてもよいし、メモリ/記憶装置を含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム200上で実行することを可能にするために、メモリ/記憶装置に記憶された命令を実行するように構成されてもよい。いくつかの実装では、メモリ/記憶素子は、オンチップメモリ回路とすることができ、これは、本明細書に記載されるものなどの、任意の好適な揮発性及び/又は不揮発性メモリ、例えば、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は任意の他の種類のメモリデバイス技術を含むことができる。
アプリケーション回路205のプロセッサは、例えば、1つ以上のプロセッサコア(CPU)、1つ以上のアプリケーションプロセッサ、1つ以上のグラフィック処理ユニット(GPU)、1つ以上の縮小命令セットコンピューティング(RISC)プロセッサ、1つ以上のAcorn RISCマシン(ARM)プロセッサ、1つ以上の複合命令セットコンピューティング(CISC)プロセッサ、1つ以上のデジタル信号プロセッサ(DSP)、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、又はこれらの任意の好適な組み合わせを含むことができる。いくつかの実施形態では、アプリケーション回路205は、本明細書の様々な実施形態に従って動作するための専用プロセッサ/コントローラを備えてもよく、又はそれであってもよい。例として、アプリケーション回路205のプロセッサは、1つ以上のIntel Pentium(登録商標)、Core(登録商標)、又はXeon(登録商標)プロセッサ、アドバンスドマイクロデバイス(AMD)Ryzen(登録商標)プロセッサ、加速処理ユニット(APU)、又はEpyc(登録商標)プロセッサ、ARM Cortex-Aファミリーのプロセッサ及びCaviumTM,Inc.によって提供されるThunderX2(登録商標)などのARM Holdings,Ltd.からラインセンスされるARMベースのプロセッサ、MIPS Warrior P-classプロセッサなどのMIPS Technologies,Inc.技術からのMIPSベースの設計、及び/又は同様のものを含むことができる。いくつかの実施形態では、システム200は、アプリケーション回路205を利用しなくてもよく、代わりに、例えばEPC又は5GCから受信したIPデータを処理する専用プロセッサ/コントローラを含んでもよい。
いくつかの実装では、アプリケーション回路205は、マイクロプロセッサ、プログラム可能処理装置などとすることができる1つ以上のハードウェアアクセレレータを含んでもよい。1つ以上のハードウェアアクセレレータは、例えば、コンピュータビジョン(CV)及び/又は深層学習(DL)アクセレレータを含んでもよい。例として、プログラム可能処理デバイスは、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、ASIC、及び/又は構造化ASIC、SoC及び/又はプログラマブルSoC(PSoC)などの1つ以上のフィールドプログラマブルデバイス(FPD)であってもよい。そのような実装では、アプリケーション回路205の回路は、論理ブロック又は論理ファブリック、及び本明細書に記載される様々な実施形態の手順、方法、機能などの様々な機能を実行するようにプログラムされることができる他の相互接続されたリソースと、を備えてもよい。そのような実施形態では、アプリケーション回路205の回路は、論理ブロック、論理回路、データ、及びルックアップテーブル(LUT)などを記憶するために使用されるメモリセル(例えば、消去可能プログラム可能読み出し専用メモリ(EPROM)、電気的消去可能プログラム可能読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含んでもよい。
ベースバンド回路210は、例えば、1つ以上の集積回路を含む半田ダウン基板、主基板に半田付けされた単一のパッケージ化集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路210は、様々なプロトコル及び無線制御機能を実行するための1つ以上の処理デバイス(例えば、ベースバンドプロセッサ)を含む。ベースバンド回路210は、ベースバンド信号の生成及び処理のために、及びRFEM215の動作を制御するために、システム200のアプリケーション回路とインタフェース接続することができる。ベースバンド回路210は、RFEM215を介した1つ以上の無線ネットワークとの通信を可能にする様々な無線制御機能を取り扱うことができる。ベースバンド回路210は、限定されないが、RFEM215の受信信号経路から受信したベースバンド信号を処理し、送信信号経路を介してRFEM215に提供されるベースバンド信号を生成するために、1つ以上のシングルコア又はマルチコアプロセッサ(例えば、1つ以上のベースバンドプロセッサ)又は制御論理などの回路を含むことができる。様々な実施形態では、ベースバンド回路210は、ベースバンド回路210のリソースを管理し、タスクをスケジュールするなどのためのRTOSを実装してもよい。RTOSの例は、Enea(登録商標)によって提供されるオペレーティングシステム組み込み(OSE)TM、Mentor Graphics(登録商標)によって提供されるNucleus RTOSTM、Mentor Graphics(登録商標)によって提供されるVersatile Real-Time Executive(VRTX)、Express Logic(登録商標)によって提供されるThreadXTM、Qualcomm(登録商標)によって提供されるFreeRTOS、REX OS、Open Kernel(OK)Labs(登録商標)によって提供されるOKL4、又は本明細書に記載されるものなどの任意の他の適切なRTOSを含むことができる。
ユーザインタフェース回路250は、システム200とのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェース、又はシステム200との周辺構成要素相互作用を可能にするように設計された周辺構成要素インタフェースを含むことができる。ユーザインタフェースは、限定されないが、1つ以上の物理ボタン又は仮想ボタン(例えば、リセットボタン)、1つ以上のインジケータ(例えば、発光ダイオード(LED))、物理キーボード又はキーパッド、マウス、タッチパッド、タッチスクリーン、スピーカ、又は他の音声放出デバイス、マイクロフォン、プリンタ、スキャナ、ヘッドセット、ディスプレイスクリーン又はディスプレイデバイスなどを含むことができる。周辺構成要素インタフェースは、限定されないが、非揮発性メモリポート、ユニバーサルシリアルバス(USB)ポート、オーディオジャック、電源インタフェースなどを含むことができる。
無線フロントエンドモジュール(RFEM)215は、ミリ波(mmWave)RFEM及び1つ以上のサブmmWave無線周波数集積回路(RFIC)を備えることができる。いくつかの実装では、1つ以上のサブmmWave RFICは、mmWave RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイへの接続を含んでもよく、RFEMは、複数のアンテナに接続されてもよい。代替実装では、mmWave及びサブmmWave無線機能の双方が、mmWaveアンテナ及びサブmmWaveの双方を組み込む同じ物理RFEM215内に実装されてもよい。
メモリ回路220は、ダイナミックランダムアクセスメモリ(DRAM)及び/又は同期ダイナミックランダムアクセスメモリ(SDRAM)を含む揮発性メモリ、及び高速電気消去可能メモリ(一般にフラッシュメモリと呼ばれる)を含む不揮発性メモリ(NVM)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などのうちの1つ以上を含むことができ、Intel(登録商標)及びMicron(登録商標)からの3次元(3D)クロスポイント(XPOINT)メモリを組み込んでもよい。メモリ回路220は、半田ダウンパッケージ集積回路、ソケットメモリモジュール、及びプラグインメモリカードのうちの1つ以上として実装されてもよい。
PMIC225は、電圧レギュレータ、サージ保護器、電力アラーム検出回路、及び電池又はコンデンサなどの1つ以上の予備電源を含むことができる。電力アラーム検出回路は、節電(不足電圧)及びサージ(過電圧)状態のうちの1つ以上を検出することができる。電力ティー回路230は、単一ケーブルを使用して電力供給及びデータ接続性の双方をインフラストラクチャ機器200に提供するために、ネットワークケーブルから引き出された電力を提供することができる。
ネットワークコントローラ回路235は、イーサネット(登録商標)、イーサネットオーバーGREトンネル、イーサネットオーバーマルチプロトコルラベルスイッチング(MPLS)、又は何らかの他の好適なプロトコルなど、標準ネットワークインタフェースプロトコルを使用してネットワークへの接続性を提供することができる。ネットワーク接続性は、電気(一般に「銅相互接続」と呼ばれる)、光学、又は無線とすることができる物理的接続を使用して、ネットワークインタフェースコネクタ240を介してインフラストラクチャ機器200に対して/それから提供されることができる。ネットワークコントローラ回路235は、前述のプロトコルのうちの1つ以上を使用して通信するための1つ以上の専用プロセッサ及び/又はFPGAを含むことができる。いくつかの実装では、ネットワークコントローラ回路235は、同じプロトコル又は異なるプロトコルを使用して、他のネットワークへの接続性を提供するための複数のコントローラを含んでもよい。
測位回路245は、地球航法衛星システム(GNSS)の測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号する回路を含む。航法衛星航法(又はGNSS)の例は、米国の全地球測位システム(GPS)、ロシアの全地球測位システム(GLONASS)、欧州連合のガリレオシステム、中国のBeiDouナビゲーション衛星システム、地域ナビゲーションシステム又はGNSS増強システム(例えば、インドの航法(NAVIC)、日本の準天頂衛星システム(QZSS)、フランスのドップラーオービトグラフィ、及び衛星によって統合された無線測位(DORIS)など)などを含む。測位回路245は、様々なハードウェア要素(例えば、OTA通信を促進するためのスイッチ、フィルタ、増幅器、アンテナ素子などのハードウェアデバイスを含む)を備え、衛星航法ノードなどの測位ネットワークの構成要素と通信する。いくつかの実施形態では、測位回路245は、GNSS支援なしに位置追跡/推定を実行するためにマスタータイミングクロックを使用する測位、ナビゲーション、及びタイミング(Micro-PNT)ICのためのマイクロ技術を含んでもよい。測位回路245はまた、ベースバンド回路210及び/又はRFEM215の一部であってもよく、又はそれらと相互作用して、測位ネットワークのノード及び構成要素と通信することができる。測位回路245はまた、様々なインフラストラクチャ(例えば、RANノード111など)との動作を同期させるためにデータを使用することができる位置データ及び/又は時間データをアプリケーション回路205に提供することができる。
図2に示される構成要素は、インタフェース回路206又はIX206を使用して互いに通信することができ、これは、任意の数のバス及び/又はIX技術、例えば、業界標準アーキテクチャ(ISA)、拡張ISA、集積回路(I2C)、シリアルペリフェラルインタフェース(SPI)、ポイントツーポイントインタフェース、電力管理バス(PMBus)、ペリフェラルコンポーネントインターコネクト(PCI)、PCIエクスプレス(PCIe)、PCI拡張(PCIx)、Intel(登録商標)Ultra Path Interconnect(UPI)、Intel(登録商標)Accelerator Link(IAL)、コヒーレントアクセレレータプロセッサインタフェース(CAPI)、OpenCAPITM、Intel(登録商標)QuickPath Interconnect(QPI)、Intel(登録商標)Omni-Path Architecture(OP A)IX、RapidIOTMシステムIXs、アクセレレータ用のキャッシュコヒーレントインターコネクト(CCIX)Gen-ZコンソーシアムIXs、ハイパートランスポートIX、NVIDIA(登録商標)によって提供されるNVLink、及び/又は任意の数の他のIX技術を含むことができる。追加的に又は代替的に、IX技術は、例えば、SoCベースのシステムで使用される独自のバスであってもよい。
図3は、様々な実施形態に係るプラットフォーム300(又は「デバイス300」)の例を示している。実施形態では、コンピュータプラットフォーム300は、本明細書に記載されるUE101、アプリケーションサーバ130、及び/又は任意の他の要素/デバイスとして使用するのに好適とすることができる。プラットフォーム300は、実施例に示される構成要素の任意の組み合わせを含んでもよい。プラットフォーム300の構成要素は、集積回路(IC)、それらの部分、別個の電子デバイス、又はコンピュータプラットフォーム300内に適合された他のモジュール、論理、ハードウェア、ソフトウェア、ファームウェア、若しくはそれらの組み合わせとして、又は、より大きいシステムのシャーシ内に組み込まれる構成要素として実装されてもよい。示される構成要素の一部は省略されてもよく、追加の構成要素が存在してもよく、図示される構成要素の異なる配置が、他の実装において生じてもよい。
アプリケーション回路305は、限定されないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、及びLDO、割り込みコントローラ、SPI、I2C又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェースのうちの1つ以上、RTC、間隔及びウォッチドッグタイマーを含むタイマー-カウンタ、汎用I/O、SD MMCなどのメモリカードコントローラ、USBインタフェース、MIPIインタフェース、及びJTAG試験アクセスポートなどの回路を含む。アプリケーション回路305のプロセッサ(又はコア)は、メモリ/記憶装置に結合されてもよいし、メモリ/記憶装置を含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム300上で実行することを可能にするために、メモリ/記憶装置に記憶された命令を実行するように構成されてもよい。いくつかの実装では、メモリ/記憶素子は、オンチップメモリ回路とすることができ、これは、本明細書に記載されるものなどの、任意の好適な揮発性及び/又は不揮発性メモリ、例えば、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は任意の他の種類のメモリデバイス技術を含むことができる。
アプリケーション回路205のプロセッサは、例えば、1つ以上のプロセッサコア、1つ以上のアプリケーションプロセッサ、1つ以上のGPU、1つ以上のRISCプロセッサ、1つ以上のARMプロセッサ、1つ以上のCISCプロセッサ、1つ以上のDSP、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、マルチスレッドプロセッサ、超低電圧プロセッサ、埋め込みプロセッサ、いくつかの他の既知の処理要素、又はこれらの任意の好適な組み合わせを含むことができる。いくつかの実施形態では、アプリケーション回路205は、本明細書の様々な実施形態に従って動作するための専用プロセッサ/コントローラを備えてもよく、又はそれであってもよい。
例として、アプリケーション回路305のプロセッサは、QuarkTM、AtomTM、i3、i5、i7若しくはMCUクラスプロセッサなどのIntel(登録商標)アーキテクチャCoreTMベースのプロセッサ、又はIntel(登録商標)Corporation(カリフォルニア州サンタクララ)から入手可能な別のそのようなプロセッサを含むことができる。アプリケーション回路305のプロセッサはまた、アドバンスドマイクロデバイス(AMD)Ryzen(登録商標)プロセッサ又は加速処理ユニット(APU)のうちの1つ以上であってもよく、Apple(登録商標)Inc.からのA5-A9プロセッサ、Qualcomm(登録商標)Technologies,Inc.からのSnapdragonTM、Texas Instruments,Inc.(登録商標)のオープンマルチメディアアプリケーションプラットフォーム(OMAP)TMプロセッサであってもよく、MIPS Warrior M-クラス、Warrior I-クラス、及びWarrior P-クラスプロセッサなどのMIPS Technologies,Inc.からのMIPSベースの設計であってもよく、ARM Cortex-A、Cortex-R、及びCortex-MファミリーのプロセッサなどのARM Holdings,Ltd.からライセンスされるARMベースの設計であってもよく、又は同様のもののうちの1つである。いくつかの実装では、アプリケーション回路305は、アプリケーション回路305及び他の構成要素が単一の集積回路、又はIntel(登録商標)CorporationからのEdisonTM若しくはGalileoTM SoCボードなどの単一パッケージに形成されるシステムオンチップ(SoC)の一部であってもよい。
追加的に又は代替的に、アプリケーション回路305は、限定されないが、FPGAなどの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラム可能な論理デバイス(PLD)、構造化ASICなどのASIC、プログラム可能SoC(PSoC)、及び同様のものなどの回路を含んでもよい。そのような実施形態では、アプリケーション回路305の回路は、論理ブロック又は論理ファブリック、及び本明細書に記載される様々な実施形態の手順、方法、機能などの様々な機能を実行するようにプログラムされることができる他の相互接続されたリソースと、を備えてもよい。そのような実施形態では、アプリケーション回路305の回路は、論理ブロック、論理回路、データ、及びルックアップテーブル(LUT)などを記憶するために使用されるメモリセル(例えば、消去可能プログラム可能読み出し専用メモリ(EPROM)、電気的消去可能プログラム可能読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含んでもよい。
ベースバンド回路310は、例えば、1つ以上の集積回路を含む半田ダウン基板、主基板に半田付けされた単一のパッケージ化集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路310の様々なハードウェア電子要素は、図XTに関して以下に説明される。
RFEM315は、ミリ波(mmWave)RFEMと、1つ以上のサブmmWave無線周波数集積回路(RFIC)とを備えることができる。いくつかの実装では、1つ以上のサブmmWave RFICは、mmWave RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイへの接続(例えば、以下の図XTのアンテナアレイXT111を参照)を含んでもよく、RFEMは、複数のアンテナに接続されてもよい。代替実装では、mmWave及びサブmmWave無線機能の双方が、mmWaveアンテナ及びサブmmWaveの双方を組み込む同じ物理RFEM315内に実装されてもよい。
メモリ回路320は、所与の量のシステムメモリを提供するために使用される任意の数及び種類のメモリデバイスを含むことができる。例として、メモリ回路320は、ランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)及び/又は同期ダイナミックRAM(SDRAM)などの揮発性メモリ、並びに高速電気消去可能メモリ(一般にフラッシュメモリと呼ばれる)を含む不揮発性メモリ(NVM)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などのうちの1つ以上を含んでもよい。メモリ回路320は、LPDDR2、LPDDR3、LPDDR4などの、Joint Electron Devices Engineering Council(JEDEC)低電力二重データレート(LPDDR)ベースの設計に従って開発されてもよい。メモリ回路320は、半田ダウンパッケージ集積回路、単一ダイパッケージ(SDP)、二重ダイパッケージ(DDP)、又はクワッドダイパッケージ(Q17P)、ソケット型メモリモジュール、マイクロDIMM若しくはMiniDIMMを含むデュアルインラインメモリモジュール(DIMM)、及び/又はボールグリッドアレイ(BGA)を介してマザーボード上に半田付けされるもののうちの1つ以上として実装されてもよい。低電力実装では、メモリ回路320は、アプリケーション回路305に関連付けられたオンダイメモリ又はレジスタであってもよい。データ、アプリケーション、オペレーティングシステムなどの情報の永続的記憶を提供するために、メモリ回路320は、とりわけ、ソリッドステートディスクドライブ(SSDD)、ハードディスクドライブ(HDD)、マイクロHDD、抵抗変化メモリ、相変化メモリ、ホログラフィックメモリ、又は化学メモリを含むことができる1つ以上の大容量記憶デバイスを含んでもよい。例えば、コンピュータプラットフォーム300は、Intel(登録商標)及びMicron(登録商標)からの3次元(3D)クロスポイント(XPOINT)メモリを組み込んでもよい。
着脱可能なメモリ回路323は、ポータブルデータ記憶装置をプラットフォーム300と連結するために使用されるデバイス、回路、エンクロージャ/ハウジング、ポート又はレセプタクルなどを含んでもよい。これらのポータブルデータ記憶装置は、大量記憶目的のために使用されることができ、例えば、フラッシュメモリカード(例えば、セキュアデジタル(SD)カード、microSDカード、xD画像カードなど)、及びUSBフラッシュドライブ、光ディスク、外部HDDなどを含んでもよい。
プラットフォーム300はまた、外部デバイスをプラットフォーム300と接続するために使用されるインタフェース回路(図示せず)を含んでもよい。インタフェース回路を介してプラットフォーム300に接続された外部デバイスは、センサ回路321及び電気機械構成要素(EMC)322、並びに着脱可能なメモリ回路323に結合された着脱可能なメモリデバイスを含む。
センサ回路321は、その目的がその環境内でイベント又は変化を検出し、検出されたイベントに関する情報(センサデータ)を、いくつかの他のデバイス、モジュール、サブシステムなどに送信することであるデバイス、モジュール、又はサブシステムを含む。そのようなセンサの例は、とりわけ、加速度計、ジャイロスコープ、及び/又は磁力計を含む慣性測定ユニット(IMU)、3軸加速度計、3軸ジャイロスコープ、及び/又は磁力計を備える微小電気機械システム(MEMS)又はナノ電気機械システム(NEMS)、レベルセンサ、フローセンサ、温度センサ(例えば、サーミスタ)、圧力センサ、気圧センサ、重力計、高度計、画像キャプチャ装置(例えば、カメラ又はレンズレス開口)、光検出測距(LiDAR)センサ、近接センサ(例えば、赤外線検出器など)、奥行きセンサ、周囲光センサ、超音波トランシーバ、マイクロフォン又は他の同様の音声キャプチャデバイス、などを含む。
アクチュエータ322は、プラットフォーム300がその状態、位置、及び/又は向きを変更するか、又は機構若しくはシステムを移動又は制御することを可能にする。アクチュエータ322は、機構又はシステムを移動又は制御し、エネルギー(例えば、電流又は移動空気及び/又は液体)を何らかの種類の運動に変換するための電気的及び/又は機械的デバイスを備える。アクチュエータ322は、圧電バイオモルフ、ソリッドステートアクチュエータ、ソリッドステートリレー(SSR)、形状記憶合金ベースのアクチュエータ、電気活性ポリマーベースのアクチュエータ、中継駆動器集積回路(IC)などの1つ以上の電子(又は電気化学)デバイスを含んでもよい。アクチュエータ322は、空気式アクチュエータ、油圧アクチュエータ、電気機械式リレー(EMR)を含む電気機械スイッチ、モータ(例えば、DCモータ、ステッピングモータ、サーボ機構など)、ホイール、スラスタ、プロペラ、爪、クランプ、フック、可聴音発生器、及び/又は他の同様の電気機械的構成要素などの1つ以上の電気機械デバイスを含んでもよい。プラットフォーム300は、1つ以上のキャプチャされたイベント及び/又はサービスプロバイダ及び/又は様々なクライアントシステムから受信した命令又は制御信号に基づいて、1つ以上のアクチュエータ322を動作させるように構成されてもよい。
いくつかの実装では、インタフェース回路は、プラットフォーム300を測位回路345と接続してもよい。測位回路345は、GNSSの測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号する回路を含む。衛星航法(又はGNSS)の例は、米国のGPS、ロシアのGLONASS、欧州連合のガリレオシステム、中国のBeiDouナビゲーション衛星システム、地域ナビゲーションシステム又はGNSS増強システム(例えば、NAVIC)、日本のQZSS、フランスのDORISなど)などを含む。測位回路345は、様々なハードウェア要素(例えば、OTA通信を促進するためのスイッチ、フィルタ、増幅器、アンテナ素子などのハードウェアデバイスを含む)を備え、衛星航法ノードなどの測位ネットワークの構成要素と通信する。いくつかの実施形態では、測位回路345は、GNSS支援なしに位置追跡/推定を実行するためにマスタータイミングクロックを使用するMicro-PNT ICのためのマイクロ技術を含んでもよい。測位回路345はまた、ベースバンド回路210及び/又はRFEM315の一部であってもよく、又はそれらと相互作用して、測位ネットワークのノード及び構成要素と通信することができる。測位回路345はまた、tum-by-tumナビゲーションアプリケーションなどのための様々なインフラストラクチャ(例えば、無線基地局)との動作を同期させるためにデータを使用することができる位置データ及び/又は時間データをアプリケーション回路305に提供することができる。
いくつかの実装では、インタフェース回路は、プラットフォーム300を近距離通信(NFC)回路340と接続してもよい。NFC回路340は、無線周波数識別(RFID)規格に基づく非接触近距離通信を提供するように構成され、磁界誘導は、プラットフォーム300の外部のNFC回路340とNFC対応デバイスとの間の通信を可能にするために使用される(例えば、「NFCタッチポイント」)ように構成されている。NFC回路340は、アンテナ素子と結合されたNFCコントローラと、NFCコントローラと結合されたプロセッサとを備える。NFCコントローラは、NFCコントローラのファームウェア及びNFCスタックを実行することにより、NFC回路340にNFC機能を提供するチップ/ICであってもよい。NFCスタックは、NFCコントローラを制御するためにプロセッサによって実行されてもよく、NFCコントローラファームウェアは、近距離RF信号を放射するようにアンテナ素子を制御するためにNFCコントローラによって実行されてもよい。RF信号は、パッシブNFCタグ(例えば、ステッカー又はリストバンドに埋め込まれたマイクロチップ)に電力を供給して、記憶されたデータをNFC回路340に送信するか、又は、プラットフォーム300に近接したNFC回路340と別のアクティブNFCデバイス(例えば、スマートフォン又はNFC対応POS端末)との間のデータ転送を開始することができる。
ドライバ回路346は、プラットフォーム300に埋め込まれた、プラットフォーム300に取り付けられた、又は別の方法でプラットフォーム300と通信可能に連結された特定のデバイスを制御するように動作するソフトウェア及びハードウェア要素を含むことができる。ドライバ回路346は、プラットフォーム300の他の構成要素がプラットフォーム300内に存在することができるか又はそれに接続されることができる様々な入出力(I/O)デバイスと相互作用するか又は制御することを可能にする個々のドライバを含んでもよい。例えば、ドライバ回路346は、ディスプレイデバイスの制御及びそれへのアクセスを可能にするディスプレイドライバと、プラットフォーム300のタッチスクリーンインタフェースを制御及びそれへのアクセスを可能にするタッチスクリーンドライバと、センサ回路321のセンサ読み取り値を取得し、センサ回路321の制御及びそれへのアクセスを可能にするセンサドライバと、EMC322のアクチュエータ位置を取得し、EMC322の制御及びそれへのアクセスを可能にするEMCドライバと、埋め込まれた画像キャプチャデバイスの制御及びそれへのアクセスを可能にするカメラドライバと、1つ以上のオーディオデバイスの制御及びそれへのアクセスを可能にするオーディオドライバとを含むことができる。
電力管理集積回路(PMIC)325(「電力管理回路325」とも呼ばれる)は、プラットフォーム300の様々な構成要素に供給される電力を管理することができる。具体的には、ベースバンド回路310に関して、PMIC325は、電源選択、電圧スケーリング、バッテリ充電、又はDC-DC変換を制御することができる。例えば、PMIC325は、デバイスがUE101に含まれている場合、プラットフォーム300がバッテリ330によって給電可能であるとき、多くの場合に含まれることができる。
いくつかの実施形態では、PMIC325は、プラットフォーム300の様々な省電力機構を制御するか、又はさもなければその一部とすることができる。例えば、プラットフォーム300がRRC接続状態にあって、トラフィックを間もなく受信することが予期されるのでRANノードに依然として接続されている場合、ある非アクティブ期間後、プラットフォームは間欠受信モード(DRX)として知られる状態に入ることができる。この状態の間は、プラットフォーム300は、短い間隔で電力を落とし、それによって節電することができる。長期間のデータトラフィック活動が存在しない場合、プラットフォーム300は、RRCアイドル状態に遷移することができ、ネットワークから切断し、チャネル品質フィードバック、ハンドオーバーなどの動作を実行しない。プラットフォーム300は、非常に低い電力状態になり、ページングを実行し、ここで再び周期的にウェイクアップしてネットワークにリッスンし、次いで再びパワーダウンする。プラットフォーム300は、この状態でデータを受信しなくてもよい。データを受信するために、RRC_Connected状態に遷移しなければならない。追加的な省電力モードにより、ページング間隔より長期間(秒から数時間に及ぶ)、デバイスがネットワークを利用不可にすることを可能にしてもよい。この間、デバイスは、ネットワークに全く接続できず、完全に電力を落とすことができる。この間に送信されるどんなデータも、大きな遅延をもたらし、遅延は許容可能と想定する。
バッテリ330は、プラットフォーム300に電力を供給することができるが、いくつかの実施例では、プラットフォーム300は、固定された位置に配置されて取り付けられてもよく、電気グリッドに連結された電源を有してもよい。バッテリ330は、リチウムイオンバッテリ、亜鉛空気バッテリ、アルミニウム空気バッテリ、リチウム空気バッテリなどの金属空気バッテリとすることができる。V2X用途などのいくつかの実装では、バッテリ330は、典型的な鉛酸自動車バッテリであってもよい。
いくつかの実装では、バッテリ330は、バッテリ管理システム(BMS)又はバッテリモニタリング集積回路を含むか、又はそれに結合されている「スマートバッテリ」であってもよい。BMSは、バッテリ330の充電状態(SoCh)を追跡するためにプラットフォーム300に含まれてもよい。BMSは、バッテリ330の他のパラメータをモニタリングして、バッテリ330の健全状態(SoH)及び機能状態(SoF)などの障害予測を提供するために使用されてもよい。BMSは、バッテリ330の情報を、アプリケーション回路305又はプラットフォーム300の他の構成要素に通信してもよい。BMSはまた、アプリケーション回路305がバッテリ330の電圧又はバッテリ330からの電流の流れを直接モニタリングすることを可能にするアナログデジタル(ADC)変換器を含んでもよい。バッテリパラメータは、送信周波数、ネットワーク動作、検知周波数などの、プラットフォーム300が実行することができる動作を決定するために使用されてもよい。
電力ブロック、又は電気グリッドに結合された他の電源は、バッテリ330を充電するためにBMSと結合されてもよい。いくつかの実施例では、電力ブロック40は、無線電力受信機と置き換えられて、例えば、コンピュータプラットフォーム300内のループアンテナを介して無線で電力を取得することができる。これらの実施例では、無線バッテリ充電回路がBMSに含まれてもよい。選択される特定の充電回路は、バッテリ330のサイズ、従って必要とされる電流に依存することができる。充電は、とりわけ、Airfuel Allianceによって公表された空気燃料規格、Wireless Power Consortiumによって公表されたQi無線充電規格、又は、Alliance for Wireless Powerによって公表されたRezence充電規格を使用して行うことができる。
ユーザインタフェース回路350は、プラットフォーム300内に存在するか又はそれに接続された様々な入出力(I/O)デバイスを含み、プラットフォーム300及び/又は周辺構成要素とプラットフォーム300との相互作用を可能にするように設計された周辺構成要素インタフェースとのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェースを含む。ユーザインタフェース回路350は、入力デバイス回路及び出力デバイス回路を含む。入力デバイス回路は、とりわけ、1つ以上の物理ボタン又は仮想ボタン(例えば、リセットボタン)、物理キーボード、キーパッド、マウス、タッチパッド、タッチスクリーン、マイクロフォン、スキャナ、ヘッドセットなどを含む入力を受け入れるための任意の物理的又は仮想的手段を含む。出力デバイス回路は、センサ読み取り値、アクチュエータ位置、又は他の同様の情報などの情報を示す、又は他の方法で情報を伝達するための任意の物理的又は仮想的手段を含む。出力デバイス回路は、とりわけ、1つ以上の単純な視覚出力/インジケータ(例えば、2値状態インジケータ(例えば、発光ダイオード(LED))及び複数文字の視覚出力、又はディスプレイデバイス又はタッチスクリーン(例えば、液晶ディスプレイ(LCD)、LEDディスプレイ、量子ドットディスプレイ、プロジェクタなど)などのより複雑な出力を含む、任意の数及び/又は音声若しくは視覚ディスプレイの組み合わせを含むことができ、文字、グラフィック、マルチメディアオブジェクトなどの出力がプラットフォーム300の動作から生成又は生み出される。出力装置回路はまた、スピーカ又は他のオーディオ放出デバイス、プリンタ、及び/又は同様のものを含んでもよい。いくつかの実施形態では、センサ回路321は、入力デバイス回路(例えば、画像キャプチャデバイス、モーションキャプチャデバイスなど)として使用されてもよく、1つ以上のEMCは、出力デバイス回路(例えば、触覚フィードバックを提供するためのアクチュエータなど)として使用されてもよい。別の実施例では、アンテナ素子及び処理デバイスと結合されたNFCコントローラを備えるNFC回路が、電子タグを読み取り、及び/又は別のNFC対応デバイスと接続するために含まれてもよい。周辺構成要素インタフェースは、限定されないが、不揮発性メモリポート、USBポート、オーディオジャック、電源インタフェースなどを含むことができる。
図3によって示される構成要素は、ISA、拡張ISA、I2C、SPI、ポイントツーポイントインタフェース、PMBus、PCI、PCIe、PCIx、Intel(登録商標)UPI、Intel(登録商標)IAL、Intel(登録商標)CXL、CAPI、OpenCAPI、Intel(登録商標)QPI、Intel(登録商標)UPI、Intel(登録商標)OPA IX、RapidIOTMシステムIX、CCIX、Gen-Z Consortium IX、HyperTransport相互接続、NVIDIA(登録商標)によって提供されるNVLink、時間-トリガプロトコル(TTP)システム、aFlexRayシステム、及び/又は任意の数の他のIX技術などの任意の数のバス及び/又はIX技術を含むことができるインタフェース回路306又はIX306を使用して、互いに通信することができる。追加的に又は代替的に、IX技術は、例えば、SoCベースのシステムで使用される独自のバスであってもよい。
図4は、本明細書で論じる実施形態を実践するために使用されることができる通信回路400の例を示している。図4に示される構成要素は、例示目的のために示されており、図4に示されていない他の構成要素を含んでもよく、又は図4に示される要素は、代替的に、機能に従ってグループ化されてもよい。
通信回路400は、1つ以上の無線通信プロトコルの様々なプロトコル層/エンティティを動作又は実行するプロトコル処理回路405を含む。一実施例では、プロトコル処理回路405は、通信回路400がミリ波(mmWave)通信回路又はいくつかの他の好適なセルラー通信回路などのセルラー無線周波数通信システムである場合に、ロングタームエボリューション(LTE)プロトコルエンティティ及び/又は第5世代(5G)/新無線(NR)プロトコルエンティティを動作させることができる。この例では、プロトコル処理回路405は、メディアアクセス制御(MAC)、無線リンク制御(RLC)、パケットデータ収束プロトコル(PDCP)、サービスデータ適応プロトコル(SDAP)、無線リソース制御(RRC)、及び非アクセス層(NAS)機能を動作させる。別の実施例では、プロトコル処理回路405は、通信回路400がWiFi通信システムであるときに、1つ以上のIEEEベースのプロトコルを動作させることができる。この実施例では、プロトコル処理回路405は、MAC及び論理リンク制御(LLC)機能を動作させるであろう。
プロトコル処理回路405は、プログラムコード及びプロトコル機能を動作させるためのデータ情報を記憶するための1つ以上のメモリ構造(図示せず)、並びにプログラムコードを実行し、データ情報を使用して様々な動作を実行するための1つ以上の処理コア(図示せず)を含むことができる。プロトコル処理回路405は、デジタルベースバンド回路410、送信回路415、受信回路420、及び/又は高周波(RF)回路425の制御機能を提供するための制御回路(図示せず)の1つ以上のインスタンスを含むことができる。いくつかの実施形態では、プロトコル処理回路405及び/又はベースバンド回路410は、図2及び図3のベースバンド回路210及び310に各々対応する。
通信回路400はまた、デジタルベースバンド回路410を含んでもよく、これは、空間時間、空間周波数、又は空間符号化、基準信号生成及び/又は検出、プリアンブルシーケンス生成及び/又は復号、同期シーケンス生成及び/又は検出、制御チャネル信号ブラインド復号、及びその他の関連する機能を含むことができる、ハイブリッドオートマチックリピートリクエスト(HARQ)機能、スクランブリング及び/又はデスクランブリング、符号化及び/又は復号、層マッピング及び/又はデマッピング、変調シンボルマッピング、受信シンボル及び/又はビットメトリック判定、マルチアンテナポートプリコーディング及び/又は復号のうちの1つ以上を含む物理層(PHY)機能を実装する。変調/復調機能は、フーリエ変換(FFT)、プリコーディング、又はコンステレーションマッピング/デマッピング機能を含むことができる。符号化/復号機能は、畳み込み、テールバイティング畳み込み、ターボ、ビタビ、低密度パリティチェック(LDPC)コーディング、極性コーディングなどを含むことができる。変調/復調及びエンコーダ/デコーダ機能の実施形態は、これらの実施例に限定されず、他の実施形態では他の好適な機能を含んでもよい。
ベースバンド処理回路410及び/又はプロトコル処理回路405は、ベースバンド信号の生成及び処理、並びにRF回路425の動作を制御するためのアプリケーションプラットフォーム(例えば、各々、図2及び図3のアプリケーション回路205又はアプリケーション回路305)とインタフェース接続することができる。デジタルベースバンド回路410は、RF回路425を介した1つ以上の無線ネットワークとの通信を可能にする様々な無線制御機能を取り扱うことができる。デジタルベースバンド回路410は、限定されないが、(例えば、Rx回路420を介して)RF回路425の受信信号経路から受信されたベースバンド信号を処理し、(例えば、Tx回路415を介して)RF回路425の送信信号経路のためのベースバンド信号を生成するように、1つ以上のシングルコア又はマルチコアプロセッサ(例えば、1つ以上のベースバンドプロセッサ)又は制御ロジックなどの回路を含むことができる。デジタルベースバンド回路410は、マルチプロトコルベースバンドプロセッサなどを含んでもよい。
前述のように、デジタルベースバンド回路410は、入力データを受信し、入力データに基づいて符号化されたデータを生成し、符号化されたデータを変調マッパに出力するエンコーダ回路を含むか、又は実装することができる。エンコーダはまた、誤り検出、誤り訂正、レートマッチング、及びインターリーブのうちの1つ以上を実行してもよい。エンコーダは、本明細書に記載されるようなスクランブルシーケンスに基づいてスクランブルを更に含んでもよい。デジタルベースバンド回路410は、例えば、低ピーク対平均電力比(低-PAPR)シーケンス(例えば、TS 38.211のセクション5.2.2を参照)、擬似ランダムノイズ(PN)シーケンス(例えば、TS 38.211のセクション5.2.1を参照)、及び/又は基準信号シーケンスを生成するために、シーケンス発生器を含むか、又は実装することができる。いくつかの実施形態では、シーケンス発生器は、エンコーダ回路の一部であってもよい。
デジタルベースバンド回路410は、入力としてバイナリ桁(例えば、エンコーダからの符号化されたデータ)を取り込み、出力として複素数値変調シンボルを生成する変調マッパを含むか、又は実装することができる。変調マッパは、例えば、TS 38.211のセクション5.1によって記載されるものなど、1つ以上の好適な変調方式を動作させることができる。変調マッパは、1つ以上のマッピングテーブルに従って、符号化されたデータから選択された1つ以上のバイナリ数字を含むグループを、複素数変調シンボルにマッピングすることができる。複素数値変調シンボルは、1つ以上の層マッピングされた変調シンボルストリームにマッピングされる層マッパに入力されてもよい(例えば、TS 38.211のセクション6.3.1.3及び7.3.1.3を参照)。層マッピングシンボルの1つ以上のストリームは、ベクトルのブロックとして表されることができるプリコーディングシンボルの1つ以上のストリームを生成するプリコーダに入力されてもよい。プリコーダは、単一のアンテナポートを使用して直接マッピングを実行し、空間時間ブロック符号化又は空間多重化を使用してダイバーシティを送信するように構成されてもよい。プリコーディングされたシンボルの各ストリームは、リソースマッピングシンボル(例えば、RE)のストリームを生成するリソースマッパに入力されてもよい。リソースマッパは、マッピングコードに従って、連続ブロックマッピング、ランダム化マッピング、及び/又は疎マッピングを含むことができるマッピングに従って、プリコーディングされたシンボルを周波数領域サブキャリア及び時間領域シンボルにマッピングすることができる。
デジタルベースバンド回路410はまた、OFDMベースバンド信号及び/又は他のベースバンド信号を生成するために、ベースバンド信号発生器(「マルチキャリア発生器」とも呼ばれる)を含むか、又は実装することができる。これらの実施形態では、リソースマッパからのリソースマッピングシンボルは、時間領域ベースバンドシンボルを生成するベースバンド信号発生器に入力される。ベースバンド信号発生器は、例えば、逆高速フーリエ変換(IFFT)として一般的に実装される逆離散フーリエ変換、又は1つ以上のフィルタを含むフィルタバンクを使用して、時間領域信号(例えば、時間領域シンボルのセット)を生成することができる。IFFTから生じる時間領域信号は、無線チャネルを介して送信される。受信機では、FFTブロックが使用されて、受信信号を処理し、元のデータビットを復元するために使用される周波数領域にする。デジタルベースバンド回路410の動作の他の/追加の態様は、TS 38.211によって記載される。
通信回路400はまた、送信(Tx)回路415及び受信(Rx)回路420を含む。Tx回路415は、RF回路425によって送信されるアナログ信号にデジタルベースバンド信号を変換するように構成されている。そうするために、一実施形態では、Tx回路415は、デジタルアナログ変換器(DAC)、アナログベースバンド回路、アップコンバージョン回路、並びにフィルタリング及び増幅回路などの様々な構成要素を含む。追加的に又は代替的に、Tx回路415は、デジタル送信回路及び出力回路を含むことができる。
Rx回路420は、RF回路425によって受信されたアナログ信号をデジタルベースバンド回路410に供給されるデジタルベースバンド信号に変換するように構成されている。そうするために、一実施形態では、Rx回路420は、並列受信回路及び/又は組み合わせられた受信回路の1つ以上のインスタンスを含む。組み合わされた受信回路の並列受信回路及びインスタンスは、中間周波数(IF)ダウンコンバージョン回路、IF処理回路、ベースバンドダウンコンバージョン回路、ベースバンド処理回路、及びアナログデジタル変換器(ADC)回路を含むことができる。
通信回路400はまた、非固体媒体を介して変調電磁放射を使用して無線ネットワークとの通信を可能にする無線周波数(RF)回路425を含む。RF回路425は、Rx回路420を介してデジタルベースバンド回路410に供給されるように、アナログRF信号(例えば、既存の又は受信された変調波形)をデジタルベースバンド信号に変換する回路を含むことができる受信信号経路を含む。RF回路425はまた、送信信号経路を含み、これは、Tx回路415を介してデジタルベースバンド回路410によって提供されたデジタルベースバンド信号を、アンテナアレイ430を介して増幅及び送信されるアナログRF信号(例えば、変調波形)に変換するように構成された回路を含むことができる。
RF回路425は、1つ以上のフィルタ、電力増幅器、低雑音増幅器、プログラム可能位相シフタ、及び電源(図示せず)を含むことができる、無線チェーン回路の1つ以上のインスタンスを含むことができる。RF回路425はまた、電力合成及び分割回路を含んでもよい。電力合成及び分割回路は、その物理回路が、デバイスが送信しているときに電力分割器として動作するように構成され、デバイスが受信しているときに電力合成器として動作するように構成されることができるように双方向に動作することができる。いくつかの実施形態では、電力合成及び分割回路は、デバイスが送信しているときに電力分割を実行し、デバイスが受信しているときに電力を合成するために、完全に又は部分的に分離された回路を含んでもよい。電力合成及び分割回路は、ツリー内に配置された1つ以上の双方向電力分割器/合成器を含む受動回路を含んでもよい。いくつかの実施形態では、電力合成及び分割回路は、増幅器回路を含む能動回路を含むことができる。
通信回路400はまた、アンテナアレイ430を含む。アンテナアレイ430は、1つ以上のアンテナ素子を含む。アンテナアレイ430は、1つ以上のプリント回路基板の表面上に作製された複数のマイクロストリップアンテナ又はプリントアンテナであってもよい。アンテナアレイ430は、様々な形状の金属箔(例えば、パッチアンテナ)のパッチとして形成されてもよく、金属伝送線などを使用してRF回路425と結合されてもよい。
図5A、図5B、及び図6は、各々、様々な実施形態に係る手順500A、500B、及び600を例示している。プロセス500A、500B、及び600は、コンピューティングデバイス(例えば、UE101又はRANノード111)に電子動作を実行させ、及び/又は図5A、図5B、及び図6に関して説明された動作の特定のシーケンス若しくはフローを実行させる、プログラムコード、命令、又はコンピュータプログラム製品(又はコンピュータプログラム製品を作成するためのデータ)などの他のものを含む1つ以上のコンピュータ可読記憶媒体として具現化されてもよい。動作の特定の例及び順序が、図5A、図5B、及び図6に示されているが、図示された動作の順序は、任意の方法で実施形態の範囲を限定するものと解釈されるべきではない。むしろ、描写された動作は、本開示の趣旨及び範囲内に留まりながら、再順序付けされ、更なる動作に分割され、組み合わせられ、及び/又は省略されてもよい。
図5Aは、様々な実施形態に係る例示的なプロセス500Aを示している。プロセス500Aは、動作505において開始し、UE101(又はUE101のベースバンド回路)は、受信した構成に基づいて、1つ以上のRLM-RSリソースを判定する。動作510において、UE101(又はUE101のベースバンド回路)は、RLM評価期間をスケーリングするために使用されるスケーリングファクタを判定する。動作515において、UE101(又はUE101のRF回路)は、RLM評価期間を判定し、動作520において、UE101(又はUE101のRF回路)は、判定されたRLM評価期間にスケーリングファクタを適用する。動作525において、UE101(又はUE101のRF回路)は、RLMリソースをモニタリングし、動作530において、UE101(又はUE101のRF回路)は、スケーリングされたRLM評価期間にわたって、モニタリングされたRLM-RSリソース上でDL RLQを推定する。動作530の後、必要に応じて、プロセス500Aは終了又は反復する。
図5Bは、様々な実施形態に係る例示的なプロセス500Bを示している。プロセス500Bは、動作535において開始し、UE101(又はUE101のRF回路)は、受信された構成に基づいて、1つ以上のRLM-RSリソースを判定する。
動作540において、UE101(又はUE101のRF回路)は、RLM L1指示間隔をスケーリングするために使用されるスケーリングファクタを判定し、動作545において、UE101(又はUE101のRF回路)は、L1指示間隔を判定する。動作550において、UE101(又はUE101のRF回路)は、判定されたL1指示間隔にスケーリングファクタを適用する。動作555において、UE101(又はUE101のRF回路)は、1つ以上のRLM-RSリソースをモニタリングし、RLM評価期間にわたってモニタリングされたRLS-RSリソース上でDL RLQを推定する。動作560において、UE101(又はUE101のRF回路)は、L1エンティティ(例えば、PHY)から上位層エンティティ(例えば、RLCエンティティ)に、スケーリングされたL1指示間隔後に推定されたDL無線リンク品質に基づいてL1指示を送信する。動作560の後、必要に応じて、プロセス500Bは終了又は反復する。
図6は、様々な実施形態に係る例示的なプロセス600を示している。プロセス600は、動作605において開始し、RANノード111(又はRANノード111のアプリケーション回路及び/又はベースバンド回路)は、RLM推定目的に使用されるRLM-RSリソースを判定する。動作610において、RANノード111(又はRANノード111のRFEM)は、UE101がそれ自体のスケーリングファクタ(又はスケーリングファクタインデックス)を判定するか否かを判定する。スケーリングファクタ(又はスケーリングファクタインデックス)は、RLM評価期間スケーリングファクタ及び/又はL1指示間隔スケーリングファクタであってもよい。いくつかの実施形態では、この判定は、前述のものなどの様々なUE条件、能力、及び/又は同様のものに基づいてもよい。動作610において、RANノード111は、UE101がそれ自体のスケーリングファクタを判定すると判定した場合、RANノード111(又はRANノード111のRFEM)は、動作615に進み、RLM-RSリソースと、UE101がそれ自体のスケーリングファクタ(又はスケーリングファクタインデックス)を判定すべきであることを示すための指示と、スケーリングファクタ(又はスケーリングファクタインデックス)を判定するときを含む、スケーリングファクタ(又はスケーリングファクタインデックス)を判定するための1つ以上のトリガイベント又は他の同様の条件/基準とを示す構成を生成する。次いで、動作630において、RANノード111(又はRANノード111のRFEM)は、UE101に構成をシグナリングする。
動作610において、RANノード111は、UE101がそれ自体のスケーリングファクタを判定しないと判定した場合、RANノード111(又はRANノード111のRFEM)は、動作620に進み、様々なUE条件、基準などに基づいて、RLMスケーリングファクタ(又はスケーリングファクタインデックス)を判定する。動作625において、RANノード111(又はRANノード111のRFEM)は、RLM-RSリソースと、判定されたRLMスケーリングファクタ(又はスケーリングファクタインデックス)とを示すための構成を生成する。動作630において、RANノード111(又はRANノード111のRFEM)は、UE101に構成をシグナリングする。動作630の後、必要に応じて、プロセス600は終了又は反復する。
いくつかの非限定的な実施例は、以下のとおりである。以下の実施例は、更なる実施形態に関連し、実施例における詳細は、前述の1つ以上の実施形態において任意の場所で使用されることができる。以下の実施例のいずれも、本明細書に記載される任意の他の実施例又は任意の実施形態と組み合わせることができる。
実施例A01は、ユーザ機器(UE)を動作させる方法であって、受信した構成に基づいて、UE内に実装されたシステムオンチップ(SoC)のベースバンド回路によって、1つ以上の無線リンクモニタリング基準信号(RLM-RS)リソースを判定することと、ベースバンド回路によって、無線リンクモニタリング(RLM)評価期間をスケーリングするために使用されるスケーリングファクタを判定することと、ベースバンド回路によって、1つ以上のRLM-RSリソースをモニタリングすることと、ベースバンド回路によって、スケーリングされたRLM評価期間にわたって、モニタリングされたRLS-RSリソース上のダウンリンク(DL)無線リンク品質を推定することと、を備える、方法を含む。
実施例A02は、ベースバンド回路によって、RLM評価期間を判定することと、ベースバンド回路によって、判定されたRLM評価期間にスケーリングファクタを適用することと、を更に備える、実施例A01及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A03は、構成がスケーリングファクタを示すことであり、方法が、ベースバンド回路によって、構成における情報要素(IE)内のスケーリングファクタを識別することを更に備える、実施例A01~A02及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A04は、構成が、スケーリングファクタを示すことであり、方法が、ベースバンド回路によって、その構成における情報要素(IE)内のスケーリングファクタインデックスを識別することと、ベースバンド回路によって、識別されたスケーリングファクタインデックスを使用してスケーリングファクタを判定することと、を更に備える、実施例A01~A02及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A05は、構成が、UEがRLM評価期間のスケーリングファクタを判定することであり、方法が、ベースバンド回路によって、トリガイベントの検出に応じてスケーリングファクタを判定することを更に備える、実施例A01~A02及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A06は、構成が、トリガイベントを示すことである、実施例A05及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A07は、ベースバンド回路によって、スケーリングされたRLM評価期間を示すレポートを生成することと、ベースバンド回路によって、無線アクセスネットワーク(RAN)ノードへの送信のために、SoCのインタフェース回路を介して無線周波数(RF)回路に生成されたレポートを提供することと、を更に備える、実施例A01~A06及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A08は、ベースバンド回路によって、RLM層1(L1)指示間隔をスケーリングするために使用される別のスケーリングファクタを判定することと、ベースバンド回路によって、スケーリングされたL1指示間隔の後に、推定されたDL無線リンク品質に基づいて、L1インジケータを上位層エンティティに送信するように、物理層エンティティを動作させることと、を更に備える、実施例A07及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A09は、ベースバンド回路によって、L1指示間隔を判定することと、ベースバンド回路によって、判定されたL1指示間隔に他のスケーリングファクタを適用することと、を更に備える、実施例A08及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例A10は、ベースバンド回路によって、スケーリングされたL1指示間隔を示すレポートを生成することと、ベースバンド回路によって、生成されたレポートをRANノードへの送信のためにインタフェース回路を介してRF回路に提供することと、を更に備える、実施例A09及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B01は、ユーザ機器(UE)によって実行される方法であって、受信した構成に基づいて、1つ以上の無線リンクモニタリング基準信号(RLM-RS)リソースを判定することと、RLM層1(L1)指示間隔をスケーリングするために使用されるスケーリングファクタを判定することと、1つ以上のRLM-RSリソースをモニタリングすることと、RLM評価期間にわたってモニタリングされたRLS-RSリソース上でダウンリンク(DL)無線リンク品質を推定することと、スケーリングされたL1指示間隔の後、推定されたDL無線リンク品質に基づいて、L1エンティティから上位層エンティティにL1指示を送信することと、を備える、方法を含む。
実施例B02は、L1指示間隔を判定することと、判定されたL1指示間隔にスケーリングファクタを適用することと、を更に備える、実施例B01及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B03は、構成が、スケーリングファクタを示すことであり、方法が、構成における情報要素(IE)内のスケーリングファクタを識別することを備える、実施例B01及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B04は、構成が、スケーリングファクタを示すことであり、方法が、構成におけるIE内のスケーリングファクタインデックスを識別することと、識別されたスケーリングファクタインデックスを使用してスケーリングファクタを判定することと、を備える、実施例B01及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B05は、構成が、UEがRLM評価期間のスケーリングファクタを判定することを示すことであり、方法が、トリガイベントの検出に応じてスケーリングファクタを判定することを備える、実施例B01及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B06は、構成が、トリガイベントを示すことである、実施例B05及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B07は、スケーリングされたL1指示間隔を示すレポートを生成することと、生成されたレポートを無線アクセスネットワーク(RAN)ノードへの送信のためにインタフェース回路を介して無線周波数(RF)回路に提供することと、を更に備える、実施例B01~B06及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B08は、RLM評価期間をスケーリングするために使用される別のスケーリングファクタを判定することと、スケーリングされたRLM評価期間にわたってモニタリングされたRLS-RSリソース上でDL無線リンク品質を推定することと、を更に備える、実施例B07及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B09は、RLM評価期間を判定することと、判定されたRLM評価期間に他のスケーリングファクタを適用することと、を更に備える、実施例B08及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例B10は、スケーリングされたRLM評価期間を示すレポートを生成することと、生成されたレポートをRANノードへの送信のためにインタフェース回路を介してRF回路に提供することと、を更に備える、実施例B09及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例C01は、無線アクセスネットワーク(RAN)ノードによって実行される方法であって、ダウンリンク(DL)無線リンク品質が推定されるべき1つ以上の無線リンクモニタリング基準信号(RLM-RS)リソースと、DL無線リンク品質推定のために使用されるスケーリングファクタの指示とを示す構成を生成することと、ユーザ機器(UE)に構成をシグナリングすることと、を備える、方法を含む。
実施例C02は、スケーリングファクタが、RLM評価期間をスケーリングするためのスケーリングファクタであるか、又はスケーリングファクタが、層1(L1)指示間隔をスケーリングするためのスケーリングファクタである、実施例C01及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例C03は、スケーリングファクタの指示がスケーリングファクタ値であるか、又はスケーリングファクタの指示がスケーリングファクタ値を判定するためにUEによって使用されるスケーリングファクタインデックスである、実施例C01~C02及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例C04は、UEの状態、UEモビリティ状態、UEの無線リソース制御(RRC)状態、UEの登録管理状態、UEの接続管理状態、UEのセッション管理状態、又は1つ以上のUE能力のうちの1つ以上に基づいて、スケーリングファクタを判定することを更に備える、実施例C03及び/又は本明細書におけるいくつかの他の実施例の方法を含む。
実施例C05は、生成することが、UEが、UEの状態、UEモビリティ状態、UEの無線リソース制御(RRC)状態、UEの登録管理状態、UEの接続管理状態、UEのセッション管理状態、又は1つ以上のUE能力のうちの1つ以上に基づいてスケーリングファクタ又はスケーリングファクタインデックスを判定することであることを示すインジケータを更に含むように構成を生成することを更に備える、実施例C03の方法を含む。
実施例Z01は、実施例A01~A10、B01~B10、C01~C05、又は本明細書に記載された任意の他の方法若しくはプロセスのいずれかに記載された又は関連する方法の1つ以上の要素を実行する手段を備える装置を含むことができる。
実施例Z02は、命令を備える1つ以上の非一時的コンピュータ可読媒体であって、電子デバイスの1つ以上のプロセッサによって命令が実行されると、命令が電子デバイスに、実施例A01~A10、B01~B10、C01~C05、又は本明細書に記載された任意の他の方法若しくはプロセスのいずれかに記載された又は関連する方法の1つ以上の要素を実行させる、1つ以上の非一時的コンピュータ可読媒体を含むことができる。
実施例Z03は、実施例A01~A10、B01~B10、C01~C05、又は本明細書に記載された任意の他の方法若しくはプロセスのいずれかに記載された又は関連する方法の1つ以上の要素を実行するための論理、モジュール、又は回路を備える、装置を含むことができる。
実施例Z04は、実施例A01~A10、B01~B10、C01~C05、又はその一部若しくは部分のいずれかに記載された又は関連する方法、技術、又はプロセスを含むことができる。
実施例Z05は、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されると、1つ以上のプロセッサに、実施例A01~A10、B01~B10、C01~C05、又はその一部のいずれかに記載された又は関連する方法、技術、又はプロセスを実行させる命令を備える1つ以上のコンピュータ可読媒体と、を備える、装置を含むことができる。
実施例Z06は、実施例A01~A10、B01~B10、C01~C05、又はその一部若しくは部分のいずれかに記載された又は関連する信号を含むことができる。
実施例Z07は、実施例A01~A10、B01~B10、C01~C05、又はその一部若しくは部分、又は本開示に記載された他のもののいずれかに記載された又は関連するデータグラム、パケット、フレーム、セグメント、プロトコルデータユニット(PDU)、又はメッセージを含むことができる。
実施例Z08は、実施例A01~A10、B01~B10、C01~C05、又はその一部若しくは部分、又は本開示に記載された他のもののいずれかに記載された又は関連するデータによって符号化された信号を含むことができる。
実施例Z09は、実施例A01~A10、B01~B10、C01~C05、又はその一部若しくは部分、又は本開示に記載された他のもののいずれかに記載された又は関連するデータグラム、パケット、フレーム、セグメント、プロトコルデータユニット(PDU)、又はメッセージによって符号化された信号を含むことができる。
実施例Z10は、1つ以上のプロセッサによるコンピュータ可読命令の実行が、1つ以上のプロセッサに、実施例A01~A10、B01~B10、C01~C05、又はその一部のいずれかに記載された又は関連する方法、技術、又はプロセスを実行させる、電磁信号担持コンピュータ可読命令を含むことができる。
実施例Z11は、処理要素によるプログラムの実行が、処理要素に、実施例A01~A10、B01~B10、C01~C05、又はその一部のいずれかに記載された又は関連する方法、技術、又はプロセスを実行させる、命令を備えるコンピュータプログラムを含むことができる。
実施例Z12は、本明細書に示されて記載された無線ネットワークにおける信号を含むことができる。実施例Z13は、本明細書に示されて記載された無線ネットワークにおいて通信する方法を含むことができる。実施例Z14は、本明細書に示されて記載された無線通信を提供するシステムを含むことができる。実施例Z15は、本明細書に示されて記載された無線通信を提供するデバイスを含むことができる。
上述した実施例のいずれも、特に明記しない限り、任意の他の実施例(又は実施例の組み合わせ)と組み合わせることができる。本明細書で使用される用語は、特定の実施形態を説明する目的のためであり、本開示を限定することを意図するものではない。本発明で使用される場合、単数形「a」、「an」、及び「the」は、文脈が明らかにそうではないことを示さない限り、複数形も含むことが意図される。用語「comprises(備える)」及び/又は「comprising(備える)」が、本明細書で使用される場合、述べられた特徴、整数、ステップ、動作、要素、及び/又は構成要素の存在を指定するが、1つ以上の他の特徴、整数、ステップ、動作、要素、構成要素、及び/又はそれらのグループの存在又は追加を除外しないことを更に理解されたい。本開示の目的のために、「A及び/又はB」という句は、(A)、(B)、又は(A及びB)を意味する。本開示の目的のために、「A、B、及び/又はC」という句は、(A)、(B)、(C)、(A及びB)、(A及びC)、(B及びC)、又は(A、B、及びC)を意味する。説明は、「一実施形態では」又は「いくつかの実施形態では」という句を使用する場合があるが、これらは各々、同じ又は異なる実施形態の1つ以上を指すことができる。また、本開示の実施形態に関連して使用される「含む(comprising)」、「含む(including)」、「有する(having)」などの用語は同義である。用語「結合された」(又はその変異体)は、2つ以上の要素が互いに直接物理的又は電気的に接触していることを意味することができ、2つ以上の要素が互いに間接的に接触するが、互いに更に協働するか若しくは相互作用することを意味することができ、及び/又は、1つ以上の他の要素が、互いに結合されると言われる要素間に結合又は接続されていることを意味することができる。「通信可能に結合された」という用語は、2つ以上の要素が、有線又は他の相互接続を介して、無線通信チャネル又はインクを介して、及び/又は同様のものを含む通信手段によって互いに接触することができることを意味することができる。
前述の説明は、様々な例示的な実施形態の例示及び説明を提供するが、網羅的であることを意図するものではなく、又は、開示される正確な形態に実施形態の範囲を限定することを意図するものではない。変更及び変形は、上記の教示を考慮して可能であるか、又は本開示と整合した実践的実施形態から得ることができる。本開示の例示的な実施形態を説明するために具体的な詳細が記載されている場合、本開示は、これらの具体的な詳細を伴わずに、又はこれらの具体的な詳細の変形を伴うことができることは、当業者には明らかなはずである。しかしながら、本開示の概念を開示される特定の形態に限定する意図はないが、反対に、本開示及び添付の特許請求の範囲と一致する全ての変更、均等物、及び代替物を網羅することを意図するものであることを理解されたい。

Claims (25)

  1. ユーザ機器「UE」に実装されるシステムオンチップ「SoC」であって、
    インタフェース回路と、
    前記インタフェース回路に結合されたベースバンド回路であって、前記ベースバンド回路が、
    受信した構成に基づいて、1つ以上の無線リンクモニタリング基準信号「RLM-RS」リソースを判定し、
    無線リンクモニタリング「RLM」評価期間をスケーリングするために使用されるスケーリングファクタを判定し、
    前記1つ以上のRLM-RSリソースをモニタリングし、
    前記スケーリングされたRLM評価期間にわたって前記モニタリングされたRLS-RSリソース上のダウンリンク「DL」無線リンク品質を推定する、SoC。
  2. 前記ベースバンド回路が、更に、
    前記RLM評価期間を判定し、
    前記判定されたRLM評価期間に前記スケーリングファクタを適用する、請求項1に記載のSoC。
  3. 前記構成が、前記スケーリングファクタを示すことであり、前記ベースバンド回路が、更に、
    前記構成における情報要素(IE)内の前記スケーリングファクタを識別する、請求項1に記載のSoC。
  4. 前記構成が、前記スケーリングファクタを示すことであり、前記ベースバンド回路が、更に、
    前記構成におけるIE内のスケーリングファクタインデックスを識別し、
    前記識別されたスケーリングファクタインデックスを使用して前記スケーリングファクタを判定する、請求項1に記載のSoC。
  5. 前記構成が、前記UEが前記RLM評価期間の前記スケーリングファクタを判定することを示すことであり、前記ベースバンド回路が、更に、
    トリガイベントの検出に応じて前記スケーリングファクタを判定する、請求項1に記載のSoC。
  6. 前記構成が、前記トリガイベントを示すことである、請求項5に記載のSoC。
  7. 前記ベースバンド回路が、更に、
    前記スケーリングされたRLM評価期間を示すレポートを生成し、
    無線アクセスネットワーク「RAN」ノードへの送信のために前記インタフェース回路を介して、前記生成されたレポートを無線周波数「RF」回路に提供する、請求項1から6のいずれか一項に記載のSoC。
  8. 前記ベースバンド回路が、更に、
    RLM層1「L1」指示間隔をスケーリングするために使用される別のスケーリングファクタを判定し、
    前記スケーリングされたL1指示間隔の後に、前記推定されたDL無線リンク品質に基づいて、L1インジケータを上位層エンティティに送信するように、物理層エンティティを動作させる、請求項7に記載のSoC。
  9. 前記ベースバンド回路が、更に、
    前記L1指示間隔を判定し、
    前記判定されたL1指示間隔に前記他のスケーリングファクタを適用する、請求項8に記載のSoC。
  10. 前記ベースバンド回路が、更に、
    前記スケーリングされたL1指示間隔を示すレポートを生成し、
    前記生成されたレポートを、RANノードへの送信のために前記インタフェース回路を介してRF回路に提供する、請求項9に記載のSoC。
  11. 命令を備える1つ以上のコンピュータ可読記憶媒体(CRSM)であって、ユーザ機器「UE」の1つ以上のプロセッサによる前記命令の実行が、前記UEに、
    受信した構成に基づいて、1つ以上の無線リンクモニタリング基準信号「RLM-RS」リソースを判定させ、
    RLM層1「L1」指示間隔をスケーリングするために使用されるスケーリングファクタを判定させ、
    前記1つ以上のRLM-RSリソースをモニタリングさせ、
    RLM評価期間にわたって前記モニタリングされたRLS-RSリソース上のダウンリンク「DL」無線リンク品質を推定させ、
    L1エンティティから上位層エンティティに、前記スケーリングされたL1指示間隔の後に、前記推定されたDL無線リンク品質に基づいてL1指示を送信させる、1つ以上のCRSM。
  12. 前記命令の実行が、前記UEに、
    前記L1指示間隔を判定させ、
    前記判定されたL1指示間隔に前記スケーリングファクタを適用させる、請求項11に記載の1つ以上のCRSM。
  13. 前記構成が、前記スケーリングファクタを指示することであり、前記命令の実行が、前記UEに、
    前記構成における情報要素(IE)内の前記スケーリングファクタを識別させる、請求項11に記載の1つ以上のCRSM。
  14. 前記構成が、前記スケーリングファクタを指示することであり、前記命令の実行が、前記UEに、
    前記構成におけるIE内のスケーリングファクタインデックスを識別させ、
    前記識別されたスケーリングファクタインデックスを使用して前記スケーリングファクタを判定させる、請求項11に記載の1つ以上のCRSM。
  15. 前記構成が、前記UEが前記RLM評価期間の前記スケーリングファクタを判定することを示すことであり、前記命令の実行が、前記UEに、
    トリガイベントの検出に応じて前記スケーリングファクタを判定させる、請求項11に記載の1つ以上のCRSM。
  16. 前記構成が、前記トリガイベントを示すことである、請求項15に記載の1つ以上のCRSM。
  17. 前記命令の実行が、前記UEに、
    前記スケーリングされたL1指示間隔を示すレポートを生成させ、
    無線アクセスネットワーク「RAN」ノードへの送信のためにインタフェース回路を介して、前記生成されたレポートを無線周波数「RF」回路に提供させる、請求項11から16のいずれか一項に記載の1つ以上のCRSM。
  18. 前記命令の実行が、前記UEに、
    RLM評価期間をスケーリングするために使用される別のスケーリングファクタを判定させ、
    前記スケーリングされたRLM評価期間にわたって、前記モニタリングされたRLS-RSリソース上の前記DL無線リンク品質を推定させる、請求項17に記載の1つ以上のCRSM。
  19. 前記命令の実行が、前記UEに、
    前記RLM評価期間を判定させ、
    前記判定されたRLM評価期間に前記他のスケーリングファクタを適用させる、請求項18に記載の1つ以上のCRSM。
  20. 前記命令の実行が、前記UEに、
    前記スケーリングされたRLM評価期間を示すレポートを生成させ、
    前記生成されたレポートを、RANノードへの送信のためにインタフェース回路を介してRF回路に提供させる、請求項19に記載の1つ以上のCRSM。
  21. 無線アクセスネットワーク「RAN」ノードにおいて実装される装置であって、
    ダウンリンク「DL」無線リンク品質が推定される1つ以上の無線リンクモニタリング基準信号「RLM-RS」リソース、及び前記DL無線リンク品質推定に使用されるスケーリングファクタの指示を示す構成を生成する手段と、
    前記構成をユーザ機器「UE」にシグナリングする手段と、を備える、装置。
  22. 前記スケーリングファクタが、RLM評価期間をスケーリングするためのスケーリングファクタであるか、又は前記スケーリングファクタが、層1「L1」指示間隔をスケーリングするためのスケーリングファクタである、請求項21に記載の装置。
  23. 前記スケーリングファクタの前記指示がスケーリングファクタ値であるか、又は前記スケーリングファクタの前記指示が前記スケーリングファクタ値を判定するために前記UEによって使用されるスケーリングファクタインデックスである、請求項21又は22に記載の装置。
  24. 前記UEの状態、UEモビリティ状態、前記UEの無線リソース制御「RRC」状態、前記UEの登録管理状態、前記UEの接続管理状態、前記UEのセッション管理状態、又は1つ以上のUE能力のうちの1つ以上に基づいて、前記スケーリングファクタを判定する手段を更に備える、請求項23に記載の装置。
  25. 前記生成する手段が、更に、
    前記UEが、前記UEの状態、UEモビリティ状態、前記UEの無線リソース制御「RRC」状態、前記UEの登録管理状態、前記UEの接続管理状態、前記UEのセッション管理状態、又は1つ以上のUE能力のうちの1つ以上に基づいて前記スケーリングファクタ又は前記スケーリングファクタインデックスを判定することであることを示すインジケータを更に含むように前記構成を生成する、請求項23に記載の装置。
JP2021548542A 2018-11-02 2019-10-30 電力節約のための無線リンクモニタリング強化 Active JP7303890B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862755188P 2018-11-02 2018-11-02
US62/755,188 2018-11-02
PCT/US2019/058758 WO2020092498A1 (en) 2018-11-02 2019-10-30 Radio link monitoring enhancements for power savings

Publications (2)

Publication Number Publication Date
JP2022509520A true JP2022509520A (ja) 2022-01-20
JP7303890B2 JP7303890B2 (ja) 2023-07-05

Family

ID=70464456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021548542A Active JP7303890B2 (ja) 2018-11-02 2019-10-30 電力節約のための無線リンクモニタリング強化

Country Status (4)

Country Link
US (1) US20220022064A1 (ja)
JP (1) JP7303890B2 (ja)
CN (1) CN112956143B (ja)
WO (1) WO2020092498A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823489A (zh) 2018-10-10 2021-05-18 苹果公司 无线电链路监测(rlm)增强
US11764851B2 (en) * 2019-08-16 2023-09-19 Qualcomm Incorporated Evaluation period for beam failure detection and candidate beam detection in multi-beam NR-U
CN113692011B (zh) * 2020-05-19 2023-10-13 华为技术有限公司 测量方法、装置及存储介质
CN116368764A (zh) 2020-10-02 2023-06-30 苹果公司 改进具有高多普勒漂移的网络多输入多输出(mimo)性能
WO2022084544A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods for adapting a radio link procedure for ue power saving
CN116438854A (zh) * 2020-10-22 2023-07-14 瑞典爱立信有限公司 在节电下适配信道监测模式
US11659422B2 (en) * 2021-06-02 2023-05-23 Apple Inc. Mechanisms for radio link failure (RLF) reporting to network
US11757600B2 (en) * 2021-09-15 2023-09-12 Qualcomm Incorporated Measurement without gaps for narrow bandwidth part (BWP) hopping
WO2024031328A1 (en) * 2022-08-09 2024-02-15 Apple Inc. Link quality monitoring on multiple candidate cell groups

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542684A (ja) * 2010-10-29 2013-11-21 サムスン エレクトロニクス カンパニー リミテッド 無線ネットワークで無線リンクモニタリングのチャネル測定のための装置及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034902A (ko) * 2009-09-29 2011-04-06 한국전자통신연구원 스케일러블 비디오 부호화에서 인터넷 그룹 관리 프로토콜 보고 메시지를 억제하기 위한 네트워크 장치, 보고 메시지 억제 방법, 보고 메시지 크기 감소 방법 및 보고 메시지 처리 방법
CN101969361B (zh) * 2010-09-30 2015-06-03 中兴通讯股份有限公司 传输周期反馈报告的方法和装置
US8755791B2 (en) * 2012-05-11 2014-06-17 Blackberry Limited Method and system for low power downlink transmission in heterogeneous networks
EP2665207B1 (en) * 2012-05-15 2018-04-18 MStar Semiconductor, Inc. User Equipment and Method for Radio Link Monitoring
WO2015020321A1 (en) * 2013-08-08 2015-02-12 Lg Electronics Inc. Method and apparatus for performing operation related to radio link failure in a heterogeneous network
US10085300B2 (en) * 2015-02-16 2018-09-25 Qualcomm Incorporated Connected mode extended discontinuous reception
WO2018156696A1 (en) * 2017-02-27 2018-08-30 Intel IP Corporation Exit conditions for conditional handovers and beam based mobility state estimation
JP7449230B2 (ja) * 2018-02-16 2024-03-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Rlm及びビームモニタリングパラメータの最適化された再設定

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542684A (ja) * 2010-10-29 2013-11-21 サムスン エレクトロニクス カンパニー リミテッド 無線ネットワークで無線リンクモニタリングのチャネル測定のための装置及び方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Discussion on Gap Sharing[online]", 3GPP TSG RAN WG4 ADHOC_TSGR4_AH-1801 R4-1800111, JPN6023021283, 15 January 2018 (2018-01-15), ISSN: 0005066632 *
NOKIA, NOKIA SHANGHAI BELL: "CR for remaining open issues in SSB RLM[online]", 3GPP TSG RAN WG4 #87 R4-1807985, JPN6023021282, 31 May 2018 (2018-05-31), ISSN: 0005066633 *
R4-1800111 3GPP TSG RAN WG4#AH1801会合資料 (外国学会論文2019-00354-005), JPN6022014960, 15 January 2018 (2018-01-15), ISSN: 0004919256 *
R4-1807985 3GPP TSG RAN WG4#87会合資料 (外国学会論文2019-01570-004), JPN6022014959, 31 May 2018 (2018-05-31), ISSN: 0004752130 *

Also Published As

Publication number Publication date
CN112956143A (zh) 2021-06-11
JP7303890B2 (ja) 2023-07-05
WO2020092498A1 (en) 2020-05-07
CN112956143B (zh) 2023-03-28
US20220022064A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
CN113016156B (zh) 基于同步信号块的波束故障检测系统、用户装备及存储介质
JP7303890B2 (ja) 電力節約のための無線リンクモニタリング強化
KR102617900B1 (ko) 서비스 흐름 및 서비스 요청의 품질에 관련된 성능 측정치들
US10868772B2 (en) Control signaling of beam failure detection
KR102630579B1 (ko) Ue 대 ue 크로스링크 간섭 측정 및 리포팅
US20220159574A1 (en) Control channel signaling for user equipment (ue) power saving
KR102620627B1 (ko) 매우 신뢰성있는 통신을 위한 데이터 반복 송신 방법들
WO2020140041A1 (en) Method and system for threshold monitoring
US20220150740A1 (en) Measuring the performance of a wireless communications network
WO2020146277A1 (en) Random access channel (rach) optimization and automatic neighbor relation creation for 5g networks
US20210136806A1 (en) Resource allocation mechanism for single carrier waveform
US20220159772A1 (en) Mechanism and signaling on coreset and pucch resource grouping for multi-trp operation
US20220167229A1 (en) Centralized and distributed self-organizing networks for physical cell identifier configuration and automatic neighbor relation
US11831381B2 (en) Beam failure recovery for uplink
KR20240008412A (ko) 뉴 라디오(nr)에서의 2차 셀 빔 실패 복구 동작
KR20210143304A (ko) 다중-trp 동작을 위한 업링크 송신 핸들링
KR20210114485A (ko) Rel-16 emtc을 위해 msg3에서와 같은 품질 정의를 사용한 접속 모드에서의 비주기적 품질 리포트의 설계
KR20210115029A (ko) 고속의 향상된 캐리어 집성(ca) 무선 리소스 관리(rrm) 측정
US20230121806A1 (en) Synchronization signal block (ssb) measurement accuracy testing
US20220159514A1 (en) User equipment based packet data convergence protocol (pdcp) duplication activation and deactivation
US20220158778A1 (en) Radio Link Monitoring Beam Management in NR for URLLC
US20220167254A1 (en) Inter-Relay Node Discovery and Measurements
KR20210146993A (ko) 재동기화 신호(rss) 기반 기준 신호 수신 전력(rsrp) 계산
US20210028895A1 (en) Methods for radio link failure prevention for urllc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230623

R150 Certificate of patent or registration of utility model

Ref document number: 7303890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150