JP2022508814A - プラズマスペクトル分析を介して物体の材料組成を分析するためのロングパスフィルターを有する装置 - Google Patents

プラズマスペクトル分析を介して物体の材料組成を分析するためのロングパスフィルターを有する装置 Download PDF

Info

Publication number
JP2022508814A
JP2022508814A JP2021546188A JP2021546188A JP2022508814A JP 2022508814 A JP2022508814 A JP 2022508814A JP 2021546188 A JP2021546188 A JP 2021546188A JP 2021546188 A JP2021546188 A JP 2021546188A JP 2022508814 A JP2022508814 A JP 2022508814A
Authority
JP
Japan
Prior art keywords
sample
analyzing
material composition
mirror
light reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021546188A
Other languages
English (en)
Inventor
マイケル アンソニー ダメント
スコット チャールズ バクター
スタニスワフ ピオレック
Original Assignee
リガク アナリティカル デヴァイシーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リガク アナリティカル デヴァイシーズ インコーポレイテッド filed Critical リガク アナリティカル デヴァイシーズ インコーポレイテッド
Publication of JP2022508814A publication Critical patent/JP2022508814A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

プラズマスペクトル分析を介してサンプルの材料組成を分析するための装置は、プラズマスペクトル分析のためにビームを放出するように構成されたレーザー組立体と、サンプルのプラズマスペクトル分析用にビームをサンプルに向けて配向するように構成され、サンプルによって反射された反射光を収集するように構成された光学組立体と、を含む。光学組立体は、サンプルによって反射された反射光の第1の部分を通過させ、サンプルによって反射された反射光の第2の部分を分光計に反射するように構成された長波パス光学フィルター構成体を含む。【選択図】図2A

Description

(関連出願の相互参照)
本出願は、2018年10月17日に提出された米国特許出願第16/163,048号の利益を主張し、その内容は引用によりその全体が本明細書に組み込まれる。
(技術分野)
本発明は、一般に、レーザー誘起ブレークダウン分光法システムに関する。
レーザー誘起ブレークダウン分光法(「LIBS」)は、励起源として高エネルギーレーザーパルスを使用する原子発光分光法の一種である。レーザーを集光してプラズマを形成し、試料を霧化し励起する。原理的には、LIBSは、固体、液体、又は気体などの物理状態を問わず、あらゆる物質を分析することができる。全ての元素は、十分に高温まで励起されたときに特性周波数の光を放出するので、LIBSは、使用するレーザービームのパワーと、分光器及び検出器の感度及び波長範囲によってのみ制限され、全ての元素を検出できる。
分析される物質の構成成分が既知である場合、LIBSを使用して、各成分元素の相対存在量を評価すること、又は不純物の存在をモニタリングすることができる。実際には、検出限度は、a)プラズマ励起温度、b)光収集ウィンドウ、及びc)観察された遷移の線強度の関数である。LIBSは、発光分光法を利用しており、この点に関してアーク/スパーク発光分光法に極めて類似している。
LIBSは、レーザービームを試料の表面の小領域に集束させることにより動作する。レーザービームが放出されるときに、ナノグラムからピコグラムの範囲で極めて少量の物質がアブレーションされ、100,000Kを超える温度のプラズマプルームを発生する。データ収集の間、典型的には局所的な熱力学的平衡が確立された後、プラズマ温度は、5,000~20,000Kの範囲となる。初期プラズマ中の高温では、アブレーションされた材料は、励起イオン種と原子種に解離(分解)する。この間、プラズマは、存在する種についての何らかの有用な情報を含まない放射線の連続体を放出するが、極めて短い時間枠内で、プラズマが超音速で膨張して冷却される。この時点で、元素の特性的な原子発光線が観察することができる。
プラズマスペクトル分析を介してサンプルの材料組成を分析するための装置は、プラズマスペクトル分析のためにビームを放出するように構成されたレーザー組立体と、サンプルのプラズマスペクトル分析用にビームをサンプルに向けて配向し、サンプルによって反射された光を収集するように構成された光学組立体と、を含む。光学組立体は、サンプルによって反射された反射光の第1の部分を通過させ、サンプルによって反射された反射光の第2の部分を分光計に反射するように構成された長波パス光学フィルター構成体を含む。サンプルによって反射された反射光の第1の部分は、800nmより長い波長を有することができ、サンプルによって反射された反射光の第2の部分は、800nm未満の波長を有することができる。
光学組立体は、第1の軸に沿った非垂直入射でレーザービームを受け取るように構成された非球面又は放物線面プロファイルを有する放物面ミラーを含むことができる。光学組立体は、放物面ミラーが第2の軸に沿ってプラズマスペクトル分析のためにサンプルにビームを配向するように構成されている。サンプルによって反射された反射光は、第2の軸に沿って同軸に集められ、放物面ミラーによって反対方向に第1の軸に沿って長波パス光学フィルター構成体に再配向される。長波パス光学フィルター構成体は、長波パス光学フィルター及び/又はダイコイックミラーを含むことができる。
本発明の更なる目的、特徴、及び利点は、本明細書に添付され且つ本明細書の一部を形成する図面及び特許請求の範囲を参照して、以下の説明を検討すれば、当業者には容易に明らかになるであろう。
プラズマスペクトル分析を介してサンプルの材料組成を分析するためのシステムのブロック図である。 図1のプラズマスペクトル分析を介してサンプルの材料組成を分析するためのシステムの内部構成要素の2つの異なる実施例のブロック図である。 図1のプラズマスペクトル分析を介してサンプルの材料組成を分析するためのシステムの内部構成要素の2つの異なる実施例のブロック図である。 プラズマスペクトル分析を介してサンプルの材料組成を分析するためのシステムと共に使用するためのレーザー組立体のブロック図である。
図1を参照すると、スペクトル分析によってサンプル20の材料組成を分析するためのシステム10が示されている。その主要な構成要素として、システム10は、サンプル20の材料組成を分析するための装置12を含む。サンプル20は、その材料組成を分析できる何らかの試料とすることができる。ここで、サンプル20は炭素鋼とすることができる。システム10は、低合金及び炭素鋼中の炭素含有量を決定することを可能にする。
装置12は、図2A及び図2B並びに本明細書の後で記載される複数の構成要素を囲むことができるハウジング14を含むことができる。例えば、ハウジング14は、レーザービーム22を生成するレーザー組立体13と、レーザービーム22をサンプル20に配向するための光学組立体17とを含むことができる。加えて、光学組立体17は、プラズマ放出光24(サンプル20から反射された光)を光ファイバー28を介して分光計30に配向するように機能することができる。装置12は、ハンドヘルド装置とすることができる。
装置12は、2つの主要な機能を有する。装置12は、レーザービーム22のビーム成形及び送達を提供し、分光計30に送達するためプラズマからのプラズマ放出光24を効率的に収集する。レーザービーム22は、強力なプラズマプルームを生成するために、サンプル20上で20ミクロンの集束直径を有する単一モードレーザービームとすることができる。作動距離は約10mm又はそれより長くすることができる。
ハウジング14の壁部15は、開口部16を形成することができる。開口部16は、窓18を含むことができる。窓18は、レーザービーム22及びプラズマ放出光24など、装置12との間で光の透過を可能にする透明窓とすることができる。ハウジング14は、気密シールすることができ、また、不活性ガスを充填することができる。
前述のように、装置12は、サンプル20に向けてレーザービーム22を放射するように構成されている。レーザービーム22がサンプル20に当たると、プラズマプルームが形成され、プラズマ放出光24が反射して窓18に戻る。図2A及び2Bでより詳細に説明するように、プラズマ放出光24は、光ファイバー28を介して分光計30に再配向される。ファイバーアダプター26は、プラズマ放出光24を光ファイバー28に光学的に配向する。光ファイバー28は、プラズマ放出光24を分光計30に配向する。
分光計30は、プラズマ放出光24の複数の異なるスペクトル分析を実行し、これらの光信号をデジタル分析器32に提供される電気信号に変換することができる。
分光計30は、モノクロメータ(走査型)又はポリクロメータ(非走査型)及び光電子増倍管又はCCD(電荷結合素子)検出器をそれぞれ含むことができる。分光計30は、可能な限り広い波長範囲にわたって電磁放射線を収集し、特定の元素毎に検出される輝線の数を最大化する。分光計30の応答は、1100nm(近赤外線)から170nm(深紫外)とすることができる。
分光計30によって生成された電気信号は、ケーブル34によってデジタル分析器32に提供することができる。しかしながら、別個の装置からデジタルデータを送信するのに利用される複数の異なる方法論の何れかを使用できることを理解されたい。例えば、デジタル分析器32は、無線プロトコルを利用して分光計30と通信することができる。デジタル分析器32は、出力装置33と1又は2以上の入力装置35とを有する専用装置とすることができる。出力装置33は、ディスプレイとすることができ、入力装置35はキーボード及び/又はマウスとすることができる。
図2Aを参照すると、装置12Aの一例が示されている。装置12Aはまた、レーザービーム22Aを生成するレーザー組立体13Aと、レーザービーム22Aをサンプル20Aに配向するための光学組立体17Aとを含むことができる。更に、光学組立体17Aは、サンプル20Aによって反射されたプラズマ放出光24Aをファイバーカプラー26Aに向けて配向することができる。レーザー組立体13Aは、1064nmの波長を有する電磁スペクトルの近赤外領域でエネルギーを生成することができる、Nd:YAGレーザーとすることができる。パルス持続時間は約10nsとすることができる。
レーザー組立体13Aは、レーザービーム52Aを出力するように構成される。レーザービーム52Aは、軸54Aに沿ってミラー60Aに配向される。ここから、レーザービーム52Aは、ミラー60Aから第2のミラー62Aに配向される。第2のミラー62Aは、レーザーをダイクロイックミラー66Aに配向する。ここで、ビーム52Aがミラー60Aによって反射されるときには、ビーム52Aは、放物面ミラー63Aの一部を通過するように示される。この放物面ミラー63Aは、ビーム52Aが通過できるように小スロット65Aを有する。本質的に、この実施例では、ビーム52Aは、放物面ミラー63Aの一部を通過することができる。この構成は、放物面ミラー63Aがビーム52Aの経路内に部分的に配置することができ、装置12Aをより小さなハウジング内に配置できるので有利とすることができる。
ダイクロイックミラー66Aは、ある波長の光を反射しながら、異なる波長の光を通過可能にする能力を有する。ここで、ダイクロイックミラー66Aは、前述のように1064nmの励起光とすることができるレーザービーム52Aを通過させることを可能にすることができる。同様に、ダイクロイックミラー66Aは、紫外信号光とすることができるプラズマ放出光24Aを反射することができる。ダイクロイックミラー66Aにより、励起レーザービーム52Aと信号収集の両方を同軸にすることができる。
ダイクロイックミラー66Aは、レーザービーム52Aを第1の放物面ミラー68Aに配向する。第1放物面ミラー68Aは、レーザービーム52A(ここではレーザービーム22A)を軸56Aに沿ってサンプル20Aに向けて配向する。軸54Aと軸56Aは異なる角度を有する点に留意されたい。軸54A及び軸56Aは、互いに対して実質的に垂直な角度を有することができる。レーザービーム22Aは、窓18Aを介してサンプル20Aに配向することができる。レーザービーム22Aがサンプル20Aに当たると、プラズマが発生する。
プラズマ放出光24Aは反射光であり、その後、軸56Aに沿って第1の放物面ミラー68Aに戻るように配向される。第1放物面ミラー68Aは、プラズマ放出光24Aを別の軸57Aに沿ってダイクロイックミラー66Aに再配向する。前述のように、ダイクロイックミラー66Aは、特定の波長の光に対しては反射性であり、他の波長では透過性がある。ここで、プラズマ放出光24Aは、ダイクロイックミラー66Aにより長波パス光学フィルター70Aに実質的に反射されることになるこのような波長を有する。
長波パス光学フィルター70Aは、サンプル20Aによって反射された光24Aの第1の部分73Aを通過させるように構成される。サンプル20によって反射された反射光24の第1の部分73Aは、800nmよりも長い波長を有することができる。光学組立体17はまた、光トラップ71Aを含むことができる。光トラップ71Aは、ハウジング14A内に配置され、サンプル20Aによって反射された光24Aの第1の部分73Aを受けるように構成される。光トラップ71Aは、本質的に、長波パス光学フィルター70Aにより反射しなかった光73Aを隔離する機能を有する。こうすることで、サンプル20Aが炭素鋼である場合に、サンプル20Aの炭素含有量を決定する際に重要である光75Aと光73Aが干渉することを防止できる。
長波パス光学フィルター70Aはまた、サンプル20Aによって反射された反射光24Aの第2の部分75Aを反射するように構成することができる。サンプル20Aによって反射された反射光24Aの第2の部分75Aは、800nm未満の波長を有することができ、約180nmほどの低い波長を有することができる。次に、長波パス光学フィルター70Aは、光75Aを軸55Aに沿ってファイバーカプラー26Aに向けて配向する。ファイバーカプラー26Aは、光を受信して光ファイバー28Aに集束させ、光ファイバー28Aは、この光をスペクトル分析器30Aに提供し、スペクトル分析器30Aは、複数の異なる分析の何れかを実行することができる分光計センサー31Aを有することができる。例えば、スペクトル分析器30Aは、ファイバーカプラー26Aを介して提供される光75Aを分析することにより、サンプル20Aの炭素含有量を決定することが可能とすることができる。
光学組立体17Aはまた、レンズ58A及び64Aを含むことができる。レンズ58Aは、一般に、レーザー組立体13Aとミラー60Aとの間に配置される。レンズ64Aは、一般に、ミラー62Aとダイクロイックミラー66との間に配置される。レンズ58Aは、正又は負の焦点距離を有することができ、レンズ64Aは、正の焦点距離のみを有することになる。レンズ58A及び64Aは、レーザービーム52Aをミラー60A及びダイクロイックミラー66A上にそれぞれ集束させる働きをする。
図2Bを参照すると、装置12Bの別の例が示されている。ここでは、同様の要素を指すために同様の参照番号が使用されている。このため、上記の段落で十分に説明がなされているので、ここでの説明は省略する。この例では、装置12Bは、第2放物面ミラー63Bの配置に関して異なっている。ここで、第2放物面ミラー63Bは、ミラー60Bから他のミラー62Bに反射されるビーム52Bの経路の外に位置している。ミラー60B及び62Bの間のビーム52Bは、第2の放物面ミラー63Bと接触しないので、ビーム52Bの通過用のチャネル又はスロット(図2Aの65Aを参照)を第2の放物面ミラー63Bが有する必要はない。
図3を参照すると、レーザー組立体13のより詳細な図が示されている。レーザー組立体13は、ダイオード励起固体レーザーとすることができる。ダイオード励起固体レーザーは、レーザーダイオードを使用して、例えばルビー又はネオジムがドープされたYAG結晶などの固体利得媒体を励起する。
このため、レーザー組立体13は、ポンプダイオード41を含む。ポンプダイオード41により放出された光は、レンズ42及び43によってレーザー結晶44に集束される。その後、qスイッチ45が設けられる。ここから、ビームは、出力ミラー47に提供され、ここで図2のレンズ58に出力される。本質的に、レーザー結晶44及びQスイッチ45が配置された反射面により、共振器が形成される。Qスイッチ45は、パッシブQスイッチとすることができる。Qスイッチングは、キャビティ内損失、及びひいてはレーザー共振器のQファクターを変調することにより、レーザーから高エネルギーの短パルスを得る技術である。この技術は、主に、固体バルクレーザーによる高エネルギー及びピークパワーのナノ秒パルスの生成に適用される。
当業者であれば容易に理解するように、上記の説明は、本発明の原理の実施の例証として意図されている。この説明は、本発明が、特許請求の範囲に定義されている本発明の精神から逸脱することなく、修正、変形、及び変更が可能であるという点で、本発明の範囲又は適用を限定することを意図するものではない。

Claims (19)

  1. プラズマスペクトル分析を介してサンプルの材料組成を分析するための装置であって、
    プラズマスペクトル分析のためにビームを放出するように構成されたレーザー組立体と、
    サンプルのプラズマスペクトル分析用に前記ビームを前記サンプルに向けて配向するように構成され、前記サンプルによって反射された光を収集するように構成された光学組立体と、
    前記レーザー組立体及び前記光学組立体を実質的に包囲するハウジングと、を備え、
    前記ハウジングは、前記ビームが前記光学組立体から前記サンプルに移動することを可能にし、且つ前記サンプルによって反射された光が前記光学組立体によって収集されることを可能にするように構成された少なくとも1つの開口部を定め、
    前記光学組立体は、長波パス光学フィルター構成体を含み、前記長波パス光学フィルター構成体は、前記サンプルによって反射された光の第1の部分を通過させるように構成され、前記サンプルによって反射された光の前記第1の部分は、800nmを超える波長を有し、
    前記長波パス光学フィルター構成体は、前記サンプルによって反射された前記反射光の第2の部分を反射するように構成され、前記サンプルによって反射された光の前記第2の部分は、分光計に提供され、前記サンプルによって反射された前記光の第2の部分は、800nm未満の波長を有する、
    ことを特徴とする装置。
  2. 前記サンプルによって反射された光の前記第2の部分が、約180nm程度の低い波長を有する、
    請求項1に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  3. 前記サンプルが炭素鋼である、
    請求項1に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  4. 前記装置がハンドヘルド装置である、
    請求項1に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  5. 前記サンプルによって反射され、前記長波パス光学フィルター構成体を通過した光の前記第1の部分を受け取るように構成された光トラップを更に備える、
    請求項1に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  6. 前記レーザー組立体が1064nmの光を放出する、
    請求項1に記載のプラズマスペクトル分析によってサンプルの材料組成を分析するための装置。
  7. 前記レーザー組立体が、qスイッチレーザー組立体である、
    請求項1に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  8. 前記qスイッチレーザー組立体が、
    レーザー結晶と、
    集束要素と、
    前記レーザー結晶内の前記集束要素を介してポンプ放射が集束されるポンプ放射源と、
    少なくとも1つの前記レーザー結晶及びパッシブQスイッチが配置された反射面によって形成された共振器と、を備えている、
    請求項7に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  9. 前記光学組立体が更に、第1の軸に沿った非垂直入射で前記ビームを受けるように構成された第1の放物面ミラーを備え、
    前記光学組立体は、前記第1の放物面ミラーが第2の軸に沿ってプラズマスペクトル分析のために前記ビームを前記サンプルに配向するように構成され、前記第2の軸が前記第1の軸とは異なり、前記サンプルによって反射された光は、前記第2の軸に沿って同軸に集められて、前記第1の放物面ミラーによって反対方向に前記第1の軸に沿って前記長波パス光学フィルター構成体に再配向され、前記長波パス光学フィルター構成体が、前記サンプルによって反射された光の前記第2の部分を前記分光計に再配向するように構成されている、
    請求項1に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  10. 前記サンプルによって反射された光の前記第2の部分を受け取り、前記サンプルによって反射された前記光を前記分光計に再配向するように構成された第2の放物面ミラーを更に備える、
    請求項9に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  11. 前記長波パスフィルター構成体が、
    ダイクロイックミラーと、
    ロングパスフィルターと、を備え、
    前記ダイクロイックミラーは、前記ビームが前記レーザー組立体から前記第1の放物面ミラーに通過できるように構成され、前記ダイクロイックミラーは、前記サンプルによって反射された前記光を前記ロングパスフィルターに向けて反射するように構成され、
    前記ロングパスフィルターが、前記サンプルによって反射された光の前記第2の部分を前記分光計に反射するように構成される、
    請求項9に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  12. 前記ロングパスフィルターからの反射光の前記第2の部分を受け取り、前記反射光の第2の部分を前記分光計に再配向するように構成された第2の放物面ミラーを更に備える、
    請求項11に記載のプラズマスペクトル分析によってサンプルの材料組成を分析するための装置。
  13. 前記第2の放物面ミラーは、該第2の放物面ミラーの側面に形成されたスロットを有し、前記ビームが前記スロットをとって配向される、
    請求項12に記載のプラズマスペクトル分析によりサンプルの物質組成を分析するための装置。
  14. 前記サンプルによって反射された光の前記第2の部分を受け取り、前記サンプルによって反射された前記光を前記分光計に再配向するように構成された第2の放物面ミラーを更に備える、
    請求項11に記載のプラズマスペクトル分析によってサンプルの材料組成を分析するための装置。
  15. 前記サンプルによって反射された前記第2の放物面ミラーからの光の前記第2の部分を受け取るように構成されるファイバーアダプターを更に備え、前記ファイバーアダプターは、前記サンプルによって反射された光の前記第2の部分を光ファイバーに光学的に配向するように構成され、前記光ファイバーが前記分光計と光連通している、
    請求項14に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  16. 前記第2の放物面ミラーは、該第2の放物面ミラーの側面に形成されたスロットを有し、前記第1のミラーは、前記ビームを前記スロットを通って前記第2のミラーに配向するように構成されている、
    請求項15に記載のプラズマスペクトル分析によりサンプルの物質組成を分析するための装置。
  17. 前記光学組立体が更に、
    前記レーザー組立体から前記ビームを受け取るように構成された第1の反射ミラーと、
    第2の反射ミラーと、を備え、
    前記第1の反射ミラーが、前記ビームを前記第2の反射ミラーに配向するように構成され、前記第2の反射ミラーは、前記第1の反射ミラーから前記ビームを受け取るように構成され、前記第1の放物面ミラーが、前記第2の反射ミラーから前記ビームを受け取り、前記サンプルに前記ビームを配向するように構成されている、
    請求項9に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
  18. 前記光学組立体が更に、
    前記レーザー組立体と前記第1の反射ミラーとの間に位置する第1のレンズであって、前記レーザー組立体からの前記ビームを前記第1の反射ミラーに集束させるように構成され、正又は負の焦点距離を有する第1のレンズと、
    前記第2の反射ミラーと前記第1の放物面ミラーとの間に位置する第2のレンズであって、前記第2の反射ミラーから前記第1の放物面ミラーに前記ビームを集束させるように構成され、正の焦点距離を有する第2のレンズと、備えている、
    請求項17に記載のプラズマスペクトル分析によりサンプルの物質組成を分析するための装置。
  19. ファイバーアダプターを更に備え、前記ファイバーアダプターは、前記サンプルによって反射された光の前記第2の部分を受け取るように構成され、前記ファイバーアダプターは、前記サンプルによって反射された光の前記第2の部分を光ファイバーに光学的に配向するように構成され、前記光ファイバーが前記分光計と光連通している、
    請求項1に記載のプラズマスペクトル分析を介してサンプルの材料組成を分析するための装置。
JP2021546188A 2018-10-17 2019-10-09 プラズマスペクトル分析を介して物体の材料組成を分析するためのロングパスフィルターを有する装置 Pending JP2022508814A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/163,048 US10732117B2 (en) 2018-10-17 2018-10-17 Device for analyzing the material composition of an object via plasma spectrum analysis having a long pass filter
US16/163,048 2018-10-17
PCT/US2019/055356 WO2020081320A1 (en) 2018-10-17 2019-10-09 Device for analyzing the material composition of an object via plasma spectrum analysis having a long pass filter

Publications (1)

Publication Number Publication Date
JP2022508814A true JP2022508814A (ja) 2022-01-19

Family

ID=68345062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021546188A Pending JP2022508814A (ja) 2018-10-17 2019-10-09 プラズマスペクトル分析を介して物体の材料組成を分析するためのロングパスフィルターを有する装置

Country Status (4)

Country Link
US (1) US10732117B2 (ja)
EP (1) EP3867632A1 (ja)
JP (1) JP2022508814A (ja)
WO (1) WO2020081320A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009397B2 (en) * 2018-10-17 2021-05-18 Rigaku Analytical Devices, Inc. Compact two-dimensional spectrometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU753192B2 (en) 1998-06-29 2002-10-10 Deere & Company Optoelectronic apparatus for detecting damaged grain
CN106596511A (zh) 2016-12-27 2017-04-26 南京先进激光技术研究院 一种反射式同轴结构激光诱导击穿光谱分析装置
CN107782718A (zh) 2017-12-06 2018-03-09 南京先进激光技术研究院 便携式激光诱导击穿光谱分析装置

Also Published As

Publication number Publication date
EP3867632A1 (en) 2021-08-25
US20200124536A1 (en) 2020-04-23
WO2020081320A1 (en) 2020-04-23
US10732117B2 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
US10788369B2 (en) Long wavelength infrared detection and imaging with long wavelength infrared source
US7741618B2 (en) Enhanced portable digital lidar system
RU2733082C2 (ru) Ручной анализатор и способ измерения концентрации элементов, основанный на спектроскопии возбуждения лазерным пробоем высокоионизированной плазмы при высокой температуре
JP2008545134A (ja) 光音響分光装置
AU2019264883B2 (en) Hybrid laser-induced breakdown spectroscopy system
US20130277340A1 (en) Fiber Based Spectroscopic Imaging Guided Laser Material Processing System
TWI546533B (zh) 即時空間與時間光譜量測系統及其量測模組
US10879667B2 (en) Laser source for emitting a group of pulses
US20200116643A1 (en) Device for calibrating a spectrometer
JP2022508813A (ja) 小型2次元分光計
US9645088B2 (en) Device for analyzing the material composition of an object via plasma spectrum analysis
Musazzi et al. LIBS instrumental techniques
JP2022508814A (ja) プラズマスペクトル分析を介して物体の材料組成を分析するためのロングパスフィルターを有する装置
JP2003035671A (ja) レーザ多段励起発光分光分析方法及びその装置
CN216361769U (zh) 单激光源三脉冲libs与荧光光谱的重金属检测系统
JPH05288681A (ja) コヒ−レント反スト−クスラマン散乱分光測定装置
GB2254444A (en) Laser microscopy
Saito et al. Nano-Second Spectrometry by the Use of a Spinning Polygon Mirror
CN111239104A (zh) 一种基于共振激发的libs光谱信号增强方法及系统
JP2004191057A (ja) レーザ発光分光分析方法およびその装置
JP2022500655A (ja) プラズマスペクトル分析を介してサンプルの材料組成を分析するための装置
Lauly Diode laser diagnostics of laser-induced plasmas and atomic vapor cells
MX2011013238A (es) Obtencion de emisiones atomicas de un material a partir de la formacion de un plasma mediante laser multipulso y dispositivo portatil para su caracterizacion.