JP2022506489A - 水素化反応用触媒及びこれの製造方法 - Google Patents

水素化反応用触媒及びこれの製造方法 Download PDF

Info

Publication number
JP2022506489A
JP2022506489A JP2021523886A JP2021523886A JP2022506489A JP 2022506489 A JP2022506489 A JP 2022506489A JP 2021523886 A JP2021523886 A JP 2021523886A JP 2021523886 A JP2021523886 A JP 2021523886A JP 2022506489 A JP2022506489 A JP 2022506489A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
solution
hydrogenation reaction
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021523886A
Other languages
English (en)
Other versions
JP7340604B2 (ja
Inventor
ボンシク チョン
ヨンヒ イ
ウジン パク
ウィグン チョン
ワンジェ ミョン
ジョンウ ハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Solutions Corp
Original Assignee
Hanwha Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Solutions Corp filed Critical Hanwha Solutions Corp
Publication of JP2022506489A publication Critical patent/JP2022506489A/ja
Application granted granted Critical
Publication of JP7340604B2 publication Critical patent/JP7340604B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本発明はDP(deposition-precipitation)法を利用して、ニッケルが含まれた水素化触媒を製造する時、銅を促進剤で使用してニッケルの還元を容易にできる。本発明の実施例によると、触媒全体100重量部に対して、触媒活性成分でニッケル40~80重量部、促進剤で銅0.01~5重量部及びシリカ担体10~30重量部を含む水素化反応用触媒が提供される。従って、高い含量のニッケルを担持したのにも、活性化された金属の結晶サイズが小さく分散度が高いし優秀な水素化活性を提供する。又粒度分布が制御されたシリカを担体に使用して、製造された触媒の粒度分布も又均一で水素化反応で高速回転時破砕が抑制されて高い濾過速度を提供する。

Description

本発明はニッケル水素化触媒及びこれの製造方法に関するもので、更に詳細にはDP(deposition-precipitation)法を利用して、ニッケルが含まれた水素化触媒を製造する時、銅を促進剤として利用することで活性が向上された触媒を提供することである。従って石油樹脂の水素化工程で本発明に従う触媒が提供できる。
ナフサ分解(Naphtha Cracking)は石油化学及び化学産業で広範囲に使用される低級オレフィン(即ち、エチレン、プロピレン、ブチレン及びブタジエン)及び芳香族化合物(即ち、ベンゼン、トルエン及びキシレン)等基本的な中間物質を生産するための重要な工程である。熱分解(thermal cracking)又はスチーム熱分解(steam pyrolysis)は典型的にスチームの存在下で、そして酸素の不在下でこれらの物質を形成させるための工程の主な類型である。供給原料はナフサの以外にもケロシン(Kerosens)及びガスオイルのような石油ガス及び蒸溜物を含むことができる。この時、ナフサ等を熱分解することで、エチレン、プロピレン、ブタン及びブタジエンを含んだC4油分、ジシクロペンタジエン、イソプレン、ピペリレンを含んだC5油分、分解ガソリン(ベンゼン、トルエン及びキシレンを含む)、分解ケロシン(C9以上油分)、分解重油(エチレン残油(bottom oil))及び水素ガスのような物質を生成できる。この中C5、C9油分を重合して石油樹脂を製造できる。
C5油分中石油樹脂は主原料はジシクロペンタジエン(DCPD)でプロピレン、イソプレン、スチレン等を共重合したりする。しかし、石油樹脂は一部に不飽和結合を含んでおり黄色又はオレンジ色の色相を帯びて石油樹脂特有の悪臭を放つ。この時、水素を添加する水素化工程を経ると不飽和結合が除去されて色が明るくなるし、石油樹脂特有の臭いが減る等品質を改善できる。不飽和結合が除去された石油樹脂は無色、透明なのでwater white樹脂と呼ばれ耐熱性及び紫外線安定性等が優れた高級樹脂で流通されている。
石油樹脂水素化工程にあって水素化触媒の適用は必須的である。石油樹脂の水素化触媒としてはパラジウム、白金(プラチナ)、ロジウム等貴金属やニッケル、コバルト等遷移金属を活性成分にして、シリカ、アルミナ、活性炭素、チタニア等に担持した形態が適用可能である。
韓国公開特許第10-2017-0003425号には石油樹脂水素化触媒でパラジウムを使用した結果に対して開示されている。
又韓国公開特許特1988-0002906号には石油樹脂水素化触媒でパラジウムを炭素担体に担持した触媒とニッケルを不活性担体に担持した触媒を使用した結果に対して開示されている。
ニッケルを含有する触媒の場合他の遷移金属を含む触媒に比べて水素化反応で活性が高い長所がある。しかし石油樹脂水素化反応にあって触媒の活性を確保するためにはニッケルを最少40重量%以上含むことが好ましい。ニッケルを担体に担持する場合、ニッケルの含量が大きいほど分散性が減少してニッケル結晶の大きさが大きくなり、これに従って触媒の活性が減少する問題点が発生する。これを防止しようとニッケル含量を低めると分散性は相対的に改善されるが活性が減少する問題点が発生する。従って高い含量のニッケルを担持すると同時にニッケルの結晶大きさを適合した水準に維持するべきである。
一方、石油樹脂の水素化反応は粉末状態の水素化触媒を石油樹脂が溶解された反応物溶液に分散した後、高速で回転させる方法を通じて行われる。溶液に触媒が混合されているので、反応器出口にフィルターを設置して生成物溶液と触媒を分離する。生成物溶液はフィルター表面の触媒層を経て濾過されて分離されるので、触媒の濾過性は工程の安定的な運転を決定する重要な指標中一つである。触媒の濾過性は一般的に触媒粒子サイズ分布によって決定されるが、粒子のサイズが増加するほど粒子の間の空隙体積が増加して濾過性が増加する。特に、触媒と生成物溶液を分離するフィルターの気孔サイズが約1μmなので、触媒の1μmサイズ以下の粒子比率が高い場合、フィルターの気孔を塞いで濾過性が大きく減少する。
又粉末状態の触媒が溶液に分散されて高速で回転しているので、運転時間が過ぎることに従って触媒が粉砕されて平均的な粒子サイズは持続的に減少するし、1μm以下の触媒粒子の比率も又増加する。従って、石油樹脂水素化触媒は粘度が高い石油樹脂溶液に対する濾過性が高くなければならず、高速粉砕以後にも1μm以下のサイズの粒子生成が抑制されるべきである。
従って、前記問題点を克服した石油樹脂水素化反応に適合した触媒の開発が切実に要求される。
(特許文献1)韓国公開特許第10-2017-0003425号(2017.01.09)
(特許文献2)韓国公開特許特1988-0002906号(1988.05.12)
本発明は上述した問題点を全部解決することを目的とする。
本発明の目的は全体触媒100重量部にあって、少なくとも40重量部以上の高含量のニッケルを含む石油樹脂水素化触媒を提供することにある。
本発明の他の目的はニッケルの結晶サイズは小さく同時に分散性は改善して触媒の活性を向上させることを提供することである。
本発明の他の目的は低い300~450℃温度で高い還元度を提供する触媒を提供することである。
本発明の他の目的は触媒粒子のサイズ分布が均一で水素化反応で高速回転時粒子の破砕が抑制される触媒を提供することである。これに従って石油樹脂の水素化反応で濾過性を向上させることを提供することである。
前記した通りのような本発明の目的を達成し、後述する本発明の特徴的な効果を実現するための、本発明の特徴的な構成は下記の通りである。
本発明の実施例によると、触媒全体100重量部に対して、触媒活性成分にニッケル40~80重量部、促進剤に銅0.01~5重量部及びシリカ担体10~30重量部を含む水素化反応用触媒が提供される。
本発明の実施例によると、前記ニッケルの結晶サイズは3~8nmが提供される。
触媒の不動化層(不動態化層、passivation layer)除去の後、還元度が80%以上であり、表面積が150~300m/gであることを特徴とする。
又、前記触媒の平均粒子サイズ(d50)は3~10μmであり、粒子サイズが1μm以下である触媒の体積比率は10%以下で提供される。
本発明の実施例によると、シリカ担体は比表面積が200~400m/gであり、平均粒子サイズが3~10μmである水素化反応用触媒が提供される。
本発明の実施例によると、触媒前駆体は沈殿を形成して担体に担持される水素化触媒が提供されるし、好ましくはdeposition-precipitationであるDP法によって製造できる。製造された触媒は水添反応を通じて石油樹脂を水素化する触媒に提供できる。
本発明の実施例によると、溶液内ニッケルの重量濃度(g/L)が25~250になるようにニッケル前駆体を溶媒に溶解して第1溶液を製造する段階;溶液内銅の重量濃度(g/L)が0.01~5になるように第1溶液に銅前駆体を添加して第2溶液を製造する段階;溶液内シリカの重量濃度(g/L)が10~40になるように第2溶液にシリカ担体を入れて分散させて第3溶液を製造する段階;第3溶液を沈殿容器に入れて攪拌しながら50~120℃に昇温する段階;前記昇温された第3溶液にpH調節剤を添加して前記ニッケル及び銅前駆体は沈殿を形成して前記固体シリカ担体に沈積する段階;前記担持触媒を洗浄及び濾過した後100~200℃で5~24時間乾燥する段階;乾燥された触媒を空気中で200~500℃温度に焼成する段階;及び前記焼成された触媒を水素雰囲気で200~500℃温度に還元して活性化する段階を含む水素化反応用触媒の製造方法が提供される。
前記製造方法は活性化された触媒を不動化(不動態化、passivation)する段階を更に含むことができる。この場合、不動化は0.1~20%酸素が含まれた窒素混合ガスで不動化したり石油樹脂が含まれた溶液に沈積して不動化できる。
本発明の実施例によると、石油樹脂の水素化方法にあって、石油樹脂を前記製造方法で製造された触媒の存在下で水素と接触させる石油樹脂の水素化方法が提供される。
本発明は触媒活性成分であるニッケルに銅を促進剤を添加して優秀な活性を持つ触媒を提供する効果がある。
又、反応に適合した水準の小さなニッケル結晶サイズと高い分散度を提供する。
本発明によると、DP(deposition-precipitation)法で触媒を製造して、全体触媒100重量部にあって少なくとも40重量部以上の高含量のニッケルを均一に担持できる効果を提供する。
本発明に従う触媒は既存の反応に比べて相対的に低い300~450℃温度で高い還元度を提供する。
本発明に従う触媒は担体に粒度分布が均一なシリカを適用して製造された触媒の粒度分布もやはり均一にして、水素化反応で高速回転時触媒粒子の破砕が抑制される効果を提供する。これに従って水素化反応で濾過速度を向上させる効果を提供する。
本発明に従う触媒の粒度分布を測定した結果を表したことである。
本発明に従う触媒の濾過性測定結果を表したことである。
後述する本発明に対した詳細な説明は、本発明が実施できる特定実施例を例示として図示する添付図面を参照する。これら実施例は当業者が本発明を実施できるのに十分であるように詳細に説明する。本発明の多様な実施例は互いに違うが相互排除的である必要はないことが理解されるべきである。例えば、ここに記載されている特定形象、構造及び特性は一実施例に関して本発明の精神及び範囲を外れないながら他の実施例で具現できる。又、それぞれの開示された実施例内の個別構成要素の位置又は配置は本発明の精神及び範囲を外れないながら変更できることが理解されるべきである。従って、後述する詳細な説明は限定的な意味として取ろうとするのではないし、本発明の範囲は、適切に説明されるなら、その請求項たちが主張することと均等な全ての範囲と共に添付された請求項によりだけ限定される。図面で類似な参照符号は色んな側面にかけて同一だったり類似な機能を指称する。
以下、本発明が属する技術分野で通常の知識を持つ者が本発明を容易に実施できるようにするため、本発明の好ましい実施例たちに関して添付された図面を参照して詳細に説明することにする。
DP(deposition-precipitation)法は金属前駆体塩溶液とpH調節剤が担持体分散液内で反応して沈殿体が生成されるし、これらが担持体表面に吸着及び固化されるが、これは既存の共沈法及び含浸法によって製造された金属触媒たちとは比べられない触媒の均一度の顕著さを見せることが確認された。又、反応に適合な粒子サイズ、サイズ分布、表面積、気孔構造等を持った担体を選択して最適化することが容易と言う長所がある。
そして、ニッケルを含有する触媒は他の金属を含む触媒に比べて水素化反応で活性が高い長所があるが、このニッケル前駆体をDP法で担体に担持する場合ニッケルの含量が多いほど結晶サイズが大きくなって、分散性が落ちて触媒の活性が低くなる問題点があり、これを防止しようとニッケル含量を低めると分散性は相対的によくなるが、活性が落ちる問題点があって、DP法では常用化が可能なニッケル担持触媒を製造できない実情である。又既存のDP法は一般的に450℃を超える高温で還元反応を行って触媒の活性化を提供する。
これに、本発明の実施例によると、銅を促進剤で添加することで、既存の公知された方法に比べて、300~450℃の低い温度で高い還元度を得られるし、同時にDP法(deposition-precipitation method)で担持しても還元後ニッケルの高含量にもかかわらず結晶サイズが小さく分散度が高い触媒を提供して水素化反応で優秀な活性を提供できる。
本発明の実施例によると、触媒全体100重量部に対して、触媒活性成分でニッケル40~80重量部、促進剤で銅0.01~5重量部及びシリカ担体10~30重量部を含む水素化反応用触媒が提供される。
好ましくはニッケルは50~70重量部を提供し、銅は0.05~2重量部を提供する。
この時、ニッケル前駆体はニッケル及び硝酸塩(nitrate)、酢酸塩、硫酸塩、塩化物(chloride)等のような金属塩たちを含めるし、最も好ましくは硫酸塩を含む硫酸ニッケル前駆体を提供する。
又銅前駆体も又硝酸塩、酢酸塩、硫酸塩、塩化物又はその組み合わせのような金属塩たちに結合された状態を使用するし、最も好ましくは硫酸塩を含む硫酸銅前駆体である。しかし、これに制限されない。
本発明の一実施例に従った水素化触媒はニッケル化合物及び促進剤を粉末形態で利用して溶媒中に混合できるし、溶媒には固体担体が懸濁されてニッケル化合物及び促進剤が沈殿体を形成して固体担体に沈積されることがある。
本発明の実施例によると、ニッケルの結晶サイズは3~8nmであることが提供される。既存の共沈法等の製造方法に従った触媒に比べて本発明に従う触媒はニッケルの結晶サイズを3~8nmに制御しながら同時に分散性も又高く維持できる。
共に、本発明の実施例によると、触媒の平均粒子サイズ(d50)は3~10μmであり、粒子サイズが1μm以下である触媒の体積比率が10%以下であることを特徴とする。従って、これは水素化反応工程にあって、フィルターの気孔を塞いで濾過性が低下されることを防止できる。
又本発明の実施例によると、触媒の比表面積は150~300m/gが提供される。前記範囲で水素化反応にあって、触媒の活性を向上させるのに寄与する効果を提供できる。
本発明の実施例によると、前記シリカ担体は比表面積が200~400m/gであり、平均粒子サイズが3~10μmであることが提供される。好ましくは300~350m/gが提供されるし、サイズは4~7μmが提供される。担体に粒度分布が均一なシリカを適用してこれによって製造された触媒の粒度分布も又粒度分布が均一で、大きさも又調節が可能で高速回転時粒子の破砕が抑制される効果を提供できる。従って、1μmサイズ以下の粒子比率を減少して濾過性が低下されることを防止できる。
又本発明の実施例によると、前記触媒は不動化層の除去の後、還元度が80%以上である。本発明に従った高含量のニッケル触媒に促進剤で銅を含むことでDP法によっても、相対的に低い300~450℃温度で、好ましく400℃で還元をする場合、80%以上の高い還元度を持つ効果を提供できる。
本発明の一実施例に従った水素化触媒の製造方法は本発明の実施例によると、溶液内ニッケルの重量濃度(g/L)が25~250になるようにニッケル前駆体を溶媒に溶解して第1溶液を製造する段階;溶液内銅の重量濃度(g/L)が0.01~5になるように第1溶液に銅前駆体を添加して第2溶液を製造する段階;溶液内シリカの重量濃度(g/L)が10~40になるように第2溶液にシリカ担体を入れて分散させて第3溶液を製造する段階;第3溶液を沈殿容器に入れて攪拌しながら50~120℃に昇温する段階;前記昇温された第3溶液にpH調節剤を添加して前記ニッケル及び銅前駆体は沈殿を形成して前記固体シリカ担体に沈積する段階;前記担持触媒を洗浄及び濾過した後100~200℃で5~24時間乾燥する段階;乾燥された触媒を空気中で200~500℃温度に焼成する段階;及び前記焼成された触媒を水素雰囲気で200~500℃温度に還元して活性化する段階を含む水素化反応用触媒の製造方法が提供される。この場合、還元温度は前述した通りのように200~500℃、好ましくは300~450℃、更に好ましくは300℃の時最適の活性を表わせることができる。
さらには活性化された触媒を不動化する段階を更に含むことができる。この場合、不動化は0.1~20%酸素が含まれた窒素混合ガスで不動化したり石油樹脂が含まれた溶液に沈積して不動化できる。
又、触媒前駆体の沈殿は塩基添加又は電気化学的手段でpH7以上の環境で叶えられるし、好ましくはpH7~9であることができる。この時、塩基添加のために塩基性化合物を添加できるし、塩基性添加物は炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム又はその水化物を含めるが、これに制限されないし、好ましくは炭酸ナトリウム又はその水化物を含むことができる。
本発明に従う触媒は粉末、粒子、顆粒の形態であることができるし、好ましくは粉末の形態である。
又、本発明の一実施例に従った水素化触媒は蒸留、前処理及び重合を通じてC5又はC9石油分画及び副産物及びこれらの組合せ物からなる石油樹脂を水素化できる。
石油樹脂を水素化する時の温度は100~400℃、好ましくは200~300℃かもしれないし、圧力は1~200bar、好ましくは30~100barであることができる。水素化時間は主に温度、触媒の量及び水素化程度によって変われる。前記の水素化反応は多様な反応器で行われることができるし、好ましくは連続攪拌反応器(CSTR)又はループ反応器内で遂行できる。
前述した通りのように、本発明に従った水素化触媒は高含量のニッケル触媒活性成分に銅を促進剤として利用しながらDP法で水素化反応用触媒の製造ができる。特に、シリカ担体を選択して気孔構造及び粒子サイズ分布を最適化できる。従って触媒の活性を高めることができる。
又、既存の方法に比べて比較的低い温度で高い還元度を提供するし、ニッケルサイズが小さいながら均一で分布を提供して優秀な触媒活性を提供できる。
更に、粒度分布が均一なシリカを適用して水素化反応で高速回転時触媒が破砕が抑制される効果を提供できる。
以下、本発明の好ましい実施例を通じて本発明の構成及び作用を更に詳細に説明することにする。ただ、これは本発明の好ましい例示として提示されてことであり、どのような意味でもこれによって本発明が制限されることと解釈されてはならない。
ここに記載されていない内容はこの技術分野で熟練された者であれば十分に技術的に類推できることであるのでその説明を省略することにする。
実施例1
300m/gの表面積と21nmの気孔サイズ、4μmの平均粒子サイズを持つ多孔性シリカ粉末1gと塩化ニッケル(75g/L ニッケル)及び塩化銅(1.0g/L 銅)を蒸留水に溶解した溶液40mlを沈殿容器に入れて攪拌しながら80℃に昇温した。80℃到達後炭酸ナトリウム(144g/L)溶液40mLをsyringe pumpを利用して1時間以内全部注入した。沈殿完了後スラリーのpHは7.5であったし、これを約1.5Lの蒸留水で洗浄及び濾過した後乾燥オーブンを利用して120℃で8時間以上乾燥した。これを小分けした後水素雰囲気で400℃の温度で還元して活性化した。活性化された触媒は1%酸素が含まれた窒素混合ガスを利用して不動化して水素化触媒を製造した触媒製造原料中ニッケル対シリカ質量比は3.0であり、銅対シリカ質量比は0.04であった。
実施例2
310m/gの表面積と25nmの気孔サイズ、7μmの平均粒子サイズを持つ多孔性シリカ粉末37.5gと硫酸ニッケル(497.1g/L)及び硫酸銅(4.06g/L)を蒸留水に溶解した溶液1875mLを沈殿容器に入れて攪拌しながら80℃に昇温した。80℃到達後炭酸ナトリウム(174.6g/L)溶液1500mLをsyringe pumpを利用して1時間以内全部注入した。沈殿完了後スラリーのpHは7.5であったし、これを約5Lの蒸留水で洗浄及び濾過した後乾燥オーブンを利用して100℃で8時間以上乾燥した。これを小分けした後水素雰囲気で400℃の温度で還元して活性化した。活性化された触媒は1%酸素が含まれた窒素混合ガスを利用して不動化して水素化触媒を製造した。触媒製造原料中ニッケル対シリカ質量比は3.0であり、銅対シリカ質量比は0.04であった。
実施例3
還元温度を420℃に変更したことを除いては実施例2と同一な方法で水素化触媒を製造した。
実施例4
還元温度を440℃に変更したことを除いては実施例2と同一な方法で水素化触媒を製造した。
比較例1
300m/gの表面積と21nmの気孔サイズを持つ多孔性シリカ粉末1gと硝酸ニッケル(75g/Lニッケル)を蒸留水に溶解した溶液40mLを沈殿容器に入れて攪拌しながら80℃に昇温した。80℃到達後炭酸ナトリウム(144g/L)溶液40mLをsyringe pumpを利用して1時間以内全部注入した。沈殿完了後スラリーのpHは7.5であったし、これを約1.5Lの蒸留水で洗浄及び濾過した後乾燥オーブンを利用して120℃で8時間以上乾燥した。これを小分けした後水素雰囲気で400℃の温度で還元して活性化した。活性化された触媒は1%酸素が含まれた窒素混合ガスを利用して不動化して水素化触媒を製造した。触媒製造原料中ニッケル対シリカ質量比は3.0であった。
比較例2
300m/gの表面積と21nmの気孔サイズを持つ多孔性シリカ粉末1gと硝酸ニッケル(85g/L ニッケル)及び硝酸マグネシウム(2.1g/L マグネシウム)を蒸留水に溶解した溶液40mLを沈殿容器に入れて攪拌しながら80℃に昇温した。80℃到達後炭酸ナトリウム(144g/L)溶液40mLをsyringe pumpを利用して1時間以内全部注入した。沈殿完了後スラリーのpHは7.5であったし、これを約1.5Lの蒸留水で洗浄及び濾過した後乾燥オーブンを利用して120℃で8時間以上乾燥した。これを小分けした後水素雰囲気で400℃の温度で還元して活性化した。活性化された触媒は1%酸素が含まれた窒素混合ガスを利用して不動化して水素化触媒を製造した。触媒製造原料中ニッケル対シリカ質量比は3.4であり、マグネシウム対シリカ質量比は0.084であった。
比較例3
硝酸ニッケル(75g/L ニッケル)及び珪酸ナトリウム(50g/L 珪素)を蒸留水に溶解した溶液40mLを沈殿容器に入れて攪拌しながら80℃に昇温した。80℃到達後炭酸ナトリウム(144g/L)溶液40mLをsyringe pumpを利用して1時間以内全部注入した。沈殿完了後スラリーを約1.5Lの蒸留水で洗浄及び濾過した後乾燥オーブンを利用して120℃で8時間以上乾燥した。これを小分けした後水素雰囲気で400℃の温度で還元して活性化した。活性化された触媒は1%酸素が含まれた窒素混合ガスを利用して不動化して水素化触媒を製造した。触媒製造原料中ニッケル対シリカ質量比は3.0である。
実験例1.触媒のニッケル結晶サイズ測定
下記の[表1]では実施例1及び比較例1~4の触媒組成物内ニッケルの含量、促進剤種類と含量及び還元温度、ニッケル結晶サイズを表した。
Figure 2022506489000002
シリカ担体にニッケルと一緒に銅を担持した実施例1のニッケル結晶サイズがシリカ担体にニッケルだけ担持した比較例1に比べて顕著に減少することを確認した。
実験例2.触媒の活性実験(Activity Test)
Hollow shaft攪拌機を含めて1600rpmの攪拌速度を持つ300mLオートクレーブを利用した。
非水添石油樹脂をExxsol D40に30重量%で溶解した溶液75gを230℃、60barで石油樹脂質量対比0.5%触媒を添加して水素化したし、反応開始後30分の間の水素消耗量を測定して活性を比べたし、水素消耗量は下記の[表2]で表した。
Figure 2022506489000003
前記[表2]に記載された通りのように、銅促進剤を添加する場合高含量のニッケル担持の時にも相対的に小さなニッケル結晶サイズを持って、これに従って石油樹脂の水素化反応活性が比較例1~2に比べて高い値を持つことを確認できる。
実験例3.触媒の活性実験(Activity Test)
Hollow shaft攪拌機を含めて1600rpmの攪拌速度を持つ300mLオートクレーブを利用した。
非水添石油樹脂をExxsol D40に30重量%で溶解した溶液75gを270℃、90barで石油樹脂質量対比0.5%触媒を添加して水素化したし、反応開始後30分の間の水素消耗量を測定して活性を比べたし、水素消耗量は下記の[表3]で表した。
Figure 2022506489000004
実験例2に対比してより高温高圧条件で実験をしたにもかかわらず、実施例1での石油樹脂の水素化反応活性が比較例1に比べて高い値を持つことを確認できる。
実験例4.触媒の活性実験(Activity Test)
Hollow shaft攪拌機を含めて1200rpmの攪拌速度を持つ300mLオートクレーブを利用した。
非水添石油樹脂をExxsol D40に30重量%で溶解した溶液75gを230℃、90barで石油樹脂質量対比0.5%触媒を添加して水素化したし、反応開始後30分の間の水素消耗量を測定して活性を比べたし、水素消耗量は下記の[表4]で表した。
Figure 2022506489000005
300m/gの表面積と21nmの気孔サイズ、4μmの平均粒子サイズを持つ多孔性シリカ粉末を担体と適用した実施例1に比べ、310m/gの表面積と25nmの気孔サイズ、7μmの平均粒子サイズを持つ多孔性シリカ粉末を担体に適用した実施例2の水素化反応活性がより高くて、共沈法で製造した比較例3と類似なことを確認した。
実験例5.触媒の活性実験(Activity Test)
Hollow shaft攪拌機を含めて1200rpmの攪拌速度を持つ300mLオートクレーブを利用した。
非水添石油樹脂をExxsol D40に30重量%で溶解した溶液75gを230℃、90barで石油樹脂質量対比0.5%触媒を添加して水素化したし、同一な触媒を使用して2回反復、実験を遂行したし、反応開始後1時間の間の水素消耗量を測定して活性を比べたし、水素消耗量は下記の[表5]で表した。
Figure 2022506489000006
実施例2~4中420℃で還元した実施例3の水素化反応活性と寿命が全部一番優秀なことを確認した。
実験例6.触媒の物性分析
下記の[表6]では実施例1~4の触媒組成物内ニッケルの含量、還元温度、比表面積、ニッケル結晶サイズ、不動化層除去の後、還元度及び平均粒子サイズを表した。
Figure 2022506489000007
300m/gの表面積と21nmの気孔サイズ、4μmの平均粒子サイズを持つ多孔性シリカ粉末を担体に適用した実施例1に比べ、310m/gの表面積と25nmの気孔サイズ、7μmの平均粒子サイズを持つ多孔性シリカ粉末を担体に適用した実施例2~4のニッケル結晶サイズが小さいことを確認した。実施例2~4中実施例3の比表面積が一番大きいことを確認した。還元温度が増加するほどニッケル結晶サイズと不動化層除去の後、還元度も又増加する。実施例4対比実施例3の還元度が低いのにも、実施例3の比表面積がより大きくニッケル結晶サイズがより小さくより高い水素化反応活性を見せることと判断される。
実験例7.触媒の粒度分布測定
非水添石油樹脂をExxsol D40に60重量%で溶解した溶液30gに触媒を0.36gを入れて、homogenizerを利用して18,000rpmで1時間の間粉砕した。粉砕後溶液一部を小分けして触媒の粒子サイズを測定した。粒度分布測定結果は[図1]及び[表7]に表した。
Figure 2022506489000008
共沈法で製造した比較例3に比べて、DP法でニッケルをシリカ担体に担持して製造した実施例3で粒子の破砕が抑制されることを確認した。
実験例8.触媒の濾過性確認実験
ジョイント連結型solid suspension濾過装置に気孔サイズが0.5μmあるフィルターペーパーを入れて締結した後、真空ポンプを利用して濾過装置のフラスコ内圧力を100mbarに維持した。
前記実験例7の粉砕後溶液中20gを取って100℃のオーブンで10分の間保管した後、加熱溶液を濾過装置に注ぎ入れて2分の間濾過される石油樹脂溶液の重さを測定した。濾過速度は濾過された溶液の量を時間とフィルターの面積に分けて計算した。濾過速度測定結果は[図2]に表した。
これに共沈法で製造した比較例3に比べ、DP法でニッケルをシリカ担体に担持して製造した実施例3で粒子の破砕が抑制されることによって、実施例3の粉砕後濾過速度が比較例3に比べて早いことを確認した。
従って、本発明は触媒全体100重量部に対して、触媒活性成分でニッケル40~80重量部、促進剤で銅0.01~5重量部及びシリカ担体10~30重量部を含む水素化反応用触媒を提供して、ニッケルの結晶サイズが減少することを[表1]で確認が可能であり、水素消耗量が顕著に高いことは[表2]~[表5]で確認ができる。これを通じて、銅を添加して水素化反応活性が優秀なことを知ることができる。
又、シリカ担体の気孔構造と平均粒子サイズを調整することによって水素化反応活性が改善されることを[表4]で確認できるし、還元温度に従って水素化反応活性が改善されることを[表5]で確認ができる。
最後に破砕前後触媒の粒度分布と石油樹脂濾過速度変化を[表7]~[表8]及び[図1]~[図2]で確認が可能であり、結局粒度分布が制御されたシリカに担体にニッケルを担持した触媒は高速回転時破砕が抑制されて共沈法で製造した触媒対比石油樹脂の濾過速度が高いことを確認ができる。
以上で本発明が具体的な構成要素等のような特定事項たちと限定された実施例及び図面によって説明されたが、これは本発明のより全般的な理解を助けるために提供されただけで、本発明が前記実施例たちに限定されることではないし、本発明が属する技術分野で通常的な知識を持つ者であればこのような記載から多様な修正及び変形を図ることができる。
従って、本発明の思想は前記説明された実施例に局限されて決められてはならないし、後述する特許請求範囲だけではなくこの特許請求範囲と均等に又は等価的に変形された全てのものたちは本発明の思想の範疇に属するとするべきである。

Claims (12)

  1. 触媒全体100重量部に対して、触媒活性成分でニッケル40~80重量部、促進剤で銅0.01~5重量部及びシリカ担体10~30重量部を含む水素化反応用触媒。
  2. 前記ニッケルの結晶サイズは3~8nmである、請求項1に記載の水素化反応用触媒。
  3. 前記触媒は不動化層の除去の後、還元度が80%以上である、請求項1に記載の水素化反応用触媒。
  4. 前記触媒の平均粒子サイズ(d50)は3~10μmであり、粒子サイズが1μm以下である触媒の体積比率が10%以下である、請求項1に記載の水素化反応用触媒。
  5. 前記触媒は表面積が150~300m/gである、請求項1に記載の水素化反応用触媒。
  6. 前記シリカ担体は比表面積が200~400m/gであり、平均粒子サイズが3~10μmである、請求項1に記載の水素化反応用触媒。
  7. 溶液内ニッケルの重量濃度(g/L)が25~250になるようにニッケル前駆体を溶媒に溶解して第1溶液を製造する段階;
    溶液内銅の重量濃度(g/L)が0.01~5になるように第1溶液に銅前駆体を添加して第2溶液を製造する段階;
    溶液内シリカの重量濃度(g/L)が10~40になるように第2溶液にシリカ担体を入れて分散させて第3溶液を製造する段階;
    第3溶液を沈殿容器に入れて攪拌しながら50~120℃に昇温する段階;
    前記昇温された第3溶液にpH調節剤を添加して前記ニッケル及び銅前駆体は沈殿を形成して前記固体シリカ担体に沈積する段階;
    前記担持触媒を洗浄及び濾過した後100~200℃で5~24時間乾燥する段階;
    乾燥された触媒を空気中で200~500℃温度に焼成する段階;及び
    前記焼成された触媒を水素雰囲気で200~500℃温度で還元して活性化する段階を含む水素化反応用触媒の製造方法。
  8. 前記活性化する段階以後触媒を不動化する段階を更に含む、請求項7に記載の水素化反応用触媒の製造方法。
  9. 前記不動化は0.1~20%酸素が含まれた窒素混合ガスで不動化することを特徴とする、請求項8に記載の水素化反応用触媒の製造方法。
  10. 前記活性化する段階以後石油樹脂が含まれた溶液に沈積して不動化する段階を更に含む、請求項7に記載の石油樹脂の水素化触媒の製造方法。
  11. 前記沈殿は7~9のpHで行われる、請求項7に記載の石油樹脂の水素化触媒の製造方法。
  12. 石油樹脂の水素化方法であって、石油樹脂を前記請求項7~11のいずれか一項に記載の製造方法で製造された触媒の存在下で水素と接触させる石油樹脂の水素化方法。
JP2021523886A 2018-12-28 2019-10-29 水素化反応用触媒及びこれの製造方法 Active JP7340604B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180173034A KR102300826B1 (ko) 2018-12-28 2018-12-28 수소화 반응용 촉매 및 이의 제조방법
KR10-2018-0173034 2018-12-28
PCT/KR2019/014327 WO2020138684A1 (ko) 2018-12-28 2019-10-29 수소화 반응용 촉매 및 이의 제조방법

Publications (2)

Publication Number Publication Date
JP2022506489A true JP2022506489A (ja) 2022-01-17
JP7340604B2 JP7340604B2 (ja) 2023-09-07

Family

ID=71125848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021523886A Active JP7340604B2 (ja) 2018-12-28 2019-10-29 水素化反応用触媒及びこれの製造方法

Country Status (8)

Country Link
US (1) US20220001360A1 (ja)
EP (1) EP3903930A4 (ja)
JP (1) JP7340604B2 (ja)
KR (1) KR102300826B1 (ja)
CN (1) CN113164926A (ja)
SG (1) SG11202104689YA (ja)
TW (1) TWI761730B (ja)
WO (1) WO2020138684A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210001784A (ko) 2019-06-28 2021-01-06 한화솔루션 주식회사 수소화반응용 촉매 및 그 제조방법
CN112206803B (zh) * 2020-09-30 2023-05-23 润泰化学(泰兴)有限公司 一种用于甲基丙烯醛选择性加氢生成异丁醛的催化剂及其制备方法
KR20220097688A (ko) * 2020-12-30 2022-07-08 한화솔루션 주식회사 내황성이 향상된 수소화 반응용 촉매 및 이의 제조방법
CN114225940A (zh) * 2021-12-27 2022-03-25 中国科学院兰州化学物理研究所 一种用于苯乙烯系热塑性弹性体加氢的非均相催化剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4536226B1 (ja) * 1963-08-04 1970-11-18
JPH05287012A (ja) * 1992-04-06 1993-11-02 Tosoh Corp 水添石油樹脂の製造方法
JPH0625323A (ja) * 1992-07-07 1994-02-01 Tosoh Corp 水添石油樹脂類の製造方法
JPH07323226A (ja) * 1994-05-31 1995-12-12 Tosoh Corp アミノ化触媒及びそれを用いた脂肪族アミンの製造法
JPH11286514A (ja) * 1998-03-31 1999-10-19 Arakawa Chem Ind Co Ltd 水素化石油樹脂の製造方法および当該製造方法に用いる水素化触媒
JP2002275212A (ja) * 2001-03-21 2002-09-25 Arakawa Chem Ind Co Ltd 水素化石油樹脂の製造方法および当該製造方法に用いる水素化触媒
JP2010504188A (ja) * 2006-09-20 2010-02-12 中国石油化工股▲分▼有限公司 選択的水素化のためのニッケル触媒
JP2013525539A (ja) * 2010-04-22 2013-06-20 ビー・エイ・エス・エフ、コーポレーション 促進担持ニッケル触媒を用いる脂肪酸の水素化
JP2015501722A (ja) * 2011-12-16 2015-01-19 ビーエーエスエフ コーポレーション 保護された還元金属触媒

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6915061A (ja) * 1969-10-04 1971-04-06
US4263225A (en) * 1979-01-02 1981-04-21 Exxon Research & Engineering Co. Hydrogenation process using supported nickel-cobalt-silica coprecipitated catalyst
NL191511C (nl) * 1983-01-20 1995-08-21 Unilever Nv Werkwijze voor de bereiding van een nikkel-bevattende katalysator.
GB8620395D0 (en) 1986-08-21 1986-10-01 Exxon Research Patents Inc Hydrogenated petroleum resins
KR880002903A (ko) 1986-08-22 1988-05-12 엠. 노어우드 췌어스 스티렌/알케닐니트릴 공중합체의 제조방법
EP1101530A1 (en) * 1999-11-19 2001-05-23 Engelhard Corporation Nickel-iron containing hydrogenation catalyst
KR100392202B1 (ko) * 2000-09-26 2003-08-19 세우엔지니어링 주식회사 니켈-지르코니아계 선택적 수소화 촉매 및 이를 이용한 디-올레핀 화합물의 선택적 수소화 공정
CN102451691B (zh) * 2010-10-15 2015-06-17 中国石油化工股份有限公司 一种镍基加氢催化剂的制备方法
CN103998124B (zh) * 2011-10-12 2017-04-26 巴斯夫公司 镍氢化催化剂
CN104588024B (zh) * 2013-11-03 2016-10-19 中国石油化工股份有限公司 加氢催化剂的制备方法
MX2014007510A (es) * 2014-06-20 2015-12-21 Inst Mexicano Del Petróleo Procedimiento de obtencion de una formulacion catalitica para la produccion de diesel de ultrabajo azufre, el producto obtenido y su aplicacion.
KR101805892B1 (ko) 2015-06-30 2017-12-07 코오롱인더스트리 주식회사 수소첨가 석유수지, 이의 제조방법 및 용도
KR102327050B1 (ko) * 2017-12-29 2021-11-15 한화솔루션 주식회사 선택적 수소화 방법
KR102300823B1 (ko) * 2017-12-29 2021-09-09 한화솔루션 주식회사 수소화 반응용 촉매 및 이의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4536226B1 (ja) * 1963-08-04 1970-11-18
JPH05287012A (ja) * 1992-04-06 1993-11-02 Tosoh Corp 水添石油樹脂の製造方法
JPH0625323A (ja) * 1992-07-07 1994-02-01 Tosoh Corp 水添石油樹脂類の製造方法
JPH07323226A (ja) * 1994-05-31 1995-12-12 Tosoh Corp アミノ化触媒及びそれを用いた脂肪族アミンの製造法
JPH11286514A (ja) * 1998-03-31 1999-10-19 Arakawa Chem Ind Co Ltd 水素化石油樹脂の製造方法および当該製造方法に用いる水素化触媒
JP2002275212A (ja) * 2001-03-21 2002-09-25 Arakawa Chem Ind Co Ltd 水素化石油樹脂の製造方法および当該製造方法に用いる水素化触媒
JP2010504188A (ja) * 2006-09-20 2010-02-12 中国石油化工股▲分▼有限公司 選択的水素化のためのニッケル触媒
JP2013525539A (ja) * 2010-04-22 2013-06-20 ビー・エイ・エス・エフ、コーポレーション 促進担持ニッケル触媒を用いる脂肪酸の水素化
JP2015501722A (ja) * 2011-12-16 2015-01-19 ビーエーエスエフ コーポレーション 保護された還元金属触媒

Also Published As

Publication number Publication date
SG11202104689YA (en) 2021-07-29
US20220001360A1 (en) 2022-01-06
EP3903930A1 (en) 2021-11-03
TWI761730B (zh) 2022-04-21
EP3903930A4 (en) 2022-09-14
WO2020138684A1 (ko) 2020-07-02
KR20200082435A (ko) 2020-07-08
CN113164926A (zh) 2021-07-23
KR102300826B1 (ko) 2021-09-09
JP7340604B2 (ja) 2023-09-07
TW202026062A (zh) 2020-07-16

Similar Documents

Publication Publication Date Title
JP7340604B2 (ja) 水素化反応用触媒及びこれの製造方法
JP7352631B2 (ja) 水素化反応用触媒及びこれの製造方法
JP7431169B2 (ja) 水素化反応用触媒及びその製造方法
JP2021509088A (ja) 選択的水素化方法
JP7304977B2 (ja) 水素化反応用触媒及びその製造方法
JP7458423B2 (ja) 水素化反応用触媒及びその製造方法
JP7304976B2 (ja) 水素化反応用触媒及びその製造方法
JP7352664B2 (ja) 水素化反応用ニッケル触媒及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7340604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150