JP2022506369A - Magnesium wire / silk composite braided neural catheter and its manufacturing method - Google Patents

Magnesium wire / silk composite braided neural catheter and its manufacturing method Download PDF

Info

Publication number
JP2022506369A
JP2022506369A JP2021523697A JP2021523697A JP2022506369A JP 2022506369 A JP2022506369 A JP 2022506369A JP 2021523697 A JP2021523697 A JP 2021523697A JP 2021523697 A JP2021523697 A JP 2021523697A JP 2022506369 A JP2022506369 A JP 2022506369A
Authority
JP
Japan
Prior art keywords
catheter
neural
silk
solution
magnesium wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021523697A
Other languages
Japanese (ja)
Inventor
剛 李
淑軍 張
兆柱 鄭
暁沁 王
Original Assignee
南通紡織絲綢産業技術研究院
蘇州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通紡織絲綢産業技術研究院, 蘇州大学 filed Critical 南通紡織絲綢産業技術研究院
Publication of JP2022506369A publication Critical patent/JP2022506369A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/383Nerve cells, e.g. dendritic cells, Schwann cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3878Nerve tissue, brain, spinal cord, nerves, dura mater
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/30Compounds of undetermined constitution extracted from natural sources, e.g. Aloe Vera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/32Materials or treatment for tissue regeneration for nerve reconstruction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本発明はマグネシウムワイヤー・シルク複合編組構造の神経カテーテル及びその製造方法を開示し、強い機械的特性を備える医療用金属マグネシウムワイヤーを軸糸としてシルク編組構造に加えることにより、縦方向における案内の役割を果たすだけでなく、編組骨格の径方向の圧縮特性を向上させることができ、また、マグネシウムワイヤーはゆっくりと分解し、シュワン細胞の成長と増殖を促進することができ、損傷した神経の回復に役立ち、編組糸は脱ガムシルクであり、良好な生体適合性を有し、優れた機械的特性を確保するとともに、神経再生を促進するための生体微小環境を形成させる。The present invention discloses a neural catheter having a magnesium wire / silk composite braid structure and a method for manufacturing the same, and by adding a medical metal magnesium wire having strong mechanical properties to the silk braid structure as a shaft thread, the role of guidance in the vertical direction is provided. Not only can it improve the radial compression properties of the braided skeleton, and magnesium wire can slowly break down, promoting the growth and proliferation of Schwann cells, for the recovery of damaged nerves. Useful, the braided yarn is degammed silk, has good biocompatibility, ensures excellent mechanical properties and forms a biomicroenvironment to promote nerve regeneration.

Description

本発明は生物医療材料の技術分野に属し、具体的には、マグネシウムワイヤー・シルク複合編組構造の神経カテーテル及びその製造方法に関する。 The present invention belongs to the technical field of biomedical materials, and specifically relates to a neural catheter having a magnesium wire / silk composite braid structure and a method for manufacturing the same.

末梢神経損傷は一般的な臨床疾患であり、生体材料と組織工学技術によって、損傷した神経の修復と再生を促進することは、神経科学分野における研究のホットスポットである。理想的な生体材料、適切な物理的・機械的案内及び適切な生物学的微小環境は損傷した神経の感覚や運動などの生物学的機能の回復を促進するキー要素である。現在、神経カテーテルに関する研究の中で、ほとんどモールドキャスティング法、静電ナノ紡糸法、3Dバイオプリンティングなどの技術、及び絹フィブロイン、キトサンやコラーゲンなどの生分解性材料を使用して、物理的案内機能を有する中空カテーテルを製造しているが、これらの技術によって製造された神経カテーテルは、機械的力学と柔軟性が劣る。例えば、シルクフィブロインナノ繊維の方向性案内機能を用いた神経カテーテルでは、絹フィブロイン溶液を凝縮させて誘導して、物理的案内としてナノポアを形成するが、本発明で形成されるナノポアの形状、サイズ及び方向を制御することは困難であり、カテーテルの径方向の圧縮特性が不十分であり、耐屈曲性が考慮されておらず、また例えば、まずナノ配向繊維を用いてさまざまな分解濃度のフィルムを製造し、次にそれを巻いて管状構造の神経カテーテルとする場合、このような神経カテーテルは、細胞に対する物理的案内に優れる反面、それ自体の機械的特性が劣り、内部の神経再生用のスペースが少なく、また例えば、3Dバイオプリンティングを使用する場合、材料に対する制限が大きく、且つ、現在の解像度が低く、約1~300mPa/sである。 Peripheral nerve injury is a common clinical disorder, and promoting the repair and regeneration of damaged nerves through biomaterials and tissue engineering techniques is a hotspot for research in the field of neuroscience. Ideal biomaterials, proper physical and mechanical guidance, and proper biological microenvironments are key factors that facilitate the recovery of biological functions such as the sensation and movement of damaged nerves. Currently, in research on neurocatheter, most of the techniques such as mold casting method, electrostatic nanospinning method, 3D bioprinting, and biodegradable materials such as silk fibroin, chitosan and collagen are used for physical guidance function. However, the neural catheters produced by these techniques are inferior in mechanical dynamics and flexibility. For example, in a nerve catheter using the directional guidance function of silk fibroin nanofibers, the silk fibroin solution is condensed and guided to form nanopores as physical guidance. The shape and size of the nanopores formed in the present invention. And direction control is difficult, the catheter's radial compression properties are inadequate, flexion resistance is not considered, and for example, films of various decomposition concentrations are first used, for example, with nano-aligned fibers. When the silk catheter is manufactured and then wound into a tubular structure nerve catheter, such a nerve catheter has excellent physical guidance to cells, but its own mechanical properties are inferior, and it is used for internal nerve regeneration. The space is small, and when, for example, 3D bioprinting is used, there are large restrictions on the material, and the current resolution is low, about 1 to 300 mPa / s.

研究した結果、マグネシウムは人体に必須な重要元素の1つであり、脳や中枢神経系のタンパク質の合成に関与し、生体内のさまざまな酵素を活性化させ、神経筋の活動を調節する。微小環境において、金属マグネシウムイオンは抗炎症、抗酸化、抗アポトーシス及びミトコンドリアカルシウム緩衝の調節など、さまざまな生物学的機能を有する。最新の研究によると、マグネシウムイオンは、適切な微小環境で培養すると、分泌成長因子、細胞外マトリックス(Extracellular Matrix、ECM)などのシュワン細胞の増殖を促進でき、ニューロンをサポートして保護することができる。カイコシルクはカイコが合成して分泌する天然動物性タンパク質であり、さまざまな供給源があり、絹フィブロインはシルクの主成分であり、シルクの重量の約70%~80%%を占め、残りの主成分はセリシン及び炭水化物などである。絹フィブロインには複数のアミノ酸が含まれており、そのうち、一般的なアラニン(Ala)、グリシン(Gly)及びセリン(Ser)が全成分の約85%を占めている。絹フィブロイン自体は優れた物理的及び化学的特性、通気性、透湿性、生体適合性を備え、生体内でポリペプチド及び遊離アミノ酸に分解され、生体内に吸収されて神経細胞の成長を促進することができる。絹フィブロインで製造された神経カテーテルは、生体内の炎症反応が少なく、生分解が可能であり、損傷末梢神経の機能回復を促進することができる。キトサンは、脱アセチル化キチンとも呼ばれ、自然界に広く存在するキチン(chitin)を脱アセチル化して得られるものであり、その構造及び性質がECM中のアミノ多糖類と非常に似ており、吸着性に優れ、分解速度が調整可能であり、その分解中間体であるキトサンオリゴ糖はニューロンのアポトーシスを阻害し、細胞接着をサポートし、損傷した軸索の再生を促進することができる。 As a result of research, magnesium is one of the important elements essential for the human body, is involved in the synthesis of proteins in the brain and central nervous system, activates various enzymes in the body, and regulates the activity of nerve muscles. In the microenvironment, metallic magnesium ions have various biological functions such as anti-inflammatory, anti-oxidation, anti-apoptosis and regulation of mitochondrial calcium buffer. According to the latest research, magnesium ions can promote the proliferation of Schwann cells such as secretory growth factor, extracellular matrix (ECM), and support and protect neurons when cultured in a suitable microenvironment. can. Silk moth silk is a natural animal protein synthesized and secreted by silk moth, and has various sources. Silk fibroin is the main component of silk, accounting for about 70% to 80% of the weight of silk, and the rest. The main components are sericin and carbohydrates. Silk fibroin contains a plurality of amino acids, of which the common alanine (Ala), glycine (Gly) and serine (Ser) make up about 85% of the total components. Silk fibroin itself has excellent physical and chemical properties, breathability, moisture permeability, and biocompatibility, and is decomposed into polypeptides and free amino acids in vivo and absorbed in vivo to promote the growth of nerve cells. be able to. Nerve catheters made of silk fibroin have less inflammatory response in vivo, are biodegradable, and can promote functional recovery of injured peripheral nerves. Chitosan, also called deacetylated chitin, is obtained by deacetylating chitin, which is widely present in nature. Its structure and properties are very similar to those of aminopolysaccharides in ECM, and it is adsorbed. It is highly sexual, its degradation rate is adjustable, and its degradation intermediate, chitosan oligosaccharides, can inhibit neuronal apoptosis, support cell adhesion, and promote the regeneration of damaged axons.

神経カテーテルを製造するための一般的な技術には以下のものがある。(1)キャスティング-ディッピング法であって、当該方法は、操作しやすいが、有毒な溶剤がステントに残る恐れがあり、穴のサイズと分布の制御が困難である。(2)従来の静電紡糸法であって、高い空隙率と比表面積を備えるナノ繊維を形成し、細胞外マトリックスの網目構造と同様の微小環境を作り出すことができ、神経の再成長に有利であるものの、従来の静電紡糸法によって製造された神経カテーテルは、機械的強度が不十分で、損傷した神経に安定した機械的環境を提供しにくい。(3)編組技術であって、当該技術は、スピンドル編組機を使用して糸を管状の織り物に編むことにより、カテーテルの内部の表面積を増やすことができ、機械的特性を良好なものとする。しかし、方向性のある細胞移動や組織再生の誘導にはまだ欠点がある。 Common techniques for manufacturing neural catheters include: (1) A casting-dipping method, which is easy to operate, but may leave a toxic solvent on the stent, making it difficult to control the size and distribution of the holes. (2) A conventional electrostatic spinning method that can form nanofibers with high porosity and specific surface area, and can create a microenvironment similar to the network structure of extracellular matrix, which is advantageous for nerve regrowth. However, the nerve catheter manufactured by the conventional electrostatic spinning method has insufficient mechanical strength, and it is difficult to provide a stable mechanical environment for the injured nerve. (3) A braiding technique, in which the surface area inside the catheter can be increased by knitting the yarn into a tubular weave using a spindle braiding machine, and the mechanical properties are improved. .. However, there are still drawbacks to directional cell migration and induction of tissue regeneration.

上記の問題に対して、本発明はマグネシウムワイヤー・シルク複合編組構造の神経カテーテル及びその製造方法を提供する。 To solve the above problems, the present invention provides a neural catheter having a magnesium wire / silk composite braid structure and a method for manufacturing the same.

本発明の目的は、上記の問題を解決するために、神経再生の規則性及び神経カテーテルの機械的強度を向上できるマグネシウムワイヤー・シルク複合編組構造の神経カテーテル及びその製造方法を提供することである。 An object of the present invention is to provide a nerve catheter having a magnesium wire-silk composite braid structure capable of improving the regularity of nerve regeneration and the mechanical strength of the nerve catheter, and a method for manufacturing the same, in order to solve the above problems. ..

本発明の技術案は以下のとおりである。
マグネシウムワイヤー・シルク複合編組構造の神経カテーテルであって、
神経カテーテルの外層、神経カテーテルの中間層、及び神経カテーテルの内層を含み、前記神経カテーテルの中間層は前記神経カテーテルの内層の外側に被覆され、前記神経カテーテルの外層は前記神経カテーテルの中間層の外側に被覆され、前記神経カテーテルの外層は絹フィブロイン溶液とキトサン溶液を混合することによって形成された多孔質スポンジ構造であり、前記神経カテーテルの外層は厚さが0.5~1.5mmであり、穴径が20~150μmであり、空隙率が75%~90%であり、前記神経カテーテルの中間層は三次元編組構造であり、前記神経カテーテルの中間層は厚さが0.3~1であり、前記三次元編組構造の編組角度は45~60°であり、前記神経カテーテルの内層は多孔質ゲル構造であり、前記神経カテーテルの内層は直径が1.8~5mmである。
The technical proposal of the present invention is as follows.
A neural catheter with a magnesium wire / silk composite braid structure.
The outer layer of the neural catheter, the intermediate layer of the neural catheter, and the inner layer of the neural catheter are included, the intermediate layer of the neural catheter is coated on the outside of the inner layer of the neural catheter, and the outer layer of the neural catheter is the intermediate layer of the neural catheter. Covered on the outside, the outer layer of the neural catheter is a porous sponge structure formed by mixing a silk fibroin solution and a chitosan solution, and the outer layer of the neural catheter is 0.5 to 1.5 mm in thickness. The hole diameter is 20 to 150 μm, the void ratio is 75% to 90%, the intermediate layer of the neural catheter has a three-dimensional braided structure, and the intermediate layer of the neural catheter has a thickness of 0.3 to 1 The braiding angle of the three-dimensional braided structure is 45 to 60 °, the inner layer of the nerve catheter is a porous gel structure, and the inner layer of the nerve catheter has a diameter of 1.8 to 5 mm.

さらに、前記三次元編組構造はダイヤモンド編組構造、規則的な編組構造及びヘラクレス編組構造のいずれかである。 Further, the three-dimensional braided structure is either a diamond braided structure, a regular braided structure or a Hercules braided structure.

さらに、前記三次元編組構造はマグネシウムワイヤーを軸糸とし、脱ガムシルクを編組糸として複合して編成する三次元構造のカテーテル骨格であり、前記マグネシウムワイヤーは直径が0.1~0.25mmであり、数が4~16本であり、2つの隣接するマグネシウムワイヤー間の間隔が200~2000μmであり、前記脱ガムシルクの糸密度は20~120Dである。 Further, the three-dimensional braided structure is a catheter skeleton having a three-dimensional structure in which a magnesium wire is used as a shaft thread and degumming silk is used as a braided thread to knit, and the magnesium wire has a diameter of 0.1 to 0.25 mm. , The number is 4 to 16, the distance between two adjacent magnesium wires is 200 to 2000 μm, and the thread density of the degummed silk is 20 to 120D.

さらに、前記多孔質ゲル構造は絹フィブロインゲル、シュワン細胞及び神経成長因子からなる複合ゲル層であり、前記絹フィブロインゲルは凍結して網目繊維を形成し、前記シュワン細胞と神経成長因子は前記網目繊維内に配置され、前記網目繊維は直径が10~1000nmであり、穴径が10~500μmである。 Further, the porous gel structure is a composite gel layer composed of silk fibroin gel, Schwann cells and nerve growth factor, the silk fibroin gel freezes to form mesh fibers, and the Schwann cells and nerve growth factor are the mesh. Arranged within the fibers, the mesh fibers have a diameter of 10 to 1000 nm and a hole diameter of 10 to 500 μm.

本発明の別の技術案は以下のとおりである。
マグネシウムワイヤー・シルク複合編組構造の神経カテーテルの製造方法であって、
コア機能を備える縦型スピンドル編組機を使用して神経カテーテルの骨格構造を製造し、マグネシウムワイヤーを軸糸とし、脱ガムシルクを編組糸として、複合して編成する、神経カテーテルの中間層の製造ステップ(1)と、
絹フィブロイン溶液:キトサン溶液=1:1~1:5で、前記絹フィブロイン溶液を前記キトサン溶液に徐々に加え、6~12時間撹拌して混合し、混合溶液2を得て、前記神経カテーテルの中間層を型に固定し、次に前記混合溶液2を前記型に注ぎ、-20℃の冷蔵庫に入れて4~12時間凍結し、次に凍結乾燥機に入れて12~36時間凍結乾燥してから取り出し、多孔質中空構造を有する神経カテーテルの外層を得る、神経カテーテルの外層の製造ステップ(2)と、
シュワン細胞が培養された濃度0.01~0.5%の絹フィブロイン溶液を前記神経カテーテルの外層の中空構造に注ぎ、37℃の温度で12時間放置し、ゲル化カテーテルを形成し、前記ゲル化カテーテルを液体窒素タンクに垂直に挿入し、前記ゲル化カテーテルの軸方向に沿って下方へ0.1~1mm/sの速度でゆっくりと凍結し、次に、それを凍結乾燥機に入れ、24~48時間凍結乾燥し、マグネシウムワイヤー・シルク複合編組構造の神経カテーテルを得る、神経カテーテルの内層の製造ステップ(3)とを含む。
Another technical proposal of the present invention is as follows.
A method for manufacturing a neural catheter with a magnesium wire / silk composite braid structure.
A step in manufacturing the intermediate layer of a neural catheter, in which the skeletal structure of a neural catheter is manufactured using a vertical spindle braiding machine with a core function, and magnesium wire is used as an axoneme and degumming silk is used as a braiding yarn. (1) and
Silk fibroin solution: chitosan solution = 1: 1 to 1: 5, the silk fibroin solution is gradually added to the chitosan solution, and the mixture is stirred for 6 to 12 hours to obtain a mixed solution 2 of the nerve catheter. The intermediate layer is fixed in a mold, then the mixed solution 2 is poured into the mold, placed in a refrigerator at −20 ° C. for 4 to 12 hours, then placed in a freeze dryer and freeze-dried for 12 to 36 hours. Then, the outer layer of the neural catheter having a porous hollow structure is obtained, and the manufacturing step (2) of the outer layer of the neural catheter is performed.
A solution of silk fibroin having a concentration of 0.01 to 0.5% in which Schwann cells were cultured was poured into the hollow structure of the outer layer of the neural catheter and left at a temperature of 37 ° C. for 12 hours to form a gelled catheter, and the gel was formed. The chemized catheter is inserted vertically into a liquid nitrogen tank and slowly frozen downward along the axial direction of the gelled catheter at a rate of 0.1-1 mm / s, then placed in a lyophilizer. It comprises the manufacturing step (3) of the inner layer of the neural catheter, which is freeze-dried for 24-48 hours to obtain a neural catheter having a magnesium wire-silk composite braid structure.

さらに、ステップ(2)では、前記絹フィブロイン溶液の製造方法において、カイコ生糸を秤量し、沸騰しているNaCO水溶液で30分間脱ガムし、10分間ごとにガラス棒で撹拌し、脱イオン水で複数回濯ぎ、ドラフトチャンバーに入れて一晩風乾させ、乾燥した絹フィブロイン繊維を得て、前記乾燥した絹フィブロイン繊維をLiBr溶液に溶解し、60℃のオーブンで4時間溶解し、1時間ごとに軽く振盪し完全に溶解し、混合溶液1を得て、透析後の混合溶液1を遠心分離して、絹フィブロイン溶液を得て、4℃の冷蔵庫に入れて使用に供する。 Further, in step (2), in the method for producing the silk fibroin solution, raw silk yarn is weighed, degummed with a boiling Na 2 CO 3 aqueous solution for 30 minutes, stirred with a glass rod every 10 minutes, and removed. Rinse multiple times with ionized water, place in a draft chamber and air dry overnight to obtain dried silk fibroin fiber, dissolve the dried silk fibroin fiber in LiBr solution, dissolve in an oven at 60 ° C. for 4 hours, 1 Shake gently every hour to dissolve completely to obtain the mixed solution 1, centrifuge the mixed solution 1 after dialysis to obtain the silk fibroin solution, and put it in a refrigerator at 4 ° C. for use.

さらに、ステップ(2)では、前記透析において、前記混合溶液1を分画分子量3500Dの透析バッグに注ぎ、脱イオン水で36時間透析し、4時間ごとに水を1回交換する。 Further, in step (2), in the dialysis, the mixed solution 1 is poured into a dialysis bag having a molecular weight cut-off of 3500D, dialyzed against deionized water for 36 hours, and the water is replaced once every 4 hours.

さらに、ステップ(2)では、前記遠心分離において、高速遠心分離機にて毎回20分間、9000r/minで2回遠心分離する。 Further, in step (2), in the centrifugation, the centrifuge is used for 20 minutes each time, and the centrifuge is performed twice at 9000 r / min.

さらに、ステップ(2)では、前記キトサン溶液の製造方法において、脱アセチル化度が80~95%であるキトサンを秤量し、0.5~4%の酢酸溶液に溶解し、4~12時間撹拌し、質量分率が1~5%であるキトサン溶液を製造する。 Further, in step (2), in the method for producing a chitosan solution, chitosan having a deacetylation degree of 80 to 95% is weighed, dissolved in a 0.5 to 4% acetic acid solution, and stirred for 4 to 12 hours. Then, a chitosan solution having a mass fraction of 1 to 5% is produced.

本発明は、マグネシウムワイヤー・シルク複合編組構造の神経カテーテル及びその製造方法を提供し、その利点は以下のとおりである。
(1)径方向の圧縮特性や引張などのカテーテルの機械的特性を向上させるとともに、神経カテーテルの柔軟性と曲げ特性を向上させることにより、生体内の複雑な受力環境により適応できるようにする。
(2)カテーテルは、優れた生体適合性、表面活性及び透過性を備えており、神経細胞の接着、成長及び増殖を促進し、損傷した神経の再生速度を高めることができる。
(3)さまざまな材料と変性プロセスを用いて、神経カテーテルの分解速度を調整することにより、神経の再生に適した成長空間を提供する。
(4)カテーテルにおけるマグネシウムワイヤーは、導電性を有するため、神経の成長を刺激して誘導できるとともに、分解時に生成されたマグネシウムイオンは神経細胞の活性を高めることに寄与する。
The present invention provides a neural catheter having a magnesium wire / silk composite braid structure and a method for manufacturing the same, and its advantages are as follows.
(1) By improving the mechanical properties of the catheter such as radial compression characteristics and tension, and improving the flexibility and bending characteristics of the neural catheter, it is possible to adapt to the complex receiving environment in the living body. ..
(2) The catheter has excellent biocompatibility, surface activity and permeability, can promote the adhesion, growth and proliferation of nerve cells, and can increase the regeneration rate of damaged nerves.
(3) By adjusting the decomposition rate of the nerve catheter using various materials and degeneration processes, a growth space suitable for nerve regeneration is provided.
(4) Since the magnesium wire in the catheter has conductivity, it can stimulate and induce nerve growth, and magnesium ions generated during decomposition contribute to enhancing the activity of nerve cells.

本発明の実施例の技術案をより明確に説明するために、以下、実施例の説明に必要な図面を簡単に説明するが、明らかに、以下の説明の図面は、本発明のいくつかの実施例に過ぎず、当業者であれば、創造的な労力なしにこれらの図面に基づいて他の図面を得ることもできる。
本発明の前記マグネシウムワイヤー・シルク複合編組構造の実施例1における神経カテーテルの構造概略図である。 本発明の前記マグネシウムワイヤー・シルク複合編組構造の神経カテーテルの実施例2における構造概略図である。 本発明の前記マグネシウムワイヤー・シルク複合編組構造の神経カテーテルの実施例1における構造概略図である。 本発明の実施例1における、異なるパラメータで製造される、内径がそれぞれ2mm及び3mmのマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの編組角度である。 本発明の実施例1における、異なるパラメータで製造される、内径がそれぞれ2mm及び3mmのマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの荷重-引張ひずみ曲線である。
In order to more clearly explain the technical proposal of the embodiment of the present invention, the drawings necessary for the description of the embodiment will be briefly described below, but clearly, the drawings described below are some of the drawings of the present invention. It is only an embodiment, and those skilled in the art can obtain other drawings based on these drawings without any creative effort.
It is a structural schematic diagram of the nerve catheter in Example 1 of the said magnesium wire-silk composite braid structure of this invention. It is a structural schematic diagram in Example 2 of the neural catheter of the said magnesium wire-silk composite braid structure of this invention. It is a structural schematic diagram in Example 1 of the neural catheter of the said magnesium wire-silk composite braid structure of this invention. 1 is the braiding angle of a neural catheter having a magnesium wire / silk composite braided structure having inner diameters of 2 mm and 3 mm, respectively, manufactured with different parameters in Example 1 of the present invention. It is a load-tensile strain curve of a neural catheter of a magnesium wire / silk composite braid structure having inner diameters of 2 mm and 3 mm, respectively, manufactured with different parameters in Example 1 of the present invention.

本発明の上記の目的、特徴及び利点をより理解しやすくするために、以下、具体的な実施形態及び図面を参照して、本発明をさらに詳しく説明する。 In order to make it easier to understand the above object, feature and advantage of the present invention, the present invention will be described in more detail below with reference to specific embodiments and drawings.

本発明は、マグネシウムワイヤー・シルク複合編組構造の神経カテーテルを提供する。図1に示すように、該神経カテーテルは3層に分かれ、神経カテーテルの外層1は、絹フィブロイン溶液とキトサン溶液を混合することによって形成された多孔質スポンジ構造であり、厚さが0.5~1.5mmであり、穴径が20~150μmであり、空隙率が75%~90%であり、神経カテーテルの中間層2は三次元編組構造であり、ダイヤモンド編組構造(1/1交織)、規則的な編組構造(2/2交織)及びヘラクレス編組構造(3/3交織)の3つの編組構造のうちのいずれかであり、厚さが0.3~1であり、編組角度が45~60°であり、神経カテーテルの内層3は多孔質ゲル構造であり、直径が1.8~5mmであり、その分解時間が1~5日間である。神経カテーテルの中間層2は、直径が0.1~0.25mmであり、数が4~16本であり、マグネシウムワイヤー間の間隔が200~2000μmであるマグネシウムワイヤーを軸糸とし、糸密度が20~120Dである脱ガムシルクを編組糸5として、複合して編成する三次元構造のカテーテル骨格であり、神経カテーテルの内層3は絹フィブロインゲル6、シュワン細胞7及び神経成長因子8からなる複合ゲル層であり、神経細胞の方向性成長を案内する効果を有する。神経成長因子8はニューロンの成長と生存に必要なタンパク質分子であり、凍結によって形成された網目繊維は直径が10~1000nmであり、穴径が10~500μmである。カテーテル構造は、優れた柔軟性と曲げ特性を備えており、生体内の複雑な受力環境によく対応できる。 The present invention provides a neural catheter with a magnesium wire-silk composite braid structure. As shown in FIG. 1, the neural catheter is divided into three layers, and the outer layer 1 of the neural catheter is a porous sponge structure formed by mixing a silk fibroin solution and a chitosan solution, and has a thickness of 0.5. The hole diameter is 20 to 150 μm, the void ratio is 75% to 90%, the intermediate layer 2 of the neural catheter has a three-dimensional braided structure, and a diamond braided structure (1/1 mixed weave). , One of three braided structures, a regular braided structure (2/2 mixed weave) and a Hercules braided structure (3/3 mixed weave), with a thickness of 0.3 to 1 and a braid angle of 45. The temperature is about 60 °, the inner layer 3 of the nerve catheter has a porous gel structure, the diameter is 1.8 to 5 mm, and the decomposition time is 1 to 5 days. The intermediate layer 2 of the nerve catheter has a diameter of 0.1 to 0.25 mm, a number of 4 to 16, and a magnesium wire having an interval of 200 to 2000 μm as a shaft thread, and has a thread density of 4 to 16. It is a catheter skeleton having a three-dimensional structure in which degummed silk of 20 to 120D is combined and knitted as a braided thread 5, and the inner layer 3 of the nerve catheter is a composite gel composed of silk fibroin gel 6, Schwann cells 7, and nerve growth factor 8. It is a layer and has the effect of guiding the directional growth of nerve cells. Nerve growth factor 8 is a protein molecule necessary for the growth and survival of neurons, and the mesh fibers formed by freezing have a diameter of 10 to 1000 nm and a hole diameter of 10 to 500 μm. The catheter structure has excellent flexibility and bending characteristics, and can cope well with the complex receiving environment in the living body.

上記のマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの製造方法は、以下のステップを含む。 The method for manufacturing a neural catheter having a magnesium wire / silk composite braid structure described above includes the following steps.

(一)神経カテーテルの中間層2の製造:コア機能を備えた縦型スピンドル編組機を使用して神経カテーテルの骨格構造を製造し、マグネシウムワイヤーを軸糸4とし、脱ガムシルクを編組糸5として、複合して編成した。 (1) Manufacture of the intermediate layer 2 of the nerve catheter: The skeletal structure of the nerve catheter is manufactured using a vertical spindle braiding machine equipped with a core function, the magnesium wire is used as the shaft thread 4, and the degummed silk is used as the braided thread 5. , Combined and organized.

(二)絹フィブロイン溶液の製造:カイコ生糸30gを秤量し、沸騰しているNaCO水溶液(0.02 M)12Lにて30分間脱ガムし、10分間ごとにガラス棒で撹拌し、完全に脱ガムし、次に脱イオン水で数回濯ぎ、洗浄した絹フィブロイン繊維をドラフトチャンバーに入れて一晩風乾させた。乾燥した絹フィブロイン繊維25gを秤量し、LiBr溶液(9.3M)100mLに溶解し、60℃のオーブンで4時間溶解し、1時間ごとに軽く振盪し、完全に溶解し、混合溶液1を得た。混合溶液1を透析バッグ(分画分子量3500D)に注ぎ、脱イオン水にて36時間透析し、4時間ごとに水を交換した。透析後の溶液を高速遠心分離機で毎回20分間、9000r/minで2回遠心分離することにより、不純物を除去し、最後に、絹フィブロイン溶液を得て、4℃の冷蔵庫に入れて使用に供した。 (2) Production of silk fibroin solution: Weigh 30 g of raw silk moth, degumming with 12 L of boiling Na 2 CO 3 aqueous solution (0.02 M) for 30 minutes, and stirring with a glass rod every 10 minutes. It was completely degummed, then rinsed several times with deionized water, and the washed silk fibroin fibers were placed in a draft chamber and air dried overnight. Weigh 25 g of dried silk fibroin fiber, dissolve in 100 mL of LiBr solution (9.3 M), dissolve in an oven at 60 ° C. for 4 hours, shake gently every hour, and dissolve completely to obtain mixed solution 1. rice field. The mixed solution 1 was poured into a dialysis bag (molecular weight cut off of 3500D), dialyzed against deionized water for 36 hours, and the water was replaced every 4 hours. The solution after dialysis is centrifuged twice at 9000 r / min for 20 minutes each time with a high-speed centrifuge to remove impurities, and finally, a silk fibroin solution is obtained and placed in a refrigerator at 4 ° C. for use. Served.

(三)神経カテーテルの中間層1の製造:脱アセチル化度が80~95%であるキトサン2~8gを秤量し、0.5~4%の酢酸溶液に溶解し、4~12時間撹拌し、質量分率が1~5%であるキトサン溶液を製造した。絹フィブロイン溶液:キトサン溶液=1:1~1:5で、絹フィブロイン溶液を、製造されたキトサン溶液に徐々に加え、6~12時間撹拌して混合し、混合溶液2を得た。脱ガムシルクの編組層(神経カテーテルの中間層2)を型に固定し、次に混合溶液2を型に注ぎ、-20℃の冷蔵庫に入れて4~12時間凍結し、次に凍結乾燥機に入れて12~36時間凍結乾燥してから取り出し、多孔質構造のスポンジ外層材料を得た。 (3) Production of intermediate layer 1 of nerve catheter: Weigh 2 to 8 g of chitosan having a deacetylation degree of 80 to 95%, dissolve in 0.5 to 4% acetic acid solution, and stir for 4 to 12 hours. , A chitosan solution having a mass fraction of 1-5% was produced. Silk fibroin solution: Chitosan solution = 1: 1 to 1: 5 The silk fibroin solution was gradually added to the produced chitosan solution, and the mixture was stirred for 6 to 12 hours to obtain a mixed solution 2. The braided layer of degummed silk (intermediate layer 2 of the nerve catheter) is fixed in the mold, then the mixed solution 2 is poured into the mold, placed in a refrigerator at -20 ° C and frozen for 4 to 12 hours, and then in a freeze dryer. It was put in and freeze-dried for 12 to 36 hours, and then taken out to obtain a sponge outer layer material having a porous structure.

(四)神経カテーテルの内層3の製造:
1)凍結したカテーテルを密封し、シュワン細胞が培養された濃度0.01~0.5%の絹フィブロイン溶液を神経カテーテルの中空構造に注ぎ、37℃で12時間放置し、ゲル化を誘導した。2)カテーテルを液体窒素タンクに垂直に挿入し、カテーテルの軸方向に沿って下方へ0.1~1mm/sの速度でゆっくりと凍結し、次に、それを凍結乾燥機に入れ、24~48時間凍結乾燥した。
(4) Manufacture of inner layer 3 of nerve catheter:
1) The frozen catheter was sealed, and a solution of silk fibroin having a concentration of 0.01 to 0.5% in which Schwann cells were cultured was poured into the hollow structure of the neural catheter and left at 37 ° C. for 12 hours to induce gelation. .. 2) Insert the catheter vertically into a liquid nitrogen tank and slowly freeze it downward along the axial direction of the catheter at a rate of 0.1-1 mm / s, then place it in a lyophilizer and 24- It was lyophilized for 48 hours.

本発明の上記の目的、特徴及び利点をより理解しやすくするために、以下、図面及び実施例を参照して本発明の技術案をさらに詳しく説明する。しかしながら、本発明は列挙された実施例に限定されず、本発明の特許請求の範囲内の他の任意の公知の変更も含むべきである。 In order to make it easier to understand the above object, feature and advantage of the present invention, the technical proposal of the present invention will be described in more detail below with reference to the drawings and examples. However, the invention is not limited to the listed examples and should include any other known modifications within the claims of the invention.

まず、ここで言及される「一つの実施例」又は「実施例」は本発明の少なくとも1つの実施形態に含めることができる特定の特徴、構造又は特性を指す。本明細書の異なる場所での「一つの実施例において」は、すべて同じ実施例を指すわけではなく、また、別個に又は任意選択に他の実施例と相互に排他的となる実施例でもない。 First, the "one embodiment" or "example" referred to herein refers to a particular feature, structure or property that can be included in at least one embodiment of the invention. "In one example" at different locations herein does not refer to all the same examples, nor is it an example that is mutually exclusive with other examples, either separately or optionally. ..

次に、本発明を構造概略図などにて詳しく説明し、本発明の実施例を詳しく説明する際には、説明を容易にするために、概略図は一般的な縮尺に従うのではなく、部分的に拡大し、また、前記概略図は一例に過ぎず、ここで本発明の保護範囲を限定するものではない。さらに、実際に製造するときに、長さ、幅、及び深さの三次元空間を含める必要がある。 Next, when the present invention is described in detail with a structural schematic diagram or the like and an embodiment of the present invention is described in detail, in order to facilitate the explanation, the schematic diagram does not follow a general scale but is a part. Moreover, the schematic diagram is merely an example, and does not limit the scope of protection of the present invention here. In addition, it is necessary to include a three-dimensional space of length, width, and depth during actual manufacturing.

実施例1
本実施例は、マグネシウムワイヤー・シルク複合編組構造の神経カテーテル構造及びその製造方法を開示する。図1に示すように、該神経カテーテルは合計3層を有し、そのうち、神経カテーテルの中間層2の軸糸4はマグネシウムワイヤーであり、神経カテーテルの中間層2の編組糸5は脱ガムシルクであり、神経カテーテルの外層1は絹フィブロイン溶液とキトサン溶液を混合することによって形成された多孔質スポンジ構造であり、絹フィブロインとキトサンの重量比は10:1であり、キトサン溶液の濃度は3~6mg/mLであり、絹フィブロイン水溶液の濃度は5~10%(w/v)である。神経カテーテルの内層3は濃度5~10%(w/v)の絹フィブロイン水溶液で製造された多孔質絹フィブロインゲル層である。その製造プロセスは以下のとおりである。
(1)編組法により神経カテーテルの中間層2を製造する。すなわち、原材料として20~100Dの脱ガムシルク、直径が0.05~0.2mmのマグネシウムワイヤーを用いて、編組プロセスとして8~32スピンドルの縦型編組機を使用して、ダイヤモンド編組(1/1交織)を行い、編組機での編組角度を45~60°、ギア比(大ギア:小ギア)を80~120:18~60、回転速度を5~100rpmに設定した。
(2)編組した神経カテーテルの中間層2を管状のポリテトラフルオロエチレン型に固定し、製造した溶液を型に注ぎ、成形温度を60±2℃、成形時間を15~30minとした。冷蔵庫に入れて-20℃で4~12時間凍結し、次にそれを凍結乾燥機に入れ、12~36時間凍結乾燥してから取り出し、カテーテルを、50~70℃の処理温度で5~10時間蒸気処理し、多孔質スポンジ層を備えた神経カテーテルを得た。
(3)凍結したカテーテルを密封し、シュワン細胞を含む濃度0.01~0.5%の絹フィブロイン溶液をカテーテルの中空構造に注ぎ、37℃で12時間放置し、そのゲル化を誘導し、カテーテルを液体窒素タンクに垂直に挿入し、カテーテルの軸方向に沿って下方へ0.1~1mm/sの速度でゆっくりと凍結し、最後に、それを凍結乾燥機に入れ、24~48時間凍結乾燥し、シュワン細胞を含む絹フィブロインゲル層を得た。
Example 1
This example discloses a neural catheter structure having a magnesium wire / silk composite braid structure and a method for manufacturing the same. As shown in FIG. 1, the neural catheter has a total of three layers, of which the shaft thread 4 of the intermediate layer 2 of the neural catheter is magnesium wire, and the braided thread 5 of the intermediate layer 2 of the neural catheter is degummed silk. The outer layer 1 of the nerve catheter is a porous sponge structure formed by mixing a silk fibroin solution and a chitosan solution, the weight ratio of silk fibroin to chitosan is 10: 1, and the concentration of the chitosan solution is 3 to 3. It is 6 mg / mL, and the concentration of the silk fibroin aqueous solution is 5 to 10% (w / v). The inner layer 3 of the nerve catheter is a porous silk fibroin gel layer prepared with a silk fibroin aqueous solution having a concentration of 5 to 10% (w / v). The manufacturing process is as follows.
(1) The intermediate layer 2 of the nerve catheter is manufactured by the braiding method. That is, diamond braiding (1/1) using a vertical braiding machine with 8 to 32 spindles as a braiding process using 20 to 100 D degummed silk as raw materials and magnesium wire having a diameter of 0.05 to 0.2 mm. The braiding angle was set to 45 to 60 °, the gear ratio (large gear: small gear) was set to 80 to 120: 18 to 60, and the rotation speed was set to 5 to 100 rpm.
(2) The intermediate layer 2 of the braided nerve catheter was fixed in a tubular polytetrafluoroethylene mold, and the produced solution was poured into the mold to set the molding temperature to 60 ± 2 ° C. and the molding time to 15 to 30 min. Place in the refrigerator and freeze at -20 ° C for 4-12 hours, then place in a lyophilizer, lyophilize for 12-36 hours and then remove and remove the catheter 5-10 at a processing temperature of 50-70 ° C. Time steam treatment was performed to obtain a neural catheter with a porous sponge layer.
(3) The frozen catheter is sealed, a silk fibroin solution containing Schwann cells at a concentration of 0.01 to 0.5% is poured into the hollow structure of the catheter, and left at 37 ° C. for 12 hours to induce its gelation. The catheter is inserted vertically into a liquid nitrogen tank, slowly frozen downward along the axial direction of the catheter at a rate of 0.1-1 mm / s, and finally placed in a lyophilizer for 24-48 hours. Freeze-drying gave a silk fibroin gel layer containing Schwann cells.

上記方法で製造されたマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの特性は図4~図5を参照すればよく、図4からわかるように、マグネシウムワイヤー・シルク複合編組構造の神経カテーテルの編組角度が40~55°の間で変化し安定的であり、図5からわかるように、1番目のピークは編組糸の破断ピークを表し、このとき、引張ひずみは8%であり、荷重は35Nと高く、2番目のピークは軸糸の破断ピークを表し、このとき、荷重は65N以上に達し、このことから、軸糸の追加により神経カテーテルの引張特性を大幅に向上させることを示す。 The characteristics of the neural catheter having a magnesium wire / silk composite braid structure manufactured by the above method may be referred to FIGS. 4 to 5, and as can be seen from FIG. 4, the braiding angle of the neural catheter having a magnesium wire / silk composite braid structure can be seen. Is stable with a change between 40 and 55 °, and as can be seen from FIG. 5, the first peak represents the breakage peak of the braided yarn, at which time the tensile strain is 8% and the load is 35N. High, the second peak represents the break peak of the shaft thread, at which time the load reaches 65 N or more, indicating that the addition of the shaft thread significantly improves the tensile properties of the nerve catheter.

実施例2
本実施例は、マグネシウムワイヤー・シルク複合編組構造の神経カテーテル構造及びその製造方法を開示する。図2に示すように、該神経カテーテルは合計3層を有し、そのうち、神経カテーテルの中間層2の軸糸4はマグネシウムワイヤーであり、編組糸5に4本の分解可能なチタン-ニッケル合金ワイヤー9を加えることで、神経カテーテルの径方向の圧縮特性を向上させ、神経カテーテルの外層1は、濃度が3~6mg/mLのキトサン溶液で調製された多孔質スポンジ層であり、その溶液の濃度は3~6mg/mLであり、神経カテーテルの内層3は濃度5~10%(w/v)の絹フィブロイン水溶液で製造された多孔質絹フィブロインゲル層である。その製造プロセスは以下のとおりである。
(1)編組法により神経カテーテルの中間層2を製造する。すなわち、原材料として20~100Dの脱ガムシルク、直径が0.05~0.2mmのマグネシウムワイヤー及びチタン-ニッケル合金を用いて、編組プロセスとして8~32スピンドルの縦型編組機を使用して、規則的な編組(2/2交織)を行い、編組機での編組角度を45~60°、ギア比(大ギア:小ギア)を80~120:18~60)、回転速度を5~100rpmに設定した。
(2)神経カテーテルの中間層を管状のポリテトラフルオロエチレン型に固定し、製造した溶液を型に注ぎ、成形温度を60±2℃、成形時間を15~30minとした。冷蔵庫に入れて-20℃で4~12時間凍結し、次にそれを凍結乾燥機に入れ、12~36時間凍結乾燥してから取り出し、カテーテルを、50~70℃の処理温度で5~10時間蒸気処理し、神経カテーテルの多孔質スポンジ層を得た。
(3)凍結したカテーテルを密封し、シュワン細胞を含む濃度0.01~0.5%の絹フィブロイン溶液をカテーテルの中空構造に注ぎ、37℃で12時間放置し、そのゲル化を誘導し、カテーテルを液体窒素タンクに垂直に挿入し、カテーテルの軸方向に沿って下方へ0.1~1mm/sの速度でゆっくりと凍結し、最後に、それを凍結乾燥機に入れ、24~48時間凍結乾燥し、シュワン細胞を含む絹フィブロインゲル層を得た。
Example 2
This example discloses a neural catheter structure having a magnesium wire / silk composite braid structure and a method for manufacturing the same. As shown in FIG. 2, the neural catheter has a total of three layers, of which the axial thread 4 of the intermediate layer 2 of the neural catheter is a magnesium wire, and the braided thread 5 has four decomposable titanium-nickel alloys. The addition of the wire 9 improves the radial compression characteristics of the neural catheter, and the outer layer 1 of the neural catheter is a porous sponge layer prepared with a chitosan solution having a concentration of 3 to 6 mg / mL, and the outer layer 1 of the solution is a porous sponge layer. The concentration is 3 to 6 mg / mL, and the inner layer 3 of the neural catheter is a porous silk fibroin gel layer prepared with a silk fibroin aqueous solution having a concentration of 5 to 10% (w / v). The manufacturing process is as follows.
(1) The intermediate layer 2 of the nerve catheter is manufactured by the braiding method. That is, using 20-100D degummed silk as raw materials, magnesium wire with a diameter of 0.05-0.2 mm and titanium-nickel alloy, and using an 8-32 spindle vertical braiding machine as the braiding process, the rules. Braiding (2/2 mixed weaving) is performed, the braiding angle on the braiding machine is 45 to 60 °, the gear ratio (large gear: small gear) is 80 to 120: 18 to 60), and the rotation speed is 5 to 100 rpm. I set it.
(2) The intermediate layer of the nerve catheter was fixed in a tubular polytetrafluoroethylene mold, and the produced solution was poured into the mold to set the molding temperature to 60 ± 2 ° C. and the molding time to 15 to 30 min. Place in the refrigerator and freeze at -20 ° C for 4-12 hours, then place in a lyophilizer, lyophilize for 12-36 hours and then remove and remove the catheter 5-10 at a processing temperature of 50-70 ° C. Time steam treatment was performed to obtain a porous sponge layer of the nerve catheter.
(3) The frozen catheter is sealed, a silk fibroin solution containing Schwann cells at a concentration of 0.01 to 0.5% is poured into the hollow structure of the catheter, and left at 37 ° C. for 12 hours to induce its gelation. The catheter is inserted vertically into a liquid nitrogen tank, slowly frozen downward along the axial direction of the catheter at a rate of 0.1-1 mm / s, and finally placed in a lyophilizer for 24-48 hours. Freeze-drying gave a silk fibroin gel layer containing Schwann cells.

実施例3
本実施例は、マグネシウムワイヤー・シルク複合編組構造の神経カテーテル構造及びその製造方法を開示する。図3に示すように、該神経カテーテルは合計3層を有し、そのうち、神経カテーテルの中間層2の軸糸4はマグネシウムワイヤーと脱ガムシルクとの交織であり、編組糸5は脱ガムシルクであり、神経カテーテルの外層1は濃度が5~10%(w/v)の絹フィブロイン溶液で製造された多孔質スポンジ層である。神経カテーテルの内層3は濃度5~10%(w/v)の絹フィブロイン水溶液で製造された多孔質絹フィブロインゲル層である。その製造プロセスは以下のとおりである。
(1)編組法により神経カテーテルの中間層2を製造する。すなわち、原材料として20~100Dの脱ガムシルク、直径が0.05~0.2mmのマグネシウムワイヤーを用いて、編組プロセスとして8~32スピンドルの縦型編組機を使用して、ヘラクレス編組構造(3/3交織)を行い、編組機での編組角度を45~60°、ギア比(大ギア:小ギア)を80~120:18~60、回転速度を5~100rpmに設定した。
(2)神経カテーテルの中間層を管状のポリテトラフルオロエチレン型に固定し、製造した溶液を型に注ぎ、成形温度を60±2℃、成形時間を15~30minとした。冷蔵庫に入れて-20℃で4~12時間凍結し、次にそれを凍結乾燥機に入れ、12~36時間凍結乾燥してから取り出し、カテーテルを、50~70℃の処理温度で5~10時間蒸気処理し、外層1が多孔質スポンジ層である神経カテーテルを得た。
(3)凍結したカテーテルを密封し、シュワン細胞を含む濃度0.01~0.5%の絹フィブロイン溶液をカテーテルの中空構造に注ぎ、37℃で12時間放置し、そのゲル化を誘導し、カテーテルを液体窒素タンクに垂直に挿入し、カテーテルの軸方向に沿って下方へ0.1~1mm/sの速度でゆっくりと凍結し、最後に、それを凍結乾燥機に入れ、24~48時間凍結乾燥し、シュワン細胞を含む絹フィブロインゲル層を得た。
Example 3
This example discloses a neural catheter structure having a magnesium wire / silk composite braid structure and a method for manufacturing the same. As shown in FIG. 3, the nerve catheter has a total of three layers, of which the shaft thread 4 of the intermediate layer 2 of the nerve catheter is a mixed weave of a magnesium wire and a degummed silk, and the braided thread 5 is a degummed silk. The outer layer 1 of the nerve catheter is a porous sponge layer made of a silk fibroin solution having a concentration of 5 to 10% (w / v). The inner layer 3 of the nerve catheter is a porous silk fibroin gel layer prepared with a silk fibroin aqueous solution having a concentration of 5 to 10% (w / v). The manufacturing process is as follows.
(1) The intermediate layer 2 of the nerve catheter is manufactured by the braiding method. That is, a Hercules braid structure (3 / 3 cross weaving) was performed, the braiding angle on the braiding machine was set to 45 to 60 °, the gear ratio (large gear: small gear) was set to 80 to 120: 18 to 60, and the rotation speed was set to 5 to 100 rpm.
(2) The intermediate layer of the nerve catheter was fixed in a tubular polytetrafluoroethylene mold, and the produced solution was poured into the mold to set the molding temperature to 60 ± 2 ° C. and the molding time to 15 to 30 min. Place in the refrigerator and freeze at -20 ° C for 4-12 hours, then place in a lyophilizer, lyophilize for 12-36 hours and then remove and remove the catheter 5-10 at a processing temperature of 50-70 ° C. After time steam treatment, a nerve catheter in which the outer layer 1 was a porous sponge layer was obtained.
(3) The frozen catheter is sealed, a silk fibroin solution containing Schwann cells at a concentration of 0.01 to 0.5% is poured into the hollow structure of the catheter, and left at 37 ° C. for 12 hours to induce its gelation. The catheter is inserted vertically into a liquid nitrogen tank, slowly frozen downward along the axial direction of the catheter at a rate of 0.1-1 mm / s, and finally placed in a lyophilizer for 24-48 hours. Freeze-drying gave a silk fibroin gel layer containing Schwann cells.

よって、本発明は、マグネシウムワイヤー・シルク複合編組構造の神経カテーテル構造及びその製造方法を開示し、
強い機械的特性を備える医療用金属マグネシウムワイヤーを軸糸としてシルク編組構造に加えることにより、縦方向における案内の役割を果たすだけでなく、編組骨格の径方向の圧縮特性を向上させることができ、また、マグネシウムワイヤーはゆっくりと分解し、シュワン細胞の成長と増殖を促進することができ、損傷した神経の回復に役立ち、編組糸は脱ガムシルクであり、良好な生体適合性を有し、優れた機械的特性を確保するとともに、神経再生を促進するための生体微小環境を形成させる。
Therefore, the present invention discloses a neural catheter structure having a magnesium wire / silk composite braided structure and a method for manufacturing the same.
By adding a medical metal magnesium wire having strong mechanical properties to the silk braided structure as an axoneme, not only can it serve as a guide in the vertical direction, but also the radial compression characteristics of the braided skeleton can be improved. In addition, magnesium wire can slowly decompose and promote the growth and proliferation of Schwann cells, helping to recover damaged nerves, the braided yarn is degumized silk, has good biocompatibility and is excellent. It secures mechanical properties and forms a biomicroenvironment to promote nerve regeneration.

なお、以上の実施例は、本発明の技術案を説明するためのものに過ぎず、制限するものではない。好ましい実施形態を参照して本発明を詳細に説明したが、当業者は、本発明の技術案の要旨および範囲から逸脱することなく、本発明の技術案を修正したり、等価置換を行ったりすることができ、それらは、いずれも本発明の特許請求の範囲に含まれるべきである。 It should be noted that the above examples are merely for explaining the technical proposal of the present invention, and are not intended to limit the present invention. Although the present invention has been described in detail with reference to preferred embodiments, those skilled in the art may modify or make equivalent substitutions of the invention without departing from the gist and scope of the invention. All of them should be included in the claims of the present invention.

1 神経カテーテルの外層、2 神経カテーテルの中間層、3 神経カテーテルの内層、4 軸糸、5 編組糸、6 絹フィブロインゲル、7 シュワン細胞、8 神経成長因子、9 チタン-ニッケル合金ワイヤー。 1 outer layer of nerve catheter, 2 middle layer of nerve catheter, 3 inner layer of nerve catheter, 4 axial thread, 5 braided thread, 6 silk fibroin gel, 7 Schwann cells, 8 nerve growth factor, 9 titanium-nickel alloy wire.

Claims (9)

マグネシウムワイヤー・シルク複合編組構造の神経カテーテルであって、
神経カテーテルの外層、神経カテーテルの中間層、及び神経カテーテルの内層を含み、前記神経カテーテルの中間層は前記神経カテーテルの内層の外側に被覆され、前記神経カテーテルの外層は前記神経カテーテルの中間層の外側に被覆され、前記神経カテーテルの外層は絹フィブロイン溶液とキトサン溶液を混合することによって形成された多孔質スポンジ構造であり、前記神経カテーテルの外層は厚さが0.5~1.5mmであり、穴径が20~150μmであり、空隙率が75%~90%であり、前記神経カテーテルの中間層は三次元編組構造であり、前記神経カテーテルの中間層は厚さが0.3~1であり、前記三次元編組構造の編組角度は45~60°であり、前記神経カテーテルの内層は多孔質ゲル構造であり、前記神経カテーテルの内層は直径が1.8~5mmである、ことを特徴とするマグネシウムワイヤー・シルク複合編組構造の神経カテーテル。
A neural catheter with a magnesium wire / silk composite braid structure.
The outer layer of the neural catheter, the intermediate layer of the neural catheter, and the inner layer of the neural catheter are included, the intermediate layer of the neural catheter is coated on the outside of the inner layer of the neural catheter, and the outer layer of the neural catheter is the intermediate layer of the neural catheter. The outer layer of the neural catheter is coated on the outside and has a porous sponge structure formed by mixing a silk fibroin solution and a chitosan solution, and the outer layer of the neural catheter has a thickness of 0.5 to 1.5 mm. The hole diameter is 20 to 150 μm, the void ratio is 75% to 90%, the intermediate layer of the neural catheter has a three-dimensional braided structure, and the intermediate layer of the neural catheter has a thickness of 0.3 to 1. The braiding angle of the three-dimensional braided structure is 45 to 60 °, the inner layer of the nerve catheter is a porous gel structure, and the inner layer of the nerve catheter has a diameter of 1.8 to 5 mm. Nerve catheter with magnesium wire / silk composite braid structure.
前記三次元編組構造はダイヤモンド編組構造、規則的な編組構造及びヘラクレス(HERCULES)編組構造のいずれかである、ことを特徴とする請求項1に記載のマグネシウムワイヤー・シルク複合編組構造の神経カテーテル。 The magnesium wire-silk composite braided neural catheter according to claim 1, wherein the three-dimensional braided structure is one of a diamond braided structure, a regular braided structure, and a HERCULES braided structure. 前記三次元編組構造はマグネシウムワイヤーを軸糸とし、脱ガムシルクを編組糸として複合して編成する三次元構造のカテーテル骨格であり、前記マグネシウムワイヤーは直径が0.1~0.25mmであり、数が4~16本であり、2つの隣接するマグネシウムワイヤー間の間隔が200~2000μmであり、前記脱ガムシルクの糸密度は20~120Dである、ことを特徴とする請求項1に記載のマグネシウムワイヤー・シルク複合編組構造の神経カテーテル。 The three-dimensional braided structure is a catheter skeleton having a three-dimensional structure in which a magnesium wire is used as a shaft thread and degumming silk is used as a braided thread to knit. The magnesium wire has a diameter of 0.1 to 0.25 mm and is a number. The magnesium wire according to claim 1, wherein the number of magnesium wires is 4 to 16, the distance between two adjacent magnesium wires is 200 to 2000 μm, and the yarn density of the degummed silk is 20 to 120D. -Silk composite braided neural catheter. 前記多孔質ゲル構造は絹フィブロインゲル、シュワン細胞及び神経成長因子からなる複合ゲル層であり、前記絹フィブロインゲルは凍結して網目繊維を形成し、前記シュワン細胞と神経成長因子は前記網目繊維内に配置され、前記網目繊維は直径が10~1000nmであり、穴径が10~500μmである、ことを特徴とする請求項1に記載のマグネシウムワイヤー・シルク複合編組構造の神経カテーテル。 The porous gel structure is a composite gel layer composed of silk fibroin gel, Schwann cells and nerve growth factor, the silk fibroin gel freezes to form mesh fibers, and the Schwann cells and nerve growth factor are contained in the mesh fibers. The nerve catheter having a magnesium wire / silk composite braid structure according to claim 1, wherein the mesh fibers have a diameter of 10 to 1000 nm and a hole diameter of 10 to 500 μm. マグネシウムワイヤー・シルク複合編組構造の神経カテーテルの製造方法であって、
コア機能を備える縦型スピンドル編組機を使用して神経カテーテルの骨格構造を製造し、マグネシウムワイヤーを軸糸とし、脱ガムシルクを編組糸として、複合して編成する、神経カテーテルの中間層の製造ステップ(1)と、
絹フィブロイン溶液:キトサン溶液=1:1~1:5で、前記絹フィブロイン溶液を前記キトサン溶液に徐々に加え、6~12時間撹拌して混合し、混合溶液2を得て、前記神経カテーテルの中間層を型に固定し、次に前記混合溶液2を前記型に注ぎ、-20℃の冷蔵庫に入れて4~12時間凍結し、次に凍結乾燥機に入れて12~36時間凍結乾燥してから取り出し、多孔質中空構造を有する神経カテーテルの外層を得る、神経カテーテルの外層の製造ステップ(2)と、
シュワン細胞が培養された濃度0.01~0.5%の絹フィブロイン溶液を前記神経カテーテルの外層の中空構造に注ぎ、37℃の温度で12時間放置し、ゲル化カテーテルを形成し、前記ゲル化カテーテルを液体窒素タンクに垂直に挿入し、前記ゲル化カテーテルの軸方向に沿って下方へ0.1~1mm/sの速度でゆっくりと凍結し、次に、それを凍結乾燥機に入れ、24~48時間凍結乾燥し、マグネシウムワイヤー・シルク複合編組構造の神経カテーテルを得る、神経カテーテルの内層の製造ステップ(3)とを含む、ことを特徴とする製造方法。
A method for manufacturing a neural catheter with a magnesium wire / silk composite braid structure.
A step in manufacturing the intermediate layer of a neural catheter, in which the skeletal structure of a neural catheter is manufactured using a vertical spindle braiding machine with a core function, and magnesium wire is used as an axoneme and degumming silk is used as a braiding yarn. (1) and
Silk fibroin solution: chitosan solution = 1: 1 to 1: 5, the silk fibroin solution is gradually added to the chitosan solution, and the mixture is stirred for 6 to 12 hours to obtain a mixed solution 2 of the nerve catheter. The intermediate layer is fixed in a mold, then the mixed solution 2 is poured into the mold, placed in a refrigerator at −20 ° C. for 4 to 12 hours, then placed in a freeze dryer and freeze-dried for 12 to 36 hours. Then, the outer layer of the neural catheter having a porous hollow structure is obtained, and the manufacturing step (2) of the outer layer of the neural catheter is performed.
A solution of silk fibroin having a concentration of 0.01 to 0.5% in which Schwann cells were cultured was poured into the hollow structure of the outer layer of the neural catheter and left at a temperature of 37 ° C. for 12 hours to form a gelled catheter, and the gel was formed. The chemized catheter is inserted vertically into a liquid nitrogen tank and slowly frozen downward along the axial direction of the gelled catheter at a rate of 0.1-1 mm / s, then placed in a lyophilizer. A manufacturing method comprising the step (3) of manufacturing an inner layer of a neural catheter, which is freeze-dried for 24 to 48 hours to obtain a neural catheter having a magnesium wire / silk composite braid structure.
ステップ(2)では、前記絹フィブロイン溶液の製造方法において、カイコ生糸を秤量し、沸騰しているNaCO水溶液で30分間脱ガムし、10分間ごとにガラス棒で撹拌し、脱イオン水で複数回濯ぎ、ドラフトチャンバーに入れて一晩風乾させ、乾燥した絹フィブロイン繊維を得て、前記乾燥した絹フィブロイン繊維をLiBr溶液に溶解し、60℃のオーブンで4時間溶解し、1時間ごとに軽く振盪し完全に溶解し、混合溶液1を得て、透析後の混合溶液1を遠心分離して、絹フィブロイン溶液を得て、4℃の冷蔵庫に入れて使用に供する、ことを特徴とする請求項5に記載のマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの製造方法。 In step (2), in the method for producing the silk fibroin solution, raw silk yarn is weighed, degummed with a boiling Na 2 CO 3 aqueous solution for 30 minutes, stirred with a glass rod every 10 minutes, and deionized water. Rinse multiple times with, place in a draft chamber and air dry overnight to obtain dried silk fibroin fiber, dissolve the dried silk fibroin fiber in LiBr solution, dissolve in an oven at 60 ° C. for 4 hours, and every hour. It is characterized in that the mixed solution 1 is obtained by shaking lightly to obtain a mixed solution 1, the mixed solution 1 after dialysis is centrifuged to obtain a silk fibroin solution, and the mixture is placed in a refrigerator at 4 ° C. for use. The method for manufacturing a nerve catheter having a magnesium wire / silk composite braided structure according to claim 5. ステップ(2)では、前記透析において、前記混合溶液1を分画分子量3500Dの透析バッグに注ぎ、脱イオン水で36時間透析し、4時間ごとに水を1回交換する、ことを特徴とする請求項6に記載のマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの製造方法。 The step (2) is characterized in that, in the dialysis, the mixed solution 1 is poured into a dialysis bag having a molecular weight cut-off of 3500D, dialyzed with deionized water for 36 hours, and the water is changed once every 4 hours. The method for manufacturing a neural catheter having a magnesium wire / silk composite braid structure according to claim 6. ステップ(2)では、前記遠心分離において、高速遠心分離機にて毎回20分間、9000r/minで2回遠心分離する、ことを特徴とする請求項6に記載のマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの製造方法。 The magnesium wire / silk composite braided structure according to claim 6, wherein in step (2), the centrifuge is centrifuged twice at 9000 r / min for 20 minutes each time in the centrifuge. How to make a neural catheter. ステップ(2)では、前記キトサン溶液の製造方法において、脱アセチル化度が80~95%であるキトサンを秤量し、0.5~4%の酢酸溶液に溶解し、4~12時間撹拌し、質量分率が1~5%であるキトサン溶液を製造する、ことを特徴とする請求項5に記載のマグネシウムワイヤー・シルク複合編組構造の神経カテーテルの製造方法。 In step (2), in the method for producing a chitosan solution, chitosan having a deacetylation degree of 80 to 95% is weighed, dissolved in a 0.5 to 4% acetic acid solution, and stirred for 4 to 12 hours. The method for producing a neural catheter having a magnesium wire / silk composite braid structure according to claim 5, wherein a chitosan solution having a mass fraction of 1 to 5% is produced.
JP2021523697A 2018-12-29 2019-02-25 Magnesium wire / silk composite braided neural catheter and its manufacturing method Pending JP2022506369A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811638025.9 2018-12-29
CN201811638025.9A CN109513041B (en) 2018-12-29 2018-12-29 Nerve conduit with magnesium silk composite woven structure and preparation method thereof
PCT/CN2019/076010 WO2020133668A1 (en) 2018-12-29 2019-02-25 Nerve conduit of magnesium filament and silk compositely woven structure and preparation method for nerve conduit

Publications (1)

Publication Number Publication Date
JP2022506369A true JP2022506369A (en) 2022-01-17

Family

ID=65798765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021523697A Pending JP2022506369A (en) 2018-12-29 2019-02-25 Magnesium wire / silk composite braided neural catheter and its manufacturing method

Country Status (3)

Country Link
JP (1) JP2022506369A (en)
CN (1) CN109513041B (en)
WO (1) WO2020133668A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513041B (en) * 2018-12-29 2023-10-03 南通纺织丝绸产业技术研究院 Nerve conduit with magnesium silk composite woven structure and preparation method thereof
CN110251732B (en) * 2019-06-18 2020-10-27 南通纺织丝绸产业技术研究院 Multilayer composite braided degradable nerve conduit structure and preparation method thereof
CN110786965B (en) * 2019-11-14 2021-04-30 苏州大学 Method for preparing multi-channel antibacterial nerve conduit by ingot-changing weaving method
CN111281599A (en) * 2020-03-19 2020-06-16 中国海洋大学 Enhanced artificial nerve conduit and preparation method and application thereof
CN111297513A (en) * 2020-03-19 2020-06-19 中国海洋大学 Artificial nerve conduit loaded with trophic factors and preparation method and application thereof
CN113634048B (en) * 2021-09-10 2022-10-14 武汉纺织大学 Natural silk micro-nano fiber composite porous material and application thereof
CN114470325A (en) * 2022-03-24 2022-05-13 合肥工业大学 Preparation method of chitin hydrogel nerve conduit material capable of being sewn and cut into single-sided conductive and antibacterial material
CN114983622B (en) * 2022-06-01 2024-06-25 奥精医疗科技股份有限公司 Preparation method of nerve conduit and nerve conduit
CN116899014B (en) * 2023-07-24 2024-05-07 上海工程技术大学 Three-dimensional topological structure multichannel nerve conduit and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513051A (en) * 2004-09-14 2008-05-01 クイーン マリー アンド ウエストフィールド カレッジ Methods and devices for improved growth of peripheral nerves and neural tissue
JP2008200299A (en) * 2007-02-20 2008-09-04 Hokkaido Soda Kk Nerve regeneration tube, and its manufacturing method
CN102274089A (en) * 2011-05-24 2011-12-14 苏州大学 Silk fibroin tubular bracket and preparation method thereof
JP2014155622A (en) * 2013-02-15 2014-08-28 Terumo Corp Tubular body
CN104107096A (en) * 2014-07-18 2014-10-22 上海交通大学 Bendable fully-degrading magnesium alloy nerve conduit and preparing method thereof
US20170281826A1 (en) * 2014-12-16 2017-10-05 Universitat Politecnica De Valencia Biohybrid for the Use Thereof in the Regeneration of Neural Tracts
WO2018137763A1 (en) * 2017-01-25 2018-08-02 B. Braun Melsungen Ag Endoluminal device
CN108853587A (en) * 2017-05-10 2018-11-23 上海交通大学 Magnesium alloy and macromolecule silk material shuffling composite patch and application thereof
US20190022276A1 (en) * 2013-10-17 2019-01-24 Shanghai Jiao Tong University Biodegradable magnesium alloy nerve conduit for nerve defect repair and its preparation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599323B2 (en) * 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
KR101116237B1 (en) * 2009-08-12 2012-03-09 서울대학교산학협력단 Nanofibrous silk nerve conduit for the regeneration of injured nerve and preparation method thereof
CN102688076B (en) * 2011-03-25 2014-09-10 广州迈普再生医学科技有限公司 Nerve conduit and preparation method thereof
CN103083720B (en) * 2013-02-28 2015-01-21 苏州大学 Silk fibroin tube and preparation method thereof
WO2015142631A1 (en) * 2014-03-17 2015-09-24 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Magnesium composite-containing scaffolds to enhance tissue regeneration
CN104548205B (en) * 2014-12-29 2017-07-21 东莞颠覆产品设计有限公司 A kind of animal sources Nerve Scaffold and preparation method thereof
CN105748171B (en) * 2016-02-21 2017-09-15 新乡医学院 Biological nerve duct
CN109513041B (en) * 2018-12-29 2023-10-03 南通纺织丝绸产业技术研究院 Nerve conduit with magnesium silk composite woven structure and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513051A (en) * 2004-09-14 2008-05-01 クイーン マリー アンド ウエストフィールド カレッジ Methods and devices for improved growth of peripheral nerves and neural tissue
JP2008200299A (en) * 2007-02-20 2008-09-04 Hokkaido Soda Kk Nerve regeneration tube, and its manufacturing method
CN102274089A (en) * 2011-05-24 2011-12-14 苏州大学 Silk fibroin tubular bracket and preparation method thereof
JP2014155622A (en) * 2013-02-15 2014-08-28 Terumo Corp Tubular body
US20190022276A1 (en) * 2013-10-17 2019-01-24 Shanghai Jiao Tong University Biodegradable magnesium alloy nerve conduit for nerve defect repair and its preparation method
CN104107096A (en) * 2014-07-18 2014-10-22 上海交通大学 Bendable fully-degrading magnesium alloy nerve conduit and preparing method thereof
US20170281826A1 (en) * 2014-12-16 2017-10-05 Universitat Politecnica De Valencia Biohybrid for the Use Thereof in the Regeneration of Neural Tracts
WO2018137763A1 (en) * 2017-01-25 2018-08-02 B. Braun Melsungen Ag Endoluminal device
CN108853587A (en) * 2017-05-10 2018-11-23 上海交通大学 Magnesium alloy and macromolecule silk material shuffling composite patch and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, vol. 50, JPN6022020792, 2015, pages 192 - 205, ISSN: 0004787834 *
POLYMER DEGRADATION AND STABILITY, vol. 119, JPN6022020791, 2015, pages 46 - 55, ISSN: 0004787835 *

Also Published As

Publication number Publication date
CN109513041B (en) 2023-10-03
CN109513041A (en) 2019-03-26
WO2020133668A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP2022506369A (en) Magnesium wire / silk composite braided neural catheter and its manufacturing method
CN110251732B (en) Multilayer composite braided degradable nerve conduit structure and preparation method thereof
Rao et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats
Zhao et al. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering
Bhattacharjee et al. Silk scaffolds in bone tissue engineering: An overview
CN103341209B (en) Silk fibroin nanofiber membrane and preparation method thereof
Han et al. A review: Current status and emerging developments on natural polymer‐based electrospun fibers
Lu et al. Nerve guidance conduits with hierarchical anisotropic architecture for peripheral nerve regeneration
Chen et al. Gas foaming of electrospun poly (L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration
Muthukrishnan An overview on electrospinning and its advancement toward hard and soft tissue engineering applications
CN112263714B (en) Silk protein nerve conduit and preparation method thereof
Li et al. Tough and VEGF-releasing scaffolds composed of artificial silk fibroin mats and a natural acellular matrix
Zhang et al. Electrospun piezoelectric scaffold with external mechanical stimulation for promoting regeneration of peripheral nerve injury
CN107982580A (en) A kind of fibroin albumen tissue engineering bracket based on braiding and coating technology and its preparation method and application
Oprea et al. Electrospun nanofibers for tissue engineering applications
Farahani et al. Silk-based biopolymers promise extensive biomedical applications in tissue engineering, drug delivery, and BioMEMS
JP7332218B2 (en) Method for producing NT3-fused silk fibroin nerve graft
Wu et al. Advances in large gap peripheral nerve injury repair and regeneration with bridging nerve guidance conduits
Meng et al. Recent advances of electrospun nanofiber-enhanced hydrogel composite scaffolds in tissue engineering
CN110464881B (en) Silk fibroin porous scaffold with hierarchical structure and preparation method thereof
Mohammadzadehmoghadam et al. Electrospinning of silk fibroin-based nanofibers and their applications in tissue engineering
CN114146227B (en) Preparation method of flexible directional nanofiber composite membrane capable of promoting vascular regeneration
CN209564438U (en) A kind of magnesium wire silk composite braided structures nerve trachea
Millesi et al. Silk biomaterials in peripheral nerve tissue engineering
Sadraei et al. Gold nanorods decorated polycaprolactone/cellulose acetate hybrid scaffold for PC12 cells proliferation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004