JP2022190997A - 異常検出装置 - Google Patents

異常検出装置 Download PDF

Info

Publication number
JP2022190997A
JP2022190997A JP2021099581A JP2021099581A JP2022190997A JP 2022190997 A JP2022190997 A JP 2022190997A JP 2021099581 A JP2021099581 A JP 2021099581A JP 2021099581 A JP2021099581 A JP 2021099581A JP 2022190997 A JP2022190997 A JP 2022190997A
Authority
JP
Japan
Prior art keywords
disconnection
abnormality
power supply
overcurrent
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021099581A
Other languages
English (en)
Inventor
信洋 荒木
Nobuhiro Araki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2021099581A priority Critical patent/JP2022190997A/ja
Publication of JP2022190997A publication Critical patent/JP2022190997A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

【課題】コンデンサを介して、電気的に並列に接続された複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源回路を備える電力供給システムの異常を、その異常原因とともに早期に検出可能な異常検出装置を提供する。【解決手段】異常検出装置10は、電気的に並列に接続された複数の軌道回路3と、コンデンサ5を有し、コンデンサ5を介して複数の軌道回路3にLC共振を利用して所定の周波数の電流を供給する電源回路1と、を備える電力供給システムPの異常を検出する。異常検出装置10は、複数の軌道回路3における断線を検出する断線検出部11と、電源回路1内に生じた過電流を検出する過電流検出部21と、過電流検出部21によって電源回路1内での過電流の発生が検出された場合に、複数の軌道回路3に流れる電流の波形に基づいて、電力供給システムPの異常原因を判定する異常判定部41と、を有する。【選択図】図1

Description

本発明は、コンデンサを介して、電気的に並列に接続された複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源を備える電力供給システムの異常を検出する異常検出装置に関する。
コンデンサを介して、電気的に並列に接続された複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源を備える電力供給システムとして、例えば特許文献1に開示されるように、軌道に沿って走行する移動体に電力を供給する電力供給システムが知られている。
前記特許文献1に開示されている電力供給システムは、給電線と共に共振回路を構成するように前記給電線に接続されたコンデンサを備えている。前記共振回路の共振周波数は、前記給電線に流れる電流の周波数に一致させている。前記特許文献1には、1つの電源に対して複数の給電線が設けられている点が開示されている。
特開2009-72011号公報
上述のように、LC共振を用いて複数の負荷に所定の周波数の電流を供給する場合、前記複数の負荷のうち少なくとも一つに断線が生じると、負荷側のインダクタンスが変化する一方、コンデンサのキャパシタンスは変化しない。よって、前記所定の周波数からずれた周波数の電流が負荷側に流れる。このように、前記所定の周波数からずれた周波数の電流が負荷側に流れると、システム全体として流れる電流が増大する。
このように、負荷側に断線が生じた場合でも、電力供給システム内の過電流として検出される。そのため、負荷側の断線によって電力供給システム内で過電流が生じた場合と、他の要因によって電力供給システム内で過電流が生じた場合とを区別するのが難しい。
これに対し、電力供給システムの異常をできるだけ早期に検出するとともに、前記電力供給システムの停止期間をできるだけ短くするために、異常原因の検出も迅速に行うことが求められている。
本発明の目的は、コンデンサを介して、電気的に並列に接続された複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源回路を備える電力供給システムの異常を、その異常原因とともに早期に検出可能な異常検出装置を提供することにある。
本発明の一実施形態に係る異常検出装置は、電気的に並列に接続された複数の負荷と、コンデンサを有し、前記コンデンサを介して前記複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源回路と、を備える電力供給システムの異常を検出する異常検出装置である。この異常検出装置は、前記複数の負荷における断線を検出する断線検出部と、前記電源回路内に生じた過電流を検出する過電流検出部と、前記過電流検回路によって前記電源回路内での過電流の発生が検出された場合に、前記複数の負荷に流れる電流の波形に基づいて、前記電力供給システムの異常原因を判定する異常判定部と、を有する(第1の構成)。
これにより、前記複数の負荷における断線を断線検出部によって検出することができる。また、前記電源回路内での過電流を過電流検出部によって検出することもできる。
ところで、前記過電流検出部によって前記電源回路内での過電流が検出された場合、前記複数の負荷の断線によって前記電源回路内で過電流が発生した可能性もある。これに対し、上述の構成では、異常判定部は、前記複数の負荷に流れる電流の波形に基づいて、前記複数の負荷における断線であるかどうか、すなわち電力供給システムの異常原因を判定することができる。
したがって、以上の構成により、前記電力供給システムの異常を、その異常原因とともに早期に検出することができる。
前記第1の構成において、異常検出装置は、前記複数の負荷に流れる電流の波形に基づいて、前記複数の負荷において断線が生じたかどうかを判定する断線判定部をさらに有する。前記異常判定部は、前記過電流検出部及び前記断線判定部の出力に基づいて、前記電力供給システムの異常原因を判定する(第2の構成)。
これにより、過電流検出部によって電源回路内での過電流の発生が検出された場合でも、複数の負荷における断線を断線判定部によって判定することができる。したがって、以上の構成により、電力供給システムの異常を、その異常原因とともに早期に検出することができる。
前記第2の構成において、前記異常判定部は、前記過電流検出部によって、前記電源回路内に生じた過電流が検出され、且つ、前記断線判定部によって、前記複数の負荷における断線が判定された場合に、断線異常と判定する(第3の構成)。
これにより、異常判定部は、過電流検出部の検出結果と断線判定部の判定結果とに基づいて、複数の負荷における断線異常を精度良く判定することができる。したがって、電力供給システムの異常を、その異常原因とともに早期に検出することができる。
前記第2または第3の構成において、前記断線検出部、前記過電流検出部及び前記断線判定部は、アナログ回路によって構成されている(第4の構成)。
これにより、異常検出装置にCPU等を搭載していなくても、前記異常検出装置によって、電力供給システムにおける断線検出及び過電流検出を行うことができるとともに、電源回路内での過電流の発生が検出された場合でも、複数の負荷における断線が原因かどうかを判定することができる。したがって、異常検出装置を低コスト且つ簡単な構成で実現することができる。
前記第2から第4の構成のうちいずれか一つの構成において、前記断線判定部の内部の時定数は、前記断線検出部の内部の時定数よりも小さい(第5の構成)。
これにより、電源回路内に過電流が生じた原因を、断線判定部によって迅速に判定することができる。したがって、電力供給システムの異常を、その異常原因とともにより早期に検出することができる。一方、時定数が大きい断線検出部は、断線判定部に比べてノイズ等の影響を受けにくいため、断線を誤判定するのを防止できる。よって、電力供給システムの動作を停止する際には、前記断線検出部の検出結果を用いることにより、断線の誤判定によるシステム停止を防止できる。
本発明の一実施形態に係る異常検出装置は、コンデンサを介して、電気的に並列に接続された複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源回路を備える電力供給システムの異常を検出する装置である。前記異常検出装置は、断線検出部と、過電流検出部と、前記過電流検出部によって前記電源回路内での過電流の発生が検出された場合に、前記複数の負荷に流れる電流の波形に基づいて、前記電力供給システムの異常原因を判定する異常判定部とを有する。
これにより、前記複数の負荷における断線が原因で電源回路内に過電流が流れた場合でも、異常判定部によって異常原因を判定することができる。したがって、前記電力供給システムの異常を、その異常原因とともに早期に検出することができる。
図1は、実施形態に係る異常検出装置を有する電源回路と、複数の軌道回路とを有する電力供給システムの概略構成を示す図である。 図2は、異常検出装置の概略構成を示すブロック図である。 図3は、断線検出部の回路構成の一例を示す図である。 図4は、断線検出部内の各部における電圧波形の一例を示す図である。 図5は、過電流検出部の回路構成の一例を示す図である。 図6は、過電流検出部内の各部における電圧波形の一例を示す図である。 図7は、断線判定部の回路構成の一例を示す図である。 図8は、断線判定部内の各部における電圧波形の一例を示す図である。 図9は、異常判定部の概略構成を示す図である。 図10は、異常判定部に入力される、過電流検出部及び断線判定部からの出力信号と、異常判定部から出力される、断線異常信号及び過電流異常信号との関係を示す図である。 図11Aは、内部電流が小さい場合に軌道回路で断線が生じた際の内部電流の変化を模式的に示す図である。 図11Bは、内部電流が大きい場合に軌道回路で断線が生じた際の内部電流の変化を模式的に示す図である。 図12は、電源回路の出力側の電流の周波数と電源回路の内部電流との関係を模式的に示す図である。 図13Aは、内部電流が小さい場合に軌道回路で断線が生じた際の内部電流の変化を模式的に示す図である。 図13Bは、内部電流が大きい場合に軌道回路で断線が生じた際の内部電流の変化を模式的に示す図である。 図14は、異常検出装置における断線検出部、断線判定部及び過電流検出部の各動作と判定結果との関係を示す図である。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。
図1は、本発明の実施形態に係る異常検出装置10を有する電源回路1と、複数の軌道回路3とを有する電力供給システムPの概略構成を示す図である。電源回路1は、電気的に並列に接続された複数の軌道回路3(負荷)に電力を供給する軌道電源盤である。複数の軌道回路3は、例えば軌道に沿って走行する移動体に電力を供給する回路である。
なお、電源回路1は、軌道回路以外の回路に電力を供給してもよい。すなわち、電力供給システムPの構成は、電源回路1から、電気的に並列に接続された複数の回路に電力を供給する構成であれば、他の構成であってもよい。
具体的には、電源回路1は、電流型インバータ2と、コンデンサ5と、入力側インダクタンス6とを有する。電源回路1の出力側には、複数の軌道回路3が電流型インバータ2に対して電気的に並列に接続されている。複数の軌道回路3は、それぞれ、固有のインダクタンス4を有する。
電流型インバータ2は、図示しない電源から供給される直流電流を、所定の周波数の交流電流に変換する。前記所定の周波数は、後述するLC共振回路の共振周波数である。電流型インバータ2は、従来の電流型インバータの構成と同様である。よって、電流型インバータ2の詳しい構成については、説明を省略する。
コンデンサ5は、電流型インバータ2に対して電気的に並列に接続されている。コンデンサ5は、複数の軌道回路3のインダクタンス4とともにLC共振回路を構成する。本実施形態では、電源回路1は、電気的に並列に接続された複数のコンデンサ5を有する。電流型インバータ2は、コンデンサ5及び複数の軌道回路3のインダクタンス4によって構成されるLC共振回路の共振周波数に合せるように、出力する電流の周波数を調整する。
このように、電源回路1は、コンデンサ5及び複数の軌道回路3のインダクタンス4によって構成されるLC共振回路を利用して、複数の軌道回路3に所定の周波数の電流を供給する。図1において、符号7は、電源回路1の内部の電流を検出する内部電流検出器であり、符号8は、電源回路1の出力電流を検出する出力電流検出器である。
異常検出装置10は、電源回路1の内部で生じる過電流及び複数の軌道回路3における断線を検出する。異常検出装置10は、電源回路1の内部電流を検出することにより、過電流を検出し、複数の軌道回路3に流れる電流を検出することにより、軌道回路3の断線を検出する。
具体的には、異常検出装置10は、断線検出部11と、過電流検出部21と、断線判定部31と、異常判定部41とを有する。図2は、異常検出装置10の概略構成を示す図である。
断線検出部11は、複数の軌道回路3にそれぞれ流れる電流に基づいて、各軌道回路3の断線を検出する。具体的には、断線検出部11は、軌道回路3に流れる電流が第1電流閾値よりも小さい場合に、その軌道回路3で断線が発生したと検出する。すなわち、断線検出部11は、軌道回路3の断線異常を検出する。軌道回路3に流れる電流は、出力電流検出器8によって検出される電流である。
断線検出部11は、例えば、半波整流回路12と比較回路16とを含む回路である。図3は、断線検出部11の回路構成の一例を示す図である。本実施形態の断線検出部11は、アナログ回路によって構成されている。図4は、断線検出部11内の各部(P1からP5)における電圧波形の一例を示す図である。
図3に示すように、半波整流回路12は、ダイオード13と、抵抗14と、コンデンサ15とを有する。ダイオード13は、一方向のみに電流を流す。よって、図3及び図4のP1における交流電圧は、ダイオード13によって、図4のP2に示すような半波状に整流された電圧波形になる。抵抗14及びコンデンサ15は、電圧の波形を平滑化する。すなわち、図4のP2に示す半波状の電圧波形は、抵抗14及びコンデンサ15によって、図4のP3に示すようなリプル電圧が抑制された略直流状の波形になる。
比較回路16は、コンパレータ17と、分圧回路18とを有する。コンパレータ17は、半波整流回路12から出力された電圧と、分圧回路18によって得られる電圧(第1電圧閾値)とを比較し、半波整流回路12から出力された電圧が前記第1電圧閾値よりも小さい場合には、High信号を出力する。なお、コンパレータ17及び分圧回路18の構成は、従来の構成と同様であるため、コンパレータ17及び分圧回路18についての詳しい説明を省略する。前記第1電圧閾値は、上述の第1電流閾値に対応する電圧の閾値である。
コンパレータ17に入力される、半波整流回路12から出力された電圧及び前記第1電圧閾値は、図4のP4に示す電圧波形である。図4のP5は、コンパレータ17から出力される電圧波形の一例である。なお、説明のために、図4のP4において、前記第1電圧閾値の波形は、破線で示す。
軌道回路3に断線が発生すると、図4に示すように、P1の位置における交流電圧はゼロになり、P3からP4の各位置における電圧は徐々に下がる。P4の電圧は、断線が発生してからtp経過後に、分圧回路18から出力される第1電圧閾値よりも小さくなる。よって、コンパレータ17は、図4のP5に示すように、High信号を出力する。
したがって、断線検出部11は、軌道回路3の断線を検出することができる。
過電流検出部21は、電流型インバータ2に対して電源回路1の上流側に流れる電流に基づいて、過電流を検出する。具体的には、過電流検出部21は、検出した電流が第2電流閾値よりも大きい場合に、電源回路1内で過電流が発生したと検出する。電流型インバータ2に対して電源回路1の上流側に流れる電流は、内部電流検出器7によって検出される電流である。
過電流検出部21は、例えば、信号変換部22と、過電流判定部27とを含む回路である。本実施形態の過電流検出部21は、アナログ回路によって構成されている。図5は、過電流検出部21の回路構成の一例を示す図である。図6は、過電流検出部21内の各部(Q1からQ4)における電圧波形の一例を示す図である。
図5に示すように、信号変換部22は、抵抗23と、コンデンサ24と、オペアンプ25と、増幅率設定回路26とを有する。抵抗23及びコンデンサ24は、電圧の波形を平滑化する。すなわち、図6のQ1に示すリプル電圧を有する略直流状の電圧波形は、抵抗23及びコンデンサ24によって、図6のQ2に示すようにリプル電圧が抑制された略直流状の波形になる。
オペアンプ25及び増幅用抵抗回路26は、信号を増幅する信号増幅回路として機能する。増幅用抵抗回路26は、電気的に直列に接続された複数の抵抗を有する。オペアンプ25には、上述の抵抗23及びコンデンサ24によって得られた略直流状の波形を有する電圧と、増幅用抵抗回路26によって得られる、オペアンプ25の出力電圧と入力電圧との差の分圧とが入力される。図6のQ3に示すように、オペアンプ25は、入力される略直流状の波形を有する電圧を、増幅して出力する。なお、増幅用抵抗回路26の各抵抗の抵抗値を変えることによって、オペアンプ25から出力される電圧の増幅率を変えることができる。過電流検出部21は、オペアンプ25及び増幅用抵抗回路26を有していなくてもよい。
過電流判定部27は、コンパレータ28と、分圧回路29とを有する。コンパレータ28は、信号変換部22から出力された電圧と、分圧回路29によって得られる電圧値(第2電圧閾値)とを比較し、信号変換部22から出力された電圧が前記第2電圧閾値よりも大きい場合には、High信号を出力する。なお、コンパレータ28及び分圧回路29の構成は、従来の構成と同様であるため、コンパレータ28及び分圧回路29についての詳しい説明を省略する。前記第2電圧閾値は、上述の第2電流閾値に対応する電圧の閾値である。
コンパレータ28に入力される、信号変換部22から出力された電圧及び前記第2電圧閾値は、図6のQ3に示す電圧波形である。図6のQ4は、コンパレータ28から出力される電圧波形の一例である。なお、説明のために、図6のQ3において、前記第2電圧閾値の波形は、破線で示す。
電源回路1内で過電流が発生すると、図6のQ3に示すように、信号変換部22から出力される電圧は、過電流が発生してからtq経過後に、前記第2電圧閾値よりも大きくなる。よって、コンパレータ28は、図6のQ4に示すように、High信号を出力する。
したがって、過電流検出部21は、電源回路1内での過電流の発生を検出することができる。
断線判定部31は、複数の軌道回路3にそれぞれ流れる電流に基づいて、各軌道回路3の断線を判定する。断線判定部31の判定結果は、後述する異常判定部41での異常判定に用いられる。軌道回路3に流れる電流は、出力電流検出器8によって検出される電流である。
断線判定部31は、例えば、パルス検出部32と、単安定マルチバイブレータ36とを含む回路である。本実施形態の断線判定部31は、アナログ回路によって構成されている。図7は、断線判定部31の回路構成の一例を示す図である。図8は、断線判定部31内の各部(S1からS4)における電圧波形の一例を示す図である。
パルス検出部32は、フォトカプラ33と、抵抗34と、コンデンサ35とを有する。フォトカプラ33は、複数の軌道回路3にそれぞれ流れる電流を、パルス状の波形に変換する。すなわち、図8のS1に示す正弦波状の電圧波形は、フォトカプラ33によって、図8のS2に示すようなパルス状の波形に変換される。フォトカプラ33の構成は、従来の構成と同様であるため、フォトカプラ33の詳しい説明を省略する。なお、パルス検出部は、複数の軌道回路3にそれぞれ流れる電流をパルスとして検出可能な他の構成を有していてもよい。
抵抗34及びコンデンサ35は、フォトカプラ33によって変換されたパルス状の波形に含まれる高周波ノイズ等を除去する。すなわち、図8のS2に示す高周波ノイズ等を含んだパルス状の電圧波形は、抵抗34及びコンデンサ35によって、図8のS3に示すような前記高周波ノイズが除去された略矩形状の波形になる。
単安定マルチバイブレータ36は、パルス検出部32によって検出されたパルスの有無を判定する。具体的には、図8のS4に示すように、単安定マルチバイブレータ36は、パルス検出部32から出力されるパルスが所定期間内に入力される場合にはLow信号を継続して出力する一方、前記パルスが前記所定期間内に入力されなくなるとHigh信号を出力する。前記所定時間は、S3におけるパルスの1周期よりも長く且つ前記パルスの2周期目の信号立ち下りのタイミングよりも短い範囲の時間に設定されている。単安定マルチバイブレータ36は、従来の構成と同様であるため、単安定マルチバイブレータ36の詳しい説明を省略する。なお、パルス検出部32によって検出されたパルスの有無を判定可能な構成であれば、単安定マルチバイブレータ以外の構成を用いてもよい。
軌道回路3に断線が発生すると、図8に示すように、S1の位置における交流電圧はゼロになり、S2及びS3の各位置にパルスが入力されなくなる。前記パルスが入力されない時間が前記所定期間続いた場合(断線が発生してからts経過後)、単安定マルチバイブレータ36は、図8のS4に示すように、High信号を出力する。
したがって、断線判定部31は、軌道回路3の断線を検出することができる。
なお、断線判定部31の内部の時定数は、断線検出部11の内部の時定数よりも小さい(図13Aにおけるts、tp参照)。よって、断線判定部31及び断線検出部11に対して出力電流検出器8から同じ電圧波形が入力されている状態で、軌道回路3が断線して電圧波形が変化した場合、断線判定部31は、断線検出部11よりも早く断線を判定することができる。一方、時定数が大きい断線検出部11は、断線判定部31に比べてノイズ等の影響を受けにくいため、断線を誤判定するのを防止できる。
異常判定部41は、過電流検出部21で検出された結果と、断線判定部31で判定された結果とを用いて、電力供給システムPで生じた異常が、電源回路1の内部で生じた過電流異常であるか、軌道回路3の断線異常であるかを判定する。具体的には、異常判定部41は、過電流検出部21によって過電流が検出された場合に、断線判定部31によって軌道回路3の断線であると判定されていれば、断線異常と判定し、断線判定部31によって軌道回路3の断線であると判定されていなければ、過電流異常と判定する。
図9は、異常判定部41の概略構成を示す図である。図9に示すように、異常判定部41は、断線異常判定部42と、過電流異常判定部46とを有する。
断線異常判定部42は、過電流検出部21及び断線判定部31からの出力がそれぞれHigh信号の場合に、断線異常信号を出力する。具体的には、断線異常判定部42は、過電流検出部21及び断線判定部31からの出力信号に対して論理積を得るようなAND回路43を有する。
過電流異常判定部46は、過電流検出部21からの出力信号がHigh信号で且つ断線判定部31からの出力信号がLow信号の場合に、過電流異常信号を出力する。具体的には、過電流異常判定部46は、断線判定部31からの出力信号の否定値を出力するNOT回路47と、断線判定部31からの出力信号の否定値及び過電流検出部21からの出力信号に対して論理積を得るようなAND回路48とを有する。
なお、異常判定部41は、例えば、汎用ICなどを用いて構成される論理回路である。異常判定部41は、プログラマブルロジックデバイス(PLD)などによって構成されてもよい。異常判定部41の機能は、プログラムによって実現されてもよい。
図10は、異常判定部41に入力される、過電流検出部21及び断線判定部31からの出力信号と、異常判定部41から出力される、断線異常信号及び過電流異常信号との関係を示す図である。図10に示すように、異常判定部41は、過電流検出部21及び断線判定部31からの出力がそれぞれHigh信号の場合に、断線異常信号を出力(断線異常信号のHigh信号を出力)し、過電流検出部21からの出力信号がHigh信号で且つ断線判定部31からの出力信号がLow信号の場合に、過電流異常信号を出力(過電流異常信号のHigh信号を出力)する。
これにより、異常判定部41は、電源回路1における過電流の発生を検出した場合に、軌道回路3の断線に起因した過電流であるかどうかを判定することができる。
ところで、本実施形態のような構成を有する電源回路1では、移動体への電力供給状況によって、内部電流の上昇の度合いが変化する。そのため、軌道回路3で断線が生じた場合でも、移動体への電力供給状況によっては、内部電流の異常として検出される場合がある。
図11Aは、内部電流が小さい場合に軌道回路3で断線が生じた際の内部電流の変化を模式的に示す図である。図11Bは、内部電流が大きい場合に軌道回路3で断線が生じた際の内部電流の変化を模式的に示す図である。なお、図11A及び図11Bでは、断線検出部11内の電流変化も示す。断線検出部11では、軌道回路3で断線が生じると、断線検出部11内に流れる電流が低下する。
図11A及び図11Bに示すように、軌道回路3で断線が生じると、電源回路1の内部電流が一時的に増大する。このように電源回路1の内部電流が増大する理由は、以下のとおりである。
複数の軌道回路3のうち一部の軌道回路3で断線が生じると、電気的に並列に接続された複数の軌道回路3における合成インダクタンスが増大する。一方、電源回路1のコンデンサの合成キャパシタンスは変化しないため、LC共振回路の共振周波数f(f=1/(2π√(L×C)、L:合成インダクタンス、C:合成キャパシタンス)は、低下する。図12は、電源回路1の出力側の電流の周波数と電源回路1の内部電流との関係を模式的に示す図である。図12に示すように、軌道回路3の断線によって、電源回路1の出力側に位置するLC共振回路の共振周波数fが低下すると、電流型インバータ2の駆動周波数において電源回路1の内部に流れる内部電流が増大する。
図11Aに示すように、電源回路1の内部電流が小さい場合には、軌道回路3で断線が生じると、電源回路1の内部電流が増大するよりも早く、断線検出部11内の電流が低下して該電流が第1電流閾値よりも小さくなる。よって、断線検出部11によって、軌道回路3の断線を検出することができる。
一方、図11Bに示すように、電源回路1の内部電流が大きい場合には、軌道回路3で断線が生じると、断線検出部11内の電流が低下して該電流が第1電流閾値よりも小さくなるタイミングよりも早く、電源回路1の内部電流が増大して該内部電流が第2閾値よりも大きくなる。よって、この場合には、過電流検出部21によって、電源回路1の過電流であると検出される。
したがって、異常検出装置が断線検出部及び過電流検出部だけを有している場合には、軌道回路3の断線を精度良く且つ迅速に検出できない可能性がある。
これに対し、本実施形態のように、異常検出装置10が、断線検出部11及び過電流検出部21に加えて、断線判定部31及び異常判定部41を有することにより、上述のように電源回路1の過電流が軌道回路3の断線よりも先に検出された場合でも、軌道回路3の断線を精度良く判定することができる。
図13Aは、内部電流が小さい場合に軌道回路3で断線が生じた際の内部電流の変化を模式的に示す図である。図13Bは、内部電流が大きい場合に軌道回路3で断線が生じた際の内部電流の変化を模式的に示す図である。
図13Aに示すように、断線検出部11が軌道回路3の断線を検出した場合(断線検出部11からHigh信号を出力している場合)には、異常検出装置10は、軌道回路3の断線異常であると検出して断線異常信号を出力する。この場合には、断線判定部31でも軌道回路3の断線を判定している(断線判定部31からHigh信号を出力)が、過電流検出部21で電源回路1の過電流を検出していないため、異常判定部41では、軌道回路3の断線異常とは判定しない。
図13Bに示すように、過電流検出部21で電源回路1の過電流を検出した場合(過電流検出部21からHigh信号を出力している場合)、断線判定部31で軌道回路3の断線を判定する(断線判定部31からHigh信号を出力)と、異常判定部41は、軌道回路3の断線異常と判定する。なお、この場合、断線検出部11も、軌道回路3の断線異常を検出するが、断線検出部11よりも断線判定部31の方が、軌道回路3の断線を早く検出できる(図13Bにおけるts、tp参照)。
以上のような構成を有する異常検出装置10の判定動作について、図14を用いて説明する。図14は、異常検出装置10における断線検出部11、断線判定部31及び過電流検出部21の各動作と判定結果との関係を示す図である。
図14に示すように、異常検出装置10は、断線検出部11及び過電流検出部21からLow信号を出力している場合には、正常であると判定する。この場合、断線判定部31から出力される信号がLow信号であってもHigh信号であっても、異常検出装置10の判定には影響しない。
異常検出装置10は、断線検出部11からHigh信号を出力している場合には、断線異常であると判定する。この場合、過電流検出部21から出力される信号がLow信号であり、断線判定部31から出力される信号がLow信号であってもHigh信号であっても、異常検出装置10の判定には影響しない。なお、異常検出装置10は、断線検出部11から出力される信号の立ち上がりが検出された場合に、断線異常であると判定してもよい。
また、異常検出装置10は、断線判定部31及び過電流検出部21からHigh信号を出力している場合には、断線異常であると判定する。この場合、断線検出部11から出力される信号はLow信号である。なお、異常検出装置10は、断線判定部31からHigh信号を出力し且つ過電流検出部21から出力される信号の立ち上がりが検出された場合に、断線異常であると判定してもよい。
異常検出装置10は、断線判定部31からLow信号を出力し且つ過電流検出部21からHigh信号を出力する場合には、過電流異常であると判定する。この場合、断線検出部11から出力される信号はLow信号である。なお、異常検出装置10は、断線判定部31からLow信号を出力し且つ過電流検出部21から出力される信号の立ち上がりが検出された場合に、過電流異常であると判定してもよい。
本実施形態の異常検出装置10は、電気的に並列に接続された複数の軌道回路3と、コンデンサ5を有し、コンデンサ5を介して複数の軌道回路3にLC共振を利用して所定の周波数の電流を供給する電源回路1と、を備える電力供給システムPの異常を検出する異常検出装置である。異常検出装置10は、複数の軌道回路3における断線を検出する断線検出部11と、電源回路1内に生じた過電流を検出する過電流検出部21と、過電流検出部21によって電源回路1内での過電流の発生が検出された場合に、複数の軌道回路3に流れる電流の波形に基づいて、電力供給システムPの異常原因を判定する異常判定部41と、を有する。
上述のような異常検出装置10の構成により、軌道回路3の断線によって電源回路1の内部に過電流が発生した場合でも、複数の軌道回路3に流れる電流の波形に基づいて、軌道回路3の断線を迅速に且つ精度良く検出することができる。したがって、本実施形態の構成により、電力供給システムPの異常を、その異常原因とともに早期に検出することができる異常検出装置10が得られる。
また、本実施形態では、異常検出装置10は、複数の軌道回路3に流れる電流の波形に基づいて、複数の軌道回路3において断線が生じたかどうかを判定する断線判定部31をさらに有する。異常判定部41は、過電流検出部21及び断線判定部31の出力に基づいて、電力供給システムPの異常原因を判定する。
これにより、過電流検出部21によって電源回路1内での過電流の発生が検出された場合でも、複数の軌道回路3における断線を断線判定部31によって判定することができる。したがって、本実施形態の異常検出装置10により、電力供給システムPの異常を、その異常原因とともに早期に検出することができる。
また、本実施形態では、異常判定部41は、過電流検出部21によって、電源回路1内に生じた過電流が検出され、且つ、断線判定部31によって、複数の軌道回路3における断線が判定された場合に、断線異常と判定する。
これにより、異常判定部41が、過電流検出部21の検出結果と断線判定部31の判定結果とに基づいて、複数の軌道回路3における断線異常を精度良く判定することができる。したがって、本実施形態の異常検出装置10により、電力供給システムPの異常を、その異常原因とともに早期に検出することができる。
また、本実施形態では、断線検出部11、過電流検出部21及び断線判定部31は、アナログ回路によって構成されている。これにより、異常検出装置10にCPU等を搭載していなくても、異常検出装置10によって、電力供給システムPにおける断線検出及び過電流検出を行うことができるとともに、電源回路1内での過電流の発生が検出された場合でも、複数の軌道回路3における断線が原因かどうかを判定することができる。したがって、異常検出装置10を低コスト且つ簡単な構成で実現することができる。
(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
前記実施形態では、断線検出部11は、半波整流回路12を有する。しかしながら、断線検出部は、半波整流回路の代わりに、電圧波形を整流できる回路であれば、全波整流回路などの他の回路を有していてもよい。
前記実施形態では、断線検出部11及び過電流検出部21は、それぞれ、コンパレータ17,28と、分圧回路18,29とを有する。しかしながら、断線検出部は、軌道回路を流れる電流に基づいて断線を検出可能な構成であれば、どのような構成を有していてもよい。過電流検出部は、電源回路の内部を流れる電流に基づいて過電流を検出可能な構成であれば、どのような構成を有していてもよい。
前記実施形態では、断線判定部31のパルス検出部32は、フォトカプラ33を有する。しかしながら、パルス検出部は、軌道回路の電流をパルスとして検出可能な構成であれば、他の構成を有していてもよい。
前記実施形態では、断線検出部11、過電流検出部21及び断線判定部31は、アナログ回路によって構成されている。しかしながら、断線検出部、過電流検出部及び断線判定部のうち少なくとも一つは、プログラムによって実現されていてもよい。
前記実施形態では、断線判定部31の内部の時定数は、断線検出部11の内部の時定数よりも小さい。しかしながら、断線判定部の内部の時定数は、断線検出部の内部の時定数と同じかそれよりも大きくてもよい。
前記実施形態では、電源回路1が異常検出装置10を有する。しかしながら、異常検出装置は、電源回路とは別の装置であってもよい。
本発明は、コンデンサを介して、電気的に並列に接続された複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源回路を備える電力供給システムの異常を検出可能な異常検出装置に利用可能である。
1 電源回路
2 電流型インバータ
3 軌道回路(負荷)
4 インダクタンス
5 コンデンサ
6 入力側インダクタンス
7 内部電流検出器
8 出力電流検出器
10 異常検出装置
11 断線検出部
12 半波整流回路
13 ダイオード
14、23、34 抵抗
15、24、35 コンデンサ
16 比較回路
17、25、28 コンパレータ
18、29 分圧回路
21 過電流検出部
22 信号変換部
26 増幅用抵抗回路
27 過電流判定部
31 断線判定部
32 パルス検出部
33 フォトカプラ
36 単安定マルチバイブレータ
41 異常判定部
42 断線異常判定部
43、48 AND回路
46 過電流異常判定部
47 NOT回路
P 電力供給システム

Claims (5)

  1. 電気的に並列に接続された複数の負荷と、
    コンデンサを有し、前記コンデンサを介して前記複数の負荷にLC共振を利用して所定の周波数の電流を供給する電源回路と、
    を備える電力供給システムの異常を検出する異常検出装置であって、
    前記複数の負荷における断線を検出する断線検出部と、
    前記電源回路内に生じた過電流を検出する過電流検出部と、
    前記過電流検出部によって前記電源回路内での過電流の発生が検出された場合に、前記複数の負荷に流れる電流の波形に基づいて、前記電力供給システムの異常原因を判定する異常判定部と、
    を有する、
    異常検出装置。
  2. 請求項1に記載の異常検出装置において、
    前記複数の負荷に流れる電流の波形に基づいて、前記複数の負荷において断線が生じたかどうかを判定する断線判定部をさらに有し、
    前記異常判定部は、
    前記過電流検出部及び前記断線判定部の出力に基づいて、前記電力供給システムの異常原因を判定する、
    異常検出装置。
  3. 請求項2に記載の異常検出装置において、
    前記異常判定部は、
    前記過電流検出部によって、前記電源回路内に生じた過電流が検出され、且つ、前記断線判定部によって、前記複数の負荷における断線が判定された場合に、断線異常と判定する、異常検出装置。
  4. 請求項2または3のいずれか一つに記載の異常検出装置において、
    前記断線検出部、前記過電流検出部及び前記断線判定部は、アナログ回路によって構成されている、異常検出装置。
  5. 請求項2から4のいずれか一つに記載の異常検出装置において、
    前記断線判定部の内部の時定数は、前記断線検出部の内部の時定数よりも小さい、異常検出装置。
JP2021099581A 2021-06-15 2021-06-15 異常検出装置 Pending JP2022190997A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021099581A JP2022190997A (ja) 2021-06-15 2021-06-15 異常検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021099581A JP2022190997A (ja) 2021-06-15 2021-06-15 異常検出装置

Publications (1)

Publication Number Publication Date
JP2022190997A true JP2022190997A (ja) 2022-12-27

Family

ID=84612732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021099581A Pending JP2022190997A (ja) 2021-06-15 2021-06-15 異常検出装置

Country Status (1)

Country Link
JP (1) JP2022190997A (ja)

Similar Documents

Publication Publication Date Title
US8094473B2 (en) Bridgeless power factor correction circuit
EP3220523B1 (en) Phase loss detection in active front end converters
US9846190B2 (en) Motor drive device including function to detect failure in insulation resistance deterioration detection unit of motor, and failure detection method
JP4890405B2 (ja) 電源異常検出回路
US10006947B2 (en) Current detection circuit unaffected by noise
US9871479B2 (en) Fault detection system for isolated two-switch exciter drive gate driver
US10910885B2 (en) Power transmission-side apparatus
US20230226633A1 (en) Single phase input detection and power source protection
CN103364626A (zh) 交流输入电压检测电路
WO2010119661A1 (ja) 直流電源装置及び応用システム
US6342791B1 (en) Diode defect detecting device
JP2022190997A (ja) 異常検出装置
JP6022883B2 (ja) 電源装置
US10404058B2 (en) Circuit for loss of phase detection
JP6955206B2 (ja) 電力変換システム
JP5660222B2 (ja) エレベーターの制御装置
US10514421B2 (en) Method for detecting an error in a generator unit
JP4621013B2 (ja) インバータの制御装置
CN114123785A (zh) 转换器装置及电源装置
JP6632736B2 (ja) 通電状態判定装置
EP4124404A1 (en) System and method to detect three-phase input power and change-of-phase on three-phase input power
JP6614265B2 (ja) 電流検出器の取り付け状態の判断方法
JP2016206079A (ja) 電磁流量計の励磁コイル短絡判定方法
JP2007085961A (ja) 交流負荷装置
CN106383263B (zh) 一种离网逆变器负载检测方法及控制器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240514