JP2022187985A - 容器及び収容体、並びに容器の製造方法及び容器の製造装置 - Google Patents

容器及び収容体、並びに容器の製造方法及び容器の製造装置 Download PDF

Info

Publication number
JP2022187985A
JP2022187985A JP2022077077A JP2022077077A JP2022187985A JP 2022187985 A JP2022187985 A JP 2022187985A JP 2022077077 A JP2022077077 A JP 2022077077A JP 2022077077 A JP2022077077 A JP 2022077077A JP 2022187985 A JP2022187985 A JP 2022187985A
Authority
JP
Japan
Prior art keywords
container
container body
image
scanning direction
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022077077A
Other languages
English (en)
Inventor
雅子 吉井
Masako Yoshii
敬一 芹沢
Keiichi Serizawa
真 日野
Makoto Hino
和宏 赤津
Kazuhiro Akatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to US17/749,738 priority Critical patent/US12097997B2/en
Priority to EP22174493.1A priority patent/EP4101653A3/en
Publication of JP2022187985A publication Critical patent/JP2022187985A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】循環型リサイクルを円滑に進めることができ、容器本体に形成された像の視認性に優れた容器の提供。【解決手段】容器本体と、容器本体に複数の凹部12及び非凹部13を含む像とを有し、凹部が複数の加工部47から形成され、複数の加工部が第1の走査方向に沿って線状に配されており、非凹部が凹部に隣接して第一の走査方向に沿って線状に配されており、凹部における第1の走査方向と直交する第2の走査方向の幅Aが、非凹部における第2の走査方向の幅Bと同じもしくは異なる容器。【選択図】図1A

Description

本発明は、容器及び収容体、並びに容器の製造方法及び容器の製造装置に関する。
近年、プラスチックごみによる海洋汚染が取り沙汰され、世界的にプラスチックごみによる汚染をなくしていく動きが活発化しており、「容器の循環型リサイクル」に対する要求が高まっている。ここで、「容器の循環型リサイクル」とは、分別回収された使用済みの容器をリサイクル業者が容器の原料となるフレークに変え、再度容器を製造することをいう。
このような「容器の循環型リサイクル」を円滑に進めるには、容器又はラベル等の材質毎に分別回収を徹底することが好ましいが、分別回収のために容器からラベルを剥がす作業は手間がかかり、分別回収を徹底させるための制約の1つになっている。これに関連して、名称、成分等の情報を表示する像を、炭酸ガスレーザで容器の表面に直接形成することで、ラベルを無くした容器を提供する技術が既に知られている(例えば、特許文献1参照)。
また、レーザ光を樹脂製印刷原版表面に照射してレーザ光が照射された部分の樹脂が除去されることにより凹パターンを形成する目的で、紫外線レーザの波長、パルスエネルギー、加工時のレーザ光のスポット径の条件が開示されている(例えば、特許文献2参照)。
本発明は、循環型リサイクルを円滑に進めることができ、容器本体に形成された像の視認性に優れた容器を提供することを目的とする。
前記課題を解決するための手段としての本発明の容器は、容器本体と、該容器本体に複数の凹部及び非凹部を含む像とを有し、前記凹部が複数の加工部から形成され、複数の前記加工部が第1の走査方向に沿って線状に配されており、前記非凹部が前記凹部に隣接して第一の走査方向に沿って線状に配されており、前記凹部における前記第1の走査方向と直交する第2の走査方向の幅が、前記非凹部における前記第2の走査方向の幅と同じもしくは異なる。
本発明によると、循環型リサイクルを円滑に進めることができ、像の視認性に優れた容器を提供することができる。
図1Aは、複数の凹部と非凹部を含む像の一例を示す図である。 図1Bは、複数の凹部と非凹部を含む像の他の一例を示す図である。 図1Cは、複数の凹部と非凹部を含む像の他の一例を示す図である。 図1Dは、複数の凹部と非凹部を含む像の他の一例を示す図である。 図2Aは、凹部を構成する加工部の大きさが解像度からなる1ドット幅以下である場合の例を示す図である。 図2Bは、凹部を構成する加工部の大きさが解像度からなる1ドット幅以下である場合の他の例を示す図である。 図2Cは、凹部を構成する加工部の大きさが解像度からなる1ドット幅以下である場合の他の例を示す図である。 図2Dは、凹部を構成する加工部の大きさが解像度からなる1ドット幅以下である場合の他の例を示す図である。 図3Aは、レーザ加工前の容器本体の表面の光の拡散反射状態を示す模式図である。 図3Bは、レーザ加工により複数の凹部が形成された容器本体の表面の光の拡散反射状態を示す模式図である。 図3Cは、レーザ加工により複数の凹部が形成された容器本体の表面及び収容物の光の拡散反射状態を示す模式図である。 図4Aは、容器本体の撮影方法の一例を示す図である。 図4Bは、容器本体の撮影方法における容器本体の側面に白色拡散面を設置した状態を示す図である。 図5は、容器本体の撮影における容器本体の像Xと像以外の部分Yを示す概略図である。 図6は、G信号と明度との関係を示すグラフである。 図7は、像の明度(L )と主観評価点との関係を示すグラフである。 図8は、像の明度と像以外の部分の明度との差(ΔL)と主観評価点との関係を示すグラフである。 図9は、数式:Y=1-exp(-x)におけるxとYとの関係を示すグラフである。 図10は、主観評価点と視認性値との関係を示すグラフである。 図11は、視認性値と評価ランクとの関係を示すグラフである。 図12は、加工比率と視認性値との関係を示すグラフである。 図13Aは、容器のキャップの一例を示す概略図である。 図13Bは、開封時の容器のキャップの一例を示す概略図である。 図14は、容器のキャップの第1の実施形態の一例を示す図である。 図15は、容器の第1の実施形態に係る容器本体の一例を示す図である。 図16は、像と凹部の関係を示す図である。 図17は、図16のA-A断面図である。 図18は加工深さの各種の例を示す図であり、(a)は加工深さが非加工深さより浅い場合、(b)は加工深さが非加工深さより深い場合、(c)は加工深さと非加工深さが同程度の場合、(d)は加工深さと非加工深さを変化させた場合の図である。 図19は、凹部による階調表現の一例を説明する図である。 図20は凹部による階調表現の他の例を示す図であり、(a)は周期性のない凹部の加工データを示す図、(b)は結晶化による凹部の断面図、(c)は結晶化による凹部の平面図である。 図21は、容器の第2の実施形態に係る容器本体の一例を示す図である。 図22は、容器の第3の実施形態に係る容器本体の一例を示す図である。 図23は、容器の第3の実施形態に係る容器本体を口部側から見た図である。 図24は、容器の第3の実施形態に係る容器本体の他の例を示す図である。 図25は、容器の第3の実施形態に係る容器本体を底部側から見た図である。 図26は容器の第4の実施形態に係るバーコード例を示す図であり、(a)は比較例に係るバーコードを口部側から見た図、(b)は容器の第4の実施形態に係るバーコードを示す図、(c)は(b)のバーコードを口部側から見た図である。 図27の(a)は、容器の第5の実施形態に係る容器本体を示す図、図27の(b)は容器の第5の実施形態の変形例1に係る容器本体を示す図である。 図28は、容器の第5の実施形態の変形例2に係る容器の一例を示す図である。 図29は変性痕の走査型電子顕微鏡写真であり、(a)は上面方向から視た斜視図、(b)は(a)のD-D矢視断面方向から視た斜視図である。 図30は、収容体の第1の実施形態の一例を示す図である。 図31は、容器の製造装置の第1の実施形態の一例を示す概略図である。 図32Aは、容器の製造装置の第1の実施形態に係るレーザ照射部の一例を示す概略図である。 図32Bは、加工レーザ光アレイによるレーザ光の照射を説明する図である。 図33は、容器の製造装置の第1の実施形態に係る制御部のハードウェア構成例を示すブロック図である。 図34は、容器の製造装置の第1の実施形態に係る制御部の機能構成例を示すブロック図である。 図35は、容器の製造装置の第1の実施形態に係る製造方法例を示すフローチャートである。 図36は、パターンデータの一例を示す図である。 図37は、像の種類と加工パラメータの対応テーブル例を示す図である。 図38は、加工パラメータの一例を示す図である。 図39は、加工データの一例を示す図である。 図40は容器本体の表面の性状変化を示す図であり、(a)は蒸散による形状変化の図、(b)は溶融による形状変化の図である。 図41は、容器の製造装置の第2の実施形態の一例を示す概略図である。 図42は、容器の製造装置の第2の実施形態の変形例1に係る装置の構成例を示す図である。 図43は、容器の製造装置の第2の実施形態の変形例2に係る装置の構成例を示す図である。 図44は、容器の製造装置の第3の実施形態に係る場所ごとに異なる波長のレーザ光を照射する構成例の図である。 図45は、容器の製造装置の第4実施形態に係る製造装置による温度制御例を示す図である。 図46は、容器の製造装置の第4実施形態に係る制御部の機能構成例を示すブロック図である。 図47は、容器の製造装置の第5実施形態に係るマルチレーザビームを照射する装置の一例を示す図である。 図48は容器の製造装置の第5の実施形態に係るアレイレーザが射出する各種のマルチレーザビームを例示する図であり、(a)は1列に配列する図、(b)は2列に配列する図、(c)は千鳥状に2次元配列する図、(d)は矩形格子状に2次元配列する図である。
(容器)
本発明の容器は、容器本体と、該容器本体に複数の凹部及び非凹部を含む像とを有し、前記凹部が複数の加工部から形成され、複数の前記加工部が第1の走査方向に沿って線状に配されており、前記非凹部が前記凹部に隣接して第一の走査方向に沿って線状に配されており、前記凹部における前記第1の走査方向と直交する第2の走査方向の幅が、前記非凹部における前記第2の走査方向の幅と同じもしくは異なる。
レーザの走査方向には、主走査方向と副走査方向の2つがあり、主走査方向と副走査方向とは互いに直交する。
主走査方向はレーザ照射手段の移動する方向であり、副走査方向はレーザ加工対象である容器本体が移動する方向である。
第1の走査方向はレーザ加工における主走査方向であり、第2の走査方向はレーザ加工における副走査方向である。
従来の炭酸ガスレーザ又は赤外波長を用いた加工では、レーザ光のスポット径を十分に絞ることができないため、解像度が著しく低下し、ラベルに記載されているフォントの描画ができないという問題や、紫外波長を用いた加工においても、加工閾値を超えたパルスエネルギー(レーザの平均出力と繰返し周波数から定まる)が必要になるため、例えば、高パルスエネルギーを得るためには、低周波数となり、1パルスで1ドット加工できたとしても、生産性はレーザ光の繰返し周波数に大きく依存する。また、高周波数とした場合は、低パルスエネルギーとなるため、1パルスで加工できなくなるため、複数パルス必要になる。結果として、1ドット形成するための周波数は低くなってしまい、生産性を高めることができないという問題がある。
本発明においては、容器本体と、該容器本体に複数の凹部及び非凹部を含む像とを有し、凹部が複数の加工部から形成され、複数の加工部が第1の走査方向に沿って線状に配されており、非凹部が凹部に隣接して第一の走査方向に沿って線状に配されており、凹部における第1の走査方向と直交する第2の走査方向の幅が、非凹部における前記第2の走査方向の幅と同じもしくは異なることにより、主走査方向に加工部が離散的に配されているものに比べて凹部を構成する加工部の周囲の境界線の長さが減少し、かつ非凹部の領域が減少するので、透過光の影響が低減され、視認性が高くなる。
また、第1の走査方向と直交する第2の走査方向に非凹部を設けることにより、高い生産性を備え、発熱による容器本体の変形や材質の変質による色変化を防止することが可能となる。
また、本発明においては、複数の凹部と非凹部による拡散効果により、像が形成されていない領域に対して像が白濁化して視認され、コントラストの向上により白濁化した領域がより白く視認される。これにより、微細な線や文字等を含む情報量の多い像であっても、像を高いコントラストで良好に視認させることができ、情報量の多い像が良好な視認性で形成された容器を提供できる。
また、インク等の不純物を容器本体に付与せずに像を形成できるため、循環型リサイクルの工程内で不純物を除去する工程を不要とし、またインクを不純物として除去することによる管理情報の欠落も防ぐことができる。
また、像を白濁化させることで、容器本体として可視光に対して透過性を有する透明なプラスチック又は透明なガラスを用いた場合にも、像を良好なコントラストで視認させることができる。
本発明の容器は、容器本体と、該容器本体に複数の凹部及び非凹部を含む像とを有し、容器のキャップを有することが好ましい。
<容器本体>
容器本体としては、その材質、形状、大きさ、構造、色などについて特に制限はなく、目的に応じて適宜選択することができる。
容器本体の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂、ガラスなどが挙げられる。これらの中でも、透明な樹脂又は透明なガラスがより好ましく、透明な樹脂が特に好ましい。
容器本体の樹脂としては、例えば、ポリビニルアルコール(PVA)、ポリブチレンアジペート/テレフタレート(PBAT)、ポリエチレンテレフタレートサクシネート、ポリエチレン(PE)、ポリプロビレン(PP)、ポリエチレンテレフタレート(PET)、塩化ビニル(PVC)、ポリスチレン(PS)、ポリウレタン、エポキシ、バイオポリブチレンサクシネート(PBS)、ポリ乳酸ブレンド(PBAT)、スターチブレンドポリエステル樹脂、ポリブチレンテレフタレートサクシネート、ポリ乳酸(PLA)、ポリヒドロキシプチレート/ヒドロキシヘキサノエート(PHBH)、ポリヒドロキシアルカン酸(PHA)、バイオPET30、バイオポリアミド(PA)610,410,510、バイオPA1012,10T、バイオPA11T,MXD10、バイオポリカーポネート、バイオポリウレタン、バイオPE、バイオPET100、バイオPA11、バイオPA1010などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境負荷の点から、ポリビニルアルコール、ポリブチレンアジペート/テレフタレート、ポリエチレンテレフタレートサクシネート等の生分解樹脂が好ましい。
容器本体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ボトル状、円柱状、四角柱状、箱状、錐体状などが挙げられる。これらの中でも、ボトル状が好ましい。
ボトル状の容器本体は、口部と、口部に連結された肩部と、肩部に連結された胴部と、胴部に連結された底部とを備えている。
容器本体の大きさとしては、特に制限はなく、容器の用途に応じて適宜選定することができる。
容器本体の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単層構造であっても複数層構造であっても構わない。
容器本体の色としては、例えば、無色透明、有色透明、有色不透明などが挙げられる。これらの中でも、無色透明が好ましい。
<像>
容器本体の表面には複数の凹部と非凹部を含む像が形成される。
像とは、例えば、文字、記号、図形、画像、コード等を含み、具体的には、名称、成分、識別番号、製造業者名、製造日時、賞味期限、バーコード、QRコード(登録商標)、リサイクルマーク、又はロゴマークなどの情報を意味する。
凹部における第1の走査方向と直交する第2の走査方向の幅が、非凹部における第2の走査方向の幅と同じもしくは異なるように加工され、凹部における第2の走査方向の幅L1と、非凹部における第2の走査方向の幅L2とが、次式、40%≦[L1/(L1+L2]]×100≦95%、を充たすことが好ましく、次式、50%≦[L1/(L1+L2]]×100≦90%、を充たすことがより好ましい。
凹部における第2の走査方向の幅L1と、非凹部における第2の走査方向の幅L2とが、次式、40%≦[L1/(L1+L2]]×100≦95%、を充たすことにより、像の視認性が向上する。
凹部は、複数の加工部から形成され、複数の加工部が第1の走査方向(主走査方向)に沿って配されている。加工部は平面視で円形加工部又は楕円形加工部が接触又は重なって第1の走査方向に沿って線状に配されていることが、視認性及び生産性の点から好ましい。
非凹部は、凹部が形成されていない容器本体の平坦な領域を意味する。
ここで、図1A~図1Dは、複数の凹部と非凹部を含む像11の具体例について示す。
凹部12は、複数の加工部47から形成され、複数の加工部47が第1の走査方向(主走査方向)に沿って線状に配されており、複数の円形加工部47が接触又は重なって第1の走査方向に沿って線状に配されていることが好ましい。
図1A~図1Bに示すように、凹部12における第1の走査方向と直交する第2の走査方向の幅Aが、非凹部13における第1の走査方向と直交する第2の走査方向の幅Bと異なり、A<Bとなっている。
図1C~図1Dに示すように、凹部12における第1の走査方向と直交する第2の走査方向の幅Aが、非凹部13における第1の走査方向と直交する第2の走査方向の幅Bと異なり、A>Bとなっている。
視認性の点からは、凹部における第2の走査方向の幅Aが、非凹部における第2の走査方向の幅Bよりも大きいこと(A>B)が好ましい。また、生産性の点からは、凹部における第2の走査方向の幅Aが、非凹部における第2の走査方向の幅Bよりも小さいこと(A<B)が好ましい。
凹部12を第1の走査方向に沿ってドット状に配すると、加工部47の周囲の非凹部13の透過光の影響を受けやすいが、図1A~図1Bに示すように、凹部12を複数の加工部47が接触又は重なって第1の走査方向に沿って線状に配すると、
主走査方向に加工部が離散的(ドット状)に配されているものに比べて凹部を構成する加工部の周囲の境界線の長さが減少し、かつ加工部47の周囲の非凹部13の領域が減少するので、透過光の影響が低減され、視認性が高くなる。
また、図1A~図1Bに示すように、ライン状の凹部12と凹部12の間に、非凹部13を設けることにより、高い生産性及び発熱による本体の変形や材質の変質による色変化を防止することが可能となる。
なお、加工部47の配列は縦方向及び横方向のいずれの配置方向も可能であり、加工部47における第2の走査方向の幅A及び非凹部13における第2の走査方向の幅Bは像11内において同一である必要はなく、ランダムに配置されていてもよい。
次に、像の面積に対する複数の凹部の面積の割合[(複数の凹部の面積/像の面積)×100](以下、「加工比率」と称することがある)は40%以上95%以下であることが好ましい。加工比率が40%以上95%以下であると、生産性を保ちながら視認性に優れた像を提供することができる。
加工比率は、凹部12を構成する円形加工部47における第2の走査方向の幅Aと加工部47における第2の走査方向の幅A+非凹部13の第2の走査方向の幅Bから算出することができる。例えば、解像度200dpiの像11を形成する場合、加工比率=A/(A+B)であり、例えばA=50μm、B=76μmの場合、加工比率は40%、例えばA=120μm、B=6μmの場合の加工比率は95%となる。
更に、凹部における第2の走査方向(副走査方向)の幅Aが所定の解像度におけるドット幅C以下であることが視認性の向上の点から好ましい。所定の解像度とは、例えば、200dpiを意味する。
例えば、解像度200dpiの像を形成する場合には、図2A及び図2Bに示すように、例えば、最小の1ドットにおける第2の走査方向の幅Cを127μm、凹部12における第2の走査方向の幅Aを30μm、非凹部13における第2の走査方向の幅Bを18.5μmとすると、最小の1ドットにおける第2の走査方向の幅C内に複数の加工部47からなる凹部(直線)12が3列に配置されるようにレーザ加工するので、容器本体の表面をより細かく粗面化でき、視認性が向上する。
なお、非凹部13における第2の走査方向の幅Bは18.5μm以外にも、非凹部13における第2の走査方向の幅Bが67μmのドット又はラインでは2列、非凹部13における第2の走査方向の幅Bが82μmのドット又はラインでは1.5列に配置される。
これらの場合でも、非凹部13における第2の走査方向の幅Bが18.5μmの場合と同様に視認性が向上する。更に合わせて、加工比率が40%以上95%以下を充たすことにより、視認性が良好であり、加工面積が減少することにより生産性が向上すると共に、発熱による容器本体の変形や材質変化を防止することが可能となる。
なお、加工部47のライン又はドットの配列は縦横のいずれの配置であってもよく、また加工部47の第2の走査方向の幅A及び非凹部13における第2の走査方向の幅Bは像11内において同一である必要はなく、ランダムに配置されていても構わない。
次に、図3Bに示すように、容器本体1の表面にレーザ加工等により複数の凹部12を形成し、該凹部12が集合して像11を形成すると、図3Aに示すレーザ加工前と比べて容器本体1の表面での拡散反射率が大きくなる。即ち、図3Bに示すように白濁化し像11が形成される。複数の凹部12の集合が密になるほど白濁度は増し視認しやすくなる一方、レーザ加工に時間がかかり生産性が低下したり、発熱による容器本体1の変形や材質の変質による色変化が発生したりするため、視認性に影響をしない程度の密度で集合させることが好ましい。
また、像11は複数の凹部12による拡散反射率だけでなく、容器本体1内に収容されている収容物9からの透過光の影響も含めて視認性が決定される(図3C)。容器本体1がペットボトルやガラスのような透明な材質から形成されている場合には、特に、図3Cに示すように、容器本体1内に収容されている収容物9からの透過光の影響は大きくなる。また、像11は、生産性が低下しない程度の密度での複数の凹部12の集合である場合、非凹部13の透過光の影響も考える必要がある。
以上により、本発明者は、鋭意検討を重ねた結果、容器本体表面の加工状態及び容器本体内に収容されている収容物を含めた視認性が良好な像を形成するため、加工状態及び収容物の影響をすべて考慮した視認性の評価方法を確立した。
本発明においては、下記数式(1)で表される視認性値が2以上であることが好ましく、5以上がより好ましい。
視認性値=b・L ・(1-exp(b・ΔL))・・・数式(1)
ただし、前記数式(1)中、L は前記像の明度、ΔLは前記像の明度と前記像以外の部分の明度との差を表し、bは正の実数、bは負の実数である。
以下、視認性の評価方法について説明する。視認性の評価方法は容器本体を撮影し、視認可能な像と、像以外の部分から計測される各明度から測定する。
容器本体の撮影方法としては、図4Aに示すように、容器本体1の形状による容器本体1の表面への映り込みを排除するために、暗室42環境下で行う。図4A中43はカメラである。図4Bに示すように、光源41は容器本体1の表面の正反射成分が撮影されないようにフラット光源を所定の角度で配置し、容器本体1内の収容物9の影響を撮影画像に反映するために、容器本体1の側面に一対の白色拡散面44を設置することが好ましい。具体的には、以下に示す撮影条件で行う。これにより、一般の環境で見るのと近い画像を取得することができる。
<視認性の評価方法における撮影条件>
・図4Aに示すように暗室にカメラ43、サンプル(容器本体1)、光源41を設置する。
・光源は拡散照明する位置に配置する(サンプルに対し斜め上方など加工面での正反射成分がカメラで検知されない位置とし、光源位置は斜め下方や側面等でも可)。
・サンプル側面に白色面を設置し、周囲からの透過光も考慮できるようにする。
・撮影条件は白色の読み取り値が飽和しないように下記のように設定する。
-撮影条件-
・カメラ:Basler社製エリアスキャンカメラ acA3088-57μm
・レンズ:Ricoh Lens FL-CC2514-2M(F1.4 f25mm 2/3”)
・絞り:F1.4
・露光時間:20,000(μs)
・撮影距離:500mm
・光源:LEDトレーサー
撮影した画像から像及び像以外の部分の明度を計測する。図5に示すように、像Pと像以外の部分Qの出力値から明度を換算する。カメラの出力値は像の大きさ等によるが、バラツキを考慮して数mm~数十mm程度のエリアの平均値などを使用することが好ましい。
明度への換算は容器本体の測定環境下で明度(L)が既知であるチャートをカメラで撮影し、そのカメラ読み取り値(G信号)と既知の明度とから、以下のようにして明度に換算することができる。
-G信号と明度換算-
・明度が既知のカラーチャート(グレイチャート)を撮影し、n次多項式で近似する。一例として以下に示す三次多項式にてG信号を明度に換算する。
=Lab_1st×G1+Lab_2nd×G2+Lab_3rd×G3+Lab_const
Lab_1st=0.461535
Lab_2nd=-0.000281
Lab_3rd=0.000000
Lab_const=1.211053
なお、図6は、G信号と上記式から換算した明度との関係を示すグラフである。図6から、寄与率r=0.997である。
-主観評価-
レーザ加工条件を変えたサンプルに対し、以下に示すように、容器本体内に収容する収容物を変えて主観評価を行い、評価するサンプルの順位付けを行い、主観評価点を求めた。
・サンプル:加工条件を変えた6種
・収容物:水、コーヒー、茶
・主観評価方法:シャッフェの一対比較法
・評価者:3名(評価は各2回実施)
・評価1回目:全サンプルに水
・評価2回目:水(2本)、コーヒー(2本)、茶(2本)
・評価3回目:水(1本)、コーヒー(3本)、茶(2本)
・評価環境:オフィス居室内
得られた主観評価点と像の明度(L )、及び像の明度と像以外の部分の明度との差(ΔL)との関係を図7及び図8に示す。図7及び図8において点線で囲んだ領域のように、相関性の悪いサンプルがある。これらは像の明度(L )が著しく低い、明度差(ΔL)が少ない、又はこれらの両方の状態のサンプルである。
このようなサンプルについても相関の高い数式とするため、像の明度L に(1-exp(ΔL))を乗じた数式を導出した。図9に示すように、Y=(1-exp(-x))はxが小さくなるとY=0に近づくことから、数式(1)は明度差(ΔL)が小さくなると視認性が悪くなる傾向を表現している。
したがって、視認性値は、以下の数式(1)で表される。
視認性値=b・L ・(1-exp(b・ΔL))・・・数式(1)
ただし、数式(1)中、L は像の明度、ΔLは像の明度と像以外の部分の明度との差を表す。
は正の実数であり、0.2前後であることが好ましい。
は負の実数であり、-0.2前後であることが好ましい。
数式(1)は、像の明度が高いほど視認性が高く、像以外の部分との明度差がなくなると視認性が無くなるという特徴を表している。
ここで、b=0.195、b=-0.193として算出した数式(1)で表される視認性値は、図10に示すように、加工条件及び容器本体内に収容される収容物を変えた場合の主観評価点(一対比較法)と非常に高い相関関係(R=0.943)を有することがわかった。
<主観評価方法>
以下の条件で像(文字)をレーザ加工したサンプルについて、像の主観評価を行い、見やすさを5段階で評価した。結果を図11に示す。
-評価条件-
・判定者:30名
・サンプル:レーザ加工条件を可変して5.5pt文字を形成したサンプルとして収容物(水、茶など)もサンプル毎に可変した計10種
・評価環境:一般オフィス居室内
・判定方法:判定ランクは下記の5段階とし、判定者による主観評価を実施する。
[評価ランク]
1:読めない
2:あまり読めない
3:読める
4:よく読める
5:最もよく読める
図11の結果から、主観評価であるため、ややばらつきが生じているが、平均値では視認性値が2以上において文字が可読できる評価ランク3以上となった。また、視認性値が6以上ではいずれの判定者において評価ランク5(最もよく読める)であることがわかった。
次に、像の面積に対する複数の凹部の面積の割合[(複数の凹部の面積/像の面積)×100](加工比率)と視認性値との関係を調べた。図12に示すように、加工比率が低い領域では加工比率と視認性値には相関があり、加工比率が低くなると視認性が悪くなる。加工比率が40%以上のときには視認性値は2以上となり、加工比率が50%以上のときには視認性値は約6以上となることがわかった。
したがって、加工比率は、40%以上95%以下であることが好ましい。加工比率を40%以上とすることにより、高い生産性を保ちながら視認性に優れた像を提供することができる。更に、加工比率を50%以上とすることにより、像の主観評価の判定ランクが最も高い像を形成することが可能となる。
<容器のキャップ>
容器のキャップは、その材質、形状、大きさ、構造、色などについて特に制限はなく、目的に応じて適宜選択することができる。
容器のキャップの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂、ガラス、金属、セラミックスなどが挙げられる。これらの中でも、成形性の点から樹脂が好ましい。
容器のキャップの樹脂としては、上記容器の本体の樹脂を同様なものを用いることができる。
容器のキャップの色としては、例えば、有色不透明、有色透明などが挙げられる。これらの中でも、像の読み取り性の点から有色不透明が好ましい。
容器のキャップの形状及び大きさとしては、容器本体の開口部を封じる(閉封する)ことができる形状及び大きさであれば特に制限はなく、目的に応じて適宜選択することができる。
容器のキャップの構造としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、開封した時に容器本体から離れる第1の部分と、容器本体に残る第2の部分とを有することが好ましい。
第1の部分の側面には、開封時に手が滑らないように、表面に凹凸形状が形成されていることが好ましい。第2の部分の側面には、凹凸形状は形成されておらず、表面は平坦であることが好ましい。
容器キャップは、図13A及び図13Bに示すように開封した時に容器本体から離れる第1の部分51と、容器本体1に残る第2の部分52とで構成される。第1の部分51の側面には、開封時に手が滑らないように、表面に凹凸形状53が形成されている。第2の部分52の側面には、凹凸形状は形成されておらず、表面は平坦である。
<容器のキャップの第1の実施形態>
次に、容器のキャップ8への像形成について説明する。図14は、容器のキャップ8に形成した像の一例を示す図である。図14に示すように、容器のキャップ8の表面には、像の一例としての1次元バーコード341が形成されている。
図14の1次元バーコード341では、黒色の容器のキャップ8の表面に加工レーザ光を照射して白濁化させ、白濁化させた領域以外の線状の領域を1次元バーコードとして機能させる。なお、容器のキャップ8は小さいため、短縮コード等の長さが短い1次元バーコードを形成することが好ましい。
また、白濁化するだけでなく、白以外の色に変性させてバーコードとして機能させてもよい。更に変性箇所以外の部分でバーコードのバー部分(線状領域)を形成してもよいし、変性箇所でバー部分そのものを形成してもよい。
例えば、PETボトルを封止する無地のキャップの表面に、PETボトルが収容する飲料の種類を示す1次元バーコード等を、PETごとにオンデマンドで形成できる。これにより、在庫を用意することなく、飲料の種類に応じた1次元バーコードが形成されたキャップを随時取得できる。またラベルを用いずに、単一の素材でキャップに情報表示できるため、リサイクルへの適応性も確保できる。
ここで、本発明の容器の実施形態について、図面を参照して詳細に説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。また、下記構成部材の数、位置、形状等は本実施の形態に限定されず、本発明を実施する上で好ましい数、位置、形状などにすることができる。
<容器の第1の実施形態>
図15は、容器の第1の実施形態の一例を示す概略図である。この図15の容器本体1は、可視光に対して透過性を有する樹脂(透明な樹脂)を材質とする円筒状のボトルである。図15は背景としての黒いスクリーンの前に置かれた容器本体1を示している。透明な容器本体1を通して背景の黒いスクリーンが見えている。或いは容器本体1内に黒色の液体が入っており、透明な容器本体1内の黒色の液体が見えているとみなしてもよい。
容器本体1の樹脂としては、ポリエチレンテレフタレート(PET)が用いられている。
容器本体1の表面には「ラベルレス」という像(文字)11が形成されている。背景の黒色又は容器本体1内の液体の黒色に対し、像(文字)11での周辺光の拡散により、像(文字)11が白濁化されて視認される。「ラベルレス」の5文字を構成する複数の線の集合が像(文字)11に対応している。また容器本体1における像(文字)11が形成されていない領域は、非凹部である。
図16は、容器本体1に形成された凹部12と非凹部13の関係の一例を示す図である。図16における拡大図での111は、像(文字)11の一部を拡大表示したものである。図16に示すように、容器本体1の表面には「ラベルレス」という像(文字)11が形成され、図16の拡大図での111に示すように、像(文字)11は複数の凹部(直線)12により構成されている。換言すると、像(文字)11は凹部(直線)12の集合体により構成されている。なお、図16の拡大図での111に対応する領域にのみ凹部(直線)12を示しているが、像(文字)11全体が凹部(直線)12の集合体により構成されている。
凹部(直線)12の集合体における白地領域は容器本体の表面の性状が変化した領域を示す。複数の凹部(直線)12は凹部の集合体の一例である。凹部(直線)12は像(文字)11より小さい像である。より詳しくは、凹部(直線)12は、直線部分の面積が像(文字)11を構成する複数の直線部分の面積の総和より小さい像である。このように像(文字)11は、小さい(微細な)凹部(直線)12の集合体を含んで形成されている。
図17は、図16の拡大図111におけるA-A断面形状を示す断面図である。非凹部13は容器本体1の表面を示している。また、凹部12は加工レーザ光20の照射で容器本体1の表面が蒸散することにより形成された部分を示し直線に対応する部分である。123は容器本体の内側表面である。
厚みtは、容器本体1の厚みを示し、加工深さHpは凹部12の深さを示している。非加工深さHbは非加工部の深さを示している。
ここで、隣接する凹部12同士の間隔とは、隣接する凹部12の中心間の距離をいう。図17における間隔Pは隣接する凹部(直線)12同士の間隔を示している。また幅Wは凹部(直線)12の太さを示している。本実施形態における凹部(直線)12は周期性をもって形成されているため、間隔Pは凹部(直線)12が形成された周期にも該当する。
ここで、間隔Pは、0.4μm以上130μm以下が好ましい。間隔Pを0.4μm以上にすることで可視光の波長限界の制限を受けずに周辺光を拡散させることができ、複数の凹部(直線)12と非凹部13を含む像(文字)11のコントラストを向上させることができる。
また、間隔Pを130μm以下とすることで、200dpi(dot per inch)の解像度を保証するとともに、凹部(直線)12そのものが視認されることを防ぎ、像(文字)11を白濁化したパターンとして高いコントラストで視認させることができる。間隔Pを50μm以下にすると、凹部そのものが視認されることを確実に防ぐことができるため、より好ましい。
上述した実施形態では間隔Pに対する好適な数値として説明したが、凹部が周期性を有する場合は、上記の好適な数値を周期に対しても当てはめることができる。
また、拡大図111では、等間隔に周期性を持って形成された凹部(直線)12の集合体を示したが、凹部の集合体はこれに限定されるものではない。異なる間隔で非周期に形成された複数の凹部(直線)12で凹部の集合体を構成してもよいし、周期的又は非周期に形成された複数の点等により凹部の集合体を構成してもよい。凹部が点のパターンである場合、この点の像は文字11等の像より小さいパターンにする。
また、本実施形態では、非凹部13と凹部12から像(文字)11が形成されている。このように凹凸形状で凹部を形成する場合は、非凹部13と凹部12との深さの差を0.4μm以上にすることが好ましい。0.4μm以上にすることで、可視光の波長限界の制限を受けずに周辺光を拡散させ、複数の凹部12と非凹部13から構成される像(文字)11のコントラストを向上させることができる。
次に、図18は、加工深さHpの各種の例を示す図である。図18の(a)は加工深さHpが容器本体1の非加工深さHbより浅い場合の図である。より具体的には、加工深さHp対非加工深さHbの比が、1以下対9以上から3対7となる場合である。この場合、凹部の剛性(機械強度)が向上する。一例として容器本体1の厚みが100μm~500μmの場合に加工深さHpは10μmである。
図18の(b)は、加工深さHpが容器本体の非加工深さHbより深い場合の図である。より具体的には、加工深さHp対非加工深さHbの比が、7対3から9以上対1以下となる場合である。
図18の(c)は、加工深さHpと容器本体の非加工深さHbが同程度の場合の図である。より具体的には、加工深さHp対非加工深さHbの比が、4対6から6対4となる場合である。
図18の(d)は、加工深さHpと容器本体の非加工深さHbを変化させた場合の図である。
図18の(a)~(d)に示したような加工深さHpの深さは、容器の製造装置のレーザ照射制御部65における光強度制御部651でレーザ光源21の射出するレーザ光の光強度を制御することにより調整できる。
<容器の第2の実施形態>
容器の第2実施形態は、容器本体1に形成される像を画像とし、この画像を構成する複数の画素のそれぞれを凹部の集合により構成する。また、凹部の間隔を画素間で異ならせることにより、像としての画像を多値の階調で表現可能にする。
図19は、画素間で凹部の間隔を異ならせることによる階調表現の一例を説明する図であり、容器本体1に形成する像に対応する画像の加工画像データ112を示している。図19に升目で示した画素1121は、加工画像データ112を構成する画素を示している。加工画像データ112は複数の画素1121により構成されている。
本実施形態では、凹部は点のパターンであり、複数の画素1121のそれぞれは点データ1122の集合体により構成されている。加工画像データ112において黒地領域で示す点データ1122が、加工レーザ光20の照射により容器本体の性状を変化させる領域に対応する。
また、図19では、図示した矢印の上方向に向かうほど隣接する点データ1122同士の間隔が広くなり、下方向に向かうほど隣接する点データ1122同士の間隔が狭くなっている。隣接する点データ1122同士の間隔が広いほど、容器本体1に点のパターンが形成された際に周辺光の拡散性は低くなり、白濁化した像の濃度が低くなる。一方、隣接する点データ1122同士の間隔が狭いほど、容器本体1に点のパターンが形成された際に周辺光の拡散性は高くなり、白濁化した像の濃度が高くなる。
このように、凹部の間隔を画素間で異ならせることで、画像の階調(濃淡)が表現される。
ここで、図20では、周期性を有する点のパターンの間隔により階調を表現する例を示したが、階調表現方法はこれに限定されるものではない。図20は、凹部による階調表現の他の例を説明する図である。図20の(a)は周期性のない凹部の加工データを示す図である。図20の(a)では、画素180は1つの画素を示し、画素180は非周期に配置された矩形の点データにより構成されている。図示した矢印の方向は画素濃度の濃淡を示し、画素180内における点データの数が多いほど濃度が濃くなる。
図20の(a)における間隔Pd1~Pd4は、画素180内における様々な点データの配置における隣接する点データ同士の間隔を示し、容器本体1に点パターンが形成された場合の点パターン同士の間隔に対応する。
一方、図20の(b)は、結晶化状態の変化によって形成された凹部の断面図を示している。図20の(c)は図20の(b)の平面図である。
図20の(b)、(c)では、容器本体1の表面を結晶化させる結晶化深さDを変化させることで、凹部による周辺光の拡散性を変化させ、像の濃度を変化させる例を示している。結晶化深さDが深いほど、周辺光の拡散性が高くなり、白濁化の白の濃度が濃くなる(より白っぽくなる)。
図21は、容器の第2の実施形態に係る容器本体1aの一例を示す図である。容器本体1aには、多値の階調で表現された画像13及び14が形成されている。また文字が重ねて形成された画像15が形成されている。
画像13、14及び15のそれぞれは、複数の画素により構成され、各画素は凹部としての点パターンの集合体により構成されている。隣接する点パターン同士の間隔を画素間で異ならせることで、階調が表現されている。このような画像13、14及び15のそれぞれは、像の一例である。
以上説明したように、容器の第2の実施形態では、容器本体1に形成される像は画像であり、この画像を構成する複数の画素のそれぞれを凹部の集合により構成し、また凹部の間隔を画素間で異ならせる。これにより、画素毎での拡散性を変化させることで、画素毎で容器本体1に形成される像の濃度を変化させ、像を多値の階調で表現することができる。
<容器の第3の実施形態>
図22は、容器の第3の実施形態に係る容器本体1bの一例を説明する図である。図22の容器本体1bは、円筒状のボトルであり、口部101と、肩部102と、胴部103と、底部104とを含んで構成されている。この容器の第3の実施形態では、口部と、口部に連結された肩部と、肩部に連結された胴部と、胴部に連結された底部とを備える容器本体1bの肩部に、凹部の集合体により構成される像を形成することで、容器本体1bを口部側から見た場合に像を視認しやすくする。
口部101は、飲料等の収容物を容器本体1b内に導入するための導入口の部分である。容器本体1b内に収容された収容物がこぼれないように、容器本体1bに栓をするための容器のキャップが設けられてもよい。
肩部102は、口部101と連結し、口部101側を頂角とした円錐状の部分である。胴部103は、肩部102と連結し、図22に矢印で示すY方向に沿う軸を円筒軸とする円筒状の部分である。肩部102は、胴部103の円筒面に対して傾斜している。
底部104は、胴部103に連結する容器本体1bの底部分である。
容器本体1bの肩部102には、「ラベルレス」の文字16と、バーコード17が形成されている。文字16及びバーコード17は、凹部の集合体により構成されている。
図23は、容器本体1bを口部101側から見た図である。換言すると、図23の負のY方向から正のY方向に向かって容器本体1bを見た図である。図23に示すように、肩部102に文字16及びバーコード17を形成すると、肩部102は胴部103に対して傾斜しているため、容器本体1bのユーザ(消費者)が容器本体1bを口部101側から見た際に、文字16及びバーコード17がユーザに向いた状態になる。そのため、文字16及びバーコード17を胴部103に形成した場合と比較して、ユーザは文字16及びバーコード17を視認しやすくなる。
<容器の第3の実施形態の変形例1>
図24は、容器の第3の実施形態の変形例1の一例を示す図である。図24の容器本体1bの肩部102には、文字が重ねて形成された像である文字18が形成されている。
本実施形態では、口部101と、口部101に連結された肩部102と、肩部102に連結された胴部103と、胴部103に連結された底部104とを備える容器本体1bの肩部102に、凹部の集合体により構成される像を形成する。これにより、容器本体1bを口部101側から見た場合に、像が視認しやすくなる。
その結果、例えば、容器本体1bを収納ケース等に底部104を下側に向けて収納した場合でも、収納ケースから容器本体1bを取り出すことなく、像が表示する情報を視認しやすくなり、容器本体1b又は容器本体1bの収容物の管理を効率的に行うことができる。容器本体1bを箱等に底部104を下側に向けて収納する場合としては、例えば容器本体1bが飲料用のPETボトルであり、複数のPETボトルを収納ケースに収納する場合等が挙げられる。
また、収納ケースの底部が透明であったり、底部に貫通孔が設けられていたりして収納ケースに収納された容器本体1bを収納ケースの底側から視認できる場合は、容器本体1bの底部104に像を形成してもよい。
<容器の第3の実施形態の変形例2>
図25は、容器の第3の実施形態の変形例2の一例を示す図である。図25は、複数の凹部と非凹部を含む像を、容器本体1bの底部104に形成した例を示す図である。図25に示すように、底部104には「ラベルレス」という文字19が像の一例として形成されている。
底部104に像を形成することで、収納ケースから容器本体1bを取り出すことなく、像が表示する情報を収納ケースの底側から視認しやすくなり、容器本体1b又は容器本体1bの収容物の管理を効率的に行うことができる。
<容器の第4の実施形態>
図26は、容器の第4実施形態に係る容器本体1cの一例を示す図である。容器本体1cには複数の凹部と非凹部を含む像の一例としてのバーコードが形成されている。
ここで、容器の肩部が口部側を頂角にした円錐状に構成されていると、肩部に形成した像を口部側から見た場合に、口部から遠ざかるにつれて像の幅が広がって視認される場合がある。
図26の(a)は、容器本体1cの肩部102に形成した比較例に係る像としてのバーコード171’を口側から見た図を示している。図26の(a)に示すように、矩形状のバーコード171’が口部101から遠ざかるにつれて広がって視認される。これにより、口部101側からバーコード171’を適切に読み取れない場合がある。
そのため、容器の第4実施形態では、口部101から遠ざかるにつれて幅が狭くなるバーコード171を肩部102に形成する。図26の(b)はこのようなバーコード171の一例を示している。図26の(b)における負のY方向側が口部101側に対応し、バーコード171は、口部101から遠ざかるにつれ、幅が狭くなっている。
図26の(c)は、容器本体1cの肩部102に形成したバーコード171を、口部101側から見た図を示している。バーコード171は口部101から遠ざかるにつれ、幅が狭くなるパターンであるため、バーコード171を口部101側から見た場合に、口部101から遠ざかるにつれてバーコード171の幅の広がりが相殺され、矩形状のバーコードとして正しく視認される。バーコード171の幅は、肩部102の胴部103に対する傾斜角度に対応させて適正化しておくことが好ましい。
このように、容器の第4実施形態では、口部101から遠ざかるにつれて幅が狭くなるバーコード171を肩部102に形成する。これにより、バーコード171が口部101から遠ざかるにつれて広がって視認されることを防ぎ、口部101側からバーコード171やQRコード(登録商標)等のコードを適切に読み取ることができる。なお、このようなコードの読み取りには、ユーザがコードを視認して読み取るものだけでなく、バーコードリーダ又はQRコード(登録商標)リーダ等の読取機器による読み取りも含まれる。
<容器の第5の実施形態>
図27の(a)は、容器の第5の実施形態に係る容器本体1を示す図である。この図27の(a)の容器本体1では、可視光に対して透過性を有する樹脂又はガラス(透明な樹脂又は透明なガラス)により構成され、背景としての白いスクリーンの前に配置されている。透明な容器本体1を通して背景の白いスクリーンが見えている。或いは透明な容器本体1内に収容物として白色の液体が入っており、透明な容器本体1を通して容器本体1内の白色の液体が見えているとみなしてもよい。
図27の(a)における容器本体1の表面には、文字22aが形成されている。文字22aは、加工レーザ光の照射により、容器本体1の表面を炭化等で黒色化させることで形成されたものである。背景の白色又は容器本体1内の液体の白色に対して、黒色化された文字22aが黒く視認されている。このように、容器本体1の表面を黒色化させることで、複数の凹部と非凹部により構成される文字22a等の像を視認させることもできる。
<容器の第5の実施形態の変形例1>
図27の(b)は、容器の第5の実施形態の変形例1に係る容器本体1を示す図である。の図27の(b)の容器本体1では、は透明な樹脂又は透明なガラスにより構成され、背景としての黒いスクリーンの前に配置されている。透明な容器本体1を通して背景の黒いスクリーンが見えている。或いは透明な容器本体1内に黒色の液体が入っており、透明な容器本体1を通して容器本体1内の黒色の液体が見えているとみなしてもよい。
図27の(b)における容器本体1の表面には、文字22b以外の領域に加工レーザ光を照射して、容器本体1の表面の性状を変化させたパターンが形成されている。この文字22b以外の領域は、凹部の集合体により構成される像に対応する。
文字22a以外の領域で周辺光の拡散性が向上し、文字22a以外の領域が白濁化されて視認されている。文字22bの領域では背景のスクリーンの黒色、又は容器本体1内の液体の黒色が視認されている。このようにして文字22b等の像を視認させることもできる。
なお、容器本体1に収容されている収容物についても、可視光に対して透過性を有する容器に収容された収容物の色に対して、像のコントラストを上げることで、良好な視認性で情報量が多いパターンが形成されたものを提供できる。例えば収容物が黒色の場合は、容器に白濁化された像を形成すると、像を視認しやすくなり、収容物が白色の場合は、容器に黒色化された像を形成すると、像を視認しやすくなる。
<容器の第5の実施形態の変形例2>
上述した第5の実施形態では、樹脂により構成されたPETボトル等のボトルを容器の一例として示したが、容器はこれに限定されるものではない。ガラスにより構成されたコップ等であってもよい。図28は、容器の第5の実施形態の変形例2に係る容器としてのコップ1fの一例を示す図である。図28に示すように、コップ1fの円筒面には凹部の集合体により構成される像210が形成されている。
また、上述した実施形態では、容器本体1は、可視光に対して透過性を有し、この容器本体1を背景としての黒いスクリーン等の前に配置した例を示した。
<容器の第6の実施形態>
次に、加工レーザ光の照射による容器本体の表面の変性痕について説明する。図29は、変性痕の走査型電子顕微鏡(SEM;Scanning Electron Microscope)写真であり、図29の(a)は上面方向から視た斜視図、図29の(b)は図29の(a)のD-D矢視断面方向から視た斜視図である。図29の(a)では、変性痕110が観察されている。
図29に示すように、変性痕110は、凹部131と、凸部132とを含む。凹部131は、第1の傾斜面1311と、底部1312とを含み、椀状の形状に形成されている。凹部幅Dcは凹部131の幅を表し、深さdpは、パターンが形成されていない非パターン領域の表面に対する底部1312の高さ(Z軸方向の長さ)を表している。
また、凸部132は、頂部1321と、第2の傾斜面1322とを含み、円環面状に形成されている。なお、円環面とは円周を回転して得られる回転面をいう。円環幅Drは、凸部132の円環面部分の半径方向の幅を表し、高さhは、非パターン領域の表面に対する頂部1321の高さ(Z軸方向の長さ)を表している。
変性痕幅W1は、変性痕110全体の幅を表している。変性痕幅W1は、例えば約100um程度である。第1の傾斜面1311と第2の傾斜面1322は連続した面である。なお、連続した面とは、同じ材質で段差がなく繋がった面をいう。
また図29に示すように、凹部131及び凸部132のそれぞれを構成する面には、微小な凹凸部113が形成され、表面が荒れている。凹凸部113は変性痕110の変性痕幅W1より小さい幅の凹部と凸部からなり、典型的には1μm乃至10μm程度の幅の凹部と凸部からなる。
図29の(a)に示すように、隣接する変性痕間にも、変性痕110を加工した際の加工片が飛散しており、これらによっても面が荒れている。パターン領域13aでは、凹凸部113や加工片による表面の荒れにより、非パターン領域と比較して表面粗さが大きくなっている。
(収容体)
本発明の収容体は、本発明の容器と、容器に収容されている収容物とを含む。
収容物としては、例えば、飲料、粉末、気体などが挙げられる。収容物が飲料である場合には、透明、白色、黒色、茶色、又は黄色等の色を有していることが多い。
<収容体の第1の実施形態>
図30は、収容体の第1の実施形態の一例を示す概略図である。この図30の収容体7は、容器本体1と、容器のキャップ8と、容器本体1に収容された液体飲料等の収容物9とを含んで構成されている。容器本体1の表面にはラベルレスという文字11が形成されている。
収容物9は、黒、茶色、又は黄色等の色を有していることが多い。収容体7の口部には、容器のキャップ8と螺合し固定するためのねじ部が設けられている。また、容器のキャップ8の内側には、収容体7の口部に設けられたねじ部と螺合するためのねじ部が設けられている。
収容体7の製造方法としては、次の3態様がある。
態様1:容器本体1に像を形成後、収容物9を収容し、その後、容器のキャップ8で封止する収容体の製造方法。
態様2:収容物9を収容し、その後、容器のキャップ8で封止し、容器本体1に像を形成する収容体の製造方法。
態様3:収容物9を収容しながら容器本体1に像を形成し、その後、容器のキャップ8で封止する収容体の製造方法。
(容器の製造方法及び容器の製造装置)
本発明の容器の製造方法は、本発明の容器を製造する方法であって、容器本体にレーザ光を照射して像を形成する照射工程を含み、回転工程及び移動工程の少なくともいずれかの工程を含むことが好ましく、更に必要に応じてその他の工程を含む。
本発明の容器の製造装置は、本発明の容器を製造する装置であって、容器本体にレーザ光を照射して像を形成する照射手段を有し、回転手段及び移動手段の少なくともいずれかの手段を有することが好ましく、更に必要に応じてその他の手段を有する。
前記レーザ光のスポット径は1μm以上200μm以下が好ましく、10μm以上100μm以下がより好ましい。スポット径が1μmよりも小さくなると、可視光の波長に近くなり、そうなると、そのビームスポット径で加工した構造で光を散乱することができなくなり、白濁化できなくなってしまう。また、200μmよりも大きくなると、人の目で構造が認識できてしまう。
前記レーザ光の強度を制御することにより像を形成することが好ましい。
前記レーザ光を走査することにより像を形成することが好ましい。
複数のレーザ光源から照射される複数のレーザ光の強度をそれぞれ独立制御することにより像を形成することが好ましい。
本発明の容器の製造方法においては、描画したい対象の容器本体を回転させながら、レーザを照射し、画像形成を行うものである。
装置の構成については、レーザ位置は固定で容器側を動かす場合と、容器側が固定でレーザ位置を動かす場合がある。
また、容器本体を動かす場合、一定角度回転させ、レーザ描画を行った後、また同じ角度回転させ、再度レーザ描画を行うといった、同期制御により画像形成をするものや、容器本体を等速回転とし、レーザ描画を行う場合がある。容器保持部は口でも本体でも底でもよい。
なお、容器本体は加工時縦置きでも横置きでも斜め置きでもよい。
なお、容器本体がコンベアなどを通過する際に一方からマーキングしてもよく、コンベアなどを通過する際に複数個所から同時にマーキングしてもよい。
レーザ光源の波長は、紫外線領域、可視光領域のものだけでなく、近赤外線領域から中赤外線領域のものも好適である。具体的には、1,200nm以上1,500nm以下の波長領域のものも好適である。
例えば、近赤外線領域から中赤外線領域の波長は、発泡(熱変性)で白濁化させる場合に高速で対応でき、また装置のアレイ化もしやすくなる点で好適である。紫外線領域の波長は、アブレーションによる加工を行うために、レーザ光の光強度を大きくできる点で好適である。
また波長帯域ごとで、容器本体に対する吸収率が周辺波長よりも突出して高い波長が存在するため、この波長を利用すると特に好適である。
以下に示す表1は、波長帯域ごとでの吸収率が突出して高い波長の一例を示すものである。表1の右側の列に「凡その波長帯域」を示し、各波長帯域における吸収率が突出して高い波長を左側の列に示す。中央の列は、吸収率が突出して高い波長の吸収率を示す。
Figure 2022187985000002
なお、吸収率は、容器本体の材質又は厚み等によって異なるが、表1では、PETを材料として構成された厚み0.5mmの容器本体の場合を例示している。また吸収率が20%以上の波長を例示している。
表1に示す波長を射出可能なレーザ光源を使用することで、容器本体におけるレーザ光の吸収率を確保し、良好な視認性のパターンを高速に形成できる。具体的なレーザ光源としては、例えば、1,660nmの波長のレーザ光を射出するYAGレーザなどが挙げられる。
ここで、本発明の容器の製造装置及び本発明の容器の製造方法の実施形態について、図面を参照して詳細に説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。また、下記構成部材の数、位置、形状等は本実施の形態に限定されず、本発明を実施する上で好ましい数、位置、形状などにすることができる。
<容器の製造装置の第1実施形態>
図31は容器の製造装置100の構成の一例を示す図である。この容器の製造装置100は、容器本体1の表面に、複数の凹部と非凹部を含む像を形成するための装置である。
図31に示すように、容器の製造装置100は、レーザ照射部2と、回転機構3と、保持部31と、移動機構4と、集塵部5と、制御部6とを備えている。容器の製造装置100は、円筒状の容器である容器本体1を、保持部31を介して容器本体1の円筒軸10回りに回転可能に保持する。そして、レーザ照射部2から容器本体1にレーザ光を照射して、容器本体1の表面の性状を変化させることで、容器本体1の表面に複数の凹部と非凹部を含む像を形成する。なお、容器本体の表面の性状とは、容器本体を構成する材料(樹脂)の性質又は状態をいう。
照射部の一例としてのレーザ照射部2は、レーザ光源から射出されるレーザ光を図31のY方向に走査し、正のZ方向に配置されている容器本体1に向けて、レーザ光の一例としての加工レーザ光20を照射する。なお、このレーザ照射部2については、図32Aを用いて詳述する。
回転部の一例としての回転機構3は、保持部31を介して容器本体1を保持している。保持部31は回転機構3の備える駆動部としてのモータ(図示を省略)のモータ軸に接続されるカップリング部材であり、一端を容器本体1の口部に挿し込んで容器本体1を保持する。モータ軸の回転により、保持部31を回転させることで、保持部31に保持された容器本体1を円筒軸10回りに回転させる。
移動部の一例としての移動機構4は、テーブルを備える直動ステージであり、移動機構4のテーブル上には回転機構3が載置されている。移動機構4は、テーブルをY方向に進退させることで、回転機構3、保持部31及び容器本体1を一体にしてY方向に進退させる。
なお、容器の製造装置100における移動機構4はコンベアなどの継続的に移動するものでもよく、容器本体1の保持は容器本体1と収容物自身の重みによるものとし、置いているのみでもよい。
集塵部5は、容器本体1における加工レーザ光20が照射される部分の近傍に配置されたエアー吸引装置である。加工レーザ光20の照射により像を形成する際に生じるプルームや粉塵をエアーの吸引により収集することで、プルーム又は粉塵による容器の製造装置100、容器本体1及び周辺の汚れを防止する。
制御部6は、レーザ光源21、走査部23、回転機構3、移動機構4及び集塵部5のそれぞれにケーブル等を介して電気的に接続されており、制御信号を出力することでそれぞれの動作を制御する。
容器の製造装置100は、制御部6による制御下で、回転機構3により容器本体1を回転させながら、Y方向に走査される加工レーザ光20をレーザ照射部2により容器本体1に照射する。そして、容器本体1の表面に像を2次元的に形成する。
ここで、レーザ照射部2による加工レーザ光20のY方向への走査領域は、範囲が制限される場合がある。そのため、走査領域より広い範囲に像を形成する場合には、容器の製造装置100は移動機構4で容器本体1をY方向に移動させることで、容器本体1における加工レーザ光20の照射位置をY方向にずらす。その後、再び回転機構3により容器本体1を回転させながら、レーザ照射部2で加工レーザ光20をY方向に走査することで、容器本体1の表面に像を形成する。これにより、容器本体1のより広い領域に像を形成できる。
次に、レーザ照射部2の構成について説明する。図32Aは、レーザ照射部2の構成の一例を示す図である。図32Aに示すように、レーザ照射部2は、レーザ光源21と、ビームエキスパンダ22と、走査部23と、走査レンズ24と、同期検知部25とを備えている。
レーザ光源21はレーザ光を射出するパルスレーザである。レーザ光源21は、レーザ光が照射された容器本体1の表面の性状を変化させるために好適な出力(光強度)のレーザ光を射出する。
レーザ光源21は、レーザ光の射出のオン又はオフの制御、射出周波数の制御、及び光強度制御等が可能になっている。レーザ光源21の一例として、波長が532nmで、レーザ光のパルス幅が16ピコ秒、平均出力4.9Wのレーザ光源を用いることができる。
容器本体1の表面の性状を変化させる領域でのレーザ光の直径(スポット径)は1μm以上200μm以下であることが好ましい。
また、レーザ光源21は、1つのレーザ光源で構成されてもよいし、複数のレーザ光源で構成されてもよい。複数のレーザ光源を用いる場合、レーザ光源毎にオン又はオフの制御、射出周波数の制御及び光強度制御等を独立に行えるようにしてもよい。
レーザ光源21から射出された平行光のレーザ光は、ビームエキスパンダ22により直径が拡大され、走査部23に入射する。
走査部23は、モータ等の駆動部により反射角度を変化させる走査ミラーを備えている。走査ミラーによる反射角度を変化させることで、入射するレーザ光をY方向に走査する。この走査ミラーには、ガルバノミラーやポリゴンミラー、MEMS(Micro Electro Mechanical System)ミラー等を用いることができる。
なお、本実施形態では走査部23がレーザ光をY方向に1次元走査する例を示すが、これに限定されるものではない。走査部23は、直交する2方向に反射角度を変化させる走査ミラーを用いてレーザ光をXY方向に2次元走査してもよい。
但し、円筒状の容器本体1の表面にレーザ光を照射する場合は、XY方向に2次元走査すると、X方向への走査に応じて容器本体1の表面上でのレーザ光のスポット径が変化するため、このような場合は1次元走査のほうが好ましい。
走査部23により走査されるレーザ光は、加工レーザ光20として容器本体1の表面に照射される。
走査レンズ24は、走査部23により走査される加工レーザ光20の走査速度を一定にするとともに、容器本体1の表面の所定位置に、加工レーザ光20を収束させるfθレンズである。容器本体1の表面の性状を変化させる領域で、加工レーザ光20のビームスポット径が最小になるように走査レンズ24と容器本体1が配置されることが好ましい。なお、走査レンズ24は複数のレンズの組み合わせにより構成されてもよい。
同期検知部25は、加工レーザ光20の走査と回転機構3による容器本体1の回転とを同期させるために用いられる同期検知信号を出力する。同期検知部25は、受光した光強度に応じた電気信号を出力するフォトダイオードを備え、フォトダイオードによる電気信号を同期検知信号として制御部6に出力する。
図32Aでは、加工レーザ光を走査する例を示したが、加工レーザ光を例えば印字幅の範囲に多数設けて加工レーザ光アレイとし、容器本体1を回転させることで、容器本体1上を多数のレーザビームで1方向に走査する構成とすることも可能である。図32Bはその一例を示す図であり、容器本体1に並列の複数のレーザビームからなる加工レーザ光アレイを示している。
次に、容器の製造装置100の備える制御部6のハードウェア構成について説明する。図33は、制御部6のハードウェア構成の一例を示すブロック図である。制御部6はコンピュータにより構築されている。
図33に示すように、制御部6は、CPU(Central Processing Unit)501と、ROM(Read Only Memory)502と、RAM(Random Access Memory)503と、HD(Hard Disk)504と、HDD(Hard Disk Drive)コントローラ505と、ディスプレイ506とを備えている。また制御部6は、外部機器接続I/F(Interface)508と、ネットワークI/F509と、データバス510と、キーボード511と、ポインティングデバイス512と、DVD-RW(Digital Versatile Disk Rewritable)ドライブ514と、メディアI/F516とを備えている。
これらのうち、CPU501はプロセッサであり、制御部6全体の動作を制御する。ROM502は、IPL(Initial Program Loader)等のCPU501の駆動に用いられるプログラムを記憶するメモリである。
RAM503は、CPU501のワークエリアとして使用されるメモリである。HD504は、プログラム等の各種データを記憶するメモリである。HDDコントローラ505は、CPU501の制御に従ってHD504に対する各種データの読み出し又は書き込みを制御する。
ディスプレイ506は、カーソル、メニュー、ウィンドウ、文字又は画像等の各種情報を表示する。外部機器接続I/F508は、各種の外部機器を接続するためのインターフェースである。この場合の外部機器は、レーザ光源21、走査部23、同期検知部25、回転機構3、移動機構4及び集塵部5等である。但し、他にUSB(Universal Serial Bus)メモリやプリンタ等を接続することもできる。
ネットワークI/F509は、通信ネットワークを利用してデータ通信をするためのインターフェースである。バスライン510は、図33に示されているCPU501等の各構成要素を電気的に接続するためのアドレスバスやデータバス等である。
キーボード511は、文字、数値、各種指示等を入力するための複数のキーを備えた入力手段の一種である。ポインティングデバイス512は、各種指示の選択や実行、処理対象の選択、カーソルの移動等を行う入力手段の一種である。
DVD-RWドライブ514は、着脱可能な記録媒体の一例としてのDVD-RW513に対する各種データの読み出し又は書き込みを制御する。なお、DVD-RWに限らず、DVD-R等であってもよい。メディアI/F516は、フラッシュメモリ等の記録メディア515に対するデータの読み出し又は書き込み(記憶)を制御する。
次に、制御部6の機能構成について説明する。図34は制御部6の機能構成の一例を示すブロック図である。
図34に示すように、制御部6は、像データ入力部61と、凹部パラメータ指定部62と、格納部63と、加工データ生成部64と、レーザ照射制御部65と、レーザ走査制御部66と、容器回転制御部67と、容器移動制御部68と、集塵制御部69とを備えている。
これらのうち、像データ入力部61、凹部パラメータ指定部62、加工データ生成部64、レーザ照射制御部65、レーザ走査制御部66、容器回転制御部67、容器移動制御部68及び集塵制御部69のそれぞれの機能は、いずれも図33のCPU501が所定のプログラムを実行し、外部機器接続I/F508を介して制御信号を出力すること等により実現される。但し、制御部6のハードウェア構成にASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の電子回路又は電気回路を追加し、上記の各構成部の機能の一部又は全部を電子回路又は電気回路で実現してもよい。格納部63の機能は、HD504等により実現される。
像データ入力部61は、容器本体1の表面に形成する像のパターンデータをPC(Personal Computer)やスキャナ等の外部装置から入力する。像のパターンデータは、バーコード、QRコード(登録商標)等のコードや文字、図形、写真等のパターンを示す情報と、像の種類を示す情報とを含む電子データである。
但し、像のパターンデータは、外部装置から入力されるものに限定はされない。容器の製造装置100のユーザが制御部6のキーボード511やポインティングデバイス512を用いて生成した像のパターンデータを入力することもできる。
像データ入力部61は、入力した像のパターンデータを加工データ生成部64及び凹部パラメータ指定部62のそれぞれに出力する。
凹部パラメータ指定部62は、凹部を形成するための加工パラメータを指定する。上述したように凹部は、像より小さい線又は点等であり、像のコントラストを上げ、視認性を向上させるように作用するものである。
凹部の加工パラメータは、凹部としての線の種類や太さ、加工深さ、或いは線の集合体における隣接する線同士の間隔又は配置等を指定する情報である。或いは凹部としての点の種類、大きさ、加工深さ、或いは点の集合体における隣接する点同士の間隔又は配置等を指定する情報である。
線の種類は直線や曲線等を示す情報である。点の種類は、円や楕円、矩形、菱形等の点の形状を示す情報である。凹部の集合体において、凹部は周期性を有するように構成されてもよいし、非周期に構成されてもよい。但し、周期性を有するように構成すると、パラメータの指定をより簡略化できるため好適である。
文字、コード、図形又は写真等の像の種類に対応して、視認性を向上させるために適した凹部の加工パラメータは、予め実験やシミュレーションにより定められている。格納部63は、このような像の種類と加工パラメータとの対応関係を示すテーブルを格納する。
凹部パラメータ指定部62は、像データ入力部61から入力した像の種類を示す情報に基づき、格納部63を参照して凹部の加工パラメータを取得して指定することができる。
但し、凹部パラメータ指定部62による指定方法は上述したものに限定されるものではない。凹部パラメータ指定部62は、制御部6のキーボード511やポインティングデバイス512を介してユーザの指示を受け付け、この指示に基づき格納部63を参照して凹部の加工パラメータを取得してもよい。
また、凹部パラメータ指定部62は、容器の製造装置100のユーザが制御部6のキーボード511やポインティングデバイス512を用いて生成した凹部の加工パラメータを取得してもよい。
加工データ生成部64は、像のパターンデータと、凹部の加工パラメータとに基づいて、凹部の集合体により構成される像を形成するための加工データを生成する。
加工データは、回転機構3が容器本体1を回転させるための回転条件データと、レーザ照射部2が加工レーザ光20を走査するための走査条件データと、レーザ照射部2が容器本体1の回転に同期して加工レーザ光20を照射するための照射条件データとを含む。また、移動機構4が容器本体1をY方向に移動させるための移動条件データと、集塵部5が集塵動作を行うための集塵条件データとを含む。
加工データ生成部64は、レーザ照射制御部65、レーザ走査制御部66、容器回転制御部67、容器移動制御部68及び集塵制御部69のそれぞれに対し、生成した加工データを出力する。
レーザ照射制御部65は、光強度制御部651と、パルス制御部652とを備え、照射条件データに基づき、レーザ光源21による容器本体1への加工レーザ光20の照射を制御する。またレーザ照射制御部65は、同期検知部25からの同期検知信号に基づき、回転機構3による容器本体1の回転に同期して加工レーザ光20を容器本体1への照射タイミングを制御する。なお、同期検知信号を用いた照射タイミング制御には、特開2008-73894号公報等の公知技術を適用できるため、ここでは詳細な説明を省略する。
レーザ光源21が複数のレーザ光源で構成される場合は、レーザ照射制御部65は複数のレーザ光源毎に独立して上記の制御を行う。
光強度制御部651は加工レーザ光20の光強度を制御し、パルス制御部652は加工レーザ光20のパルス幅及び照射タイミングを制御する。
レーザ走査制御部66は、走査条件データに基づき、走査部23による加工レーザ光20の走査を制御する。具体的には走査ミラーの駆動のオン又はオフの制御、駆動周波数の制御等を行う。
容器回転制御部67は、回転条件データに基づき、回転機構3による容器本体1の回転駆動のオン又はオフ、回転角度、回転方向及び回転速度等を制御する。なお、容器回転制御部67は、容器本体1を所定の回転方向に連続して回転させてもよいし、回転方向を切り替えながら±90度等の所定の角度範囲内で容器本体1を往復回動(搖動)させてもよい。
容器移動制御部68は、移動条件データに基づき、移動機構4による容器本体1の移動駆動のオン又はオフ、移動方向、移動量及び移動速度等を制御する。
集塵制御部69は、集塵条件データに基づき、集塵部5による集塵のオン又はオフの制御、吸引するエアー流量又は流速等を制御する。なお、集塵部5を移動させるための機構部を設け、加工レーザ光20が照射される位置の近傍に集塵部5が配置されるように、機構部による集塵部5の移動を制御してもよい。
次に、容器の製造装置100による製造方法について説明する。図35は、容器の製造装置100による容器の製造方法の一例を示すフローチャートである。
まず、ステップS51において、像データ入力部61は、像のパターンデータをPCやスキャナ等の外部装置から入力する。像データ入力部61は、入力した像のパターンデータを加工データ生成部64及び凹部パラメータ指定部62のそれぞれに出力する。
続いて、ステップS52において、凹部パラメータ指定部62は、凹部を形成するための加工パラメータを指定する。凹部パラメータ指定部62は、像データ入力部61から入力した像の種類を示す情報に基づき、格納部63を参照して凹部の加工パラメータを取得して指定する。
なお、ステップS51とステップS52の動作は適宜順序を入れ替えてもよく、またこれらのステップが並行して実行されてもよい。
続いて、ステップS53において、加工データ生成部64は、像のパターンデータと、凹部の加工パラメータとに基づいて、凹部の集合体により構成される像を形成するための加工データを生成する。そして、レーザ照射制御部65、レーザ走査制御部66、容器回転制御部67、容器移動制御部68及び集塵制御部69のそれぞれに対して、生成した加工データを出力する。
続いて、ステップS54において、レーザ走査制御部66は、走査条件データに基づき、走査部23に加工レーザ光20のY方向への走査を開始させる。実施形態では、この走査開始に応答して、走査部23は加工レーザ光20のY方向への走査を停止の指示が出るまで継続して行う。
続いて、ステップS55において、容器回転制御部67は、回転条件データに基づき、回転機構3に容器本体1の回転駆動を開始させる。実施形態では、この回転駆動開始に応答して、回転機構3は容器本体1の回転を停止の指示が出るまで継続して行う。
続いて、ステップS56において、容器移動制御部68は、移動条件データに基づき、容器本体1の所定の位置に加工レーザ光20が照射されるように、移動機構4により容器本体1をY方向の初期位置に移動させる。容器本体1の初期位置までの移動が完了後に、容器移動制御部68は移動機構4を停止させる。
なお、ステップS54~ステップS56の動作は適宜順序を入れ替えてもよく、またこれらのステップが並行して実行されてもよい。
続いて、ステップS57において、レーザ照射制御部65は、容器本体1に対する加工レーザ光20の照射制御を開始する。
具体的には、レーザ照射部2はY方向に沿う1ライン分を走査して容器本体1に加工レーザ光20を照射する。その後、回転機構3は容器本体1の円筒軸10回りに所定角度回転する。所定角度回転後に、レーザ照射部2は次の1ライン分を走査して容器本体1に加工レーザ光20を照射する。その後、回転機構3は容器本体1の円筒軸10回りに所定角度回転する。このような動作を繰り返し行うことで、容器本体1の表面に、像が順次形成される。
続いて、ステップS58において、レーザ照射制御部65は、Y方向における容器本体1の所定領域に対し、像の形成が終了したか否かを判定する。
ステップS58で終了していないと判定された場合は(ステップS58、No)、ステップS56以降の処理が再度繰り返される。
一方、ステップS58で終了したと判定された場合は(ステップS58、Yes)、ステップS59において、回転機構3は、容器回転制御部67による停止の指示に応答して容器本体1の回転駆動を停止する。
続いて、ステップS60において、走査部23は、レーザ走査制御部66による停止の指示に応答して加工レーザ光20の走査を停止する。レーザ光源21は、レーザ照射制御部65による停止の指示に応答して加工レーザ光20の照射を停止する。
なお、ステップS59とステップS60の動作は適宜順序の変更が可能であり、これらのステップが並行して行われてもよい。
このようにして、容器の製造装置100は、容器本体1の表面に、凹部の集合体により構成される像を形成することができる。
次に、容器本体1の製造で用いられる各種データの一例を説明する。
図36は、像データ入力部61が入力する像のパターンデータの一例を示す図である。
図36に示すように、パターンデータ611は、「ラベルレス」という文字データ612を含み、文字データ612は像として容器本体1に形成される対象となる。「ラベルレス」の5文字を構成する複数の線の集合が像のためのデータに対応する。パターンデータ611における文字データ612以外のデータは、容器本体1への形成の対象外である。
パターンデータ611は、一例としてビットマップ等の画像ファイルとして提供される。またパターンデータ611を提供する画像ファイルのヘッダ情報には、像の種類を示す情報が含まれている。この例では、像の種類は「文字」である。
像データ入力部61は、「文字」を示す情報を含むパターンデータ611を、凹部パラメータ指定部62及び加工データ生成部64のそれぞれに出力する。
図37は、格納部63に収納される対応テーブルの一例を示している。図37に示す対応テーブル631は、文字、コード、図形又は写真等の像の種類と、像の視認性を向上させるために適した凹部のための加工パラメータとの対応関係を示している。この対応関係は、予め実験やシミュレーションにより定められている。
対応テーブル631の「識別情報」列に示された数値は、像の種類を示す情報を示し、「種類」列に示された情報は、像の種類を示している。また「パラメータ」列に示された情報は、像の種類に対応した加工パラメータが記録されたファイル名を示している。
凹部パラメータ指定部62は、対応テーブル631を参照して、像の種類を示す情報に対応するファイルを読み込み、加工パラメータを取得する。図36の例では、像の種類は「文字」であるため、凹部パラメータ指定部62は、「文字」を示す識別情報「1」に対応するファイル「para1」を読み出して加工パラメータを取得し、加工データ生成部64に出力する。
図38は、凹部パラメータ指定部62が取得した加工パラメータの一例を示す図である。加工パラメータ621の「項目」列の項目に応じて、「パラメータ」列にパラメータが示されている。
図39は、加工データ生成部64が生成した加工データの一例を示す図である。加工データ641における文字データ642は、凹部に対応する複数の直線データにより構成されている。加工データ641における黒地領域が、加工レーザ光20の照射により容器本体1の性状を変化させる領域に対応する。
次に、図40は、加工レーザ光20の照射による容器本体1の表面の性状変化の一例を示す図である。
図40の(a)は、容器本体1の表面を蒸散させて形成した凹部12を示し、図40の(b)は、容器本体1の表面を溶融させて形成した凹部12を示している。図40の(b)の場合、図40の(a)に対して凹部12の周縁部12aが盛り上がった形状になる。
このように、容器本体1の表面の形状を変化させることで、容器本体1の表面に凹部12と非凹部13とを含む像を形成できる。
容器本体1の表面を蒸散させて凹部形状を形成する方法として、例えば、波長が355nm~1064nm、パルス幅が10fsから500nm以下のパルスレーザを照射する。これによりレーザビームが照射された部分が蒸散し、表面に微小な凹部が形成できる。
また、波長が355nm~1064nmのCW(Continuous Wave)レーザを照射することで、容器本体の表面を溶融させて凹部を形成することも可能である。また、容器本体の表面が溶融した後も、レーザを照射し続けると、容器本体の内部及び表面が発泡し、白濁化させることができる。
容器本体1の表面の性状の変化は、図40に示したものに限定されるものではない。樹脂材料で構成された容器本体の表面の黄変や酸化反応、表面改質等によって容器本体の表面の性状を変化させてもよい。
容器の製造装置100で使用されるレーザ光源21は、例えば、波長355nm、波長532nm、波長1064nmのパルスレーザが使用され、パルス幅は、数10fsから数100nsである。換言すると、紫外領域、又は可視光領域の短パルスレーザ、若しくは超短パルスレーザが使用される。但し、これに限定されるものではなく、CWレーザを使用することも可能であり、CWレーザを変調して使用できる。
レーザ光源21として波長が短いレーザ光源を用いるほどレーザ光のスポット径を小さくでき、より凹部の集合体により構成される像を形成するために好適である。
<容器の製造装置の第2の実施形態>
図41は、容器の第3実施形態に係る容器本体1bを製造するための容器の製造装置の第2の実施形態に係る容器の製造装置100bの構成の一例を示す図である。この容器の製造装置100bは、容器本体1bの円筒軸10がZ方向に沿うように容器本体1bを保持する。またレーザ照射部2は、容器本体1bの肩部102に対向して加工レーザ光20を照射するように配置されている。
容器の製造装置100bの構成により、肩部102に対向して加工レーザ光20を走査させることができ、凹部の集合体により構成される像を形成しやすくなる。
<容器の製造装置の第2の実施形態の変形例1>
図42は、容器の製造装置の第2の実施形態の変形例1に係る容器の製造装置100dの構成の一例を示す図である。この容器の製造装置100dは、容器本体1の円筒軸10がZ方向に沿うように容器本体1を保持する。またレーザ照射部2は、容器本体1の胴部103に対向して加工レーザ光20を照射するように配置されている。
<容器の製造装置の第2の実施形態の変形例2>
図43は、容器の製造装置の第2の実施形態の変形例2に係る容器の製造装置100eの構成の一例を示す図である。この容器の製造装置100eは、容器本体1の円筒軸10がZ方向に沿うように容器本体1を支持する。また容器本体1を挟んで正のY方向側と負のY方向側に1つずつレーザ照射部2が容器本体1の胴部103に対向して配置されている。2つのレーザ照射部2は、正のY方向側と負のY方向側の両側から容器本体1の胴部103に加工レーザ光20を照射する。
容器の製造装置100eにより、容器本体1の胴部103の正のY方向側と負のY方向側の両側に凹部の集合体により構成される像を形成できる。そのため、容器本体1を円筒軸回りに回転させる回転機構が構成から省略されている。但し、回転機構を構成に加えてもよい。
移動機構4はコンベアなどの継続的に移動するものでもよく、容器本体1の保持は容器本体1と収容物自身の重みによるものとし、置いているのみでもよい。レーザ照射部は2つに限らず3つ以上で構成してもよい。
<容器の製造装置の第3の実施形態>
図44は、容器の製造装置の第3の実施形態に係る容器本体1の場所ごとで異なる波長のレーザ光を照射する容器の製造装置100eの一例を示す図である。この容器の製造装置100eはレーザ照射部2a、2b及び2cを有する。レーザ照射部2aは、容器本体1の第1の面(例えば図44の-Y方向側の面)に第1の波長の加工レーザ光20aを照射し、レーザ照射部2bは、容器本体1の第2の面(例えば図44の+Y方向側の面)に第2の波長の加工レーザ光20bを照射する。またレーザ照射部2cは、容器本体1の容器のキャップ8の面に第3の波長の加工レーザ光20cを照射する。
レーザ照射部2a、2b及び2cのそれぞれが備えるレーザ光源は、加工レーザ光20a、20b及び20cを射出できる。第1の波長と、第2の波長と、第3の波長は相互に異なる波長である。但し、必ずしも全部の光源の波長がそれぞれ異なる必要はなく、一部の光源同士は波長が等しくてもよい。レーザ照射部2a、2b及び2cは、それぞれが並行して加工レーザ光を照射できる。
例えば、容器のキャップ8の材質が容器本体1の材質とは異なり、且つ容器本体1と比較して第1の波長の吸収率が低い場合には、容器のキャップ8の材質に対する吸収率が、容器本体1に対する第1の波長の吸収率と同程度である第2の波長を加工レーザ光20bとして照射する。これにより加工レーザ光20aによる容器本体1へのパターン形成の速度と、加工レーザ光20bによる容器のキャップ8へのパターン形成の速度とを合わせることができる。
また、第1の波長と第3の波長を異ならせることで、例えば、レーザ照射部2aにより容器本体1の第1の面に形成するパターンに対して濃度が異なるパターンを、レーザ照射部2cにより容器本体1の第2の面に形成することができる。
<容器の製造装置の第4の実施形態>
図45は、容器の製造装置の第4の実施形態に係る容器の製造装置100fによる温度制御の一例を説明する図である。図45に示すように、容器の製造装置100fは、エアブロウ321と、制御部6fとを有する。
エアブロウ321は、容器本体1における加工レーザ光20が照射される部分の近傍に配置されたエアー噴射装置である。エアブロウ321は、加工レーザ光20が照射されて温度上昇した容器本体1の部分にエアーを吹き付けることで該部分を冷却する。
エアブロウ321は、制御部6fの制御下で、エアー噴射のオンとオフを切り替え、またエアーの噴射量を変化させることができる。また、エアブロウ321をロボットハンド等の保持手段に保持させ、該保持手段を駆動させること等により、加工レーザ光20の照射位置に合わせてエアーの噴射位置を可変にすることもできる。
なお、ここでは、加工レーザ光20が照射されて温度上昇した容器本体1の部分を冷却する構成としてエアブロウ321を例示したが、これに限定されるものではなく、冷却機能を有する如何なる構成を適用してもよい。
ここで、図46は、制御部6fの機能構成の一例を説明するブロック図である。制御部6fは、温度制御部70を有する。また温度制御部70は、環境温度制御部71と、エアブロウ制御部72とを有する。
環境温度制御部71は、ヒータ等の加熱手段や熱交換器等の冷却手段を制御して製造装置100fの内部全体の環境温度を制御する。
エアブロウ制御部72は、エアブロウ321によるエアー噴射のオンとオフの切替制御、及びエアーの噴射量の制御等を行うことができる。
<容器の製造装置の第5の実施形態>
図47は、容器の製造装置の第5の実施形態に係るアレイレーザが射出するマルチレーザビームを照射する構成の一例を示す図である。なお、マルチレーザビームとは、2以上のレーザビームをいう。
図47に示すように、容器の製造装置100gは、レーザ照射部2gと、回転機構3とを有する。レーザ照射部2gは、アレイ状に配列する複数の半導体レーザ351と、半導体レーザ351のそれぞれに1対1で対応して設けられた複数の集光レンズ352とを有する。
レーザ照射部2gは、複数の半導体レーザ351がそれぞれ射出するレーザビームを、集光レンズ352を介して容器本体1に照射する。製造装置100gは、回転機構3により容器本体1を回転させながら、半導体レーザ351のそれぞれが射出するレーザビームを並行に照射することで、容器本体1の表面にパターンを形成できる。
なお、レーザ照射部2gは、複数の半導体レーザ351に1対1に対応して複数の光ファイバを有し、各光ファイバで導光されたレーザビームを容器本体1に照射する構成にしてもよい。
図48は、容器の製造装置の第5の実施形態に係るアレイレーザが射出する各種のマルチレーザビームを例示する図である。(a)は1列に配列するもの、(b)は2列に配列するもの、(c)は千鳥状に2次元配列するもの、(d)は矩形格子状に2次元配列するものをそれぞれ示している。第5の実施形態の製造装置100gは、図48の(a)乃至(d)のマルチレーザビームを容器本体1に照射できる。
図48の(a)では、例えば254個のレーザビームが配列することで、容器本体1の表面に、100μmの画素サイズで1インチ幅の領域にレーザビームを並行に照射できる。
例えば、図48の(a)のマルチビームにより、低コストの構成で高速にパターンを形成できる。図48の(b)のマルチビームにより、図48の(a)のマルチビームと比較して、より高速にパターンを形成できる。
図48の(c)のマルチビームにより、容器本体上でのビームの密度(ドット密度)を上げることができる。図48の(d)のマルチビームにより、図48の(a)及び(b)と比較して、更に高速にパターンを形成できる。また図48の(d)のマルチビームにより、容器本体1を回転させたり、移動させたりすることなく2次元のパターンを形成することもできる。
以上、容器の製造装置の実施形態について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更しても差支えない。例えば、上記実施形態では加工レーザ光によって複数の凹部及び非凹部を含む像を形成する例を示したが、切削加工等の他の加工法も適用可能である。
本発明の態様としては、例えば、以下のとおりである。
<1> 容器本体と、該容器本体に複数の凹部及び非凹部を含む像とを有し、
前記凹部が複数の加工部から形成され、複数の前記加工部が第1の走査方向に沿って線状に配されており、
前記非凹部が前記凹部に隣接して第一の走査方向に沿って線状に配されており、
前記凹部における前記第1の走査方向と直交する第2の走査方向の幅が、前記非凹部における前記第2の走査方向の幅と同じもしくは異なることを特徴とする容器である。
<2> 前記凹部における第2の走査方向の幅L1と、前記非凹部における第2の走査方向の幅L2とが、次式、40%≦[L1/(L1+L2]]×100≦95%、を充たす、前記<1>に記載の容器である。
<3> 前記凹部は、複数の加工部が前記第1の走査方向に沿って接触又は重なって線状に配されている、前記<1>から<2>のいずれかに記載の容器である。
<4> 前記像の面積に対する複数の前記凹部の面積の割合[(複数の凹部の面積/像の面積)×100]が40%以上95%以下である、前記<1>から<3>のいずれかに記載の容器である。
<5> 下記数式(1)で表される視認性値が2以上である、前記<1>から<4>のいずれかに記載の容器である。
視認性値=b・L ・(1-exp(b・ΔL))・・・数式(1)
ただし、前記数式(1)中、L は前記像の明度、ΔLは前記像の明度と前記像以外の部分の明度との差を表し、bは正の実数、bは負の実数である。
<6> 前記凹部における前記第2の走査方向の幅が、所定の解像度における1ドット幅以下である、前記<1>から<5>のいずれかに記載の容器である。
<7> 前記<1>から<6>のいずれかに記載の容器を製造する方法であって、
容器本体にレーザ光を照射して像を形成する照射工程を含むことを特徴とする容器の製造方法である。
<8> 前記容器本体を軸回りに回転させる回転工程及び前記容器本体を移動させる移動工程の少なくともいずれかの工程を含む、前記<7>に記載の容器の製造方法である。
<9> 前記レーザ光のスポット径が1μm以上200μm以下である、前記<7>から<8>のいずれかに記載の容器の製造方法である。
<10> 前記レーザ光の強度を制御することにより像を形成する、前記<7>から<9>のいずれかに記載の容器の製造方法である。
<11> 前記レーザ光を走査することにより像を形成する、前記<7>から<9>のいずれかに記載の容器の製造方法である。
<12> 複数のレーザ光源から照射される複数のレーザ光の強度をそれぞれ独立制御することにより像を形成する、前記<7>から<10>のいずれかに記載の容器の製造方法である。
<13> 前記<1>から<6>のいずれかに記載の容器を製造する装置であって、
容器本体にレーザ光を照射して像を形成する照射手段を有することを特徴とする容器の製造装置である。
<14> 前記容器本体を軸回りに回転させる回転手段及び前記容器本体を移動させる移動手段の少なくともいずれかの手段を有する、前記<13>に記載の容器の製造装置である。
<15> 前記<1>から<6>のいずれかに記載の容器と、前記容器に収容されている収容物とを含むことを特徴とする収容体である。
前記<1>から<6>のいずれかに記載の容器、前記<7>から<12>のいずれかに記載の容器の製造方法、前記<13>から<14>のいずれかに記載の容器の製造装置、及び前記<15>に記載の収容体によると、従来における諸問題を解決し、本発明の目的を達成することができる。
1 容器本体
2 レーザ照射部
3 回転機構(回転部の一例)
4 移動機構(移動部の一例)
5 集塵部
6 制御部
7 収容体
8 容器のキャップ
9 収容物
10 円筒軸
11 像(文字)
12 凹部(直線)
13 非凹部
20 加工レーザ光
21 レーザ光源
22 ビームエキスパンダ
23 走査部
24 走査レンズ
25 同期検知部
47 加工部
61 像データ入力部
62 凹部パラメータ指定部
63 格納部
64 加工データ生成部
65 レーザ照射制御部
66 レーザ走査制御部
67 容器回転制御部
68 容器移動制御部
69 集塵制御部
100 容器の製造装置
101 口部
102 肩部
103 胴部
104 底部
P 間隔(周期の一例)
Pd1、Pd2、Pd3、Pd4 間隔
W 幅
Hp 加工深さ
Hb 非加工深さ
t 容器本体の厚み
D 結晶化深さ
特開2011-11819号公報 特開2006-248191号公報

Claims (15)

  1. 容器本体と、該容器本体に複数の凹部及び非凹部を含む像とを有し、
    前記凹部が複数の加工部から形成され、複数の前記加工部が第1の走査方向に沿って線状に配されており、
    前記非凹部が前記凹部に隣接して第一の走査方向に沿って線状に配されており、
    前記凹部における前記第1の走査方向と直交する第2の走査方向の幅が、前記非凹部における前記第2の走査方向の幅と同じもしくは異なることを特徴とする容器。
  2. 前記凹部における第2の走査方向の幅L1と、前記非凹部における第2の走査方向の幅L2とが、次式、40%≦[L1/(L1+L2]]×100≦95%、を充たす、請求項1に記載の容器。
  3. 前記凹部は、複数の加工部が前記第1の走査方向に沿って接触又は重なって線状に配されている、請求項1から2のいずれかに記載の容器。
  4. 前記像の面積に対する複数の前記凹部の面積の割合[(複数の凹部の面積/像の面積)×100]が40%以上95%以下である、請求項1から3のいずれかに記載の容器。
  5. 下記数式(1)で表される視認性値が2以上である、請求項1から4のいずれかに記載の容器。
    視認性値=b・L ・(1-exp(b・ΔL))・・・数式(1)
    ただし、前記数式(1)中、L は前記像の明度、ΔLは前記像の明度と前記像以外の部分の明度との差を表し、bは正の実数、bは負の実数である。
  6. 前記凹部における前記第2の走査方向の幅が、所定の解像度における1ドット幅以下である、請求項1から5のいずれかに記載の容器。
  7. 請求項1から6のいずれかに記載の容器を製造する方法であって、
    容器本体にレーザ光を照射して像を形成する照射工程を含むことを特徴とする容器の製造方法。
  8. 前記容器本体を軸回りに回転させる回転工程及び前記容器本体を移動させる移動工程の少なくともいずれかの工程を含む、請求項7に記載の容器の製造方法。
  9. 前記レーザ光のスポット径が1μm以上200μm以下である、請求項7から8のいずれかに記載の容器の製造方法。
  10. 前記レーザ光の強度を制御することにより像を形成する、請求項7から9のいずれかに記載の容器の製造方法。
  11. 前記レーザ光を走査することにより像を形成する、請求項7から9のいずれかに記載の容器の製造方法。
  12. 複数のレーザ光源から照射される複数のレーザ光の強度をそれぞれ独立制御することにより像を形成する、請求項7から10のいずれかに記載の容器の製造方法。
  13. 請求項1から6のいずれかに記載の容器を製造する装置であって、
    容器本体にレーザ光を照射して像を形成する照射手段を有することを特徴とする容器の製造装置。
  14. 前記容器本体を軸回りに回転させる回転手段及び前記容器本体を移動させる移動手段の少なくともいずれかの手段を有する、請求項13に記載の容器の製造装置。
  15. 請求項1から6のいずれかに記載の容器と、前記容器に収容されている収容物とを含むことを特徴とする収容体。
JP2022077077A 2021-06-08 2022-05-09 容器及び収容体、並びに容器の製造方法及び容器の製造装置 Pending JP2022187985A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/749,738 US12097997B2 (en) 2021-06-08 2022-05-20 Container and content containing body, and method for producing container and container producing apparatus
EP22174493.1A EP4101653A3 (en) 2021-06-08 2022-05-20 Container and content containing body, and method for producing container and container producing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021095557 2021-06-08
JP2021095557 2021-06-08

Publications (1)

Publication Number Publication Date
JP2022187985A true JP2022187985A (ja) 2022-12-20

Family

ID=84532035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022077077A Pending JP2022187985A (ja) 2021-06-08 2022-05-09 容器及び収容体、並びに容器の製造方法及び容器の製造装置

Country Status (1)

Country Link
JP (1) JP2022187985A (ja)

Similar Documents

Publication Publication Date Title
JP7540269B2 (ja) 収容器、収容体、製造方法及び製造装置
US20220410608A1 (en) Substrate, container, product, production method, and production apparatus
JP7552948B2 (ja) 収容器及び収容体
US12103322B2 (en) Method and system for manufacturing container product
JP2022130978A (ja) レーザ照射装置、レーザ照射方法、収容器および収容体
JP2022147072A (ja) 媒体、収容器、収容体、マーキング装置及び収容器の製造方法
JP2022035975A (ja) パターン形成装置
JP2022058127A (ja) 基材のパターン形成装置、パターン形成方法、基材、および収容器
JP2022057612A (ja) 収容器および収容体
JP2022035976A (ja) パターン形成装置、及びレーザ加工装置
JP2022086838A (ja) パターン形成装置、及びレーザ加工装置
JP2022187985A (ja) 容器及び収容体、並びに容器の製造方法及び容器の製造装置
JP7533432B2 (ja) 収容体、並びに収容体の製造方法及び収容体の製造装置
JP2022187535A (ja) 容器及び収容体、並びに容器の製造方法及び容器の製造装置
US20230278141A1 (en) Pattern forming apparatus
US12097997B2 (en) Container and content containing body, and method for producing container and container producing apparatus
US20230124975A1 (en) High speed laser processes for marking on articles
US20220388324A1 (en) Container and content containing body, and method for producing container and container producing apparatus
JP2024149626A (ja) 容器及び収容体、並びに容器の製造方法及び容器の製造装置
CN118055861A (zh) 制品上的高速激光标记
CN114951980B (en) Laser irradiation device, laser irradiation method, container, and container body
JP2023025326A (ja) レーザーマーキング装置、収容器、及び収容体
JP2022058203A (ja) 収容体の製造方法及び製造システム
US20240326502A1 (en) SHEET MATERIALS AND ARTICLES COMPRISING TiO2 AND LASER MARKING
WO2022071148A1 (en) Pattern forming apparatus for base material, pattern forming method, base material, and container

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220601