JP2022181637A - Angle error detection device - Google Patents

Angle error detection device Download PDF

Info

Publication number
JP2022181637A
JP2022181637A JP2021088680A JP2021088680A JP2022181637A JP 2022181637 A JP2022181637 A JP 2022181637A JP 2021088680 A JP2021088680 A JP 2021088680A JP 2021088680 A JP2021088680 A JP 2021088680A JP 2022181637 A JP2022181637 A JP 2022181637A
Authority
JP
Japan
Prior art keywords
signal
vector
phase
difference signal
angle error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021088680A
Other languages
Japanese (ja)
Inventor
薫 小林
Kaoru Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2021088680A priority Critical patent/JP2022181637A/en
Publication of JP2022181637A publication Critical patent/JP2022181637A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an angle error detection device capable of grasping and correcting a change in a phase following passage of a sum signal and a differential signal through a signal path in real time when performing angle error detection of an antenna used for tracking reception.SOLUTION: In an angle error detection device 12 for detecting an angle error of a reception direction of a frequency signal from a tracked object, an angle error detection part 42 detects an angle error on the basis of a value of an imaginary part of a multiplication vector of a vector of a differential signal obtained by performing quadrature demodulation of a sum signal and a differential signal of a frequency signal received at a different position of an antenna, and a conjugated vector of a vector of the sum signal. A correction value acquisition part 44 acquires a correction value for setting a value of a real part to zero by correcting a phase of the differential signal on the basis of a value of the real part of the multiplication vector, and a phase correction part 45 corrects a phase of the differential signal on the basis of the correction value.SELECTED DRAWING: Figure 6

Description

本発明は追尾対象に対するアンテナの角度誤差を検出する技術に関する。 The present invention relates to a technology for detecting angular error of an antenna with respect to a tracked object.

通信衛星や航空機などの追尾対象から出力される周波数信号である通信信号を受信する受信システムには、アンテナの正面方向に対する通信信号の受信方向のずれ(角度誤差)を検出した結果に基づいて、通信信号の受信方向がアンテナの正面方向と揃うようにアンテナの向きを変えることができるもの(追尾受信システム)がある。 Receiving systems that receive communication signals, which are frequency signals output from tracking targets such as communication satellites and aircraft, are equipped with the There is a system (tracking reception system) that can change the orientation of the antenna so that the reception direction of the communication signal is aligned with the front direction of the antenna.

角度誤差の検出手法としては、アンテナ内に設けられた、配置位置の異なる2つの開口部(第1の受信部、第2の受信部)にて各々、受信された通信信号の振幅差を求め、この振幅差に基づいて角度誤差を求める手法が知られている。
この手法においては、第1の受信部にて受信した通信信号Aと、第2の受信部にて受信した通信信号Bとの和信号A+B、及び差信号A-Bを用いて角度誤差を求める計算が行われる。
As a method for detecting the angle error, the amplitude difference between the communication signals received by two openings (first receiving section and second receiving section) arranged in different positions in the antenna is obtained. , a method of obtaining an angle error based on this amplitude difference is known.
In this method, the angle error is obtained using the sum signal A+B and the difference signal AB of the communication signal A received by the first receiving unit and the communication signal B received by the second receiving unit. Calculations are made.

一方、追尾受信システムにおいては、角度誤差の計算を行う演算機をアンテナの近傍位置に配置できるとは限らず、例えばアンテナと演算機とを、数十メートル~数百メートル離して配置しなければならない場合がある。
この場合には、アンテナ側で得られた和信号、差信号は、通信ケーブルなどを含む信号路(和信号用信号路、差信号用信号路)を介して演算機側に供給される。
On the other hand, in a tracking reception system, it is not always possible to place the calculator that calculates the angle error near the antenna. may not be.
In this case, the sum signal and the difference signal obtained on the antenna side are supplied to the calculator side via signal paths (sum signal path and difference signal path) including communication cables.

しかしながら、これらの信号路の長さが厳密に揃っていないと、和信号と差信号との間に位相差が形成され、正確な角度誤差の算出を阻む要因となる。また、通信ケーブルの劣化の度合いの違いや通信ケーブルが配置されている空間の温度の違いなども、和信号と差信号との間に位相差を形成する要因となる。 However, if the lengths of these signal paths are not strictly the same, a phase difference is formed between the sum signal and the difference signal, which becomes a factor that hinders accurate calculation of the angular error. In addition, the difference in the degree of deterioration of the communication cable and the difference in temperature of the space in which the communication cable is arranged also cause the phase difference between the sum signal and the difference signal.

ここで特許文献1、2には、和信号や差信号が送信される各信号路(特許文献1には「受信チャンネル」と記載され、特許文献2には「系統」と記載されている)に対し、これら和信号や差信号と切り替えてパイロット信号を供給し、異なる信号路を通過したパイロット信号の位相差を検出した結果に基づいて和信号や差信号の補正を行う技術が記載されている。
しかしながら、これら特許文献1、2には、和信号・差信号とパイロット信号との切り替えを行わずに、各信号路に起因する位相差をリアルタイムで検出し、補正に活用する技術は記載されていない。
Here, Patent Documents 1 and 2 describe each signal path through which a sum signal and a difference signal are transmitted (referred to as "receiving channel" in Patent Document 1 and "system" in Patent Document 2). However, a technique is described in which a pilot signal is supplied by switching from the sum signal or difference signal, and the sum signal or difference signal is corrected based on the result of detecting the phase difference between the pilot signals that have passed through different signal paths. there is
However, these Patent Documents 1 and 2 do not describe a technique of detecting the phase difference caused by each signal path in real time without switching between the sum signal/difference signal and the pilot signal and utilizing it for correction. do not have.

特表昭56-500394号公報Japanese Patent Publication No. 56-500394 特開2010-66069号公報JP 2010-66069 A

本発明はこのような事情の下になされたものであり、追尾受信に用いられるアンテナの角度誤差検出を行う際に、和信号や差信号が信号路(和信号用信号路、差信号用信号路)を通過することに伴う位相の変化をリアルタイムで把握し、補正することが可能な角度誤差検出装置を提供する。 The present invention has been made under such circumstances. Provided is an angle error detection device capable of grasping and correcting in real time the change in phase that accompanies passage through a path.

本角度誤差検出装置は、アンテナの正面方向に対する、追尾対象からの周波数信号の受信方向の角度誤差を検出する角度誤差検出装置において、
前記アンテナに設けられ、搬送波により変調された前記周波数信号を受信し、第1の受信信号として出力する第1の受信部と、前記第1の受信部で受信した周波数信号とは異なる位置にて前記周波数信号を第2の受信信号として受信すると共に、前記第1の受信信号及び前記第2の受信信号から得られる和信号と、差信号との位相が90°ずれた状態となる位置に配置された第2の受信部と、
前記第1の受信信号と前記第2の受信信号とに基づき和信号と、差信号とを取得し、各々、和信号用信号路、差信号用信号路へと出力する受信信号出力部と、
前記和信号用信号路を介して得られた前記和信号、及び前記差信号用信号路を介して得られた前記差信号を、各々、前記搬送波を用いて直交復調し、これら和信号及び差信号について、各々、同相成分(I成分)、直交成分(Q成分)を取得する復調部と、
前記同相成分を複素平面上の実部、前記直交成分を虚部として複素ベクトル表示したとき、前記差信号のベクトルと、前記和信号のベクトルの共役ベクトルとを乗算して得られる乗算ベクトルの虚部の値に基づき前記角度誤差を検出する角度誤差検出部と、
前記乗算ベクトルの実部の値に基づき、前記差信号の位相を補正して当該実部の値をゼロにするための補正値を取得する補正値取得部と、
前記補正値取得部にて補正した補正値に基づき、前記差信号の位相を補正する位相補正部と、を備えたことを特徴とする。
This angle error detection device is an angle error detection device that detects an angle error in a receiving direction of a frequency signal from a tracking target with respect to a front direction of an antenna,
A first receiving section provided in the antenna for receiving the frequency signal modulated by the carrier wave and outputting it as a first received signal, and at a position different from the frequency signal received by the first receiving section. The frequency signal is received as a second received signal, and the sum signal obtained from the first received signal and the second received signal is arranged at a position where the difference signal is out of phase with the phase of the sum signal by 90°. a second receiving unit configured to
a received signal output unit that obtains a sum signal and a difference signal based on the first received signal and the second received signal, and outputs the signals to a sum signal path and a difference signal path, respectively;
The sum signal obtained through the sum signal path and the difference signal obtained through the difference signal path are orthogonally demodulated using the carrier wave, and the sum signal and the difference signal are a demodulator that obtains an in-phase component (I component) and a quadrature component (Q component) for each signal;
When the in-phase component is expressed as a real part on the complex plane and the quadrature component is expressed as an imaginary part as a complex vector, the imaginary vector obtained by multiplying the difference signal vector and the conjugate vector of the sum signal vector is obtained. an angle error detection unit that detects the angle error based on the value of the part;
a correction value obtaining unit that obtains a correction value for correcting the phase of the difference signal and setting the value of the real part to zero based on the value of the real part of the multiplication vector;
and a phase correction unit that corrects the phase of the difference signal based on the correction value corrected by the correction value acquisition unit.

上述の角度誤差検出装置は、以下の構成を備えていてもよい。
(a)前記位相補正部は、前記差信号用信号路を通過した前記差信号が、前記復調部に入力される位置にて当該差信号の位相を補正すること。
The angular error detection device described above may have the following configuration.
(a) The phase correction section corrects the phase of the difference signal at a position where the difference signal that has passed through the difference signal path is input to the demodulation section.

本発明によれば、角度誤差検出に用いられる和信号及び差信号を直交復調して複素ベクトル表示した際、これらのベクトルが直交した状態を維持するように復調前の差信号をフィードバック補正するので、信号路を通過することに起因する和信号、差信号間の位相の変化をリアルタイムで把握し、補正することができる。 According to the present invention, when the sum signal and the difference signal used for angular error detection are orthogonally demodulated and displayed as a complex vector, the difference signal before demodulation is feedback-corrected so as to maintain the orthogonal state of these vectors. , the change in phase between the sum signal and the difference signal caused by passing through the signal path can be grasped in real time and corrected.

角度誤差検出装置を備えた追尾受信システムの構成図である。1 is a configuration diagram of a tracking reception system provided with an angle error detection device; FIG. 角度誤差検出装置の概要構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an angle error detection device; FIG. 比較形態に係る角度誤差検出装置のブロック図である。FIG. 11 is a block diagram of an angle error detection device according to a comparative embodiment; 直交復調された和信号及び差信号を用いて角度誤差を求める手法に係る説明図である。FIG. 4 is an explanatory diagram relating to a method of obtaining an angle error using a quadrature-demodulated sum signal and a difference signal; 前記和信号及び差信号の位相のずれが角度誤差の検出結果へ及ぼす影響を示す説明図である。FIG. 10 is an explanatory diagram showing the influence of the phase shift between the sum signal and the difference signal on the detection result of the angle error; 実施形態に係る角度誤差検出装置のブロック図である。1 is a block diagram of an angular error detection device according to an embodiment; FIG. 前記実施形態に係る角度誤差検出装置に含まれる回路の構成図である。4 is a configuration diagram of a circuit included in the angle error detection device according to the embodiment; FIG.

図1は、本発明の実施の形態に係る角度誤差検出装置を備えた追尾受信システム1の構成例を示している。
当該追尾受信システム1は、追尾対象から出力された通信信号(周波数信号)を受信するアンテナ11と、このアンテナ11の向きを変化させるアンテナ駆動機構15と、アンテナ11から取得した通信信号の和信号及び差信号に基づき、アンテナ11の正面方向に対する通信信号の受信方向のずれ(角度誤差)を検出する角度誤差検出装置12と、角度誤差検出装置12にて検出された角度誤差に基づいてアンテナ11の駆動方向や駆動量を求める追尾制御部13と、追尾制御部13にて決定された駆動方向や駆動量に基づき、アンテナ駆動機構15の駆動制御を行うアンテナ駆動部14と、を備える。
FIG. 1 shows a configuration example of a tracking reception system 1 equipped with an angular error detection device according to an embodiment of the present invention.
The tracking reception system 1 includes an antenna 11 that receives a communication signal (frequency signal) output from a tracking target, an antenna driving mechanism 15 that changes the direction of the antenna 11, and a sum signal of the communication signal acquired from the antenna 11. and an angle error detection device 12 for detecting a deviation (angle error) of the reception direction of the communication signal with respect to the front direction of the antenna 11 based on the difference signal; and an antenna driving unit 14 for driving and controlling the antenna driving mechanism 15 based on the driving direction and driving amount determined by the tracking control unit 13 .

図2は、上述の追尾受信システム1に含まれるアンテナ11及び角度誤差検出装置12を示すブロック図である。
例えば図2に示す追尾対象8は、予め設定された周波数の通信信号を出力する。この通信信号は、前記予め設定された周波数を有する搬送波によって変調されたベースバンド信号を含んでいる。
FIG. 2 is a block diagram showing the antenna 11 and the angle error detection device 12 included in the tracking reception system 1 described above.
For example, the tracking target 8 shown in FIG. 2 outputs a communication signal with a preset frequency. The communication signal includes a baseband signal modulated by a carrier having the preset frequency.

アンテナ11は、互いに受信位置が異なる第1の受信部2a、第2の受信部2bを備える。方位方向の測角を行う場合は、第1の受信部2a、第2の受信部2bは横方向に異なる位置に配置され、高さ方向の測角を行う場合は、第1の受信部2a、第2の受信部2bは高さ方向に異なる位置に配置される。 The antenna 11 includes a first receiving section 2a and a second receiving section 2b whose receiving positions are different from each other. When performing angle measurement in the azimuth direction, the first receiving unit 2a and the second receiving unit 2b are arranged at different positions in the horizontal direction, and when performing angle measurement in the height direction, the first receiving unit 2a , and the second receiver 2b are arranged at different positions in the height direction.

これら第1、第2の受信部2a、2bにて受信された通信信号A、Bは、例えばアンテナ11側に設けられた加算部21、22を経て、各々、和信号A+B、差信号A-Bとして出力される。
なお、図2に示した例においては、アンテナ11側で和信号、差信号を得る場合について説明したが、これらの信号を得る加算部21、22は、角度誤差検出装置12側に設けてもよい。
The communication signals A and B received by the first and second receivers 2a and 2b are passed through adders 21 and 22 provided on the side of the antenna 11, for example, to obtain a sum signal A+B and a difference signal A-, respectively. Output as B.
In the example shown in FIG. 2, the case where the sum signal and the difference signal are obtained on the antenna 11 side has been described, but the adders 21 and 22 for obtaining these signals may be provided on the angle error detection device 12 side. good.

図3は、本発明を適用する前の比較形態に係る角度誤差検出装置12aのブロック図を示している。角度誤差検出装置12aは、不要な成分をろ波する受信フィルタ31a、31bや、ろ波後の和信号、差信号を増幅する可変増幅器32a、32bが設けられた受信処理部3と、信号処理ブロック4とを備える。受信処理部3と信号処理ブロック4との間は、和信号が通過する和信号用信号路33a、及び差信号が通過する差信号用信号路33bによって接続されている。
アンテナ11に設けられた加算部21、22と、前記受信処理部3とは、本例の受信信号出力部を構成している。
FIG. 3 shows a block diagram of an angular error detection device 12a according to a comparison form before applying the present invention. The angular error detection device 12a includes a reception processing unit 3 provided with reception filters 31a and 31b for filtering unnecessary components, variable amplifiers 32a and 32b for amplifying the filtered sum signal and difference signal, and a signal processing unit 3. a block 4; The reception processing unit 3 and the signal processing block 4 are connected by a sum signal path 33a through which the sum signal passes and a difference signal path 33b through which the difference signal passes.
The adders 21 and 22 provided in the antenna 11 and the reception processing section 3 constitute a reception signal output section of this example.

信号処理ブロック4は、受信処理部3にて増幅された和信号、差信号のA/D変換を行うA/D変換部43と、ディジタル変換された和信号、差信号を復調する復調部41と、差信号の信号レベルに基づき角度誤差を求める角度誤差検出部42と、を備える。
ここで受信処理部3側に設けられた既述の可変増幅器32a、32bは、A/D変換部43側に設けられたAGC制御部432と組み合わせて動作するAGC(自動利得制御部)を構成している。
The signal processing block 4 includes an A/D conversion unit 43 that performs A/D conversion of the sum signal and difference signal amplified by the reception processing unit 3, and a demodulation unit 41 that demodulates the digitally converted sum signal and difference signal. and an angle error detector 42 for obtaining an angle error based on the signal level of the difference signal.
Here, the variable amplifiers 32a and 32b provided on the reception processing section 3 side constitute an AGC (automatic gain control section) that operates in combination with an AGC control section 432 provided on the A/D conversion section 43 side. is doing.

次に、図4、図5を参照し、上述の構成を備える角度誤差検出装置12aにより、和信号、差信号を用いて角度誤差を検出する手法の一例、及び図3に示す比較形態に係る角度誤差検出装置12aの問題点について説明する。 Next, referring to FIGS. 4 and 5, an example of a method of detecting an angle error using a sum signal and a difference signal by the angle error detection device 12a having the above configuration, and a comparative example shown in FIG. Problems of the angle error detection device 12a will be described.

図4(a)は、加算部21、22から出力された和信号、差信号を直交復調して得られた直交成分(Q成分)を実軸(Re軸)、同相成分(I成分)を虚軸(Im)軸にプロットしてベクトル表示した図である。図4(a)に示すように、通常、和信号及び差信号は、互いに異なる信号レベルを有し、和信号のベクトル、差信号のベクトルの長さが異なっている場合がある。 FIG. 4A shows the quadrature component (Q component) obtained by quadrature demodulation of the sum signal and difference signal output from the adders 21 and 22 on the real axis (Re axis), and the in-phase component (I component) on the real axis (Re axis). It is the figure which plotted on the imaginary axis (Im) axis, and represented the vector. As shown in FIG. 4(a), the sum signal and the difference signal usually have different signal levels, and the sum signal vector and the difference signal vector may have different lengths.

また、図4(a)に示す和信号、差信号の信号レベルは角度誤差(アンテナ11の正面方向に対する通信信号の受信方向のずれ)に応じても変化する。このとき、角度誤差が小さい範囲においては、和信号(Σ)に対する差信号(Δ)の信号レベルの比が、角度誤差(θ)にほぼ対応する関係(θ∝Δ/Σ)があることを利用して角度誤差を検出する。 Further, the signal levels of the sum signal and the difference signal shown in FIG. 4(a) also change according to the angle error (deviation of the reception direction of the communication signal with respect to the front direction of the antenna 11). At this time, in the range where the angle error is small, the ratio of the signal level of the difference signal (Δ) to the sum signal (Σ) has a relationship (θ∝Δ/Σ) that approximately corresponds to the angle error (θ). to detect the angle error.

一方、追尾受信システム1が設けられている通信施設などにおいては、和信号をメインの復調系(不図示)にて復調し、後段の処理が行われるため、復調される和信号の信号レベルが一定であることが求められる。 On the other hand, in a communication facility where the tracking reception system 1 is installed, the sum signal is demodulated by a main demodulation system (not shown), and subsequent processing is performed, so the signal level of the demodulated sum signal is It is required to be constant.

そこで、和信号、差信号の増幅を行う可変増幅器32a、32bにおいて、和信号側の可変増幅器32aは、出力される信号レベルが一定となるように和信号を増幅する。一方、差信号側の可変増幅器32bは、和信号側の可変増幅器32aと同じゲインにて増幅を行う。
この結果、可変増幅器32bから出力される差信号の信号レベル(複素ベクトル表示された差信号のベクトルの長さ)は、可変増幅器32aから出力される和信号の信号レベル(一定値)にて規格化された値(「Δ/Σ」に対応する値)になる(図4(c))。
Therefore, in the variable amplifiers 32a and 32b that amplify the sum signal and the difference signal, the variable amplifier 32a on the sum signal side amplifies the sum signal so that the output signal level becomes constant. On the other hand, the variable amplifier 32b on the difference signal side amplifies with the same gain as the variable amplifier 32a on the sum signal side.
As a result, the signal level of the difference signal output from the variable amplifier 32b (the vector length of the difference signal expressed as a complex vector) is standardized by the signal level (constant value) of the sum signal output from the variable amplifier 32a. (Fig. 4(c)).

またここで、第1の受信部2a、第2の受信部2bは、直交復調され、複素ベクトル表示された和信号のベクトルと差信号のベクトルとが直交する関係、即ち、和信号と差信号との位相が90°ずれた関係となる位置に配置されている。この直交関係を利用し、図4(b)に示すように、差信号のベクトルが虚軸方向を向くように、ベクトルを回転させることにより、演算後の差信号のベクトルの虚部の値が「Δ/Σ」に対応する値となる。 Here, the first receiving section 2a and the second receiving section 2b are orthogonally demodulated, and the vector of the sum signal represented by the complex vector and the vector of the difference signal are orthogonal to each other, that is, the sum signal and the difference signal. are arranged at positions that are 90° out of phase with each other. Using this orthogonal relationship, as shown in FIG. 4B, by rotating the vector so that the vector of the difference signal is oriented along the imaginary axis, the value of the imaginary part of the vector of the difference signal after calculation is It becomes a value corresponding to "Δ/Σ".

差信号のベクトルを回転させる手法として、本例の復調部41は、差信号のベクトルに対し、和信号のベクトルと共役なベクトル(図4(a)中に破線で示してある)を乗算する演算を行う。この演算の結果得られた乗算ベクトルの虚部に対応する値を読み取ることにより、角度誤差に対応する「Δ/Σ」の値を取得することができる。 As a method for rotating the vector of the difference signal, the demodulator 41 of this example multiplies the vector of the difference signal by a vector conjugate to the vector of the sum signal (indicated by the dashed line in FIG. 4(a)). perform calculations. By reading the value corresponding to the imaginary part of the multiplication vector obtained as a result of this calculation, the value of "Δ/Σ" corresponding to the angle error can be obtained.

ここで図4(a)~(c)を用いて説明した上述の手法は、和信号用信号路33a、差信号用信号路33bを介して取得した和信号、差信号の位相関係が直交した状態を維持しつつ、これらの信号が復調部41に入力される場合に正しい角度誤差を得ることができる。 4(a) to 4(c), the phase relationship between the sum signal and the difference signal acquired through the signal path 33a for the sum signal and the signal path 33b for the difference signal is orthogonal. A correct angle error can be obtained when these signals are input to the demodulator 41 while maintaining the state.

一方で、既述のように、これらの信号路33a、33bは、例えば長さが数十メートル~数百メートルの通信ケーブルを備える場合がある。この際、双方の通信ケーブルの長さが厳密に揃っていなかったり、劣化の度合や配置環境の温度が異なっていたりすることにより、これらの信号路33a、33bを通過する際に和信号-差信号の位相にずれが生じる場合がある。 On the other hand, as already mentioned, these signal paths 33a, 33b may comprise, for example, communication cables with lengths of tens to hundreds of meters. At this time, if the lengths of both communication cables are not exactly the same, or the degree of deterioration or the temperature of the installation environment is different, the sum signal-difference difference may occur when passing through these signal paths 33a and 33b. A signal phase shift may occur.

図5(a)は、前記位相のずれに伴い、和信号のベクトルと差信号のベクトルとが互いに直交する関係でなくなった状態を示している。同図中には、差信号用信号路33bを通過する前の真の差信号のベクトル(図4(a)に記載の差信号のベクトルに対応する)を破線で示している。 FIG. 5(a) shows a state in which the vector of the sum signal and the vector of the difference signal are no longer orthogonal to each other due to the phase shift. In the figure, the vector of the true difference signal (corresponding to the vector of the difference signal shown in FIG. 4A) before passing through the difference signal path 33b is indicated by a broken line.

和信号のベクトルと差信号のベクトルとの直交関係が崩れてしまうと、和信号と共役なベクトルにより差信号のベクトルを回転させても、演算後の乗算ベクトルは、虚軸方向からずれてしまう。このため、乗算ベクトルの虚部の値を読み取っただけでは、正しいベクトルの長さを読み取ることができず、角度誤差の検出結果にずれ(検出誤差)が生じてしまう。
なお図示の便宜上、図5においては、差信号に位相のずれが生じ、和信号と差信号との直交関係が崩れてしまった場合について説明したが、和信号側で位相のずれが生じた場合や、差信号と和信号との双方で位相のずれが生じた場合も同様の問題が生じる。
If the orthogonal relationship between the sum signal vector and the difference signal vector is lost, even if the difference signal vector is rotated by a vector conjugate with the sum signal, the multiplied vector after the calculation will deviate from the imaginary axis direction. . For this reason, the length of the vector cannot be read correctly by simply reading the value of the imaginary part of the multiplication vector, and a deviation (detection error) occurs in the detection result of the angular error.
For convenience of illustration, FIG. 5 illustrates the case where the phase shift occurs in the difference signal and the orthogonal relationship between the sum signal and the difference signal is lost. Also, the same problem occurs when there is a phase shift between both the difference signal and the sum signal.

以上に説明した課題に対応するため、図6に示すように、本例の角度誤差検出装置12は、図5(a)、(b)を用いて説明した和信号のベクトルに対する差信号のベクトルの直交関係のずれの大きさを検出し、当該検出結果に基づいて補正値を取得する補正値取得部44を備え、この補正値に基づき復調部41に入力される差信号の位相の補正を行う機能を有する。 In order to cope with the problems described above, as shown in FIG. 6, the angle error detection device 12 of the present example has a vector of the difference signal with respect to the vector of the sum signal described with reference to FIGS. A correction value acquisition unit 44 is provided for detecting the magnitude of the deviation of the orthogonal relationship between the two and acquiring a correction value based on the detection result. have the function of

図7は、復調部41、角度誤差検出部42及びA/D変換部43の回路の構成例を示している。
図7の復調部41は、搬送波の周波数に対応する周波数信号(例えば余弦波)を出力する周波数発振部411と、当該周波数信号の位相を90°進めた周波数信号(例えば正弦波)を得る位相回転器412とを備える。
FIG. 7 shows a circuit configuration example of the demodulator 41, the angle error detector 42, and the A/D converter 43. As shown in FIG.
The demodulator 41 in FIG. 7 includes a frequency oscillator 411 that outputs a frequency signal (eg, cosine wave) corresponding to the frequency of the carrier wave, and a frequency signal (eg, sine wave) obtained by advancing the phase of the frequency signal by 90°. and a rotator 412 .

乗算器413aは、和信号用信号路33aを介してA/D変換部43に供給され、ディジタル変換された後の和信号に周波数発振部411からの周波数信号を乗算する。そして、ローパスフィルタ(LPF)414aにて不要成分を取り除くことによりI成分(I1)を取り出す。また、乗算器413bは、前記ディジタル変換された和信号に位相回転器412にて位相を90°進めた周波数信号を乗算し、LPF414bにて不要成分を取り除くことにより、Q成分(Q1)を取り出す。 The multiplier 413a multiplies the digitally converted sum signal by the frequency signal from the frequency oscillator 411, which is supplied to the A/D converter 43 via the sum signal path 33a. Then, the I component (I1) is extracted by removing unnecessary components with a low-pass filter (LPF) 414a. Further, the multiplier 413b multiplies the digitally converted sum signal by the frequency signal whose phase is advanced by 90° by the phase rotator 412, and extracts the Q component (Q1) by removing unnecessary components in the LPF 414b. .

同様に乗算器413cは、差信号用信号路33bを介してA/D変換部43に供給され、ディジタル変換された後の差信号に周波数発振部411からの周波数信号を乗算する。そしてLPF414cにて不要成分を取り除くことによりI成分(I2)を取り出す。また、乗算器413dは、前記ディジタル変換された差信号に位相回転器412にて位相を90°進めた周波数信号を乗算し、LPF414dにて不要成分を取り除くことにより、Q成分(Q2)を取り出す。 Similarly, the multiplier 413c multiplies the frequency signal from the frequency oscillator 411 by the difference signal which is supplied to the A/D converter 43 via the signal path 33b for the difference signal and digitally converted. Then, the I component (I2) is taken out by removing unnecessary components in the LPF 414c. Further, the multiplier 413d multiplies the digitally converted difference signal by the frequency signal whose phase is advanced by 90° in the phase rotator 412, and extracts the Q component (Q2) by removing unnecessary components in the LPF 414d. .

角度誤差検出部42は、和信号のI1、Q1、差信号のI2、Q2を用い、図4(a)、(b)を用いて説明した考え方に基づき差信号のベクトルを回転させる。即ち、複素ベクトル表示された差信号のベクトル(I2,Q2)に対し、和信号と共役なベクトル(I1,-Q1)を乗算し、演算後の乗算ベクトル(I1I2+Q1Q2,I1Q2-I2Q1)の虚部の値である「I1Q2-I2Q1」を取得する。具体的には、乗算器421bにて得られた「I1Q2」と乗算器421aにて得られた「I2Q1」との差分値が加算器422より出力される。 The angle error detection unit 42 uses sum signals I1 and Q1 and difference signals I2 and Q2 to rotate the vector of the difference signal based on the concept described with reference to FIGS. That is, the vector (I2, Q2) of the difference signal expressed as a complex vector is multiplied by the sum signal and the conjugate vector (I1, -Q1), and the imaginary part of the multiplied vector (I1I2+Q1Q2,I1Q2-I2Q1) after the calculation is obtained. 'I1Q2-I2Q1', which is the value of Specifically, the adder 422 outputs the difference value between “I1Q2” obtained by the multiplier 421b and “I2Q1” obtained by the multiplier 421a.

そして、係数乗算器423にて、当該差分値を実際の角度誤差に変換するための、予め設定された変換係数を乗算すると、アンテナ11の正面方向に対する通信信号の受信方向のずれ量である角度誤差を得ることができる。 Then, in the coefficient multiplier 423, when the difference value is multiplied by a preset conversion coefficient for converting the difference into an actual angle error, the angle error can be obtained.

ここで図5(a)、(b)を用いて説明したように、和信号のベクトルと差信号のベクトルとの直交関係が崩れている場合には、演算後の乗算ベクトルに実部の値が発生する(図5(b))。乗算ベクトルと虚軸との成す角度φが十分に小さい場合には、前記角度φは、乗算ベクトルの実部の値にほぼ等しい。 As described with reference to FIGS. 5A and 5B, when the orthogonal relationship between the sum signal vector and the difference signal vector is lost, the real part value occurs (FIG. 5(b)). If the angle φ between the multiplication vector and the imaginary axis is sufficiently small, said angle φ is approximately equal to the value of the real part of the multiplication vector.

そこで補正値取得部44は、差信号のベクトルと、和信号と共役なベクトルとの乗算結果に基づき、実部の値である「I1I2+Q1Q2」を求める。具体的には、乗算器441aにて得られた「I1I2」と乗算器441bにて得られた「Q1Q2」との加算値が加算器442より出力される。 Therefore, the correction value acquiring unit 44 obtains the real part value "I1I2+Q1Q2" based on the result of multiplication of the vector of the difference signal and the conjugate vector of the sum signal. Specifically, the adder 442 outputs the added value of “I1I2” obtained by the multiplier 441a and “Q1Q2” obtained by the multiplier 441b.

そして、ディジタル変換後、復調部41に入力される前の差信号が、同じく復調部41に入力される前の和信号と直交した状態を維持するように、補正値算出部443にて、前記角度φを相殺するための補正値を取得する。例えば補正値算出部443は、前記差信号のベクトルの実部の値に所定の係数を乗算すると共に、当該乗算結果の正負の符号を反転させる。 After the digital conversion, the correction value calculator 443 performs the above-described Obtain a correction value to offset the angle φ. For example, the correction value calculator 443 multiplies the value of the real part of the vector of the difference signal by a predetermined coefficient, and inverts the sign of the multiplication result.

しかる後、補正値算出部443にて取得された補正値は、復調部41に差信号を入力する位置の手前に配置された位相補正部45に入力される。位相補正部45においては、補正値算出部443から取得した補正値に基づき、差信号の位相を遅らせ、または進ませる位相補正を行う。なお、補正値の符号の反転は、位相補正部45側で行ってもよい。 After that, the correction value obtained by the correction value calculation unit 443 is input to the phase correction unit 45 arranged before the position where the difference signal is input to the demodulation unit 41 . Based on the correction value obtained from the correction value calculation unit 443, the phase correction unit 45 performs phase correction to delay or advance the phase of the difference signal. Inversion of the sign of the correction value may be performed on the phase correction unit 45 side.

上述の構成を備える補正値取得部44、位相補正部45を用いることにより、和信号との間に位相のずれが発生した場合であっても、復調部41、補正値取得部44を用いた各種演算を行うことにより、当該位相のずれに対応する値(既述の乗算ベクトルの実部の値)を得ることができる。 By using the correction value acquiring unit 44 and the phase correcting unit 45 having the above-described configurations, even when there is a phase shift with the sum signal, the demodulating unit 41 and the correction value acquiring unit 44 are used. By performing various calculations, a value corresponding to the phase shift (value of the real part of the multiplication vector described above) can be obtained.

そして、この値に基づいて補正値を取得し、差信号の位相のフィードバック補正に用いることにより、和信号との間の位相のずれを小さくすることができる。この結果、角度誤差検出部42にて取得される乗算ベクトルの虚部の値を、実際の「Δ/Σ」の値に近づけ、より正しい角度誤差を検出することができる。 By obtaining a correction value based on this value and using it for feedback correction of the phase of the difference signal, it is possible to reduce the phase shift between the difference signal and the sum signal. As a result, the value of the imaginary part of the multiplication vector obtained by the angle error detection unit 42 can be brought closer to the actual value of "Δ/Σ", and a more accurate angle error can be detected.

また、図5(b)に示す乗算ベクトルと虚軸とが成す角度φは、差信号のベクトルと和信号のベクトルとが直交した状態からの相対的なずれ量である。このため、和信号が和信号用信号路33aを通過する過程にて位相のずれが生じた場合、または和信号及び差信号の双方においてずれが生じた場合であっても、差信号側の位相を補正することにより、これらのずれの補正を行うことができる。 Also, the angle φ between the multiplication vector and the imaginary axis shown in FIG. 5(b) is the amount of relative deviation from the state where the vector of the difference signal and the vector of the sum signal are orthogonal to each other. Therefore, even if a phase shift occurs in the course of the sum signal passing through the sum signal signal path 33a, or even if a phase shift occurs in both the sum signal and the difference signal, the difference signal side phase These deviations can be corrected by correcting .

本実施の形態に係る角度誤差検出装置12によれば以下の効果がある。角度誤差検出に用いられる和信号及び差信号を直交復調して複素ベクトル表示した際、これらのベクトルが直交した状態を維持するように復調前の差信号をフィードバック補正するので、信号路33a、33bを通過することに起因する和信号、差信号間の位相の変化をリアルタイムで把握し、補正することができる。 The angle error detection device 12 according to this embodiment has the following effects. When the sum signal and the difference signal used for angle error detection are orthogonally demodulated and displayed as a complex vector, the difference signal before demodulation is feedback-corrected so as to maintain the orthogonal state of these vectors. A change in phase between the sum signal and the difference signal due to passing through can be grasped in real time and corrected.

なお、補正値取得部44を用いた差信号の位相の補正は、ディジタル変換された後の差信号に対して実施する場合に限定されない。例えばディジタル変換前のアナログの差信号の位相を補正してもよい。 The correction of the phase of the difference signal using the correction value acquisition unit 44 is not limited to the case of performing the difference signal after digital conversion. For example, the phase of the analog difference signal before digital conversion may be corrected.

また、本発明の角度誤差検出装置の適用対処は、通信用の追尾受信システムに限定されない。例えばレーダーシステム内に本発明の角度誤差検出装置を設けてもよい。この場合は、追尾対象は探知目標となり、追尾対象からの周波数信号は、探知対象に周波数信号を照射して、反射された信号となる。 Further, the application of the angular error detection device of the present invention is not limited to a tracking reception system for communication. For example, the angular error detection device of the present invention may be provided within a radar system. In this case, the tracking target becomes a detection target, and the frequency signal from the tracking target radiates the frequency signal to the detection target and becomes a reflected signal.

1 追尾受信システム
2a、2b 受信部
21、22 加算部
3 受信処理部
33a 和信号用信号路
33b 差信号用信号路
41 復調部
42 角度誤差検出部
44 補正値取得部
8 追尾対象
11 アンテナ
12、12a
角度誤差検出装置
1 tracking reception system 2a, 2b receivers 21, 22 adder 3 reception processor 33a sum signal signal path 33b difference signal signal path 41 demodulator 42 angle error detector 44 correction value acquirer 8 tracking target 11 antenna 12, 12a
Angle error detector

Claims (2)

アンテナの正面方向に対する、追尾対象からの周波数信号の受信方向の角度誤差を検出する角度誤差検出装置において、
前記アンテナに設けられ、搬送波により変調された前記周波数信号を受信し、第1の受信信号として出力する第1の受信部と、前記第1の受信部で受信した周波数信号とは異なる位置にて前記周波数信号を第2の受信信号として受信すると共に、前記第1の受信信号及び前記第2の受信信号から得られる和信号と、差信号との位相が90°ずれた状態となる位置に配置された第2の受信部と、
前記第1の受信信号と前記第2の受信信号とに基づき和信号と、差信号とを取得し、各々、和信号用信号路、差信号用信号路へと出力する受信信号出力部と、
前記和信号用信号路を介して得られた前記和信号、及び前記差信号用信号路を介して得られた前記差信号を、各々、前記搬送波を用いて直交復調し、これら和信号及び差信号について、各々、同相成分(I成分)、直交成分(Q成分)を取得する復調部と、
前記同相成分を複素平面上の実部、前記直交成分を虚部として複素ベクトル表示したとき、前記差信号のベクトルと、前記和信号のベクトルの共役ベクトルとを乗算して得られる乗算ベクトルの虚部の値に基づき前記角度誤差を検出する角度誤差検出部と、
前記乗算ベクトルの実部の値に基づき、前記差信号の位相を補正して当該実部の値をゼロにするための補正値を取得する補正値取得部と、
前記補正値取得部にて補正した補正値に基づき、前記差信号の位相を補正する位相補正部と、を備えたことを特徴とする角度誤差検出装置。
In an angle error detection device that detects an angle error in a receiving direction of a frequency signal from a tracking target with respect to the front direction of an antenna,
A first receiving section provided in the antenna for receiving the frequency signal modulated by the carrier wave and outputting it as a first received signal, and at a position different from the frequency signal received by the first receiving section. The frequency signal is received as a second received signal, and the sum signal obtained from the first received signal and the second received signal is arranged at a position where the difference signal is out of phase with the phase of the sum signal by 90°. a second receiving unit configured to
a received signal output unit that obtains a sum signal and a difference signal based on the first received signal and the second received signal, and outputs the signals to a sum signal path and a difference signal path, respectively;
The sum signal obtained through the sum signal path and the difference signal obtained through the difference signal path are orthogonally demodulated using the carrier wave, and the sum signal and the difference signal are a demodulator that obtains an in-phase component (I component) and a quadrature component (Q component) for each signal;
When the in-phase component is expressed as a real part on the complex plane and the quadrature component is expressed as an imaginary part as a complex vector, the imaginary vector obtained by multiplying the difference signal vector and the conjugate vector of the sum signal vector is obtained. an angle error detection unit that detects the angle error based on the value of the part;
a correction value obtaining unit that obtains a correction value for correcting the phase of the difference signal and setting the value of the real part to zero based on the value of the real part of the multiplication vector;
and a phase correction unit that corrects the phase of the difference signal based on the correction value corrected by the correction value acquisition unit.
前記位相補正部は、前記差信号用信号路を通過した前記差信号が、前記復調部に入力される位置にて当該差信号の位相を補正することを特徴とする請求項1に記載の角度誤差検出装置。 2. The angle according to claim 1, wherein the phase correction section corrects the phase of the difference signal at a position where the difference signal that has passed through the difference signal path is input to the demodulation section. Error detection device.
JP2021088680A 2021-05-26 2021-05-26 Angle error detection device Pending JP2022181637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021088680A JP2022181637A (en) 2021-05-26 2021-05-26 Angle error detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088680A JP2022181637A (en) 2021-05-26 2021-05-26 Angle error detection device

Publications (1)

Publication Number Publication Date
JP2022181637A true JP2022181637A (en) 2022-12-08

Family

ID=84328493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088680A Pending JP2022181637A (en) 2021-05-26 2021-05-26 Angle error detection device

Country Status (1)

Country Link
JP (1) JP2022181637A (en)

Similar Documents

Publication Publication Date Title
US6940930B2 (en) Automatic burst mode I/Q gain and I/Q phase calibration using packet based-fixed correction coefficients
JP5950903B2 (en) Quadrature demodulator
CN107787456B (en) Device for calculating direction and operation method thereof
JP3710253B2 (en) Distortion compensation system
US8447254B2 (en) Receiver and a method of receiving a signal
CN105490973A (en) IQ signal calibration method and apparatus
JP4842333B2 (en) Radio apparatus and polarization plane control method
JP2022181637A (en) Angle error detection device
US11143734B2 (en) Tracking receiver, antenna apparatus, and tracking method
EP3579433B1 (en) Receiving apparatus, receiving method, and program
JP2007243724A (en) Demodulating method and its device and its unit, distance measuring apparatus and data receiver
JP5721467B2 (en) Tracking receiver
KR20050066953A (en) Apparatus for compensation dc offset and i/q gain and phase imbalance and compensation system using it
KR20090098660A (en) Carrier reproducer and carrier reproducing method
JP2022181646A (en) Angle error detection device
US4654664A (en) Electronic null-seeking goniometer for ADF
JP2020016556A (en) Angle error detector
JP5720361B2 (en) Tracking receiver
Moon et al. $ K $-Band Phase Discriminator Using Multiport Downconversion for Monopulse Tracker
JP2001116834A (en) Radar system
JP2013029430A (en) Two-channel tracking device and tracking method
CN108365884B (en) Satellite-communication station monopulse tracking receiver phase compensation method based on pointing error
JP2022181642A (en) Angle error detection device
Liebgott et al. Spectrum-based online estimation of IQ imbalance for near field radar distance sensors
WO2005036771A1 (en) Method and apparatus for determining delay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240402