JP2022180875A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2022180875A
JP2022180875A JP2021087610A JP2021087610A JP2022180875A JP 2022180875 A JP2022180875 A JP 2022180875A JP 2021087610 A JP2021087610 A JP 2021087610A JP 2021087610 A JP2021087610 A JP 2021087610A JP 2022180875 A JP2022180875 A JP 2022180875A
Authority
JP
Japan
Prior art keywords
semiconductor element
conductor
recess
conductive heat
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021087610A
Other languages
Japanese (ja)
Inventor
忠徳 田添
Tadanori Tazoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Mirise Technologies Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Mirise Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp, Mirise Technologies Corp filed Critical Denso Corp
Priority to JP2021087610A priority Critical patent/JP2022180875A/en
Publication of JP2022180875A publication Critical patent/JP2022180875A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a semiconductor device having a structure capable of securing heat radiation property while suppressing stress fractures of a power semiconductor element.SOLUTION: A semiconductor element 4 is arranged inside an outline of a recessed part 31 of a conductor 3, and has an outer peripheral portion fixed to the conductor 3 with a fixing member 6. At a gap between the conductor 3 and the semiconductor element 4 of the recessed part 31, a conductive heat radiation material 5 is arranged, the conductive heat radiation material being in a liquid state during drive of the semiconductor element 4. This allows reduction in connection area between the conductor 3 and the semiconductor element 4, which reduces a stress applied to the semiconductor element 4, and heat of the semiconductor element 4 is propagated to the conductor 3 by the conductive heat radiation material 5 while securing conduction between the conductor 3 and the semiconductor element 4, so that the heat radiation property of the semiconductor element 4 can be secured.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子の熱が液状の導電放熱材を介して外部に放出される構造の半導体装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a structure in which heat from a semiconductor element is released to the outside through a liquid conductive heat dissipation material.

従来、パワーMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)などのパワー半導体素子がはんだを介して絶縁基板上の金属膜に接合されてなる半導体装置が知られている(例えば特許文献1)。特許文献1に記載の半導体装置は、絶縁基板のうちパワー半導体素子とは反対側の面に金属製のモジュール基板が溶接され、パワー半導体素子の駆動により生じる熱がはんだを介してモジュール基板側に伝搬し、外部に放出される構造となっている。 Conventionally, there is known a semiconductor device in which a power semiconductor element such as a power MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) is bonded to a metal film on an insulating substrate via solder (for example, Patent Document 1). In the semiconductor device described in Patent Document 1, a metal module substrate is welded to the surface of the insulating substrate opposite to the power semiconductor element, and heat generated by driving the power semiconductor element is transferred to the module substrate side through the solder. It has a structure in which it propagates and is released to the outside.

特開平8-8395号公報Japanese Patent Application Laid-Open No. 8-8395

近年、この種の半導体装置においては、パワー半導体素子の薄型化が進められている。しかし、パワー半導体素子の薄型化に伴い、駆動時の発熱に起因するパワー半導体素子の変形量が大きくなってしまう。本発明者らの検討によれば、薄型のパワー半導体素子がはんだを介して線膨張係数の異なる他の部材に接合された構造の半導体装置では、パワー半導体素子にかかる応力が大きく、パワー半導体素子が応力破損することが判明した。 In recent years, in this type of semiconductor device, the thickness of the power semiconductor element has been reduced. However, as the power semiconductor element becomes thinner, the amount of deformation of the power semiconductor element caused by heat generated during driving increases. According to studies by the present inventors, in a semiconductor device having a structure in which a thin power semiconductor element is bonded to another member having a different coefficient of linear expansion via solder, the stress applied to the power semiconductor element is large, and the power semiconductor element was found to undergo stress failure.

一方、パワー半導体素子と他の部材との接合面積が小さくなると、線膨張係数差に起因するパワー半導体素子への応力を抑制することができるものの、パワー半導体素子の駆動により生じる熱がこもってしまい、放熱性が低下してしまう。 On the other hand, if the bonding area between the power semiconductor element and other members becomes small, the stress on the power semiconductor element caused by the difference in coefficient of linear expansion can be suppressed, but the heat generated by driving the power semiconductor element is trapped. , the heat dissipation deteriorates.

本発明は、上記の点に鑑み、薄型化されたパワー半導体素子を用いた場合であっても、パワー半導体素子の応力破損を抑制しつつも、放熱性を確保可能な構造の半導体装置を提供することを目的とする。 In view of the above points, the present invention provides a semiconductor device having a structure capable of ensuring heat dissipation while suppressing stress damage of the power semiconductor element even when a thin power semiconductor element is used. intended to

上記目的を達成するため、請求項1に記載の半導体装置は、表面(4a)および裏面(4b)を有する半導体素子(4)と、裏面と向き合うと共に、半導体素子の外郭よりも大きい外郭の凹部(31)と、凹部の底面に設けられる窪みであるエアートラップ(32)とを有する導体(3)と、半導体素子と凹部との隙間に配置され、少なくとも半導体素子の駆動時に液状であると共に、導電性を有する導電放熱材(5)と、半導体素子のうち少なくとも表面および表面と裏面とを繋ぐ側面(4c)の一方と、導体とを繋ぐ配置とされ、半導体素子を導体に固定する固定部材(6)と、柔軟性を有し、固定部材と導体との間に配置され、導電放熱材に接触すると共に、半導体素子の駆動時の熱により膨張する膨張部材(7)と、を備え、半導体素子は、凹部の外郭内側に配置され、導電放熱材を介して導体と熱的に接続されている。 In order to achieve the above object, a semiconductor device according to claim 1 comprises a semiconductor element (4) having a front surface (4a) and a back surface (4b), and a recess facing the back surface and having a larger outline than the semiconductor element. (31) and a conductor (3) having an air trap (32) which is a recess provided in the bottom surface of the recess, and a conductor (3) disposed in a gap between the semiconductor element and the recess, being in a liquid state at least when the semiconductor element is driven, A fixing member for fixing the semiconductor element to the conductor, which is arranged to connect the conductive heat dissipating material (5) having conductivity, at least one of the side surfaces (4c) connecting the front surface and the front surface and the back surface of the semiconductor element, and the conductor. (6), and an expansion member (7) which has flexibility, is arranged between the fixing member and the conductor, contacts the conductive heat dissipation material, and expands due to heat generated when the semiconductor element is driven, The semiconductor element is arranged inside the contour of the recess and is thermally connected to the conductor via the conductive heat dissipating material.

これによれば、半導体素子と、凹部を有する導体とを備え、半導体素子が導体の凹部の外郭内側に配置されつつ、半導体素子が裏面以外の部分において固定部材により導体に接続固定された半導体装置となる。そのため、半導体素子と導体との接続面積が小さくなり、半導体素子にかかる応力が緩和され、半導体素子が薄型化されていても、応力に起因する破損を抑制することができる。また、半導体素子が、導電性を有し、かつ駆動時に液状となる導電放熱材を介して導体と熱的に接続されているため、半導体素子と導体との導電性を確保しつつ、半導体素子の放熱性が向上する。 According to this, a semiconductor device comprising a semiconductor element and a conductor having a recess, wherein the semiconductor element is arranged inside the contour of the recess of the conductor, and the semiconductor element is connected and fixed to the conductor by a fixing member at a portion other than the back surface. becomes. Therefore, the connection area between the semiconductor element and the conductor is reduced, the stress applied to the semiconductor element is reduced, and even if the semiconductor element is thinned, damage due to stress can be suppressed. In addition, since the semiconductor element is thermally connected to the conductor through the conductive heat dissipating material that has conductivity and becomes liquid during operation, the semiconductor element and the conductor can be heat dissipation is improved.

さらに、凹部の底面にエアートラップが配置されているため、相転移等の何らかの要因で導電放熱材中に気泡が生じた場合であっても、気泡がエアートラップに捕捉され、半導体素子のうち導体と向き合う一面と導体との隙間に気泡が介在することが抑制される。加えて、凹部と固定部材との間に半導体素子の駆動時の熱により膨張する膨張部材が配置されているため、半導体素子の駆動時に膨張部材が膨張することで、液状の導電放熱材を上記の隙間に押し出す構造となっている。これらの作用により、半導体素子の駆動時に、半導体素子の一面と凹部との隙間に気泡が介在し、熱抵抗が大きくなることが抑制され、より放熱性を確保できる効果が得られる半導体装置となる。 Furthermore, since the air trap is arranged on the bottom surface of the concave portion, even if air bubbles are generated in the conductive heat dissipating material due to some factor such as phase transition, the air bubbles are captured by the air trap and the conductor of the semiconductor element is removed. Air bubbles are suppressed from intervening in the gap between the conductor and the one surface facing the . In addition, since the expansion member that expands due to the heat generated when the semiconductor element is driven is arranged between the concave portion and the fixing member, the expansion member expands when the semiconductor element is driven, thereby displacing the liquid conductive heat dissipation material as described above. It has a structure that pushes out into the gap between Due to these actions, when the semiconductor element is driven, air bubbles intervene in the gap between the one surface of the semiconductor element and the concave portion, and the increase in thermal resistance is suppressed, resulting in a semiconductor device capable of securing more heat dissipation. .

なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and specific components etc. described in the embodiments described later.

第1実施形態の半導体装置を示す断面図である。1 is a cross-sectional view showing a semiconductor device according to a first embodiment; FIG. 導体、半導体素子および固定部材の配置関係の一例を示す平面図である。FIG. 4 is a plan view showing an example of the arrangement relationship among conductors, semiconductor elements, and fixing members; 図1のIII領域を拡大したものであって、エアートラップにおける気泡の捕捉の様子を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the III region of FIG. 1 showing how air bubbles are trapped in an air trap. 第1実施形態の半導体装置の製造方法のうち部材の用意工程を示す図である。FIG. 10 is a diagram showing a step of preparing members in the manufacturing method of the semiconductor device according to the first embodiment; 図4Aに続く製造工程を示す図である。FIG. 4B is a diagram showing a manufacturing process following FIG. 4A; 図4Bに続く製造工程を示す図である。FIG. 4C is a diagram showing a manufacturing process following FIG. 4B; 図4Cに続く製造工程を示す図である。FIG. 4D is a diagram showing a manufacturing process following FIG. 4C; 図4Dに続く製造工程を示す図である。4C is a diagram showing the manufacturing process following FIG. 4D; FIG. 図4Eに続く製造工程を示す図である。FIG. 4D is a diagram showing a manufacturing process following FIG. 4E; 図4Fに続く製造工程を示す図である。4F is a diagram showing the manufacturing process following FIG. 4F; FIG. 膨張部材による導電放熱材の押し込みおよびこれによる導電放熱材の流れを説明するための説明図である。FIG. 5 is an explanatory view for explaining the pushing of the conductive heat dissipating material by the expansion member and the flow of the conductive heat dissipating material. 膨張部材の他の配置例およびこれによる導電放熱材の流れを示す平面図である。FIG. 10 is a plan view showing another arrangement example of the expansion member and the flow of the conductive heat dissipating material due to this. 膨張部材の別の配置例およびこれによる導電放熱材の流れを示す平面図である。FIG. 10 is a plan view showing another arrangement of the expansion member and the flow of the conductive heat dissipating material. 膨張部材のさらに別の配置例およびこれによる導電放熱材の流れを示す平面図である。FIG. 10 is a plan view showing still another arrangement of the expansion member and the flow of the conductive heat dissipating material. 第2実施形態の半導体装置を示す断面図である。It is a sectional view showing a semiconductor device of a 2nd embodiment. 図9のX領域を示す拡大断面図である。FIG. 10 is an enlarged cross-sectional view showing the X region of FIG. 9;

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 An embodiment of the present invention will be described below with reference to the drawings. In addition, in each of the following embodiments, portions that are the same or equivalent to each other will be described with the same reference numerals.

(第1実施形態)
第1実施形態の半導体装置1について、図1~図3を参照して説明する。本実施形態の半導体装置1は、例えば、自動車等の車両に搭載される車載用途であって、パワーカード等に適用されると好適であるが、勿論、他の用途にも適用されうる。
(First embodiment)
A semiconductor device 1 of the first embodiment will be described with reference to FIGS. 1 to 3. FIG. The semiconductor device 1 of the present embodiment is, for example, an in-vehicle application that is mounted in a vehicle such as an automobile, and is preferably applied to a power card or the like, but can of course be applied to other applications.

図1では、図2に示すI-Iの断面に相当する位置における断面構成を示すと共に、見易くするため、後述する配線8の一部を省略している。図2では、後述する導体3、半導体素子4および固定部材6の配置関係を分かり易くするため、半導体素子4が配置される領域の外郭を破線で示し、固定部材6が配置される領域の外郭を二点鎖線で示している。 FIG. 1 shows a cross-sectional configuration at a position corresponding to the cross section taken along line I-I shown in FIG. 2, and a part of wiring 8, which will be described later, is omitted for the sake of clarity. In FIG. 2, in order to make it easier to understand the positional relationship of the conductor 3, the semiconductor element 4 and the fixing member 6, which will be described later, the outline of the area in which the semiconductor element 4 is arranged is indicated by a dashed line, and the outline of the area in which the fixing member 6 is arranged is indicated by broken lines. is indicated by a two-dot chain line.

〔基本構成〕
本実施形態の半導体装置1は、例えば図1に示すように、絶縁基板2と、導体3と、半導体素子4と、導電放熱材5と、固定部材6と、膨張部材7と、配線8とを有してなる。半導体装置1は、導体3が凹部31を有し、半導体素子4が凹部31の外郭内側に配置されると共に、凹部31とは異なる位置に配置された固定部材6により導体3に固定されている。半導体装置1は、凹部31の底面にエアートラップ32が形成されている。半導体装置1は、半導体素子4のうち導体3とは反対面を表面4aとし、その反対面を裏面4bとして、凹部31と半導体素子4との間に、導電性を有し、半導体素子4の駆動時に液状となる導電放熱材5が配置されている。半導体装置1は、裏面4bが鉛直方向とは反対側の方向(以下「上方向」という)に向けられた状態で使用され、半導体素子4と凹部31との隙間で生じる気泡がエアートラップ32に入り込む構造となっている。
[Basic configuration]
The semiconductor device 1 of this embodiment includes an insulating substrate 2, a conductor 3, a semiconductor element 4, a conductive heat dissipating member 5, a fixing member 6, an expansion member 7, and wiring 8, as shown in FIG. have In the semiconductor device 1, the conductor 3 has a recess 31, the semiconductor element 4 is arranged inside the contour of the recess 31, and is fixed to the conductor 3 by the fixing member 6 arranged at a position different from the recess 31. . The semiconductor device 1 has an air trap 32 formed on the bottom surface of the recess 31 . The semiconductor device 1 has a surface 4a opposite to the conductor 3 of the semiconductor element 4 and a back surface 4b opposite to the surface 4a. A conductive heat dissipating material 5 that becomes liquid during driving is arranged. The semiconductor device 1 is used with the back surface 4 b facing in the direction opposite to the vertical direction (hereinafter referred to as the “upward direction”). It has an intrusive structure.

絶縁基板2は、例えば、窒化アルミニウム等の任意の絶縁性材料により構成される板状部材である。絶縁基板2は、例えば、導体3が形成されるか、あるいは別体の導体3が図示しないロウ材などにより取り付けられている。 The insulating substrate 2 is, for example, a plate-shaped member made of any insulating material such as aluminum nitride. For example, the conductor 3 is formed on the insulating substrate 2, or a separate conductor 3 is attached by brazing material (not shown) or the like.

導体3は、例えば、Cu(銅)やAl(アルミニウム)等の導電性を有し、熱伝導率が高い金属材料またはその合金などにより構成される部材である。導体3は、例えば、絶縁基板2に形成される電極、あるいは絶縁基板2とは別体のバスバーやリードフレームなどの別部材である。導体3は、必要に応じて、その最表面を覆う図示しないめっき層が形成されていてもよい。例えば、導体3がAlで構成され、後述する導電放熱材5がGa(ガリウム)を主材料として構成される場合、導体3は、導電放熱材5による腐食を抑制するために、Gaに対する耐食性を有する図示しないめっき層が成膜される。このような場合、導体3は、少なくとも導電放熱材5と接触する領域の全域にめっき層が成膜された構成となる。導体3は、半導体素子4の外郭よりも大きい平面サイズであって半導体素子4の裏面4bと向き合う凹部31と、エアートラップ32とを有してなる。 The conductor 3 is a member made of, for example, a metal material having electrical conductivity and high thermal conductivity, such as Cu (copper) or Al (aluminum), or an alloy thereof. The conductor 3 is, for example, an electrode formed on the insulating substrate 2 or a member separate from the insulating substrate 2 such as a bus bar or a lead frame. The conductor 3 may have a plating layer (not shown) covering the outermost surface thereof, if necessary. For example, when the conductor 3 is made of Al and the conductive heat dissipating material 5 described later is mainly made of Ga (gallium), the conductor 3 has corrosion resistance to Ga in order to suppress corrosion by the conductive heat dissipating material 5. A plating layer (not shown) is formed. In such a case, the conductor 3 has a structure in which a plated layer is formed over at least the entire region in contact with the conductive heat dissipating member 5 . The conductor 3 has a concave portion 31 having a plane size larger than the outline of the semiconductor element 4 and facing the back surface 4 b of the semiconductor element 4 and an air trap 32 .

凹部31は、導電放熱材5が配置される領域であり、その底面には設けられた窪みであるエアートラップ32を有している。 The recessed portion 31 is a region where the conductive heat dissipating material 5 is arranged, and has an air trap 32 which is a recess provided on the bottom surface thereof.

エアートラップ32は、例えば、図2に示すように凹部31の外郭のなす辺に沿って複数延設されている溝である。複数のエアートラップ32は、例えば、互いに独立しており、図3に示すように半導体素子4と凹部31との隙間に気泡や導電放熱材5の切れ目が生じた場合に、導電放熱材5の流動により運ばれた気泡やエアーを捕捉し、これらを逃さないために設けられる。エアートラップ32は、例えば、凹部31の底面のうち半導体素子4の外郭上あるいは外郭外側に位置する領域に配置される。 The air trap 32 is, for example, a plurality of grooves extending along the side formed by the contour of the recess 31 as shown in FIG. For example, the plurality of air traps 32 are independent of each other, and when air bubbles or breaks in the conductive heat dissipating material 5 occur in the gap between the semiconductor element 4 and the recess 31 as shown in FIG. It is provided to capture air bubbles and air carried by the flow and prevent them from escaping. The air trap 32 is arranged, for example, in a region of the bottom surface of the recess 31 located on or outside the outline of the semiconductor element 4 .

これにより、エアートラップ32に気泡が捕捉されたとき、半導体素子4の裏面4bと凹部31の底面との間に当該気泡が介在することによる熱抵抗の増大が抑制され、放熱性が向上する。また、半導体素子4の駆動時にエアートラップ32内にエアーが留まる構造であることで、後述する膨張部材7による導電放熱材5の押し込みをエアーを介して行うこととなり、導体3と半導体素子4との隙間に過度な圧力がかかることを抑制する効果も生じる。 As a result, when air bubbles are trapped in the air trap 32, an increase in thermal resistance due to interposition of the air bubbles between the back surface 4b of the semiconductor element 4 and the bottom surface of the recess 31 is suppressed, and heat dissipation is improved. Further, since the air trap 32 has a structure in which air remains in the air trap 32 when the semiconductor element 4 is driven, the conductive heat radiating material 5 is pushed in by the expansion member 7 described later through the air, and the conductor 3 and the semiconductor element 4 are separated. There is also an effect of suppressing excessive pressure from being applied to the gap.

なお、複数のエアートラップ32は、例えば凹部31の外郭が四角形状とされる場合には、その外郭のなす四辺それぞれに沿って4つ以上、かつ外郭の角部とは異なる領域に配置されるが、これに限定されるものではない。例えば、凹部31の外郭形状やサイズ等については半導体素子4の外郭形状に応じて適宜変更されうるため、複数のエアートラップ32の数、サイズや配置等は、凹部31の外郭形状等に応じて適宜変更されてもよい。 For example, when the contour of the recess 31 is square, the plurality of air traps 32 are arranged along each of the four sides of the contour and in a region different from the corners of the contour. However, it is not limited to this. For example, since the contour shape, size, etc. of the recess 31 can be appropriately changed according to the contour shape of the semiconductor element 4 , the number, size, arrangement, etc. of the plurality of air traps 32 can be changed according to the contour shape, etc. of the recess 31 . It may be changed as appropriate.

半導体素子4は、例えば、表面4aおよび裏面4bを有する四角形板状とされ、Si(シリコン)やSiC(炭化珪素)等の半導体材料により構成される。半導体素子4は、例えば、縦型のパワーMOSFET等のパワー素子であり、公知の半導体プロセスにより製造される。半導体素子4は、例えば、表面4aと裏面4bとを繋ぐ厚み方向の寸法が200μm以下の薄型化されたパワー素子である。半導体素子4は、表面4aおよび裏面4bに図示しない電極膜が形成されており、表面4aにはワイヤ等によりなる配線8が接続され、外部との電気的なやり取りが可能となっている。 The semiconductor element 4 has, for example, a rectangular plate shape having a front surface 4a and a back surface 4b, and is made of a semiconductor material such as Si (silicon) or SiC (silicon carbide). The semiconductor element 4 is, for example, a power element such as a vertical power MOSFET, and is manufactured by a known semiconductor process. The semiconductor element 4 is, for example, a thin power element having a dimension of 200 μm or less in the thickness direction connecting the front surface 4a and the rear surface 4b. Electrode films (not shown) are formed on the front surface 4a and the rear surface 4b of the semiconductor element 4, and the wiring 8 made of wires or the like is connected to the front surface 4a to enable electrical communication with the outside.

半導体素子4は、導体3のうち凹部31の外郭内側の領域に配置されつつ、導体3とは距離を隔てて配置されると共に、その外周部分が固定部材6により導体3に固定されている。言い換えると、半導体素子4は、固定部材6を介して導体3に接続固定される一方で、導体3とは直接接触していない状態となっている。 The semiconductor element 4 is arranged in a region of the conductor 3 inside the contour of the recess 31 while being spaced apart from the conductor 3 , and its outer peripheral portion is fixed to the conductor 3 by a fixing member 6 . In other words, the semiconductor element 4 is connected and fixed to the conductor 3 via the fixing member 6 but is not in direct contact with the conductor 3 .

導電放熱材5は、凹部31内に配置され、導電性および所定以上の熱伝導率を有し、少なくとも半導体素子4が発熱時には液状となる部材である。導電放熱材5は、例えば、融点が約29.7℃のGa(ガリウム)やその合金などによりなる液体金属で構成される。導電放熱材5は、半導体素子4の裏面4bに形成された図示しない電極と導体3との導通を確保しつつ、半導体素子4の発熱時に当該熱を導体3に伝導させ、放熱性を向上させる役割を果たす。また、導電放熱材5は、流動性を有することで、凹部31内において気泡が発生した場合であっても、当該気泡をエアートラップ32に運び、気泡がエアートラップ32に捕捉されやすくする作用も生じる。 The conductive heat dissipating material 5 is arranged in the recess 31, has electrical conductivity and thermal conductivity equal to or higher than a predetermined value, and is a member that becomes liquid at least when the semiconductor element 4 generates heat. The conductive heat dissipating material 5 is made of liquid metal such as Ga (gallium) having a melting point of about 29.7° C. or an alloy thereof. The conductive heat dissipating material 5 ensures conduction between an electrode (not shown) formed on the back surface 4b of the semiconductor element 4 and the conductor 3, and conducts the heat to the conductor 3 when the semiconductor element 4 generates heat, thereby improving heat dissipation. play a role. In addition, since the conductive heat dissipating material 5 has fluidity, even if bubbles are generated in the recess 31, the bubbles are transported to the air trap 32, and the air trap 32 easily traps the bubbles. occur.

なお、導電放熱材5は、導電性を有し、かつ、少なくとも半導体素子4の発熱時に液状となり、流動性が生じる材料で構成されていればよく、上記した材料に限定されない。例えば、導電放熱材5は、Hg(水銀)、Cs(セシウム)、Rb(ルビジウム)、K(カリウム)、Na(ナトリウム)、In(インジウム)あるいはこれらの少なくとも一種を含む合金などであってもよいし、他の公知の材料であってもよい。また、導電放熱材5は、半導体素子4が駆動していない状態や常温においてはゲル状やペースト状などの液状以外の状態であってもよい。さらに、凹部31内における気泡やエアーの発生としては、例えば、導電放熱材5が固体から液体に相転移する際の体積減少や導体3の凹部31に図示しないめっき層が設けられた場合の当該めっき層からのアウトガスの発生などが挙げられる。 It should be noted that the conductive heat dissipating material 5 is not limited to the materials described above, as long as it is conductive and at least becomes liquid when the semiconductor element 4 generates heat and is fluid. For example, the conductive heat dissipation material 5 may be Hg (mercury), Cs (cesium), Rb (rubidium), K (potassium), Na (sodium), In (indium), or an alloy containing at least one of these. or other known materials. Also, the conductive heat dissipation material 5 may be in a state other than a liquid state such as a gel state or a paste state when the semiconductor element 4 is not driven or at room temperature. Furthermore, the generation of air bubbles and air in the recessed portion 31 includes, for example, volume reduction when the conductive heat dissipating material 5 undergoes a phase transition from solid to liquid, and when a plating layer (not shown) is provided in the recessed portion 31 of the conductor 3 . Generation of outgassing from the plating layer and the like can be mentioned.

固定部材6は、例えば、導体3のうち凹部31の外側に位置する部分と、半導体素子4のうち表面4aもしくは表面4aと裏面4bとを繋ぐ側面、あるいはその両方とを繋ぐように配置され、半導体素子4を導体3に接続固定する部材である。固定部材6は、例えば、エポキシ樹脂等の任意の硬化性樹脂材料により構成され、ディスペンサー等による塗布により配置される。 The fixing member 6 is arranged to connect, for example, a portion of the conductor 3 located outside the recess 31 and a side surface connecting the front surface 4a or the front surface 4a and the back surface 4b of the semiconductor element 4, or both, It is a member for connecting and fixing the semiconductor element 4 to the conductor 3 . The fixing member 6 is made of, for example, an arbitrary hardening resin material such as an epoxy resin, and is arranged by coating with a dispenser or the like.

膨張部材7は、柔軟性を有し、固定部材6の構成材料よりも熱膨張率が大きい樹脂材料により構成され、半導体素子4の発熱時に膨張する部材である。膨張部材7は、例えば、内部に複数の独立した気泡を内包する発泡シリコンで構成されている。膨張部材7は、固定部材6と導体3との間であって、少なくとも一部がエアートラップ32の上に配置され、導電放熱材5に接触している。膨張部材7は、半導体素子4の発熱時に膨張し、エアートラップ32における圧力を上昇させることで、液状の導電放熱材5を半導体素子4と凹部31との隙間に押し込む役割を果たす。これにより、半導体素子4と凹部31との隙間に導電放熱材5が存在しない部分が生じること(すなわち液切れ)を抑制でき、半導体素子4と導体3との間における熱抵抗の増大を防ぐことで、半導体素子4の放熱性を高める効果が生じる。 The expansion member 7 is made of a resin material having flexibility and a thermal expansion coefficient larger than that of the material of the fixing member 6, and is a member that expands when the semiconductor element 4 generates heat. The expansion member 7 is made of, for example, foamed silicon containing a plurality of independent cells inside. The expansion member 7 is disposed between the fixing member 6 and the conductor 3 , at least partially above the air trap 32 , and is in contact with the conductive heat dissipation material 5 . The expansion member 7 expands when the semiconductor element 4 generates heat, and increases the pressure in the air trap 32 to push the liquid conductive heat dissipation material 5 into the gap between the semiconductor element 4 and the recess 31 . As a result, it is possible to suppress the occurrence of a portion where the conductive heat dissipating material 5 does not exist in the gap between the semiconductor element 4 and the concave portion 31 (that is, the lack of liquid), and prevent an increase in thermal resistance between the semiconductor element 4 and the conductor 3. , the effect of improving the heat dissipation of the semiconductor element 4 is produced.

配線8は、例えば、AlやCuなどによりなる金属ワイヤであり、ワイヤボンディングにより半導体素子4の表面4aの図示しない電極に接続される。配線8は、例えば、半導体素子4側の一端とは反対側の他端が図示しない他の回路基板等に接続され、図示しない外部電源による半導体素子4への電圧印加を可能としている。 The wiring 8 is, for example, a metal wire made of Al, Cu, or the like, and is connected to an electrode (not shown) on the surface 4a of the semiconductor element 4 by wire bonding. The wiring 8 has one end opposite to the semiconductor element 4 side, for example, and is connected to another circuit board or the like (not shown) so that a voltage can be applied to the semiconductor element 4 from an external power supply (not shown).

以上が、本実施形態の半導体装置1の基本的な構成である。 The above is the basic configuration of the semiconductor device 1 of this embodiment.

〔製造方法〕
次に、本実施形態の半導体装置1の製造方法について、図4A~図4Gを参照して説明する。
〔Production method〕
Next, a method for manufacturing the semiconductor device 1 of this embodiment will be described with reference to FIGS. 4A to 4G.

まず、図4Aに示すように、絶縁基板2と、凹部31およびエアートラップ32を有する導体3とを用意する。絶縁基板2および導体3は、これらの2つの部材を接合した構成であってもよいし、絶縁基板2に電極として導体3が形成された構成であってもよい。凹部31およびエアートラップ32は、例えば、エッチングや切削等の任意の方法によって形成される。 First, as shown in FIG. 4A, an insulating substrate 2 and a conductor 3 having recesses 31 and air traps 32 are prepared. The insulating substrate 2 and the conductor 3 may be configured by joining these two members, or may be configured by forming the conductor 3 as an electrode on the insulating substrate 2 . The recesses 31 and the air traps 32 are formed by arbitrary methods such as etching and cutting, for example.

なお、半導体装置1の製造は、各部材が使用する状態とは反対方向を向く状態、例えば導体3については凹部31が上方向に面する状態で行われる。また、エアートラップ32は、例えば、フッ素樹脂などによる表面処理がなされ、導電放熱材5の濡れ性が凹部31よりも悪い構成とされることが好ましい。これにより、液状の導電放熱材5は、エアートラップ32に留まりにくくなり、半導体素子4と凹部31との隙間に押し込まれやすくなる。また、エアートラップ32における導電放熱材5の濡れ性を低くすることで、エアートラップ32の面積を小さく抑えることができる効果も期待される。 The semiconductor device 1 is manufactured in a state in which each member is oriented in a direction opposite to the state in which it is used, for example, in a state in which the concave portion 31 of the conductor 3 faces upward. Further, the air trap 32 is preferably surface-treated with, for example, a fluororesin or the like so that the wettability of the conductive heat dissipating member 5 is worse than that of the concave portion 31 . As a result, the liquid conductive heat dissipating material 5 is less likely to remain in the air trap 32 and is more likely to be pushed into the gap between the semiconductor element 4 and the recess 31 . Further, by reducing the wettability of the conductive heat dissipating material 5 in the air trap 32, an effect of reducing the area of the air trap 32 is expected.

続いて、例えば図4Bに示すように、凹部31に半導体素子4および導電放熱材5を配置する際の位置決め用の治具Jを用意し、治具Jを導体3の上に配置する。治具Jは、例えば、平面サイズが凹部31の外郭よりも小さく、かつ半導体素子4の外郭よりも大きい開口部J1を有した板状のカーボン部材とされる。なお、治具Jは、液状の導電放熱材5が濡れ広がらない材質で構成されるか、あるいは表面処理がなされていればよく、適宜、材料や構成が変更されてもよい。そして、治具Jにより位置決めをしつつ、導体3の凹部31に導電放熱材5、半導体素子4の順番で配置する。このとき、例えば、環境温度が導電放熱材5の融点未満となっており、導電放熱材5は、板状の状態となっている。 Subsequently, for example, as shown in FIG. 4B, a positioning jig J is prepared for positioning the semiconductor element 4 and the conductive heat dissipating member 5 in the concave portion 31, and the jig J is arranged on the conductor 3. As shown in FIG. The jig J is, for example, a plate-shaped carbon member having an opening J<b>1 whose planar size is smaller than the outline of the recess 31 and larger than the outline of the semiconductor element 4 . The jig J may be made of a material that does not allow the liquid conductive heat dissipating material 5 to wet and spread, or may be surface-treated, and the material and configuration may be changed as appropriate. Then, the conductive heat-dissipating member 5 and the semiconductor element 4 are placed in the concave portion 31 of the conductor 3 in this order while being positioned by the jig J. As shown in FIG. At this time, for example, the environmental temperature is lower than the melting point of the conductive heat dissipating material 5, and the conductive heat dissipating material 5 is in a plate-like state.

次いで、例えば図4Cに示すように、導体3の凹部31に半導体素子4および導電放熱材5が配置されたワークを、図示しない加熱ステージにより加熱し、導電放熱材5を溶融させる。このとき、半導体素子4と導体3との間に意図しない気泡が残ることを防ぐ観点から、加熱されたワークが置かれた環境の減圧をしつつ、ワークを揺動させ、脱泡処理を施すことが好ましい。また、導電放熱材5からのアウトガス低減の観点から、ワークの加熱温度を半導体素子4の発熱時における最高温度以上(限定するものではないが、発熱温度が140℃である場合、150℃とするなど)に設定するとより好ましい。なお、ワークの加熱温度は、例えば半導体素子4がSiCを主として構成され、より高温での動作をする場合などには、その最高温度に合わせて、適宜調整されうる。導電放熱材5を溶融させ、エアートラップ32を充填した後に、例えば、冷却により導電放熱材5を固化させ、半導体素子4を固定した状態とし、治具Jを取り外す。 Next, as shown in FIG. 4C, for example, the workpiece having the semiconductor element 4 and the conductive heat dissipating material 5 arranged in the recess 31 of the conductor 3 is heated by a heating stage (not shown) to melt the conductive heat dissipating material 5 . At this time, from the viewpoint of preventing unintentional air bubbles from remaining between the semiconductor element 4 and the conductor 3, the environment in which the heated work is placed is depressurized, and the work is shaken to perform defoaming. is preferred. In addition, from the viewpoint of reducing outgassing from the conductive heat dissipating material 5, the heating temperature of the workpiece is set to the maximum temperature or higher at the time of heat generation of the semiconductor element 4 (although not limited, if the heat generation temperature is 140 ° C., it is set to 150 ° C. etc.) is preferable. The heating temperature of the workpiece can be appropriately adjusted according to the maximum temperature, for example, when the semiconductor element 4 is mainly composed of SiC and operates at a higher temperature. After the conductive heat dissipating material 5 is melted and the air trap 32 is filled, the conductive heat dissipating material 5 is solidified by, for example, cooling, the semiconductor element 4 is fixed, and the jig J is removed.

そして、例えば図4Dに示すように、ディスペンサー等により発泡シリコンを塗布し、半導体素子4の側面4cおよび導電放熱材5の一部を覆う膨張部材7を形成する。このとき、膨張部材7は、半導体素子4の外郭をなす四辺すべて(すなわち側面4cの全周)を覆うように配置されてもよいが、導電放熱材5の流動性の観点から、四辺のうち一部の辺に配置されることが好ましい。この点については、後述する。 Then, for example, as shown in FIG. 4D, foamed silicon is applied by a dispenser or the like to form an expansion member 7 covering the side surface 4c of the semiconductor element 4 and a part of the conductive heat dissipating member 5. Next, as shown in FIG. At this time, the expansion member 7 may be arranged so as to cover all the four sides forming the outline of the semiconductor element 4 (that is, the entire circumference of the side surface 4c). It is preferably arranged on some sides. This point will be described later.

その後、例えば図4Eに示すように、ディスペンサー等によりエポキシ樹脂を塗布した後に硬化させ、半導体素子4の表面4aもしくは側面4cまたはその両方と導体3のうち凹部31の外側に位置する部分とを繋ぐ固定部材6を形成する。固定部材6は、導電放熱材5を凹部31内に封止する観点から、半導体素子4の外郭をなす四辺すべてを覆うように配置されることが好ましいが、これに限定されるものではない。例えば、固定部材6は、膨張部材7と異なる部分にのみ配置され、膨張部材7と共に導電放熱材5を封止してよいし、後述する封止材9で半導体素子4および凹部31の全域を覆う場合には、他の配置であってもよい。 Thereafter, as shown in FIG. 4E, for example, epoxy resin is applied by a dispenser or the like and then cured to connect the front surface 4a or the side surface 4c of the semiconductor element 4, or both, and the portion of the conductor 3 located outside the recess 31. A fixing member 6 is formed. The fixing member 6 is preferably arranged so as to cover all the four sides forming the outline of the semiconductor element 4 from the viewpoint of sealing the conductive heat dissipating material 5 in the recess 31, but is not limited to this. For example, the fixing member 6 may be arranged only in a portion different from the expansion member 7 to seal the conductive heat dissipation material 5 together with the expansion member 7, or the semiconductor element 4 and the recess 31 may be entirely covered with the sealing material 9 described later. In the case of covering, other arrangements may be used.

続いて、例えば図4Fに示すように、金属ワイヤをワイヤボンディング等により半導体素子4の表面4aに接続し、半導体素子4と外部とを電気的に繋ぐ配線8を形成する。 Subsequently, as shown in FIG. 4F, for example, a metal wire is connected to the surface 4a of the semiconductor element 4 by wire bonding or the like to form a wiring 8 electrically connecting the semiconductor element 4 and the outside.

なお、必要に応じて、例えば図4Gに示すように、配線8の形成後に、導体3の凹部31および半導体素子4の全域を覆う封止材9をポッティング剤等により形成してもよい。 If necessary, as shown in FIG. 4G, for example, after the wiring 8 is formed, a sealing material 9 covering the recess 31 of the conductor 3 and the semiconductor element 4 may be formed using a potting agent or the like.

以上のような工程により、本実施形態の半導体装置1を製造することができる。なお、この半導体装置1は、はんだを用いないため、半導体素子4がはんだを溶融させるほどの高温に晒されず、はんだを有する従来の構成の半導体装置に比べて、信頼性や歩留まりが向上する効果も得られる。 The semiconductor device 1 of the present embodiment can be manufactured through the steps described above. Since the semiconductor device 1 does not use solder, the semiconductor element 4 is not exposed to a high temperature that melts the solder, and reliability and yield are improved compared to conventional semiconductor devices having solder. effect is also obtained.

〔膨張部材〕
次に、膨張部材7による効果と配置例について、図5~図8を参照して説明する。
[Expansion member]
Next, the effects and arrangement examples of the expansion member 7 will be described with reference to FIGS. 5 to 8. FIG.

図5~図8では、凹部31の内側の構成のみを示すと共に、見易くするため、半導体素子4の外郭を破線で示すと共に、導電放熱材5および固定部材6を省略し、断面を示すものではないが、膨張部材7にハッチングを施している。また、図5~図8では、説明の便宜上、膨張部材7の膨張による導電放熱材5を押し込む方向を白抜き矢印で示し、凹部31内における導電放熱材5の流れを太線矢印で示している。 5 to 8 show only the inner structure of the recess 31, and to make it easier to see, the outline of the semiconductor element 4 is indicated by broken lines, and the conductive heat dissipating member 5 and the fixing member 6 are omitted, and the cross section is not shown. However, the expansion member 7 is hatched. 5 to 8, for convenience of explanation, the direction in which the conductive heat dissipating material 5 is pushed in by the expansion of the expansible member 7 is indicated by a white arrow, and the flow of the conductive heat dissipating material 5 in the recess 31 is indicated by a thick arrow. .

また、以下の膨張部材7の説明においては、便宜上、「左」、「右」、「上」、「下」と称するものは、それぞれ図5~図8において矢印で示す各方向に対応したものである。 Further, in the following description of the expansion member 7, for convenience, the terms "left", "right", "up", and "down" correspond to the directions indicated by the arrows in FIGS. 5 to 8, respectively. is.

まず、膨張部材7の配置の一例について、図5を参照して説明する。 First, an example of arrangement of the expansion member 7 will be described with reference to FIG.

膨張部材7は、例えば図5に示すように、複数のエアートラップ32のうち対向する2つのエアートラップ32の上に配置される。膨張部材7は、半導体素子4の発熱時に膨張し、エアートラップ32内の導電放熱材5および捕捉されたエアーを押圧し、膨張部材7が配置されたエアートラップ32の圧力を大きくする。この場合、図5の紙面左右に位置する辺に沿って配置されたエアートラップ32の圧力が上昇し、白抜き矢印で示すように、左右から凹部31の中心に向かって導電放熱材5を押し込む力が生じる。 The expansion member 7 is arranged on two opposing air traps 32 among the plurality of air traps 32, as shown in FIG. 5, for example. The expansion member 7 expands when the semiconductor element 4 generates heat, presses the conductive heat radiating material 5 and trapped air in the air trap 32, and increases the pressure of the air trap 32 in which the expansion member 7 is arranged. In this case, the pressure of the air traps 32 arranged along the left and right sides of the paper surface of FIG. power is generated.

これにより、図5に示すように、凹部31の中心から上、下にそれぞれ向かう導電放熱材5の流れが生じ、導電放熱材5を凹部31のうち導体3と半導体素子4との隙間に押し込みつつ、その一部が上および下に位置するエアートラップ32に向けて移動する。その結果、導体3と半導体素子4との間に空隙が生じることを抑制しつつ、導電放熱材5に気泡が生じた場合にその気泡をエアートラップ32に移動させ、捕捉させ、導体3と半導体素子4との間に気泡が残存することを防ぐことができる。 As a result, as shown in FIG. 5 , the conductive heat dissipating material 5 flows upward and downward from the center of the recess 31 , pushing the conductive heat dissipating material 5 into the gap between the conductor 3 and the semiconductor element 4 in the recess 31 . part of it moves toward the air traps 32 located above and below. As a result, while suppressing the formation of a gap between the conductor 3 and the semiconductor element 4, when bubbles are generated in the conductive heat dissipating material 5, the bubbles are moved to the air trap 32 to be captured, and the conductor 3 and the semiconductor are separated. It is possible to prevent air bubbles from remaining between the element 4 and the element 4 .

また、例えば図6に示すように、膨張部材7は、下および右の2つのエアートラップ32の上に配置されてもよい。この場合、下および右から凹部31の中心に向かう2つの導電放熱材5を押し込む力が生じ、導電放熱材5は、右および下から導体3と半導体素子4との隙間に押し込まれつつ、一部が上および左のエアートラップ32に流れる。このように、膨張部材7は、4つのエアートラップ32のうち隣接する2つのエアートラップ32にのみ配置された場合であっても、導電放熱材5を流動させることができる。 Also, as shown for example in FIG. 6, the inflatable member 7 may be positioned above the two air traps 32, bottom and right. In this case, a force is generated to push the two conductive heat dissipating members 5 toward the center of the recess 31 from below and from the right, and the conductive heat dissipating member 5 is pushed into the gap between the conductor 3 and the semiconductor element 4 from the right and below while being pushed into the gap between the conductor 3 and the semiconductor element 4. flow to the top and left air traps 32 . In this manner, even when the expansion member 7 is arranged only in two adjacent air traps 32 out of the four air traps 32, the conductive heat dissipating material 5 can flow.

また、例えば図7に示すように、膨張部材7は、左、右、下の3つのエアートラップ32の上に配置されてもよい。この場合、左、右、下から凹部31の中心に向かう3つの導電放熱材5を押し込む力が生じ、導電放熱材5は、左、右、下の三方向から導体3と半導体素子4との隙間に押し込まれつつ、一部が上のエアートラップ32に流れる。 Alternatively, as shown in FIG. 7, the inflatable member 7 may be arranged above three air traps 32, namely left, right and bottom. In this case, a force is generated to push the three conductive heat dissipating members 5 toward the center of the concave portion 31 from the left, right, and bottom, and the conductive heat dissipating members 5 push the conductor 3 and the semiconductor element 4 from the left, right, and bottom three directions. Part of it flows into the upper air trap 32 while being pushed into the gap.

上記のように凹部31の外郭が四角形をなす形状である場合、膨張部材7は、当該外郭のなす四辺のうち隣接または対向する二辺に沿ったエアートラップ32、あるいは四辺のうち三辺に沿ったエアートラップ32に配置されうる。言い換えると、膨張部材7は、凹部31の外郭のなす四辺のうち少なくとも一辺に沿ったエアートラップ32に配置されない状態とされうる。 As described above, when the outline of the recessed portion 31 has a quadrilateral shape, the expansion member 7 is provided with air traps 32 along two adjacent or opposing sides among the four sides of the outline, or air traps 32 along three of the four sides of the outline. can be placed in the air trap 32 . In other words, the expansion member 7 can be placed in a state where it is not placed in the air trap 32 along at least one of the four sides of the contour of the recess 31 .

さらに、例えば図8に示すように、膨張部材7は、すべてのエアートラップ32の上に配置されてもよい。この場合、例えば、構成材料や厚み等を変更し、半導体素子4の発熱時における膨張量が異なる複数の種類の膨張部材7とし、左、右、上、下から凹部31の中心に向かう4つの導電放熱材5を押し込む力に差が生じる状態とされる。これにより、当該押し込む力が不均等になり、凹部31内において、導電放熱材5を導体3と半導体素子4との隙間に押し込みつつ、一部を所定のエアートラップ32に向かって移動させる流れが生じる。 Further, the inflatable member 7 may be arranged over all the air traps 32, for example as shown in FIG. In this case, for example, by changing the constituent material, thickness, etc., a plurality of types of expansion members 7 having different expansion amounts when the semiconductor element 4 heats up are provided, and four expansion members 7 extending from the left, right, top, and bottom toward the center of the recess 31 are provided. A difference is generated in the force for pushing the conductive heat radiating material 5 . As a result, the pushing force becomes uneven, and while pushing the conductive heat-dissipating material 5 into the gap between the conductor 3 and the semiconductor element 4 in the recess 31, a part of the conductive heat-dissipating material 5 moves toward the predetermined air trap 32. occur.

このように、膨張部材7は、導電放熱材5を凹部31内で流動させる観点から、導電放熱材5を押し込む力が不均等になるような配置や構成とされることが好ましい。これは、膨張部材7が導電放熱材5を押し込む力が均等である場合には、導電放熱材5に気泡が生じたとき、導電放熱材5を気泡ごと導体3と半導体素子4との隙間に押し込んでしまい、気泡をエアートラップ32に捕捉させにくくなるためである。 In this way, from the viewpoint of allowing the conductive heat dissipating material 5 to flow within the recess 31 , it is preferable that the expansion member 7 be arranged and configured such that the force for pushing the conductive heat dissipating material 5 is uneven. This is because, when the expansion member 7 presses the conductive heat dissipating material 5 with a uniform force, when air bubbles are generated in the conductive heat dissipating material 5, the conductive heat dissipating material 5 is pushed into the gap between the conductor 3 and the semiconductor element 4 together with the air bubbles. This is because it becomes difficult for the air trap 32 to trap the air bubbles.

なお、膨張部材7は、複数のエアートラップ32のうち一部のエアートラップ32の上にのみ配置されつつ、その膨張量が異なる構成であってもよく、その配置や構成等については適宜変更されてもよい。 Note that the expansion member 7 may be arranged only on some of the air traps 32 among the plurality of air traps 32, and may have a different expansion amount, and the arrangement, configuration, etc. may be changed as appropriate. may

本実施形態によれば、半導体素子4が導体3の凹部31の外郭内側に配置され、半導体素子4の表面4aもしくは側面4cまたはその両方が固定部材6により導体3に接続固定されつつ、半導体素子4の裏面4bが固定されていない半導体装置となる。そのため、半導体素子4と導体3との接続面積が小さくなり、半導体素子4にかかる応力が緩和され、半導体素子4が薄型化されていても、応力に起因する破損が抑制される。また、半導体素子4が、導電性を有し、かつ駆動時に液状となる導電放熱材5を介して導体3と熱的に接続されているため、半導体素子4と導体3との導電性を確保しつつ、半導体素子4の放熱性が向上する。 According to this embodiment, the semiconductor element 4 is arranged inside the contour of the recess 31 of the conductor 3, and the surface 4a and/or the side surface 4c of the semiconductor element 4 is connected and fixed to the conductor 3 by the fixing member 6. A semiconductor device in which the rear surface 4b of 4 is not fixed is obtained. Therefore, the connection area between the semiconductor element 4 and the conductor 3 is reduced, the stress applied to the semiconductor element 4 is reduced, and even if the semiconductor element 4 is thinned, breakage due to stress is suppressed. In addition, since the semiconductor element 4 is thermally connected to the conductor 3 through the conductive heat dissipating material 5 which has conductivity and becomes liquid when driven, the conductivity between the semiconductor element 4 and the conductor 3 is ensured. At the same time, the heat dissipation of the semiconductor element 4 is improved.

さらに、凹部31の底面にエアートラップ32が配置されているため、相転移等の何らかの要因で導電放熱材5中に気泡が生じた場合であっても、気泡がエアートラップ32に捕捉される。その結果、半導体素子4の裏面4bと導体3との隙間に気泡が介在することが抑制される。加えて、半導体装置1は、凹部31と固定部材6との間に半導体素子4の発熱時に膨張する膨張部材7が配置されているため、半導体素子4の駆動時に膨張部材7が膨張することで、液状の導電放熱材5を上記の隙間に押し出す構造である。これらの作用により、半導体装置1は、半導体素子4の駆動時に、半導体素子4の裏面4bと導体3との隙間に気泡や空隙が介在して熱抵抗が大きくなることが抑制され、より放熱性を確保できる効果が得られる。 Furthermore, since the air trap 32 is arranged on the bottom surface of the concave portion 31 , even if air bubbles are generated in the conductive heat dissipating material 5 due to some factor such as phase transition, the air bubbles are captured by the air trap 32 . As a result, the presence of air bubbles in the gap between the back surface 4b of the semiconductor element 4 and the conductor 3 is suppressed. In addition, in the semiconductor device 1, since the expansion member 7 that expands when the semiconductor element 4 generates heat is arranged between the recess 31 and the fixing member 6, the expansion member 7 expands when the semiconductor element 4 is driven. , the liquid conductive heat dissipating material 5 is pushed out into the gap. By these actions, the semiconductor device 1 suppresses an increase in thermal resistance caused by air bubbles or voids interposed between the back surface 4b of the semiconductor element 4 and the conductor 3 when the semiconductor element 4 is driven, thereby improving heat dissipation. can be obtained.

(第2実施形態)
第2実施形態の半導体装置1について、図9、図10を参照して説明する。
(Second embodiment)
A semiconductor device 1 according to the second embodiment will be described with reference to FIGS. 9 and 10. FIG.

本実施形態の半導体装置1は、例えば図9に示すように、膨張部材7がエアートラップ32に配置されている点で上記第1実施形態と相違する。本実施形態では、この相違点について主に説明する。 The semiconductor device 1 of the present embodiment differs from the first embodiment in that the expansion member 7 is arranged in the air trap 32 as shown in FIG. 9, for example. In this embodiment, this difference will be mainly described.

膨張部材7は、本実施形態では、例えば図10に示すように、固定部材6に固定されておらず、エアートラップ32の直下に位置する領域に配置されている。膨張部材7は、エアートラップ32に沿って配置可能であって、半導体素子4の駆動時の熱で膨張する構成であればよく、例えば、気密された空気を内包するカプセル、あるいは空気を内包しない筒状のチューブなどとされる。また、膨張部材7は、上記第1実施形態と同様に、例えば発泡シリコンなどのような独立した複数の気泡を内包する発泡部材であってもよい。 In the present embodiment, the inflatable member 7 is not fixed to the fixed member 6 but is arranged in a region directly below the air trap 32 as shown in FIG. 10, for example. The expansion member 7 can be arranged along the air trap 32, and may be configured to expand with heat generated when the semiconductor element 4 is driven. It is considered as a cylindrical tube. Also, the expansion member 7 may be a foam member containing a plurality of independent cells, such as foamed silicon, as in the first embodiment.

膨張部材7は、本実施形態では、半導体素子4の発熱時にエアートラップ32直下の領域において膨張し、エアートラップ32内の圧力を上げることで、液状の導電放熱材5を半導体素子4と凹部31との隙間に押し込む役割を果たす。 In the present embodiment, the expansion member 7 expands in the area immediately below the air trap 32 when the semiconductor element 4 generates heat, and increases the pressure inside the air trap 32 so that the liquid conductive heat dissipating material 5 is separated from the semiconductor element 4 and the concave portion 31 . It plays the role of pushing into the gap between

本実施形態の半導体装置1は、膨張部材7の配置工程を除き、基本的には、上記第1実施形態と同様の製造工程により製造される。半導体装置1は、例えば、板状の導電放熱材5を凹部31に配置する前に、膨張部材7をエアートラップ32に配置しておき、導電放熱材5をその上に置く工程を経て製造される。 The semiconductor device 1 of this embodiment is basically manufactured by the same manufacturing process as that of the first embodiment, except for the step of arranging the expansion member 7 . The semiconductor device 1 is manufactured by, for example, placing the expansion member 7 in the air trap 32 and placing the conductive heat dissipation material 5 thereon before placing the plate-shaped conductive heat dissipation material 5 in the recess 31 . be.

本実施形態によれば、上記第1実施形態と同様の効果が得られる半導体装置1となる。また、本実施形態では、膨張部材7の配置工程が簡略化され、半導体装置1の製造コストを低減できると共に、膨張部材7が固定部材6に固定されていないため、固定部材6に対する膨張部材7の膨張影響が緩和され、信頼性がより向上する効果が得られる。 According to the present embodiment, the semiconductor device 1 can obtain the same effects as those of the first embodiment. In addition, in the present embodiment, the process of arranging the expansion member 7 is simplified, and the manufacturing cost of the semiconductor device 1 can be reduced. The expansion effect of is alleviated, and an effect of further improving reliability is obtained.

(他の実施形態)
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらの一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to such examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations including only one, more, or less elements thereof, are within the scope and spirit of this disclosure.

例えば、上記各実施形態では、固定部材6がほとんど膨張しない構成である場合を代表例として説明したが、固定部材6は、半導体素子4の発熱時において、膨張部材7よりも熱膨張量の小さい膨張量となる構成であってもよい。この場合、固定部材6も膨張部材7として機能し、半導体装置1は、実質的には、膨張部材7により半導体素子4が導体3に固定された構成となる。 For example, in each of the above-described embodiments, the case where the fixing member 6 hardly expands has been described as a representative example, but the fixing member 6 has a smaller amount of thermal expansion than the expansion member 7 when the semiconductor element 4 generates heat. It may be configured to have an expansion amount. In this case, the fixing member 6 also functions as the expansion member 7 , and the semiconductor device 1 substantially has a structure in which the semiconductor element 4 is fixed to the conductor 3 by the expansion member 7 .

3 導体
31 凹部
32 エアートラップ
4 半導体素子
4a 表面
4b 裏面
4c 側面
5 導電放熱材
6 固定部材
7 膨張部材
3 Conductor 31 Recess 32 Air trap 4 Semiconductor element 4a Front surface 4b Back surface 4c Side surface 5 Conductive heat dissipation material 6 Fixing member 7 Expansion member

Claims (7)

表面(4a)および裏面(4b)を有する半導体素子(4)と、
前記裏面と向き合うと共に、前記半導体素子の外郭よりも大きい外郭の凹部(31)と、前記凹部の底面に設けられる窪みであるエアートラップ(32)とを有する導体(3)と、
前記半導体素子と前記凹部との隙間に配置され、少なくとも前記半導体素子の駆動時に液状であると共に、導電性を有する導電放熱材(5)と、
前記半導体素子のうち少なくとも前記表面および前記表面と前記裏面とを繋ぐ側面(4c)の一方と、前記導体とを繋ぐ配置とされ、前記半導体素子を前記導体に固定する固定部材(6)と、
柔軟性を有し、前記固定部材と前記導体との間に配置され、前記導電放熱材に接触すると共に、前記半導体素子の駆動時の熱により膨張する膨張部材(7)と、を備え、
前記半導体素子は、前記凹部の外郭内側に配置され、前記導電放熱材を介して前記導体と熱的に接続されている、半導体装置。
a semiconductor element (4) having a front surface (4a) and a back surface (4b);
a conductor (3) facing the back surface and having an outer recess (31) larger than the outer shell of the semiconductor element and an air trap (32) that is a recess provided in the bottom surface of the recess;
a conductive heat dissipating material (5) disposed in the gap between the semiconductor element and the recess, being in a liquid state at least when the semiconductor element is driven, and having electrical conductivity;
a fixing member (6) arranged to connect at least one of the front surface and a side surface (4c) connecting the front surface and the back surface of the semiconductor element to the conductor and fixing the semiconductor element to the conductor;
an expansion member (7) having flexibility, disposed between the fixing member and the conductor, being in contact with the conductive heat dissipating material, and expanding due to heat generated when the semiconductor element is driven;
The semiconductor device according to claim 1, wherein the semiconductor element is arranged inside the contour of the recess and is thermally connected to the conductor through the conductive heat dissipating material.
前記導電放熱材は、液体金属である、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein said conductive heat dissipation material is liquid metal. 前記エアートラップは、前記凹部の前記底面のうち前記半導体素子の外郭上または外郭よりも外側の位置に配置されている、請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein said air trap is arranged on said bottom surface of said recess on or outside the outline of said semiconductor element. 前記膨張部材は、前記エアートラップの上に配置されている、請求項1ないし3のいずれか1つに記載の半導体装置。 4. The semiconductor device according to claim 1, wherein said expansion member is arranged above said air trap. 前記半導体素子は、四角形板状であり、
前記凹部は、少なくとも前記半導体素子の外郭に沿った四辺を有する外郭形状であり、
前記膨張部材は、前記凹部の外郭のなす四辺のうち少なくとも隣接する二辺に沿って配置されている、請求項1ないし3のいずれか1つに記載の半導体装置。
The semiconductor element has a rectangular plate shape,
The recess has an outline shape having at least four sides along the outline of the semiconductor element,
4. The semiconductor device according to claim 1, wherein said expansion member is arranged along at least two adjacent sides among four sides forming an outline of said recess.
前記膨張部材は、前記凹部の外郭のなす四辺のうち少なくとも一辺には配置されていない、請求項5に記載の半導体装置。 6. The semiconductor device according to claim 5, wherein said expansion member is not arranged on at least one side of the four sides forming the contour of said recess. 前記凹部は、独立した4つ以上の前記エアートラップを有し、
前記エアートラップは、少なくとも前記凹部の外郭のなす四辺それぞれに沿って延設されている、請求項5または6に記載の半導体装置。
The recess has four or more independent air traps,
7. The semiconductor device according to claim 5, wherein said air trap extends at least along each of the four sides of said recess.
JP2021087610A 2021-05-25 2021-05-25 Semiconductor device Pending JP2022180875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021087610A JP2022180875A (en) 2021-05-25 2021-05-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021087610A JP2022180875A (en) 2021-05-25 2021-05-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2022180875A true JP2022180875A (en) 2022-12-07

Family

ID=84327598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021087610A Pending JP2022180875A (en) 2021-05-25 2021-05-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2022180875A (en)

Similar Documents

Publication Publication Date Title
JP4438489B2 (en) Semiconductor device
JP4635564B2 (en) Semiconductor device
JP5344888B2 (en) Semiconductor device
KR101905995B1 (en) Power module of double-faced cooling
JP5484429B2 (en) Power converter
CN109314063B (en) Power semiconductor device
JP2003264265A (en) Power semiconductor device
JP2009117428A (en) Method for power semiconductor module, fabrication, its apparatus, power semiconductor module thereof and its junction method
JP6350364B2 (en) Connection structure
JP2018133527A (en) Semiconductor device and semiconductor device manufacturing method
JP5126201B2 (en) Semiconductor module and manufacturing method thereof
CN113454774A (en) Packaged chip and manufacturing method thereof
KR102163662B1 (en) Dual side cooling power module and manufacturing method of the same
JP6150866B2 (en) Power semiconductor device
JP2013062282A (en) Semiconductor device
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP7088224B2 (en) Semiconductor modules and semiconductor devices used for them
JP2010251427A (en) Semiconductor module
JP2006190728A (en) Electric power semiconductor device
JP2022180875A (en) Semiconductor device
WO2020189508A1 (en) Semiconductor module and semiconductor device used therefor
JP2011171656A (en) Semiconductor package and method for manufacturing the same
JP2010062491A (en) Semiconductor device and composite semiconductor device
JP7059714B2 (en) Power converter and manufacturing method of power converter
JP2009164511A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240110