JP2022180230A - Method for increasing the purity of iron(iii) chloride - Google Patents

Method for increasing the purity of iron(iii) chloride Download PDF

Info

Publication number
JP2022180230A
JP2022180230A JP2021087217A JP2021087217A JP2022180230A JP 2022180230 A JP2022180230 A JP 2022180230A JP 2021087217 A JP2021087217 A JP 2021087217A JP 2021087217 A JP2021087217 A JP 2021087217A JP 2022180230 A JP2022180230 A JP 2022180230A
Authority
JP
Japan
Prior art keywords
iii
iron
chloride
hydroxide
containing iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021087217A
Other languages
Japanese (ja)
Inventor
凌之介 尾脇
Ryonosuke Owaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Original Assignee
Astec Irie Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd filed Critical Astec Irie Co Ltd
Priority to JP2021087217A priority Critical patent/JP2022180230A/en
Publication of JP2022180230A publication Critical patent/JP2022180230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a method for increasing the purity of iron(III) chloride that can increase the purity of iron(III) chloride with high efficiency.SOLUTION: A method for increasing the purity of iron(III) chloride includes a step (A) for mixing a solution containing iron(III) chloride with an alkali agent, to yield a precipitate containing iron(III) hydroxide in a liquid mixture, a step (B) for recovering the precipitate, and a step (C) for mixing the recovered precipitate with hydrochloric acid to yield a solution containing iron(III) chloride. When the pH of the liquid mixture in the step (A) is defined as pHA, a theoretical pH value represented by the formula (1) is defined as pHT, and D equals pHA-pHT, 3.00≤D≤7.00 holds true, where Ksp is a product of hydroxide solubility, Mn+ is a metal ion, [Mn+] is a molar concentration of Mn+, n is a valence, and Kw is an ionic product of water.SELECTED DRAWING: None

Description

本発明は、塩化鉄(III)の高純度化方法に関する。 The present invention relates to a method for highly purifying iron(III) chloride.

プリント配線板やIC、LSI用のリードフレームなどは、塩化鉄(III)を含むエッチング液で部分的に腐食処理することにより製造されている。
エッチング処理によって、エッチング液に含まれる塩化鉄(III)が還元されて塩化鉄(II)になり、塩化鉄(III)の濃度が低下してエッチング効率が悪くなるので、定期的にエッチング液の交換が行われている。
Printed wiring boards, ICs, lead frames for LSIs, etc. are manufactured by partially corroding with an etchant containing iron (III) chloride.
During the etching process, the iron (III) chloride contained in the etching solution is reduced to become iron (II) chloride, and the concentration of iron (III) chloride decreases, resulting in poor etching efficiency. exchange is taking place.

なお、特許文献1には、鋼材酸洗廃液より高純度の酸化鉄を製造するための酸洗廃液の精製方法が記載されている。 Patent document 1 describes a method for purifying a pickling waste liquid for producing high-purity iron oxide from the steel pickling waste liquid.

特開平7-165427号公報JP-A-7-165427

エッチング処理後の廃液であるエッチング廃液は銅成分、ニッケル成分を多量に含んでいる。そこで鉄粉を加えることでイオン化傾向の差により銅粉、ニッケル粉を液中から取り出す還元処理がなされている。還元後の塩化鉄(II)は酸化処理され、塩化鉄(III)となり、エッチング液として再びリサイクルされるが、プロセス上、余剰に塩化鉄(III)を含む溶液が生成され、廃棄されているのが現状である。 Etching waste liquid, which is a waste liquid after etching processing, contains a large amount of copper component and nickel component. Therefore, by adding iron powder, a reduction treatment is performed in which the copper powder and the nickel powder are removed from the liquid due to the difference in ionization tendency. Iron (II) chloride after reduction is oxidized to become iron (III) chloride, which is recycled as an etchant again. is the current situation.

廃棄される塩化鉄(III)を含む溶液を再利用することができれば、資源の有効利用の観点、及び廃棄物の減少による環境負荷の低減の観点から望ましい。
しかしながら、還元処理工程において銅成分、ニッケル成分が除去されても完全に除去されるわけではなく、また、鉄粉を加えても還元されない成分も種々液中には含まれる。塩化鉄(III)を含む溶液中の不純物成分としては、典型元素であるカルシウムや亜鉛、遷移元素である銅、ニッケル、マンガン、コバルト等が挙げられる。これらの不純物が含まれる結果、塩化鉄(III)の純度が低いため、様々な用途(例えば、リン酸鉄リチウムイオンバッテリーの正極材料や顔料の原料など)に再利用することが難しいという問題があった。
If the solution containing iron (III) chloride to be discarded can be reused, it is desirable from the viewpoint of effective utilization of resources and reduction of environmental load due to reduction of waste.
However, even if the copper component and the nickel component are removed in the reduction treatment process, they are not completely removed, and the liquid contains various components that are not reduced even when iron powder is added. Impurity components in a solution containing iron (III) chloride include typical elements such as calcium and zinc, and transition elements such as copper, nickel, manganese and cobalt. As a result of containing these impurities, the purity of iron (III) chloride is low, so there is a problem that it is difficult to reuse it for various purposes (for example, positive electrode materials for lithium iron phosphate batteries and raw materials for pigments). there were.

特許文献1には、塩化第二鉄溶液にアルカリを添加し、pHを3~4に制御することが記載されている。
しかしながら、特許文献1に記載された条件では、得られる沈殿物の固液分離性に劣り、処理時間が長くなり、効率が低い。また、得られた沈殿物を濾過した場合、不純物を含む濾液が付着しているため、沈殿物を水洗する場合があるが、特許文献1に記載された条件では沈殿物が水洗中に溶解してしまうため、純度を高めることは難しい。また、特許文献1ではFe3+のモル濃度について記載されておらず、固液分離性の効率についても記載されていない。
Patent Document 1 describes adding an alkali to a ferric chloride solution to control the pH to 3-4.
However, under the conditions described in Patent Document 1, the solid-liquid separability of the resulting precipitate is poor, the treatment time is long, and the efficiency is low. In addition, when the obtained precipitate is filtered, it may be washed with water because the filtrate containing impurities is attached, but under the conditions described in Patent Document 1, the precipitate is dissolved during washing. Therefore, it is difficult to increase the purity. Moreover, Patent Document 1 does not describe the molar concentration of Fe 3+ , nor does it describe the efficiency of solid-liquid separation.

本発明の課題は、塩化鉄(III)の純度を高くすることができ、かつ効率に優れる塩化鉄(III)の高純度化方法を提供することにある。 An object of the present invention is to provide a highly efficient method for highly purifying iron (III) chloride, which can increase the purity of iron (III) chloride.

上記課題は下記手段により達成することができる。
〔1〕
塩化鉄(III)を含む溶液とアルカリ剤とを混合し、混合液中で水酸化鉄(III)を含む沈殿物を得る工程(A)と、
前記沈殿物を回収する工程(B)と、
回収された前記沈殿物と塩酸とを混合して、塩化鉄(III)を含む溶液を得る工程(C)とを含み、
前記工程(A)の前記混合液のpHをpHとし、下記式(1)で表されるpHの理論値をpHとし、D=pH-pHとした場合、3.00≦D≦7.00である、塩化鉄(III)の高純度化方法。

Figure 2022180230000001

ただし、Kspは水酸化物溶解度積であり、Mn+は金属イオンであり、[Mn+]はMn+のモル濃度であり、nは価数であり、Kは水のイオン積である。
〔2〕
前記Dが、3.67≦D≦6.05である、〔1〕に記載の塩化鉄(III)の高純度化方法。
〔3〕
前記工程(A)で得られる前記混合液中のFe3+のモル濃度が、0.05mol/L~2mol/Lである、〔1〕又は〔2〕に記載の塩化鉄(III)の高純度化方法。
〔4〕
前記工程(A)で用いられる前記塩化鉄(III)を含む溶液が、エッチング廃液に由来する溶液である、〔1〕~〔3〕のいずれか1つに記載の塩化鉄(III)の高純度化方法。
〔5〕
前記工程(B)が、前記沈殿物を含むスラリーを濾過する工程を含む、〔1〕~〔4〕のいずれか1つに記載の塩化鉄(III)の高純度化方法。
〔6〕
前記工程(B)と前記工程(C)の間に、前記工程(B)で回収された沈殿物を水洗する工程を含む、〔1〕~〔5〕のいずれか1つに記載の塩化鉄(III)の高純度化方法。 The above problems can be achieved by the following means.
[1]
A step (A) of mixing a solution containing iron (III) chloride with an alkaline agent to obtain a precipitate containing iron (III) hydroxide in the mixed solution;
a step (B) of recovering the precipitate;
a step (C) of mixing the recovered precipitate with hydrochloric acid to obtain a solution containing iron (III) chloride;
Let pH A be the pH of the mixed solution in step (A), pH T be the theoretical value of the pH represented by the following formula (1), and D = pH A - pH T , where 3.00 ≤ D A method for the purification of iron(III) chloride, wherein ≦7.00.
Figure 2022180230000001

where K sp is the hydroxide solubility product, M n+ is the metal ion, [M n+ ] is the molar concentration of M n+ , n is the valence, and K w is the ionic product of water. .
[2]
The method for highly purifying iron (III) chloride according to [1], wherein D is 3.67≦D≦6.05.
[3]
High-purity iron(III) chloride according to [1] or [2], wherein the molar concentration of Fe 3+ in the mixed solution obtained in the step (A) is 0.05 mol/L to 2 mol/L. conversion method.
[4]
The iron (III) chloride-rich solution according to any one of [1] to [3], wherein the solution containing iron (III) chloride used in the step (A) is a solution derived from an etching waste liquid. purification method.
[5]
The method for highly purifying iron (III) chloride according to any one of [1] to [4], wherein the step (B) includes filtering the slurry containing the precipitate.
[6]
The iron chloride according to any one of [1] to [5], including a step of washing the precipitate collected in the step (B) with water between the step (B) and the step (C). (III) high purification method.

本発明によれば、塩化鉄(III)の純度を高くすることができ、かつ効率に優れる塩化鉄(III)の高純度化方法を提供することにある。 An object of the present invention is to provide a highly efficient method for increasing the purity of iron (III) chloride, which can increase the purity of iron (III) chloride.

本発明の塩化鉄(III)の高純度化方法は、
塩化鉄(III)を含む溶液とアルカリ剤とを混合し、混合液中で水酸化鉄(III)を含む沈殿物を得る工程(A)と、
前記沈殿物を回収する工程(B)と、
回収された前記沈殿物と塩酸とを混合して、塩化鉄(III)を含む溶液を得る工程(C)とを含み、
前記工程(A)の前記混合液のpHをpHとし、下記式(1)で表されるpHの理論値をpHとし、D=pH-pHとした場合、3.00≦D≦7.00である、塩化鉄(III)の高純度化方法である。
The method for highly purifying iron (III) chloride of the present invention comprises:
A step (A) of mixing a solution containing iron (III) chloride with an alkaline agent to obtain a precipitate containing iron (III) hydroxide in the mixed solution;
a step (B) of recovering the precipitate;
a step (C) of mixing the recovered precipitate with hydrochloric acid to obtain a solution containing iron (III) chloride;
Let pH A be the pH of the mixed solution in step (A), pH T be the theoretical value of the pH represented by the following formula (1), and D = pH A - pH T , where 3.00 ≤ D A method for the high purification of iron(III) chloride, wherein ≦7.00.

Figure 2022180230000002
Figure 2022180230000002

ただし、Kspは水酸化物溶解度積であり、Mn+は金属イオンであり、[Mn+]はMn+のモル濃度であり、nは価数であり、Kは水のイオン積である。 where K sp is the hydroxide solubility product, M n+ is the metal ion, [M n+ ] is the molar concentration of M n+ , n is the valence, and K w is the ionic product of water. .

[工程(A)]
工程(A)は、塩化鉄(III)を含む溶液とアルカリ剤とを混合し、混合液中で水酸化鉄(III)を含む沈殿物を得る工程である。
工程(A)で用いられる塩化鉄(III)を含む溶液は、塩化鉄(III)を含む水溶液であることが好ましく、エッチング廃液に由来する溶液であることがより好ましい。エッチング廃液に由来する溶液とは、エッチング廃液又はエッチング廃液に対して何らかの処理(例えば酸化処理や還元処理)を行った後の溶液である。エッチング廃液に由来する溶液は通常は鉄以外の金属などの不純物を含有しており、本発明の方法を適用した際に本発明の効果が顕著に現れる。
工程(A)で用いられる塩化鉄(III)を含む溶液は、鉄以外の金属を含むものであることが好ましく、カルシウム、亜鉛、マンガン、コバルト、銅、ニッケル少なくとも1種を含むものであることがより好ましく、カルシウム及びマンガンの少なくとも1種を含むことが更に好ましい。
工程(A)で用いられる塩化鉄(III)を含む溶液は、例えば、塩化鉄(III)を1~50質量%、カルシウムを50~3000ppm、マンガンを50~3000ppm含むものであってもよい。「ppm」は「parts per million」の略であり、質量基準(「質量ppm」)である。
[Step (A)]
Step (A) is a step of mixing a solution containing iron(III) chloride and an alkaline agent to obtain a precipitate containing iron(III) hydroxide in the mixed solution.
The solution containing iron (III) chloride used in step (A) is preferably an aqueous solution containing iron (III) chloride, and more preferably a solution derived from an etching waste liquid. The solution derived from the etching waste liquid is the etching waste liquid or the solution after the etching waste liquid is subjected to some treatment (for example, oxidation treatment or reduction treatment). A solution derived from an etching waste liquid usually contains impurities such as metals other than iron, and the effect of the present invention appears remarkably when the method of the present invention is applied.
The solution containing iron (III) chloride used in step (A) preferably contains a metal other than iron, and more preferably contains at least one of calcium, zinc, manganese, cobalt, copper, and nickel. More preferably, it contains at least one of calcium and manganese.
The solution containing iron (III) chloride used in step (A) may contain, for example, 1 to 50% by mass of iron (III) chloride, 50 to 3000 ppm of calcium, and 50 to 3000 ppm of manganese. "ppm" is an abbreviation for "parts per million" and is based on mass ("mass ppm").

工程(A)で用いるアルカリ剤は特に限定されない。アルカリ剤としては、例えば、アンモニア水溶液、水酸化ナトリウム水溶液等が挙げられる。 The alkaline agent used in step (A) is not particularly limited. Examples of alkaline agents include an aqueous ammonia solution and an aqueous sodium hydroxide solution.

工程(A)では、塩化鉄(III)を含む溶液とアルカリ剤とを混合し、得られた混合液中で水酸化鉄(III)を含む沈殿物を得る。
塩化鉄(III)を含む溶液とアルカリ剤との混合比は特に限定されない。
In step (A), a solution containing iron (III) chloride and an alkaline agent are mixed to obtain a precipitate containing iron (III) hydroxide in the resulting mixed solution.
The mixing ratio of the solution containing iron (III) chloride and the alkaline agent is not particularly limited.

工程(A)で得られる混合液のpHをpHとし、下記式(1)で表されるpHの理論値をpHとし、D=pH-pHとした場合、3.00≦D≦7.00である。 Let pH A be the pH of the mixed solution obtained in step (A), pH T be the theoretical value of the pH represented by the following formula (1), and D = pH A - pH T , where 3.00 ≤ D ≦7.00.

Figure 2022180230000003
Figure 2022180230000003

ただし、Kspは水酸化物溶解度積であり、Mn+は金属イオンであり、[Mn+]はMn+のモル濃度であり、nは価数であり、Kは水のイオン積である。 where K sp is the hydroxide solubility product, M n+ is the metal ion, [M n+ ] is the molar concentration of M n+ , n is the valence, and K w is the ionic product of water. .

なお、pHは温度によって変動するが、例えば10~50℃のpHとすることができ、15~40℃のpHとすることが好ましい。 Although the pH varies depending on the temperature, the pH can be, for example, 10 to 50°C, preferably 15 to 40°C.

上記式(1)において、Kspは具体的には、水酸化鉄(III)の溶解度積であり、18~25℃における値は、7.1×10-40である。Mn+はFe3+である。Kは25℃では1×10-14である。 In the above formula (1), K sp is specifically the solubility product of iron(III) hydroxide, and its value at 18 to 25° C. is 7.1×10 −40 . Mn + is Fe3 + . The K w is 1×10 −14 at 25°C.

Dが、3.67≦D≦6.05であることが特に好ましい。 It is particularly preferred that D is 3.67≤D≤6.05.

工程(A)で得られる混合液中のFe3+のモル濃度は、0.05mol/L~2mol/Lであることが好ましく、0.075mol/L~1mol/Lであることがより好ましい。 The molar concentration of Fe 3+ in the mixed solution obtained in step (A) is preferably 0.05 mol/L to 2 mol/L, more preferably 0.075 mol/L to 1 mol/L.

[工程(B)]
工程(B)は、工程(A)で得られた水酸化鉄(III)を含む沈殿物を回収する工程である。
工程(B)は、公知の手段(固液分離工程)により行うことができる。
工程(B)は、沈殿物を含むスラリーを濾過する工程を含むことが好ましく、沈殿物を含むスラリーを吸引濾過する工程を含むことがより好ましい。
[Step (B)]
Step (B) is a step of recovering the precipitate containing iron (III) hydroxide obtained in step (A).
The step (B) can be performed by known means (solid-liquid separation step).
The step (B) preferably includes a step of filtering the slurry containing the precipitate, more preferably a step of suction filtering the slurry containing the precipitate.

[工程(C)]
工程(C)は、回収された沈殿物と塩酸とを混合して、塩化鉄(III)を含む溶液を得る工程である。
工程(C)で得られる塩化鉄(III)を含む溶液は、塩化鉄(III)を含む水溶液であることが好ましい。
工程(C)で得られる塩化鉄(III)を含む溶液は、前述の工程(A)で用いた塩化鉄(III)を含む溶液よりも塩化鉄(III)の純度が高くなっている。
工程(C)で用いる塩酸の濃度は特に限定されない。
[Step (C)]
Step (C) is a step of mixing the collected precipitate with hydrochloric acid to obtain a solution containing iron (III) chloride.
The solution containing iron(III) chloride obtained in step (C) is preferably an aqueous solution containing iron(III) chloride.
The solution containing iron (III) chloride obtained in step (C) has a higher purity of iron (III) chloride than the solution containing iron (III) chloride used in step (A).
The concentration of hydrochloric acid used in step (C) is not particularly limited.

[その他の工程]
本発明の塩化鉄(III)の高純度化方法は、前述の工程(A)と工程(B)と工程(C)に加え、更にその他の工程を含むことができる。
その他の工程は特に限定されないが、本発明の塩化鉄(II)の高純度化方法は、工程(B)と工程(C)の間に、工程(B)で回収された沈殿物を水洗する工程を含むことが好ましい。
[Other processes]
The method for highly purifying iron (III) chloride of the present invention can further include other steps in addition to the above steps (A), (B) and (C).
Other steps are not particularly limited, but in the method for highly purifying iron (II) chloride of the present invention, the precipitate recovered in step (B) is washed with water between step (B) and step (C). It is preferable to include steps.

以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.

実施例及び比較例で使用した塩化鉄(III)水溶液A~Cは、下記表1に示す成分を表1に示す含有量で含む塩化鉄(III)水溶液である。 Iron (III) chloride aqueous solutions A to C used in Examples and Comparative Examples are iron (III) chloride aqueous solutions containing the components shown in Table 1 below in the contents shown in Table 1.

Figure 2022180230000004
Figure 2022180230000004

(実施例1)
塩化鉄(III)水溶液A40mLに希釈アンモニア水を120mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。30℃における混合液のpH(pH)は5.00であり、混合液中のFe3+のモル濃度は0.87(mol/L)であった。式(1)より算出したpHの理論値(pH)は0.97であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしているので、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を80g得た。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を得た。それぞれの吸引濾過に要した時間(T及びT)を表3に示す。水洗済みの水酸化鉄(III)を含む濾物を塩酸にて溶解し、塩化鉄(III)水溶液を得た。得られた塩化鉄(III)水溶液の成分分析を行い、表4に結果を示した。また、カルシウム及びマンガンの除去率を表4に記載した。カルシウム及びマンガンの除去率が高いと、相対的に塩化鉄(III)の純度が高くなるため、高純度化の効果が優れる。
(Example 1)
120 mL of diluted ammonia water was added to 40 mL of iron (III) chloride aqueous solution A to obtain a mixed liquid. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 30° C. was 5.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.87 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 0.97. When D = pH A - pH T , since 3.00 ≤ D ≤ 7.00 is satisfied, the slurry obtained as it is is subjected to suction filtration (the time required for this suction filtration is T1 ). 80 g of a filtrate containing iron(III) hydroxide was obtained. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The slurry thus obtained was subjected to suction filtration again (the time required for this suction filtration is defined as T2 ) to obtain a filtrate containing iron (III) hydroxide. Table 3 shows the time required for each suction filtration (T 1 and T 2 ). The filtrate containing iron (III) hydroxide washed with water was dissolved in hydrochloric acid to obtain an aqueous iron (III) chloride solution. The component analysis of the obtained iron (III) chloride aqueous solution was performed, and the results are shown in Table 4. Table 4 also shows the removal rates of calcium and manganese. When the removal rate of calcium and manganese is high, the purity of iron (III) chloride is relatively high, so the effect of high purification is excellent.

除去率(%)=100×[{用いた塩化鉄(III)水溶液中の不純物量(ppm)-水酸化鉄(III)溶解後の不純物量(ppm)}/用いた塩化鉄(III)水溶液中の不純物量(ppm)] Removal rate (%) = 100 × [{amount of impurities (ppm) in iron (III) chloride aqueous solution used - amount of impurities (ppm) after dissolution of iron (III) hydroxide} / iron (III) chloride aqueous solution used Amount of impurities in (ppm)]

(実施例2)
塩化鉄(III)水溶液A40mLに希釈アンモニア水を120mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。28℃における混合液のpH(pH)は7.00であり、混合液中のFe3+のモル濃度は0.87(mol/L)であった。式(1)より算出したpHの理論値(pH)は0.97であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしているので、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を80g得た。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を得た。それぞれの吸引濾過に要した時間(T及びT)を表3に示す。水洗済みの水酸化鉄(III)を含む濾物を塩酸にて溶解し、塩化鉄(III)水溶液を得た。得られた塩化鉄(III)水溶液の成分分析を行い、表4に結果を示した。また、カルシウム及びマンガンの除去率を表4に記載した。
(Example 2)
120 mL of diluted ammonia water was added to 40 mL of iron (III) chloride aqueous solution A to obtain a mixed liquid. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 28° C. was 7.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.87 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 0.97. When D = pH A - pH T , since 3.00 ≤ D ≤ 7.00 is satisfied, the slurry obtained as it is is subjected to suction filtration (the time required for this suction filtration is T1 ). 80 g of a filtrate containing iron(III) hydroxide was obtained. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The slurry thus obtained was subjected to suction filtration again (the time required for this suction filtration is defined as T2 ) to obtain a filtrate containing iron (III) hydroxide. Table 3 shows the time required for each suction filtration (T 1 and T 2 ). The filtrate containing iron (III) hydroxide washed with water was dissolved in hydrochloric acid to obtain an aqueous iron (III) chloride solution. The component analysis of the obtained iron (III) chloride aqueous solution was performed, and the results are shown in Table 4. Table 4 also shows the removal rates of calcium and manganese.

(実施例3)
塩化鉄(III)水溶液B220mLに希釈アンモニア水を650mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。25℃における混合液のpH(pH)は5.00であり、混合液中のFe3+のモル濃度は0.08(mol/L)であった。式(1)より算出したpHの理論値(pH)は1.32であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしているので、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を50g得た。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を得た。それぞれの吸引濾過に要した時間(T及びT)を表3に示す。水洗済みの水酸化鉄(III)を含む濾物を塩酸にて溶解し、塩化鉄(III)水溶液を得た。得られた塩化鉄(III)水溶液の成分分析を行い、表4に結果を示した。また、カルシウム及びマンガンの除去率を表4に記載した。
(Example 3)
650 mL of diluted ammonia water was added to 220 mL of the iron (III) chloride aqueous solution B to obtain a mixed liquid. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 25° C. was 5.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.08 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 1.32. When D = pH A - pH T , since 3.00 ≤ D ≤ 7.00 is satisfied, the slurry obtained as it is is subjected to suction filtration (the time required for this suction filtration is T1 ). , 50 g of a filtrate containing iron(III) hydroxide was obtained. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The slurry thus obtained was subjected to suction filtration again (the time required for this suction filtration is defined as T2 ) to obtain a filtrate containing iron (III) hydroxide. Table 3 shows the time required for each suction filtration (T 1 and T 2 ). The filtrate containing iron (III) hydroxide washed with water was dissolved in hydrochloric acid to obtain an aqueous iron (III) chloride solution. The component analysis of the obtained iron (III) chloride aqueous solution was performed, and the results are shown in Table 4. Table 4 also shows the removal rates of calcium and manganese.

(実施例4)
塩化鉄(III)水溶液A40mLに希釈水酸化ナトリウム溶液を100mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。31℃における混合液のpH(pH)は5.00であり、混合液中のFe3+のモル濃度は1(mol/L)であった。式(1)より算出したpHの理論値(pH)は0.95であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしているので、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を80g得た。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を得た。それぞれの吸引濾過に要した時間(T及びT)を表3に示す。水洗済みの水酸化鉄(III)を含む濾物を塩酸にて溶解し、塩化鉄(III)水溶液を得た。得られた塩化鉄(III)水溶液の成分分析を行い、表4に結果を示した。また、カルシウム及びマンガンの除去率を表4に記載した。
(Example 4)
100 mL of diluted sodium hydroxide solution was added to 40 mL of iron (III) chloride aqueous solution A to obtain a mixed solution. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 31° C. was 5.00, and the molar concentration of Fe 3+ in the mixed liquid was 1 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 0.95. When D = pH A - pH T , since 3.00 ≤ D ≤ 7.00 is satisfied, the slurry obtained as it is is subjected to suction filtration (the time required for this suction filtration is T1 ). 80 g of a filtrate containing iron(III) hydroxide was obtained. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The slurry thus obtained was subjected to suction filtration again (the time required for this suction filtration is defined as T2 ) to obtain a filtrate containing iron (III) hydroxide. Table 3 shows the time required for each suction filtration (T 1 and T 2 ). The filtrate containing iron (III) hydroxide washed with water was dissolved in hydrochloric acid to obtain an aqueous iron (III) chloride solution. The component analysis of the obtained iron (III) chloride aqueous solution was performed, and the results are shown in Table 4. Table 4 also shows the removal rates of calcium and manganese.

(実施例5)
塩化鉄(III)水溶液A40mLに希釈水酸化ナトリウム溶液を100mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。30℃における混合液のpH(pH)は7.00であり、混合液中のFe3+のモル濃度は1(mol/L)であった。式(1)より算出したpHの理論値(pH)は0.95であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしているので、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を80g得た。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を得た。それぞれの吸引濾過に要した時間(T及びT)を表3に示す。水洗済みの水酸化鉄(III)を含む濾物を塩酸にて溶解し、塩化鉄(III)水溶液を得た。得られた塩化鉄(III)水溶液の成分分析を行い、表4に結果を示した。また、カルシウム及びマンガンの除去率を表4に記載した。
(Example 5)
100 mL of diluted sodium hydroxide solution was added to 40 mL of iron (III) chloride aqueous solution A to obtain a mixed solution. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 30° C. was 7.00, and the molar concentration of Fe 3+ in the mixed liquid was 1 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 0.95. When D = pH A - pH T , since 3.00 ≤ D ≤ 7.00 is satisfied, the slurry obtained as it is is subjected to suction filtration (the time required for this suction filtration is T1 ). 80 g of a filtrate containing iron(III) hydroxide was obtained. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The slurry thus obtained was subjected to suction filtration again (the time required for this suction filtration is defined as T2 ) to obtain a filtrate containing iron (III) hydroxide. Table 3 shows the time required for each suction filtration (T 1 and T 2 ). The filtrate containing iron (III) hydroxide washed with water was dissolved in hydrochloric acid to obtain an aqueous iron (III) chloride solution. The component analysis of the obtained iron (III) chloride aqueous solution was performed, and the results are shown in Table 4. Table 4 also shows the removal rates of calcium and manganese.

(実施例6)
塩化鉄(III)水溶液B200mLに希釈水酸化ナトリウム溶液を650mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。24℃における混合液のpH(pH)は5.00であり、混合液中のFe3+のモル濃度は0.075(mol/L)であった。式(1)より算出したpHの理論値(pH)は1.33であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしているので、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を50g得た。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を得た。それぞれの吸引濾過に要した時間(T及びT)を表3に示す。水洗済みの水酸化鉄(III)を含む濾物を塩酸にて溶解し、塩化鉄(III)水溶液を得た。得られた塩化鉄(III)水溶液の成分分析を行い、表4に結果を示した。また、カルシウム及びマンガンの除去率を表4に記載した。
(Example 6)
A mixed solution was obtained by adding 650 mL of diluted sodium hydroxide solution to 200 mL of iron (III) chloride aqueous solution B. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 24° C. was 5.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.075 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 1.33. When D = pH A - pH T , since 3.00 ≤ D ≤ 7.00 is satisfied, the slurry obtained as it is is subjected to suction filtration (the time required for this suction filtration is T1 ). , 50 g of a filtrate containing iron(III) hydroxide was obtained. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The slurry thus obtained was subjected to suction filtration again (the time required for this suction filtration is defined as T2 ) to obtain a filtrate containing iron (III) hydroxide. Table 3 shows the time required for each suction filtration (T 1 and T 2 ). The filtrate containing iron (III) hydroxide washed with water was dissolved in hydrochloric acid to obtain an aqueous iron (III) chloride solution. The component analysis of the obtained iron (III) chloride aqueous solution was performed, and the results are shown in Table 4. Table 4 also shows the removal rates of calcium and manganese.

(実施例7)
塩化鉄(III)水溶液C40mLに希釈アンモニア水を120mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。30℃における混合液のpH(pH)は5.00であり、混合液中のFe3+のモル濃度は0.87(mol/L)であった。式(1)より算出したpHの理論値(pH)は0.97であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしているので、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を80g得た。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を得た。それぞれの吸引濾過に要した時間(T及びT)を表3に示す。水洗済みの水酸化鉄(III)を含む濾物を塩酸にて溶解し、塩化鉄(III)水溶液を得た。得られた塩化鉄(III)水溶液の成分分析を行い、表4に結果を示した。また、カルシウム及びマンガンの除去率を表4に記載した。
(Example 7)
120 mL of diluted aqueous ammonia was added to 40 mL of the iron (III) chloride aqueous solution C to obtain a mixed liquid. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 30° C. was 5.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.87 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 0.97. When D = pH A - pH T , since 3.00 ≤ D ≤ 7.00 is satisfied, the slurry obtained as it is is subjected to suction filtration (the time required for this suction filtration is T1 ). 80 g of a filtrate containing iron(III) hydroxide was obtained. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The slurry thus obtained was subjected to suction filtration again (the time required for this suction filtration is defined as T2 ) to obtain a filtrate containing iron (III) hydroxide. Table 3 shows the time required for each suction filtration (T 1 and T 2 ). The filtrate containing iron (III) hydroxide washed with water was dissolved in hydrochloric acid to obtain an aqueous iron (III) chloride solution. The component analysis of the obtained iron (III) chloride aqueous solution was performed, and the results are shown in Table 4. Table 4 also shows the removal rates of calcium and manganese.

(比較例1)
塩化鉄(III)水溶液A35mLに希釈アンモニア水を100mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。34℃における混合液のpH(pH)は3.00であり、混合液中のFe3+のモル濃度は0.91(mol/L)であった。式(1)より算出したpHの理論値(pH)は0.96であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしていなかったが、そのまま得られたスラリーを吸引濾過(この吸引濾過に要した時間をTとする。)し、水酸化鉄(III)を含む濾物を70g得た。濾液を見ると茶色がかっており、完全に水酸化鉄(III)になっていないことがわかった。得られた水酸化鉄(III)を含む濾物と純水200mLをビーカーに入れ攪拌し、スラリーを作成した。得られたスラリーを再び吸引濾過したが水酸化鉄(III)が溶出してしまったため中止した。
(Comparative example 1)
100 mL of diluted ammonia water was added to 35 mL of iron (III) chloride aqueous solution A to obtain a mixed liquid. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 34° C. was 3.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.91 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 0.96. When D = pH A - pH T , 3.00 ≤ D ≤ 7.00 was not satisfied, but the slurry obtained as it was was subjected to suction filtration (the time required for this suction filtration is defined as T 1 ). 70 g of a filtrate containing iron (III) hydroxide was obtained. The filtrate was found to be brownish and not completely converted to iron(III) hydroxide. The obtained filtrate containing iron (III) hydroxide and 200 mL of pure water were placed in a beaker and stirred to prepare a slurry. The resulting slurry was suction filtered again, but the filtration was stopped because iron (III) hydroxide was eluted.

(比較例2)
塩化鉄(III)水溶液B220mLに希釈アンモニア水を650mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。27℃における混合液のpH(pH)は3.00であり、混合液中のFe3+のモル濃度は0.08(mol/L)であった。式(1)より算出したpHの理論値(pH)は1.32であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしていなかったが、そのまま得られたスラリーに対して吸引濾過を試みたところ、水酸化鉄(III)はほとんど得ることができなかったため中止した。
(Comparative example 2)
650 mL of diluted ammonia water was added to 220 mL of the iron (III) chloride aqueous solution B to obtain a mixed liquid. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 27° C. was 3.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.08 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 1.32. When D = pH A - pH T , 3.00 ≤ D ≤ 7.00 was not satisfied, but when suction filtration of the slurry obtained as it was tried, iron (III) hydroxide was almost I stopped because I couldn't get it.

(比較例3)
塩化鉄(III)水溶液B200mLに希釈水酸化ナトリウム溶液を650mL添加して混合液を得た。混合液中に水酸化鉄(III)を含む沈殿物を得た。25℃における混合液のpH(pH)は3.00であり、混合液中のFe3+のモル濃度は0.075(mol/L)であった。式(1)より算出したpHの理論値(pH)は1.33であった。D=pH-pHとした場合、3.00≦D≦7.00を満たしていなかったが、そのまま得られたスラリーに対して吸引濾過を試みたところ、水酸化鉄(III)はほとんど得ることができなかったため中止した。
(Comparative Example 3)
A mixed solution was obtained by adding 650 mL of diluted sodium hydroxide solution to 200 mL of iron (III) chloride aqueous solution B. A precipitate containing iron (III) hydroxide in the mixture was obtained. The pH (pH A ) of the mixed liquid at 25° C. was 3.00, and the molar concentration of Fe 3+ in the mixed liquid was 0.075 (mol/L). The theoretical pH value (pH T ) calculated from the formula (1) was 1.33. When D = pH A - pH T , 3.00 ≤ D ≤ 7.00 was not satisfied, but when suction filtration of the slurry obtained as it was tried, iron (III) hydroxide was almost I stopped because I couldn't get it.

実施例1~6、比較例1~3のpH、pH、D(pH-pH)を下記表2にまとめた。 The pH A , pH T , and D (pH A −pH T ) of Examples 1 to 6 and Comparative Examples 1 to 3 are summarized in Table 2 below.

Figure 2022180230000005
Figure 2022180230000005

Figure 2022180230000006
Figure 2022180230000006

実施例1~7は、吸引濾過に要する時間が短く、効率に優れていた。 In Examples 1 to 7, the time required for suction filtration was short and the efficiency was excellent.

Figure 2022180230000007
Figure 2022180230000007

実施例1~7は、カルシウムとマンガンの含有率が低くなり(除去率が高く)、塩化鉄(III)の純度を高くすることができた。
In Examples 1 to 7, the content of calcium and manganese was low (the removal rate was high), and the purity of iron (III) chloride could be increased.

Claims (6)

塩化鉄(III)を含む溶液とアルカリ剤とを混合し、混合液中で水酸化鉄(III)を含む沈殿物を得る工程(A)と、
前記沈殿物を回収する工程(B)と、
回収された前記沈殿物と塩酸とを混合して、塩化鉄(III)を含む溶液を得る工程(C)とを含み、
前記工程(A)の前記混合液のpHをpHとし、下記式(1)で表されるpHの理論値をpHとし、D=pH-pHとした場合、3.00≦D≦7.00である、塩化鉄(III)の高純度化方法。
Figure 2022180230000008

ただし、Kspは水酸化物溶解度積であり、Mn+は金属イオンであり、[Mn+]はMn+のモル濃度であり、nは価数であり、Kは水のイオン積である。
A step (A) of mixing a solution containing iron (III) chloride with an alkaline agent to obtain a precipitate containing iron (III) hydroxide in the mixed solution;
a step (B) of recovering the precipitate;
a step (C) of mixing the recovered precipitate with hydrochloric acid to obtain a solution containing iron (III) chloride;
Let pH A be the pH of the mixed solution in step (A), pH T be the theoretical value of the pH represented by the following formula (1), and D = pH A - pH T , where 3.00 ≤ D A method for the purification of iron(III) chloride, wherein ≦7.00.
Figure 2022180230000008

where K sp is the hydroxide solubility product, M n+ is the metal ion, [M n+ ] is the molar concentration of M n+ , n is the valence, and K w is the ionic product of water. .
前記Dが、3.67≦D≦6.05である、請求項1に記載の塩化鉄(III)の高純度化方法。 2. The method for purifying iron (III) chloride according to claim 1, wherein said D is 3.67≤D≤6.05. 前記工程(A)で得られる前記混合液中のFe3+のモル濃度が、0.05mol/L~2mol/Lである、請求項1又は2に記載の塩化鉄(III)の高純度化方法。 The method for highly purifying iron (III) chloride according to claim 1 or 2, wherein the molar concentration of Fe 3+ in the mixed solution obtained in step (A) is 0.05 mol/L to 2 mol/L. . 前記工程(A)で用いられる前記塩化鉄(III)を含む溶液が、エッチング廃液に由来する溶液である、請求項1~3のいずれか1項に記載の塩化鉄(III)の高純度化方法。 High purification of iron (III) chloride according to any one of claims 1 to 3, wherein the solution containing iron (III) chloride used in step (A) is a solution derived from etching waste liquid. Method. 前記工程(B)が、前記沈殿物を含むスラリーを濾過する工程を含む、請求項1~4のいずれか1項に記載の塩化鉄(III)の高純度化方法。 The method for highly purifying iron (III) chloride according to any one of claims 1 to 4, wherein the step (B) comprises filtering the slurry containing the precipitate. 前記工程(B)と前記工程(C)の間に、前記工程(B)で回収された沈殿物を水洗する工程を含む、請求項1~5のいずれか1項に記載の塩化鉄(III)の高純度化方法。
The iron(III) chloride according to any one of claims 1 to 5, comprising a step of washing the precipitate recovered in step (B) with water between step (B) and step (C). ) for high purification.
JP2021087217A 2021-05-24 2021-05-24 Method for increasing the purity of iron(iii) chloride Pending JP2022180230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021087217A JP2022180230A (en) 2021-05-24 2021-05-24 Method for increasing the purity of iron(iii) chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021087217A JP2022180230A (en) 2021-05-24 2021-05-24 Method for increasing the purity of iron(iii) chloride

Publications (1)

Publication Number Publication Date
JP2022180230A true JP2022180230A (en) 2022-12-06

Family

ID=84327395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021087217A Pending JP2022180230A (en) 2021-05-24 2021-05-24 Method for increasing the purity of iron(iii) chloride

Country Status (1)

Country Link
JP (1) JP2022180230A (en)

Similar Documents

Publication Publication Date Title
CN111945002B (en) Method for removing copper from waste lithium batteries by recovery wet process
EP4335823A1 (en) Manganese sulfate purification and crystallization method
WO2018072499A1 (en) Method for recovering basic copper chloride from copper-containing waste liquid in sulfuric acid system
KR20200098539A (en) Wastewater treatment method
US4278463A (en) Process for recovering cobalt
AU756317B2 (en) Separation and concentration method
JP4215547B2 (en) Cobalt recovery method
CN118145611A (en) Method for recycling lithium iron phosphate lithium extraction slag
US2997368A (en) Production of manganese hydroxide
KR20090109733A (en) Method for producing high purity cobalt carbonate
GB2171686A (en) Purification of molybdenum trioxide
JP2011129336A (en) Recovery method of manganese from battery
CN104060093B (en) A kind for the treatment of process of waste water neutralize gypsum tailings
JP4439804B2 (en) Cobalt recovery method
JP2022180230A (en) Method for increasing the purity of iron(iii) chloride
JP2001010815A (en) Recovery of cerium from solution containing both chromium and cerium
JP3294181B2 (en) Method for producing calcium arsenate
CN110669931B (en) Method for removing cobalt by oxidizing nickel sulfate solution
JP3549560B2 (en) Method for recovering valuable metals and calcium fluoride from waste solution of pickling process
US4061551A (en) Process for extraction of gallium from alkaline gallium-containing solutions
JP2011195935A (en) Method for separating and recovering platinum group element
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JP2002233882A (en) Method for recovering heavy metal from heavy metal- containing aqueous solution
CN111394594B (en) Method for recovering cobalt in cobalt alloy pickle liquor
CN109055775A (en) A kind of method of living again of the complex precipitant for purifying copper electrolyte

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240805