JP2022173656A - 情報処理装置および情報処理方法 - Google Patents

情報処理装置および情報処理方法 Download PDF

Info

Publication number
JP2022173656A
JP2022173656A JP2021079487A JP2021079487A JP2022173656A JP 2022173656 A JP2022173656 A JP 2022173656A JP 2021079487 A JP2021079487 A JP 2021079487A JP 2021079487 A JP2021079487 A JP 2021079487A JP 2022173656 A JP2022173656 A JP 2022173656A
Authority
JP
Japan
Prior art keywords
project
information processing
work
prediction model
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021079487A
Other languages
English (en)
Other versions
JP7386203B2 (ja
Inventor
文江 中屋
Fumie Nakaya
公司 田中
Koji Tanaka
佳範 城代
Yoshinori JODAI
信治 三浦
Shinji Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Social Information Services Ltd
Original Assignee
Hitachi Social Information Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Social Information Services Ltd filed Critical Hitachi Social Information Services Ltd
Priority to JP2021079487A priority Critical patent/JP7386203B2/ja
Publication of JP2022173656A publication Critical patent/JP2022173656A/ja
Application granted granted Critical
Publication of JP7386203B2 publication Critical patent/JP7386203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】広域監視にて、プロジェクトの悪化予兆を早期に検知するとともに、重点監視の対象にするか否かの判断の人的コストを低減する情報処理装置および情報処理方法を提供する。【解決手段】広域監視により仕掛かりのプロジェクトの悪化予兆を検知する情報処理装置100において、終了した第1プロジェクトの監視情報で訓練した予測モデルを生成する生成部1と、仕掛かりの第2プロジェクトの説明変数を予測モデルに入力し、第2プロジェクトの見積原価推定超過の予測値、および、予測値の根拠となる説明変数を出力する予測部2と、を備える。【選択図】図1

Description

特許法第30条第2項適用申請有り (1)令和2年10月28日に城代佳範、中屋文江、西山大輔、栗原義人が公開 (2)令和2年11月24日に営業統括本部が公開
本発明は、情報処理装置および情報処理方法に関する。
近年、デジタルトランスフォーメーション(DX:Digital Transformation)推進の技術開発が盛んであり、その一環として、ソフトウェア開発等のプロジェクトの状態監視が重要視されている。状態監視は、重点監視と広域監視の2つに分けることができる。重点監視は、管理部署によるプロジェクトの監視である。広域監視は、全プロジェクトを対象にし、所定のツールを利用した監視である。状態監視では、まず、ツールに入力された原価などのデータに基づく広域監視で失敗の可能性や失敗時の影響が大きいと判断されたプロジェクトを重点監視の対象とする。次に、管理部署による支援により、重点監視の対象となるプロジェクトの悪化防止や改善を図る。
従来の広域監視は、原価が見積を超えるなどの問題が顕在化してから該当のプロジェクトを抽出するものであった。プロジェクトを成功に導くという目的に照らし合わせれば、問題が顕在化していない早期の段階でプロジェクトの悪化予兆を検知することが好ましい。しかし、従来の広域監視では、問題が顕在化していない早期の段階でプロジェクトの悪化予兆を検知することが困難であるという問題があった。
また、従来の広域監視では、懸念されるプロジェクトを本当に重点監視の対象とするか否かの判断のための調査が行われる。調査は、例えば、プロジェクトの規模や見積原価超過額などの調査である。しかし、このような調査は多大な人的コストがかかっていた。このため、受注金額が大きいプロジェクトなど、状況が悪化した場合の影響が大きいプロジェクトが優先的に対応され、小規模なプロジェクトを含むすべてのプロジェクトを対象とした監視は行われないのが現状である。つまり、従来の広域監視では、重点監視の対象とすべきプロジェクトの判断に人的コストが大きいという問題があった。
なお、特許文献1には、ソフトウェア開発のリスクに繋がる要因の特定を可能にする発明が開示されている。
特開2019-148874号公報
本発明は、このような事情に鑑みて、広域監視にて、プロジェクトの悪化予兆を早期に検知するとともに、重点監視の対象にするか否かの判断の人的コストを低減することを課題とする。
前記課題を解決する本発明は、
終了した第1プロジェクトの監視情報で訓練した予測モデルを生成する生成部と、
仕掛かりの第2プロジェクトの説明変数を前記予測モデルに入力し、前記第2プロジェクトの見積原価推定超過の予測値、および、前記予測値の根拠となる説明変数を出力する予測部とを備える情報処理装置である。
また、本発明は、
情報処理装置が、
終了した第1プロジェクトの監視情報で訓練した予測モデルを生成するステップと、
仕掛かりの第2プロジェクトの説明変数を前記予測モデルに入力し、前記第2プロジェクトの見積原価推定超過の予測値、および、前記予測値の根拠となる説明変数を出力するステップを実行する情報処理方法である。
本発明によれば、広域監視にて、プロジェクトの悪化予兆を早期に検知するとともに、重点監視の対象にするか否かの判断の人的コストを低減することができる。
本実施形態における情報処理装置の機能構成図の例である。 予測部の出力情報の画面例である。 本実施形態の処理を示すフローチャートの例である。
≪第1実施形態≫
[構成]
図1に示す情報処理装置100は、広域監視により仕掛かりのプロジェクトの悪化予兆を検知するコンピュータである。情報処理装置100は、入力部、出力部、制御部、および、記憶部といったハードウェアを備える。例えば、制御部がCPU(Central Processing Unit)から構成される場合、その制御部を含むコンピュータによる情報処理は、CPUによるプログラム実行処理で実現される。また、そのコンピュータに含まれる記憶部は、CPUの指令により、そのコンピュータの機能を実現するためのさまざまなプログラムを記憶する。これによりソフトウェアとハードウェアの協働が実現される。前記プログラムは、記録媒体に記録したり、ネットワークを経由したりすることで提供可能となる。出力部は、画面表示をする表示部の機能を含めてもよい。
プロジェクトとは、所定の目的を達成するための業務をいう。プロジェクトは、終了済の過去のプロジェクトと、仕掛かりのプロジェクトに分類できる。本実施形態では、過去のプロジェクトを「第1プロジェクト」と呼び、仕掛かりのプロジェクトを「第2プロジェクト」と呼ぶ。また、過去のプロジェクトと仕掛かりのプロジェクトを区別しない場合は、単に、「プロジェクト」と呼ぶ。
図1に示すように、情報処理装置100は、生成部1と、予測部2を備えている。また、情報処理装置100は、第1プロジェクトDB3と、第2プロジェクトDB4を記憶している。
生成部1は、機械学習で第2プロジェクトの実推原価を予測するための予測モデルを生成する。実推原価は、第2プロジェクト終了時までに発生する原価の推定値である。なお、原価には、製造原価や売上原価など複数種類存在するが、本実施形態では、原価とは、特定の目的を達成するために消費される経済的資源を貨幣で測定したものとし、製造原価や売上原価などを含む語として説明する。
予測部2は、生成部1が生成した予測モデルを用いて、対象の第2プロジェクトの実推原価を予測する。
第1プロジェクトDB3は、第1プロジェクトの監視情報を第1プロジェクトごとに記憶するデータベースである。
第2プロジェクトDB4は、第2プロジェクトの監視情報を第2プロジェクトごとに記憶するデータベースである。
<プロジェクトの監視情報>
プロジェクトの監視情報は、プロジェクトの状況を監視するための情報である。第1プロジェクトの監視情報は、例えば、作番情報と、説明変数と、目的変数とから構成できる。
作番情報は、第1プロジェクトを識別する情報である。例えば、作番情報は、作番と、進捗率(%)と、作番名を含むが、これらに限定されない。
作番は、第1プロジェクトの識別子であり、例えば、文字数字列で表現できる。
進捗率は、第1プロジェクトの進捗を定量的に示すパラメータである。
作番名は、第1プロジェクトの名称であり、例えば、観念可能な言葉で表現できる。
説明変数は、第1プロジェクトの状態を表現する変数である。説明変数は複数種類存在する。説明変数は、例えば、作業開始時期、作業終了時期、実績原価、見通し原価、見積原価、担当者、作業時間、実績工数を含むがこれらに限定されない。例えば、Borutaを用いて説明変数候補を抽出し、その中から最適な説明変数を選択することができるが、説明変数の選択方法はこれに限定されない。
作業開始時期は、第1プロジェクトの開始時期(年月日)である。
作業終了時期は、第1プロジェクトの終了時期(年月日)である。
実績原価は、作業開始時期から所定時期までの間に発生した原価である。
見通し原価は、所定時期から作業終了時期までに発生することが見込まれる原価である。
見積原価は、作業開始時期から作業終了時期までに発生することが見込まれる原価である。
担当者は、第1プロジェクトを担当した者(複数可)である。
作業時間は、作業開始時期から所定時期までの間に、各担当者が第1プロジェクトの作業に費やした時間である。
実績工数は、第1プロジェクトを構成する全工数のうち、作業開始時期から所定時期までの間に完了した工数である。
なお、所定時期は、作業開始時期と作業終了時期までの間の任意の時期である。
目的変数は、説明変数に依存する変数である。目的変数は、例えば、第1プロジェクト終了時での実績原価となる、最終実績原価とすることができるが、これに限定されない。
(進捗率のこと)
進捗率は、例えば、時期的基準で算出できる。例えば、プロジェクトの作業開始時期から作業終了時期までの期間が30日間であり、対象時期が作業開始時期から15日目であった場合、進捗率は50%となる。第1プロジェクトは終了した過去のプロジェクトであるため、現時点での進捗率は100%である。ここで、第1プロジェクトの説明変数は、進捗率に応じて変化する値とすることができる。第1プロジェクトの監視情報は、進捗率ごとの説明変数の集合として構成できる。
例えば、説明変数としての実績原価は、進捗率0%~100%のあらゆる値での実績原価の集合となる。進捗率X%の実績原価は、作業開始時期から進捗率X%相当の時期までの間に発生した原価となる。また、説明変数としての見通し原価は、進捗率0%~100%のあらゆる値での見通し原価の集合となる。進捗率X%の見通し原価は、進捗率X%相当の時期から作業終了時期までの間に発生することが見込まれる原価となる。なお、作業開始時期や作業終了時期などのように、進捗率に応じて変化しない説明変数も存在するが、そのような説明変数は、進捗率に応じて同じ値をとる定数として扱うことが好ましい。
一方、第2プロジェクトの監視情報は、例えば、作番情報と、説明変数とから構成できる。
作番情報は、第2プロジェクトを識別する情報である。例えば、作番情報は、作番と、進捗率(%)と、作番名を含むが、これらに限定されない。
作番は、第2プロジェクトの識別子であり、例えば、文字数字列で表現できる。
進捗率は、第2プロジェクトの進捗を定量的に示すパラメータである。
作番名は、第2プロジェクトの名称であり、例えば、観念可能な言葉で表現できる。
説明変数は、第2プロジェクトの状態を表現する変数である。説明変数は複数種類存在する。説明変数は、例えば、作業開始時期、作業終了時期、実績原価、見通し原価、見積原価、担当者、作業時間、実績工数を含むがこれらに限定されない。例えば、Borutaを用いて説明変数候補を抽出し、その中から最適な説明変数を選択することができるが、説明変数の選択方法はこれに限定されない。
作業開始時期は、第2プロジェクトの開始時期(年月日)である。
作業終了時期は、第2プロジェクトの終了時期(年月日)である。
実績原価は、作業開始時期から所定時期までの間に発生した原価である。
見通し原価は、所定時期から作業終了時期までに発生することが見込まれる原価である。
見積原価は、作業開始時期から作業終了時期までに発生することが見込まれる原価である。
担当者は、第2プロジェクトを担当している者(複数可)である。
作業時間は、作業開始時期から所定時期までの間に、各担当者が第2プロジェクトの作業に費やした時間である。
実績工数は、第2プロジェクトを構成する全工数のうち、作業開始時期から所定時期までの間に完了した工数である。
なお、所定時期は、作業開始時期と作業終了時期までの間の現在である。
また、すでに説明した、第2プロジェクトの実推原価は、第2プロジェクトの実績原価と見通し原価との和である。
第2プロジェクトの進捗率は、作業開始時期から作業終了時期までの期間と、作業開始時期から現在までの期間の比として算出できる。現在に相当する進捗率X%の実績原価は、作業開始時期から現在までの間に発生した原価となる。また、現在に相当する進捗率X%の見通し原価は、現在から作業終了時期までの間に発生することが見込まれる原価となる。なお、作業開始時期や作業終了時期などのように、進捗率に応じて変化しない説明変数も存在するが、そのような説明変数は、進捗率に応じて同じ値をとる定数として扱うことが好ましい。
<予測モデル>
(訓練)
生成部1は、例えば、ランダムフォレストに用いる複数の決定木を組み合わせて予測モデルを生成できる。ランダムフォレストは、機械学習アルゴリズムであり、複数の決定木を利用し、多数決をとって予測するアンサンブル学習アルゴリズムである。決定木は、例えば、説明変数を用いた判定条件を組み合わせたツリー状のロジックとして構成できる。判定条件は、適宜設計でき、例えば、担当者の1日の作業時間の平均が5時間以上か否か、などとすることができる。
生成部1は、第1プロジェクトの監視情報を訓練データとして用いて、予測モデルを訓練できる。例えば、第1プロジェクトごとに、第1プロジェクトの監視情報のうち進捗率50%相当の時期での説明変数を予測モデルの入力とすることができる。また、第1プロジェクトの監視情報の目的変数に基づく値を予測モデルの出力とすることができる。例えば、第1プロジェクトの最終実績原価から見積原価を引いた見積原価超過の値を予測モデルの出力とすることができる。生成部1は、所定数の第1プロジェクトの監視情報を用いて予測モデルを訓練する。
ここで、生成部1は、予測モデルを複数用意し、予測モデルの出力を複数段階の出力とすることができる。例えば、生成部1は、第1予測モデルと第2予測モデルを用意する。第1予測モデルの入力は、すべての第1プロジェクトの監視情報を対象にし、当該監視情報のうち進捗率50%相当の時期での説明変数とすることができる。また、第1予測モデルの出力は、第1プロジェクトの最終実績原価から見積原価を引いた見積原価超過があった(0M(0円)より大きい)か否かとすることができる。次に、第2予測モデルの入力は、第1予測モデルの出力で見積原価超過があった第1プロジェクトの監視情報を対象にし、当該監視情報のうち進捗率50%相当の時期での説明変数とすることができる。また、第2予測モデルの出力は、見積原価超過が1M(100万円)以上であるか否かとすることができる。結果的に、予測モデルの出力を、見積原価超過が0M以下、0Mより大きいかつ1M未満、1M以上、の3値に分類できる。
(予測)
予測部2は、訓練済みの予測モデルを用いて、予測対象の第2プロジェクトの実推原価を予測する。例えば、予測部2は、第2プロジェクトの監視情報のうち、現在、つまり所定の進捗率(50%以上が好ましいが、50%未満でもよい)相当の時期での説明変数を予測モデルに入力する。すると、予測部2は、実推原価に基づく値を予測モデルの出力として取得できる。例えば、予測部2は、実推原価から見積原価を引いた見積原価推定超過の値を取得できる。
予測モデルが、上記した第1予測モデル、第2予測モデルである場合、予測部2は、予測対象の第2プロジェクトの監視情報のうち、現在での説明変数を第1予測モデルに入力する。すると、予測部2は、第1予測モデルの出力として、見積原価推定超過があった(0M(0円)より大きい)か否かを示す値を取得できる。見積原価推定超過があった場合、予測部2は、当該第2プロジェクトの監視情報のうち、現在での説明変数を第2予測モデルに入力する。すると、予測部2は、第2予測モデルの出力として、見積原価推定超過が1M(100万円)以上であるか否かを示す値を取得できる。結果的に、見積原価推定超過を0M以下、0Mより大きいかつ1M未満、1M以上、の3値に分類できる。
なお、1Mは例示であり、1Mより大きい値でもよいし、1Mより小さい値でもよい。
予測部2は、予測モデルの出力を含む情報を出力できる。例えば、情報処理装置100の表示部は、図2に示すような予測部2の出力情報を画面表示できる。図2に示すように、予測部2の出力情報は、「予測結果」と、「作番情報」と、「予測結果の説明変数と特徴」を列とし、第2プロジェクトを行とする表形式とすることができる。
「予測結果」は、予測モデルの出力内容を示す。「予測結果」は、「項番」と、「予測値」と、「確信度」から構成される。
「項番」は、第2プロジェクトごとに付される行番号である。
「予測値」は、予測モデルがすでに説明した第1予測モデルと第2予測モデルの組み合わせであるときの、見積原価推定超過の3値分類に従う結果である。「1:100万円以上超過」は、1M以上に対応する。「2:100万円未満超過」は、0Mより大きいかつ1M未満に対応する。「3:問題なし」は、0M以下に対応する。
「確信度」は、予測の信頼度であり0%~100%で示される。例えば、確信度は、バギングを用いて求めることができるが、これに限定されない。
「作番情報」は、第2プロジェクトの監視情報の作番情報と同じである。
「予測結果の説明変数と特徴」は、「予測結果」に寄与する説明変数を示す。「予測結果の説明変数と特徴」は、「説明変数一覧」と、「特徴ランキング」から構成される。
「説明変数一覧」は、第2プロジェクトの監視情報の説明変数と同じである。
「特徴ランキング」は、「予測結果」に寄与する説明変数の順位を示す。順位が高いほど、その説明変数の予測値の出力に対する寄与率が大きい。例えば、各変数の寄与率は、SHAP(Shapley Additive exPlanations)アルゴリズムを用いて求めることができるが、これに限定されない。
第1実施形態によれば、見積原価推定超過が1M以上となる第2プロジェクトを抽出できる。よって、広域監視にて、プロジェクトの悪化予兆を早期に検知することができる。
(重点監視の対象にするか否かの判断)
図2の出力情報を知得した管理部署は、見積原価推定超過が1M以上となる第2プロジェクトを重点監視の対象とするか否かを判断する。従来では、プロジェクトの悪化予兆をAIで検知したとしても、AIの予測結果の根拠はブラックボックス化されていた。このため、管理部署は、AIの予測結果に対して、プロジェクトの悪化予兆の要因を追跡することが容易でなく、重点監視の対象とするか否かの判断に多大な人的コストを要していた。
図2の「特徴ランキング」は、見積原価推定超過が1M以上になった根拠を提示しているといえる。管理部署は、「特徴ランキング」を参照し、見積原価推定超過が1M以上という予測に大きく寄与する説明変数を容易に特定できる。その結果、該当の第2プロジェクトを重点監視の対象にするか否かの判断が容易になり、重点監視の対象にするか否かの判断の人的コストを低減することができる。
[処理]
情報処理装置100が実行する処理は、図3に示すとおりである。つまり、まず、生成部1が予測モデルを生成する(ステップS1)。次に、生成部1が、所定の進捗率における第1プロジェクトの監視情報を用いて、予測モデルを訓練する(ステップS2)。次に、予測部2が、予測モデルを用いて、対象の第2プロジェクトの見積原価推定超過の予測値と、予測値に寄与する説明変数を予測根拠として出力する(ステップS3)。管理部署は、予測根拠から、悪化予兆を示す第2プロジェクトを重点監視の対象とするか否かを判断する。
≪第2実施形態≫
第2実施形態の説明の際、第1実施形態との相違する点について説明し、重複する点は説明を省略する。第1実施形態では、訓練データとなる第1プロジェクトの監視情報の説明変数は進捗率50%相当の時期での説明変数であった。第2実施形態では、訓練データに用いる第1プロジェクトの説明変数の時期を定期化する。
例えば、第1プロジェクトの期間、つまり、作業開始時期から作業終了時期までの期間がおよそ数カ月に及ぶ場合、訓練データに用いる説明変数の時期、つまり、訓練日(学習日)を毎月25日に設定する。
よって、作番Aの第1プロジェクトの作業開始時期が4/15であり、作業終了時期が6/30である場合、作番Aの第1プロジェクトの訓練日は、4/25と5/25となる。つまり、作番Aの第1プロジェクトの監視情報のうち4/25での説明変数(4/25相当の進捗率での説明変数)と、5/25での説明変数(5/25相当の進捗率での説明変数)の計2回分を予測モデルの入力とする。
また、作番Bの第1プロジェクトの作業開始時期が5/1であり、作業終了時期が9/15である場合、作番Bの第1プロジェクトの訓練日は、5/25,6/25,7/25,8/25となる。つまり、作番Bの第1プロジェクトの監視情報のうち5/25での説明変数(5/25相当の進捗率での説明変数)と、6/25での説明変数(6/25相当の進捗率での説明変数)と、7/25での説明変数(7/25相当の進捗率での説明変数)と、8/25での説明変数(8/25相当の進捗率での説明変数)の計4回分を予測モデルの入力とする。
また、作番Cの第1プロジェクトの作業開始時期が6/1であり、作業終了時期が7/10である場合、作番Cの第1プロジェクトの訓練日は、6/25となる。つまり、作番Cの第1プロジェクトの監視情報のうち6/25での説明変数(6/25相当の進捗率での説明変数)の計1回分を予測モデルの入力とする。
結果的に、第1プロジェクトの大部分に対して、複数種類の進捗率での説明変数が予測モデルに入力される。このようにして訓練された予測モデルを用いて、予測部2が第2プロジェクトの実推原価を予測する。この場合、第2プロジェクトの進捗率が低進捗率(例えば、30%程度)であり、低進捗率相当の時期での説明変数を予測モデルに入力したとしても、予測部2が出力した予測値の確信度(図2参照)が十分に高いことが確認された。
第2実施形態によれば、訓練日を定期化し、同じ第1プロジェクトについて複数種類の進捗率での説明変数を予測モデルに入力することができる。これにより、第2プロジェクトの実推原価の予測を早期化できる。
また、訓練日を定期化することで、すべての第1プロジェクトを対象にした予測モデルへの入力を体系化でき、訓練に要する処理を簡易にできる。
[変形例]
(a):第1、第2実施形態では、進捗率をプロジェクトの期間を用いた時期的基準で算出した。しかし、例えば、進徳率は、プロジェクトで取り組む作業の達成度から算出してもよい。
(b):第1実施形態では、第1プロジェクトごとに、第1プロジェクトの監視情報のうち進捗率50%相当の時期での説明変数を予測モデルの入力とした。しかし、例えば、第1プロジェクトごとに、50%以外の任意の同じ進捗率相当の時期での説明変数を予測モデルの入力としてもよい。また、第1プロジェクトごとに異なる進捗率相当の時期での説明変数を予測モデルに入力してもよい。
(c):第2実施形態では、訓練日を定期化することで、同じ第1プロジェクトに対して、複数種類の進捗率を実質的に選択し、選択した進捗率での説明変数を予測モデルに入力した。しかし、例えば、情報処理装置100のユーザが入力部を操作して、同じ第1プロジェクトに対して、任意の進捗率を複数種類選択し、選択した進捗率での説明変数を予測モデルに入力してもよい。
(d):本実施形態で説明した種々の技術を適宜組み合わせた技術を実現することもできる。
(e):本実施形態で説明したソフトウェアをハードウェアとして実現することもでき、ハードウェアをソフトウェアとして実現することもできる。
(f):その他、ハードウェア、ソフトウェア、フローチャートなどについて、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
100 情報処理装置
1 生成部
2 予測部
3 第1プロジェクトDB
4 第2プロジェクトDB

Claims (6)

  1. 終了した第1プロジェクトの監視情報で訓練した予測モデルを生成する生成部と、
    仕掛かりの第2プロジェクトの説明変数を前記予測モデルに入力し、前記第2プロジェクトの見積原価推定超過の予測値、および、前記予測値の根拠となる説明変数を出力する予測部とを備える情報処理装置。
  2. 前記予測モデルは、前記見積原価推定超過があるか否かを出力する第1予測モデルと、前記第1予測モデルで前記見積原価推定超過があった前記第2プロジェクトの説明変数を入力し、前記見積原価推定超過が所定値以上であるか否かを出力する第2予測モデルとの組み合わせである請求項1に記載の情報処理装置。
  3. 前記予測モデルの訓練に用いる前記第1プロジェクトの監視情報は、所定の進捗率での前記第1プロジェクトの監視情報である請求項1または請求項2に記載の情報処理装置。
  4. 前記所定の進捗率が複数設定されている請求項3に記載の情報処理装置。
  5. 前記所定の進捗率が前記第1プロジェクトの期間に対する時期的基準で決められる場合、前記所定の進捗率に相当する時期を定期化する請求項4に記載の情報処理装置。
  6. 情報処理装置が、
    終了した第1プロジェクトの監視情報で訓練した予測モデルを生成するステップと、
    仕掛かりの第2プロジェクトの説明変数を前記予測モデルに入力し、前記第2プロジェクトの見積原価推定超過の予測値、および、前記予測値の根拠となる説明変数を出力するステップを実行する情報処理方法。
JP2021079487A 2021-05-10 2021-05-10 情報処理装置および情報処理方法 Active JP7386203B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021079487A JP7386203B2 (ja) 2021-05-10 2021-05-10 情報処理装置および情報処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021079487A JP7386203B2 (ja) 2021-05-10 2021-05-10 情報処理装置および情報処理方法

Publications (2)

Publication Number Publication Date
JP2022173656A true JP2022173656A (ja) 2022-11-22
JP7386203B2 JP7386203B2 (ja) 2023-11-24

Family

ID=84144475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021079487A Active JP7386203B2 (ja) 2021-05-10 2021-05-10 情報処理装置および情報処理方法

Country Status (1)

Country Link
JP (1) JP7386203B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367253B1 (ja) * 2023-05-26 2023-10-23 株式会社日立社会情報サービス 情報処理装置および情報処理方法
JP7422265B1 (ja) 2023-10-20 2024-01-25 株式会社日立社会情報サービス 情報処理装置および情報処理方法
JP7544794B2 (ja) 2022-12-06 2024-09-03 株式会社日立社会情報サービス 情報処理装置および情報処理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181739A (ja) * 2011-03-02 2012-09-20 Ntt Data Corp 工数見積装置、工数見積方法、工数見積プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235654A (ja) 2013-06-04 2014-12-15 株式会社東芝 リスク評価装置
JP6945472B2 (ja) 2018-02-27 2021-10-06 株式会社日立ソリューションズ・クリエイト プロジェクト評価装置、プロジェクト評価方法、及びプロジェクト評価プログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181739A (ja) * 2011-03-02 2012-09-20 Ntt Data Corp 工数見積装置、工数見積方法、工数見積プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7544794B2 (ja) 2022-12-06 2024-09-03 株式会社日立社会情報サービス 情報処理装置および情報処理方法
JP7367253B1 (ja) * 2023-05-26 2023-10-23 株式会社日立社会情報サービス 情報処理装置および情報処理方法
JP7422265B1 (ja) 2023-10-20 2024-01-25 株式会社日立社会情報サービス 情報処理装置および情報処理方法

Also Published As

Publication number Publication date
JP7386203B2 (ja) 2023-11-24

Similar Documents

Publication Publication Date Title
Hosseini et al. Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review
JP2022173656A (ja) 情報処理装置および情報処理方法
US11048530B1 (en) Predictive action modeling to streamline user interface
Liu et al. Risk evaluation approaches in failure mode and effects analysis: A literature review
Cho et al. Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach
CN110942086B (zh) 数据预测优化方法、装置、设备及可读存储介质
US20120078678A1 (en) Method and system for estimation and analysis of operational parameters in workflow processes
Yousefi et al. Exploring the role of blockchain technology in improving sustainable supply chain performance: a system-analysis-based approach
Mortensen et al. Predicting and defining B2B sales success with machine learning
Tripathi et al. Machine learning models for evaluating the benefits of business intelligence systems
JP7559762B2 (ja) 情報処理装置、情報処理方法、及びプログラム
Baralis et al. Discovering profitable stocks for intraday trading
CN114202243A (zh) 一种基于随机森林的工程项目管理风险预警方法及系统
Acebes et al. Stochastic earned duration analysis for project schedule management
JP2022032115A (ja) プロジェクト予兆検知装置及びプロジェクト予兆検知方法
Post et al. Active anomaly detection for key item selection in process auditing
Ling et al. Maximum profit mining and its application in software development
JP7367253B1 (ja) 情報処理装置および情報処理方法
KR102639188B1 (ko) 딥러닝 기반의 동적 가격 산정 방법 및 동적 가격 산정 시스템
JP2023091216A (ja) 情報処理装置および情報処理方法
JP7544794B2 (ja) 情報処理装置および情報処理方法
Bekker Developing a tool for project contingency estimation in a large portfolio of construction projects
JP7422265B1 (ja) 情報処理装置および情報処理方法
CN113763181A (zh) 一种风险压力测试系统
Amani et al. Evaluating Factors Affecting Project Success: An Agile Approach

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210525

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230320

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7386203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150