JP2022173154A - 医用画像処理装置及び方法 - Google Patents

医用画像処理装置及び方法 Download PDF

Info

Publication number
JP2022173154A
JP2022173154A JP2022076690A JP2022076690A JP2022173154A JP 2022173154 A JP2022173154 A JP 2022173154A JP 2022076690 A JP2022076690 A JP 2022076690A JP 2022076690 A JP2022076690 A JP 2022076690A JP 2022173154 A JP2022173154 A JP 2022173154A
Authority
JP
Japan
Prior art keywords
medical image
image data
data
characteristic information
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022076690A
Other languages
English (en)
Inventor
ツァイ リヤン
Liang Cai
ジョウ ジエン
Jian Zhou
シア ティン
Ting Xia
ユウ ジョウ
Zhou Yu
智久 今村
Tomohisa Imamura
亮祐 岩崎
Ryosuke Iwasaki
広樹 高橋
Hiroki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Publication of JP2022173154A publication Critical patent/JP2022173154A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • G06T5/60
    • G06T5/70
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Databases & Information Systems (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Figure 2022173154000001
【課題】より良好な信号対ノイズ比を得ること。
【解決手段】実施形態に係る医用画像処理装置は、記憶部と、処理部と、表示制御部とを備える。記憶部は、医用画像データのノイズを除去するための少なくとも1つのトレーニング済モデルを記憶する。処理部は、前記少なくとも1つのトレーニング済モデルのうちの対応するトレーニング済モデルのトレーニングに用いられたトレーニングデータのノイズ特性情報に近似させるように、前記医用画像データのノイズ特性情報を正規化することにより処理済医用画像データを取得し、前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得する。表示制御部は、前記取得された出力データに基づく医用画像を表示部に表示させる。
【選択図】図7

Description

本明細書及び図面に開示の実施形態は、医用画像処理装置及び方法に関する。
超音波Bモードイメージングまたはドプライメージングなどの超音波イメージングを行うときに、ノイズが劣化の要因になる。例えば、固有のトランスデューサデータ収集時に、付加的ノイズがIQ(同相成分および直交成分(In Phase and Quadrature))信号に入り込む。このようなノイズは付加的な電子ノイズとして現れ、簡単には真のIQ信号から分離することができない。このノイズは医用画像の劣化をもたらすため望ましくない。
米国特許出願公開第2020/0065940号明細書 米国特許出願公開第2018/0144214号明細書 米国特許出願公開第2019/0251668号明細書 米国特許出願公開第2020/0175675号明細書 米国特許出願公開第2020/0401832号明細書
本明細書及び図面に開示の実施形態が解決しようとする課題の一つは、より良好な信号対ノイズ比を得ることである。ただし、本明細書及び図面に開示の実施形態により解決しようとする課題は上記課題に限られない。後述する実施形態に示す各構成による各効果に対応する課題を他の課題として位置づけることもできる。
実施形態に係る医用画像処理装置は、記憶部と、処理部と、表示制御部とを備える。記憶部は、医用画像データのノイズを除去するための少なくとも1つのトレーニング済モデルを記憶する。処理部は、前記少なくとも1つのトレーニング済モデルのうちの対応するトレーニング済モデルのトレーニングに用いられたトレーニングデータのノイズ特性情報に近似させるように、前記医用画像データのノイズ特性情報を正規化することにより処理済医用画像データを取得し、前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得する。表示制御部は、前記取得された出力データに基づく医用画像を表示部に表示させる。
図1は、本開示の一実施形態に係る、種々のデータ取得モードにおけるノイズ特性情報を示す図である。 図2は、処理対象の医用画像データのノイズ特性情報に所定の補正を施して第1ノイズ特性に近似させることによって、第1ノイズ特性を有するデータを用いてトレーニング(訓練)されたニューラルネットワークを用いる方法のワークフローを示す図である。 図3Aは、本開示の一実施形態に係る、ニューラルネットワークのトレーニングに用いた参照ノイズ曲線と、処理対象の医用画像データから得た入力ノイズ曲線とを示す図である。 図3Bは、本開示の一実施形態に係る、2つのニューラルネットワークのトレーニングに用いた2つの参照ノイズ曲線と、処理対象の医用画像データから得た入力ノイズ曲線とを示す図である。 図4は、本開示の一実施形態に係る、トレーニング済ニューラルネットワークの生成方法であって、それぞれが特定のノイズ特性情報を有するトレーニングデータセット(訓練データセット)を用いてトレーニングされた1つ以上のニューラルネットワークから選択されたトレーニング済ニューラルネットワークの生成方法を示す図である。 図5は、本開示の一実施形態に係る、種々のノイズ特性を有する医用画像データを処理することができる、トレーニング済ニューラルネットワークを生成して用いる方法のワークフローを示す図である。 図6は、本開示の一実施形態に係る、送信(超音波送信)有りと送信無しでのデータ取得の実行と、送信ありの場合のデータ取得を調整してトレーニングデータの参照ノイズ特性情報をもたせるようにすることを示すワークフローの図である。 図7は、本開示の一実施形態に係る、超音波診断装置のブロック図である。
本開示は、医用画像処理装置であって、医用画像データのノイズを除去するための少なくとも1つのトレーニング済モデルを保存するメモリと、処理回路であって、(1)医用画像データのノイズ特性情報を正規化して前記少なくとも1つのトレーニング済モデルの内の対応するトレーニング済モデルのトレーニングに用いたトレーニングデータのノイズ特性情報に近似させることによって処理済医用画像データを取得すると共に、(2)前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得するように構成された処理回路と、取得された出力データに基づく医用画像を表示装置に表示させるように構成された表示制御回路と、を備えた装置に関する。
一実施形態において、前記メモリに保存された医用画像データのノイズを除去するための少なくとも1つのトレーニング済モデルは複数のトレーニング済モデルを含み、前記処理回路はさらに、前記医用画像データの収集に用いたシステムのシステムパラメータを用いて前記複数のトレーニング済モデルから対応するトレーニング済モデルを選択するように構成された処理回路を含む。
一実施形態において、前記メモリに保存された医用画像データのノイズを除去するための1つ以上のトレーニング済モデルは複数のトレーニング済モデルを含み、前記処理回路はさらに、前記装置による空気のプリスキャンを用いて前記複数のトレーニング済モデルから対応するトレーニング済モデルを選択するように構成された処理回路を含む。
一実施形態において、前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である。
一実施形態において、前記医用画像処理装置は超音波診断装置である。一実施形態において、前記超音波診断装置は超音波Bモードイメージングを実行する。別の実施形態では、前記超音波診断装置はドプラ超音波法を実行する。
一実施形態において、前記医用画像データはIQデータ、画像データ、生データ、再構成画像データ、またはRFデータであり得る。
本開示はさらに、医用画像処理装置であって、第1医用画像データと、第1医用画像データのノイズ特性情報と、第1医用画像データに基づく第2医用画像データであって第1医用画像データよりノイズが少ない第2医用画像データとに基づく機械学習プロセスによって生成されたトレーニング済モデルを保存するメモリと、処理回路であって、医用画像データをトレーニング済モデルに入力して出力データを取得するように構成された処理回路と、取得された出力データに基づく医用画像を表示装置に表示させるように構成された表示制御回路と、を備えた装置に関する。
一実施形態において、第1医用画像データと第1医用画像データのノイズ特性情報とは入力学習データとして用いられ、第2医用画像データは出力学習データとして用いられる。
一実施形態において、第1医用画像データのノイズ特性情報は、第1医用画像データの収集に用いられたシステムのシステムパラメータを解析することによって取得される。
一実施形態において、第1医用画像データのノイズ特性情報は、第1医用画像データの収集に用いられたシステムでプリスキャン方式を実行することによって取得される。
一実施形態において、前記処理回路はさらに、医用画像データのノイズ特性情報をトレーニング済モデルに入力するように構成される。
本開示はさらに、方法であって、医用画像データのノイズ特性情報を正規化して1つ以上のトレーニング済モデルの内の対応するトレーニング済モデルのトレーニングに用いたトレーニングデータのノイズ特性情報に近似させることにより処理済医用画像データを取得することと、前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得することと、取得された出力データに基づく医用画像を表示することと、を含む方法に関する。
一実施形態の方法はさらに、医用画像データの収集に用いたシステムのシステムパラメータを用いて1つ以上のトレーニング済モデルから対応するトレーニング済モデルを選択することを含み、前記1つ以上のトレーニング済モデルは複数のトレーニング済モデルを含む。
一実施形態の方法はさらに、前記装置による空気のプリスキャンを用いて前記1つ以上のトレーニング済モデルから前記対応するトレーニング済モデルを選択することを含み、前記1つ以上のトレーニング済モデルは複数のトレーニング済モデルを含む。
一実施形態において、前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である。
一実施形態において、前記医用画像データは超音波診断装置から取得される。一実施形態において、前記超音波診断装置は、ドプラ超音波法と超音波Bモードイメージングとの少なくとも一方を実行する。
一実施形態において、前記医用画像データはIQデータ、画像データ、生データ、再構成画像データ、またはRFデータであり得る。
前述したとおり、超音波イメージングを行うときにノイズは劣化の要因になる。したがって、超音波IQ(同相成分および直交成分)信号のノイズを除去することが望ましい。超音波IQ信号のノイズを除去することにより、信号対ノイズ比を高めることができると共に、より高品質な画像を生成することが可能になる。本開示ではIQデータを例として用いるが、当然ながらノイズを除去される信号はIQフォーマットのデータに限定されず、例えば、生データ、再構成画像データ(例えば、IQデータから変換されたデータ)、および(信号の大きさを含む)RFデータであってもよい。
超音波イメージングでは、IQ信号に加わるノイズは種々のスキャン条件(すなわち、データ取得モード)に応じて変化し得る。IQ信号に加わるノイズに影響し得るスキャン条件の例として、深さ、トランスデューサプローブの周波数、アナログゲイン設定、デジタルゲイン設定などがある。
図1は、種々のデータ取得モードに応じて生成され得る種々のIQノイズ曲線(以下、ノイズ特性情報と呼ぶ)を示す図である。例えば、ある周波数で動作するトランスデューサプローブを用いて特定の位置と深さとで患者(被検体)をスキャンすることで生成され得るノイズ特性情報は、別の周波数で動作するトランスデューサプローブを用いて正確に同じ位置で同じ患者をスキャンすることから得られるノイズ特性情報と異なっている。しかしながら、本開示で述べるとおり、IQ信号のノイズ除去を行うことによって、スキャン条件の変化に関係なく、このようなノイズ特性情報をあらかじめ計算してより高品質な超音波画像の生成に用いることができる。
1つまたは複数のスキャン条件のノイズ特性情報を取得して用いることができる。一実施形態において、トレーニング(訓練)済モデルを、同じノイズ特性情報を有する、高画質と低画質の画像対を用いてトレーニングすることができる。その後、種々のノイズ特性を有する処理対象の医用画像データは、トレーニング済モデルのトレーニングに用いた画像のノイズ特性情報に類似するように正規化されたノイズ特性情報を有することが可能になる。次いでこの処理済医用画像データは、後に高画質の画像生成に用いることのできるノイズが除去されたIQ信号を有するデータセットを生成するためのトレーニング済モデルに入力可能となる。
別の実施形態では、トレーニング済モデルは、様々なスキャン形態の下で生成された低品質の画像と、各低品質画像のノイズ特性情報と、低品質画像に基づく高品質画像とを用いてトレーニング可能である。この後、トレーニング済モデルは低品質画像と低品質画像のノイズ特性情報とを入力情報として取り込み、低品質画像の高品質バージョンを出力することができる。すなわち、トレーニング済モデルは、低品質画像と低品質画像のノイズ特性情報とが入力されると、低品質画像に基づく高品質画像を出力する。
本開示では、超音波イメージングをアプリケーション例として用い、ニューラルネットワークをトレーニング済モデルの例として用いる。言うまでもなく、他の実施形態では他の種類のイメージングシステムおよび/またはトレーニング済モデルが使用されることもある。
ノイズ特性情報を取得する方法として複数の方法がある。
一実施形態において、ノイズ特性情報は、ある特定のスキャン形態のためのシステムパラメータによって決定可能である。スキャン深さ、トランスデューサプローブの周波数、アナログゲイン設定、およびデジタルゲイン設定などのパラメータを考慮してノイズ特性情報を決定することができる。
ノイズ特性情報を収集する別の実施形態では、プリスキャン方式が実行可能である。ノイズ特性情報は深さに依存し、かつ深さおよびデータ取得設定(例えば、周波数)などの複数の因子に基づく情報である。プリスキャン方式は、特定のスキャン形態に対して、超音波送信なし(例えば、エアスキャン)の、単純受信イベントを実行することによって行うことができる。これによりリアルタイムでのノイズ特性情報の生成が可能になる。
ノイズ特性情報は深さに特有の情報か、またはスキャンされる被検体の深さ全体にわたる情報であり得る。異なる深さにおけるノイズ特性情報は異なる大きさのノイズを有することがある。ノイズ特性情報が深さに特有の情報である場合、当該特定深さに関するノイズ特性情報のみが本記載の技術の実施に必要な情報になる。例えば、超音波スキャンが500~700の深さの情報にのみ関する場合、ノイズ特性情報が必要なのは500~700の深さに対してのみである。別の例として、当該深さが15cmである場合、ノイズ特性情報は15cmまでの深さに対してのみ必要になる。あるいは、当該領域が特定範囲(例えば、1~3cm)に限定される場合、ノイズ特性情報はその範囲に対してのみ必要になる。
前述したとおり、ノイズ特性情報は様々な具合に用いることができる。図2は、ニューラルネットワークを用いた、本開示の一実施形態に係る方法200を示す図である。
最初に、深層畳み込みニューラルネットワークなどの、ニューラルネットワークがトレーニングされ得る。トレーニングデータとしてノイズのある画像215とそれに対応するクリーンな画像217とを含み得る。それらノイズ画像215とクリーン画像217とは同じノイズ特性情報を有している。ノイズ画像215群中の各ノイズ画像と、クリーン画像217群中の対応する各クリーン画像とは、ステップ213でトレーニング対として用いられる。ノイズ画像215は入力学習データとして用いることができ、クリーン画像217はターゲット学習データとして用いることができる。ステップ213のニューラルネットワークのトレーニングは、所定の停止基準が満たされるまで(例えば、妥当性検査エラーが最小になるまで)行われ得る。ステップ213が終了すると、トレーニング済ニューラルネットワーク207が生成される。
多層パーセプトロンやU-netなどの、種々のニューラルネットワーク構造がステップ213のトレーニングの間に実装され得る。一実施形態において、ネットワーク全体が関数fとして扱われる場合、以下の式(1)に示すように、フレームワーク(パラメータセットΘ)をトレーニングして損失関数Lを最小にすることができる。
Figure 2022173154000002
式(1)において、XLowはクリーン画像を表し、XHighはノイズ画像を表す。
当業者に自明のとおり、ノイズ画像215とクリーン画像217とを種々の方法で取得することができる。一例では、クリーン画像217を先に(例えば、シミュレーションや被検体の実スキャンによって)取得した後、クリーン画像217にノイズを付加してノイズ画像215を生成する。別の例では、ノイズ画像215を先に(例えば、シミュレーションや被検体の実スキャンによって)取得した後、当業者に既知の任意の技術を用いてノイズ画像215からノイズを除去してクリーン画像217を生成することができる。このようにして生成されたノイズ画像215及びクリーン画像217は、上述したようにステップ213でトレーニング対として用いられる。
ニューラルネットワークのトレーニングが完了すると、医用画像データ201を取得する。医用画像データ201にはスキャンにより取得されたIQ信号データが含まれている。IQ信号データの各データポイントは複素数からなる。この処理対象の医用画像データ201は、ドプラ超音波スキャンまたはBモード超音波スキャンなどの、患者のスキャンから取得することができる。医用画像データに付随するノイズ特性情報は、前述の諸技術(例えば、医用画像データを取得したシステムのシステムパラメータの解析や、医用画像データを取得したシステムを用いたプリスキャン方式の実行など)のいずれかにより知ることができる。なお、医用画像データ201のノイズ特性情報は、ノイズ画像215とクリーン画像217とのノイズ特性情報とは異なることもある。
次のステップ203では所定の補正が行われる。原則として、医用画像データ201のノイズ特性情報は、トレーニング済ニューラルネットワーク207をトレーニングするためのトレーニングデータとして用いられたノイズ画像215とクリーン画像217とのノイズ特性情報に近似するように正規化される。正規化はスキャンの深さ全体または特定範囲の深さにわたって行われ得る。一実施形態において、正規化は、(1)ある深さ値での医用画像データ201のノイズ特性情報と(2)同じ深さ値でのノイズ画像215またはクリーン画像217のノイズ特性情報との比を決定することを含み得る。この比に応じて同一深さ値での医用画像データ201がサイズ調整される。例えば、医用画像データ201のノイズ特性情報がある特定の深さにおいてσto_be_processedで表され、同一深さにおけるノイズ画像215とクリーン画像217とのノイズ特性情報がσreferenceで表される場合、正規化は同一深さの医用画像データ201の画素値に「σreference/σto_be_processed」を乗じることであり得る。なお、「/」は除算を示す演算子である。ノイズ画像215とクリーン画像217とのノイズ特性情報は、前述の諸技術(例えば、トレーニングデータの取得に用いたシステムのシステムパラメータの解析や、トレーニングデータの取得に用いたシステムでのプリスキャン方式など)のいずれかを用いた正規化を実行する前に取得することができる。この正規化処理は、被検体の深さ全体または特定範囲の深さにわたって繰り返され得る。
正規化の一実施形態を表す簡単な例を示すために、「(σreference/σto_be_processed)=0.5」が深さxで成り立つ場合(xは物理的深さ(例えば、5cm)であり、深さxでの医用画像データ201のI値はそれぞれ「20、23、27、40、28」で表される)、正規化は深さxでの医用画像データ201のI値を「10、11.5、13.5、20、14」に更新することができる。次に「(σreference/σto_be_processed)=0.3」が深さ(x+1)で成り立つ場合(深さ(x+1)の画素は深さxの画素の直下に位置し、深さ(x+1)での医用画像データ201のI値はそれぞれ「33、39、42、45、36」で表される)、正規化は深さ(x+1)での医用画像データ201のI値を「11、13、14、15、12」に更新することができる。このプロセスは、データ内の残りのI値に対して、当該深さ(例えば、(x+2),(x+3),(x+4)など)毎に繰り返され得る。次いでこの処理が、I値とQ値とが同じノイズ曲線を共有していることを示している医用データの対応する全てのQ値に対して繰り返される。
ステップ203が終了すると、処理済医用画像データ205が生成される。処理済医用画像データ205はステップ201で取得された医用画像データに基づいているが、ノイズ画像215とクリーン画像217とのノイズ特性情報に近似するように変更されたノイズ特性情報を有している。
さらに図3Aを参照して方法200を簡単に説明する。図3Aには、参照ノイズ曲線301と入力ノイズ曲線303とが示されている。参照ノイズ曲線301(すなわち、参照ノイズ特性情報)は、ニューラルネットワーク(例えば、トレーニング済ニューラルネットワーク207)のトレーニングに用いたトレーニングデータ(例えば、ノイズ画像215とクリーン画像217)のノイズ特性情報である。なお、参照ノイズ曲線301は深さ550付近で飽和して水平になっている。入力ノイズ曲線303は、処理対象の医用画像データ(例えば、医用画像データ201)のノイズ特性情報である。方法200のステップ203で実行される所定の補正により、ある特定のスキャン形態から取得された入力ノイズ曲線303を正規化して、異なるスキャン形態から取得された参照ノイズ曲線301に近似させる。
図3Aにおいて、20cmの深さに対応して1024のサンプルが存在している。言うまでもなく、他の実施形態では、異なるサンプリングレートおよび/または異なる量のサンプルを使用してもよい。例えば、30cmの物理深さに対して2048のサンプルを使用できる。
図2に戻る。処理済医用画像データ205がトレーニング済ニューラルネットワーク207に入力され、トレーニング済ニューラルネットワーク207が出力データ209を生成する。出力データ209はノイズを除去されたIQ信号データを有しており、ここでは、処理済医用画像データ205を用いて生成される医用画像よりクリーンな医用画像を表している。
ステップ211で、出力データ209が、ステップ203で所定の補正を行うために用いられた比の逆数によってサイズ調整される。例えば、ステップ203で医用画像データ201が「σreference/σto_be_processed」を用いて正規化されるので、ステップ211でのスケーリングバックは、出力データ209に「σto_be_processed/σreference」を乗じる処理である。最後に、ステップ211で、出力データ209を(ここではノイズを除去されたIQ信号データを用いて)表示装置を介して表示するための画像に変換する。そして、ステップ219で、かかる画像が表示装置に表示される。表示装置は、表示部の一例である。
図3Bを参照して別の実施形態を説明する。図3Bは、参照ノイズ曲線305が追加されていること以外は図3Aと同一である。一実施形態において、第1ニューラルネットワークは、参照ノイズ曲線301によって表されるノイズ特性情報を有するノイズ/クリーン画像対を用いてトレーニングすることができ、第2ニューラルネットワークは、参照ノイズ曲線305によって表されるノイズ特性情報を有するノイズ/クリーン画像対を用いてトレーニングすることができる。その後、第1または第2いずれかのニューラルネットワークを入力ノイズ曲線303に応じて選択することができる。一実施形態において、参照ノイズ曲線305は入力ノイズ曲線303にきわめて類似しているので、第2ニューラルネットワークを選択することができる。すなわち、参照ノイズ曲線301及び参照ノイズ曲線305のうち、入力ノイズ曲線303に対して類似している度合いが高い参照ノイズ曲線305に対応する第2ニューラルネットワークを選択することができる。その後、方法200のステップ203で、参照ノイズ曲線305に近似するように入力ノイズ曲線303を正規化することができる。一実施形態において、イメージングを行うシステムのシステムパラメータを用いて、またはそのシステムによる空気のプリスキャンによって、参照ノイズ曲線を取得することができる。異なるノイズ特性情報を有するトレーニング対を用いたニューラルネットワークのトレーニングに関するさらなる詳細について図4を参照して以下に述べる。
図4に、方法200に使用されたトレーニング済ニューラルネットワーク207を生成する別の実施形態の方法を示す。ニューラルネットワークをトレーニングするための1種類のノイズ特性情報を有するノイズ画像215とクリーン画像217とを取得するのではなく、異なるノイズ特性情報を有するノイズ/クリーン画像対の複数の組を複数のニューラルネットワークのトレーニングに用いることができる。その後、最も適切なトレーニング済ニューラルネットワークを、処理対象のデータの処理に使用することができる。
ステップ213aで、ノイズ特性情報1を備えた複数のノイズ画像215aとノイズ特性情報1を備えた対応する複数のクリーン画像217aとを用いてトレーニング済ニューラルネットワーク1(219a)を生成することができる。それらノイズ特性情報1を備えたノイズ画像215aとノイズ特性情報1を備えた対応するクリーン画像217aとは同じノイズ特性情報を有する。ステップ213aで、各ノイズ画像215aは入力学習データとして用いられ、対応するクリーン画像217aは出力学習データとして用いられる。その結果、同じノイズ特性情報を有するトレーニングデータを用いたトレーニング済ニューラルネットワークが生じる。
同様に、ステップ213bで、ノイズ特性情報2を備えた複数のノイズ画像215bとノイズ特性情報2を備えた対応する複数のクリーン画像217bとを用いてトレーニング済ニューラルネットワーク2(219b)を生成することができる。それらノイズ特性情報2を備えたノイズ画像215bとノイズ特性情報2を備えたクリーン画像217bとは互いに同じノイズ特性情報を有するが、ノイズ特性情報1を備えたノイズ画像215aとノイズ特性情報1を備えたクリーン画像217aとは異なるノイズ特性情報を有する。なお、前述の式(1)で示したものと同じ損失関数をステップ213aと213bとで使用することができる。
その結果、第1タイプのノイズ特性を有するトレーニングデータを用いてトレーニングされたトレーニング済ニューラルネットワーク1(219a)と、第2タイプのノイズ特性を有するトレーニングデータを用いてトレーニングされたトレーニング済ニューラルネットワーク1(219b)とが生じる。言うまでもなく、他の実施形態においてさらなるノイズ特性を有するトレーニングデータを用いて3つ以上のトレーニング済ニューラルネットワークを生成することもできる。
次に、処理対象の医用画像データ221のノイズ特性情報が取得される。この情報は、方法200の医用画像データ201のノイズ特性情報である。
ステップ223で、処理対象の医用画像データ221のノイズ特性情報を用いて、トレーニング済ニューラルネットワーク1(219a)またはトレーニング済ニューラルネットワーク2(219b)のいずれを用いるかが決定される。一実施形態において、処理対象の医用画像データ221のノイズ特性情報に最も近似(類似)したノイズ特性情報を有するトレーニングデータを用いてトレーニングされたニューラルネットワークが選択される。次にステップ223で選択されたニューラルネットワークが、方法200のトレーニング済ニューラルネットワーク207として使用される。
これまでに行った説明は1次元でのものであり、深さ方向とビーム方向とは同一と仮定していた。ある実施形態では、選択されたニューラルネットワークのトレーニングに用いたノイズ画像及びクリーン画像の対のノイズ特性情報をビーム方向(2次元)に拡張して、トレーニング済ニューラルネットワーク207へのさらなるチャネル入力として用いることができる。ビーム方向に拡張することは、深さ方向とビーム方向とが同じでない場合であっても、正規化がその両方向で行われることを意味し得る。
前述したとおり、ノイズ特性情報は様々に用いることができる。別の実施形態では、ノイズ特性情報を直接トレーニングに使用することができる。この場合、トレーニング済深層畳み込みニューラルネットワークは、種々のノイズ特性を有する医用画像データを直接扱うことができる。
図5は、本開示の一実施形態に係る別の方法500を示すワークフローである。方法500では、種々のノイズ特性情報が直接トレーニングに用いられ、それによりトレーニング済ニューラルネットワークが、種々のノイズ特性を有する処理対象の医用画像データを処理することが可能になる。
ステップ513でニューラルネットワークをトレーニングしてトレーニング済ニューラルネットワーク507を生成する。ステップ513でニューラルネットワークをトレーニングするためのトレーニングデータとして、複数のノイズ画像515と、それらノイズ画像515に対応する複数のクリーン画像517と、それらの画像に対応するノイズ特性情報1~N(519)とがある。Nは1以上の数が可能であり、対応するノイズ画像とクリーン画像とのノイズ特性情報はトレーニングの間に変化し得ることを示している。ノイズ画像515とノイズ特性情報1~N(519)とは入力学習データとして用いられ、クリーン画像517は出力学習データとして用いられる。ネットワーク全体を関数fとして扱うと、フレームワーク(パラメータセットΘ)を、下記の式(2)に示すように、損失関数Lを最小にするようにトレーニングすることができる。
Figure 2022173154000003
式(2)において、XLowはクリーン画像を表し、XHighはノイズ画像を表す。また、noiseは、XLowとXHighとのノイズ特性情報である。
前述したとおり、ノイズ画像515とクリーン画像517とを、当業者に既知の任意の技術(例えば、ノイズ画像515のノイズ除去や、クリーン画像517の改変など)を用いて取得することができる。例えば、ノイズ画像515とクリーン画像517とを、ノイズ画像215とクリーン画像217とを取得する方法と同様の方法により取得することができる。さらに、ノイズ特性情報1~N(519)を、当業者に既知の任意の技術(例えば、システムパラメータや、プリスキャン方式など)を用いて取得することができる。
ニューラルネットワークのトレーニングが完了すると、医用画像データ501とそれに対応するノイズ特性情報とが取得される。この処理対象の医用画像データ501は、ドプラ超音波スキャンまたはBモード超音波スキャンなどの、患者のスキャンから取得することができる。医用画像データ501のノイズ特性情報は、前述の技術(例えば、システムパラメータや、プリスキャン方式など)のいずれかを用いて取得することができる。取得された医用画像データ501とそれに対応するノイズ特性情報とがトレーニング済ニューラルネットワーク507に入力され、それにより出力データ509が生成される。出力データ509は、医用画像データ501のIQ信号データよりもノイズが少ないIQ信号データを有している。出力データ509は次に画像に変形され、ステップ511で表示装置を介した画像の表示に用いられる。すなわち、ステップ511では、かかる画像が表示装置に表示される。
図6に、本開示の一実施形態例に係る、ワークフロー図を例示的説明図と共に示す。ステップ601で、超音波スキャンのためのスキャン設定が所望の構成(例えば、深さや、ビーム密度など)を有するように変更され、スキャン設定が変更される度に以下に述べるプロセスを再度実行する。あるいは、一連のスキャン条件がある所定の期間(例えば、24時間、1週間、または1ヵ月)使用されなかった場合、このプロセスを再度実行することができる。これによりスキャン条件が変わる度にキャリブレーションし直す必要がなくなる。この超音波装置は、必要に応じて検査者にキャリブレーションを実行するように促すこともある。
次に、ステップ603で、超音波送信なしでのデータ取得(すなわち、プリスキャン法)が実行される。画像611は、超音波送信なしでのデータ取得の例である。画像611で、複数画素における各横方向のラインは、σto_be_processedで表される、ある特定深さでのノイズであり、画像611内で画素における横方向ラインが低くなるほど、深さ値が大きくなる(すなわち、被検体内に深く入っている)。言うまでもなく、画像611に示したとおり、通常σto_be_processedの値は対応する深さに応じて変化する。画像611と入力ノイズ曲線303とは、同じノイズ情報を表す別々の方法と考えることができる。
ステップ605で、超音波送信を伴うデータ取得が同じ超音波診断装置により実行される。ステップ605での出力例が画像613によって表されている。IQ_testは、σto_be_processedで表される深さと同一深さでの画像613における横方向ラインにわたる画素値を表す。
ステップ607で、ステップ605での超音波送信を伴うデータ取得を、トレーニングデータのゲインパターン(すなわち、ノイズパターンやノイズ特性情報など)に一致させる。トレーニングデータのゲインパターンはσrefによって表される(IQ_testと同じ深さ(σto_be_processed)の場合)。ここで正規化に関して前述した技術と同じ技術を適用することができる。IQ_testに「σref/σto_be_processed」(または「σto_be_processed/σref」)を乗じて画像613のノイズ特性情報を正規化することで、特定深さのトレーニングデータのノイズ特性情報に近似させることができる。この処理は関連する深さ毎に繰り返される。画像615は、ノイズ特性情報が深さ全体にわたって正規化されている画像の例である。最後に、ステップ609で、ステップ607の出力がトレーニング済ネットワークに入力されてIQ信号データのノイズが除去される。
本開示に記載の技術では、ニューラルネットワークなどの、トレーニング済モデルを用いて、Bモード超音波画像またはドプラ超音波画像などの、画像のノイズ除去が実行される。1つ以上の様々なデータ取得モード(すなわち、スキャン条件)からノイズ特性情報がわかると、トレーニング済モデルを導入して、収集された画像データのノイズ除去を行うことができる。このようなフレームワークの下で、より良好な信号対ノイズ比を得ることができる。さらに、これにより低音響出力超音波イメージングが可能となり、曝されるエネルギー量を低減することができる。
本記載の技術は、種々のデータ取得モードでの種々のノイズ情報を用いる。本提案のフレームワークによって、トレーニング済モデルがロバストになり、種々のスキャン条件に適用できるようになる。
ある実施形態において、当然ながら前述の技術は、超音波診断装置などのシステムで適用されることができる。
図7は、実施形態に係る超音波診断装置1の構成例を示すブロック図である。図7に示したとおり、実施形態に係る超音波診断装置1は、装置本体100と、超音波プローブ101と、入力インタフェース102と、表示装置103とを備えている。超音波診断装置1は、超音波スキャナであり、超音波Bモードイメージング及びドプライメージングの少なくとも1つを実行する。また、超音波診断装置1は、医用画像処理装置の一例である。
例えば、超音波プローブ101は、圧電トランスデューサ素子などの、複数のトランスデューサ素子を備えている。複数のトランスデューサ素子の各々は、装置本体100に含まれる送受信回路110の送信回路110aから供給される駆動信号に基づいて超音波を発生するように構成されている。さらに、超音波プローブ101は、検査される被検体(患者)Pから反射波を受信し、受信された反射波を電気信号である反射波信号に変換し、さらにその反射波信号を装置本体100に出力するように構成されている。さらに、例えば、超音波プローブ101は、トランスデューサ素子に設けられた整合層と、超音波がトランスデューサ素子から後方に伝播することを防ぐバッキング材とを備えている。超音波プローブ101は装置本体100に取り外し可能に接続されている。
超音波が超音波プローブ101から患者Pに送られると、送られた超音波は患者Pの身体内の組織における音響インピーダンスの不連続性の表面上で繰り返し反射され、超音波プローブ101に備えられた複数のトランスデューサ素子に反射波として受波される。受波された反射波の振幅は、超音波が反射される不連続性の表面上での音響インピーダンス間の相違に依存する。送波された超音波が移動する血流や心臓壁などの表面で反射されると、反射波は、ドプラ効果のために、超音波の送波方向に対して移動する物の速度成分に応じて周波数偏移を受ける。さらに、超音波プローブ101は、反射波信号を、送受信回路110の受信回路110bに出力するように構成されている。
超音波プローブ101は、装置本体100に取付けおよび取り外し可能に設けられている。患者P内の2次元領域がスキャンされる場合(2次元スキャン)、ユーザは、例えば、1次元(1D)アレイプローブであって、複数のトランスデューサ素子が1列に配列されているアレイプローブを超音波プローブ101として装置本体100に接続する。1Dアレイプローブの種類として、リニア超音波プローブ、コンベックス型超音波プローブ、およびセクタ超音波プローブなどがある。これに対し、患者P内の3次元領域がスキャンされる場合(3次元スキャン)、ユーザは、例えば、機械的4次元(メカ4D)プローブまたは2次元(2D)アレイプローブを超音波プローブ101として装置本体100に接続する。メカ4Dプローブは、1Dアレイプローブの場合と同様に1列に配列された複数のトランスデューサ素子を用いて2次元スキャンを行うことができると共に、ある所定の角度(揺動角)で複数のトランスデューサ素子を揺動することによって3次元スキャンを行うことができる。さらに、2Dアレイプローブは、行列形式に配列された複数のトランスデューサ素子を用いることによって3次元スキャンを行うことができると共に、超音波を収束して送波することによって2次元スキャンを行うことができる。
入力インタフェース102は、例えば、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボール、および/またはジョイスティックなどの入力手段により実現される。また入力インタフェース102は、超音波診断装置1のユーザからの様々な種類の設定要求を受け取って、その受け取った様々な種類の設定要求を装置本体100に転送するように構成されている。
表示装置103は、例えば、入力インタフェース102を介して様々な種類の設定要求を入力するために、超音波診断装置1のユーザに用いられるグラフィカルユーザインタフェース(Graphical User Interface:GUI)を表示すると共に、装置本体100などによって生成された超音波画像データに基づく超音波画像を表示するように構成されている。表示装置103は、液晶モニタ、または陰極線管(Cathode Ray Tube:CRT)などにより実現される。表示装置103は、表示部の一例である。
装置本体100は、超音波プローブ101から送信された反射波信号に基づいて超音波画像データを生成するように構成されている。超音波画像データは画像データの一例である。装置本体100は、患者P中の2次元領域に対応する反射波信号であって超音波プローブ101から送信される反射波信号に基づいて2次元超音波画像データを生成することができる。さらに、装置本体100は、患者P中の3次元領域に対応する反射波信号であって超音波プローブ101から送信される反射波信号に基づいて3次元超音波画像データを生成することもできる。図7に示すように、装置本体100は送受信回路110と、バッファメモリ120と、信号処理回路130と、画像生成回路140と、メモリ150と、制御回路160とを備えている。
制御回路160の制御の下で、送受信回路110は、超音波を超音波プローブ101から送波させると共に、超音波(超音波の反射波)を超音波プローブ101に受波させるように構成されている。言い換えると、送受信回路110は、超音波プローブ101を介してスキャンを行うように構成されている。スキャンは超音波スキャンと称することもある。送受信回路110は、送受信ユニットの一例である。送受信回路110は、送信回路110aと受信回路110bとを備えている。
制御回路160の制御の下で、送信回路110aは、超音波を超音波プローブ101から送波させるように構成されている。送信回路110aは、駆動信号(駆動信号の送信パルス)を超音波プローブ101に供給するように構成されている。患者P内の2次元領域がスキャンされる場合、送信回路110aは、その2次元領域をスキャンする超音波ビームを超音波プローブ101から送信させるように構成されている。別の例では、患者P内の3次元領域がスキャンされる場合、送信回路110aは、その3次元領域をスキャンする超音波ビームを超音波プローブ101から送波させるように構成されている。送信回路110aについては以下で説明する。
送信回路110aは、駆動信号に所定の遅延処理を施し、該所定の遅延処理が施された駆動信号をトランスデューサ素子に供給する機能を有する。本実施形態では、例えば、1チャネルが各トランスデューサ素子に割り当てられ、それにより所定の遅延処理が各チャネルに関係する駆動信号に施される。このため、送信回路110aは、例えば、トランスデューサ素子からビーム形状に放出された超音波を収束することによって超音波の送波指向性を制御するように構成されている。
超音波プローブ101によって送波された超音波の反射波は超音波プローブ101の内側に設けられた各トランスデューサ素子に到達した後、該トランスデューサ素子において機械的振動から電気信号(反射波信号)に変換され、その後受信回路110bに入力される。受信回路110bは、プリアンプ、アナログデジタル(A/D(Analog to Digital))コンバータ、受信遅延回路、加算器などを備え、超音波プローブ101から送信された反射波信号に様々な種類の処理を施すことによって反射波データを生成するように構成されている。受信回路110bは、この後生成された反射波データをバッファメモリ120に保存するように構成されている。
プリアンプは、各チャネルに関するアナログ信号である反射波信号を増幅することによってゲイン調整(ゲイン補正)を行うように構成されている。A/Dコンバータは、ゲイン補正された反射波信号にA/D変換を施すことによって、該ゲイン補正された反射波信号をデジタル信号に変換するように構成されている。受信遅延回路は、受信の指向性の決定に必要な遅延時間を、デジタル信号に変換された反射波信号に付与するように構成されている。
加算器は、受信遅延回路によって処理された反射波信号に加算処理を施すことによって反射波データ(高周波(Radio Frequency:RF)信号)を生成するように構成されている。加算器は、この後反射波データをバッファメモリ120に保存するように構成されている。このように、本実施形態では、受信遅延回路と加算器とが整相加算処理を行う。本実施形態では、例えば、1チャネルが各トランスデューサ素子に割り当てられる。さらに受信遅延回路は、上記遅延時間を各チャネルの反射波信号に付与するように構成されている。また、加算器は、受信遅延回路によって遅延時間が付与された、複数の反射波信号を合算する加算処理を実行するように構成されている。
受信回路110bは、超音波プローブ101から送信された2次元反射波信号から2次元反射波データを生成するように構成されている。別の例では、受信回路110bは、超音波プローブ101から送信された3次元反射波信号から3次元反射波データを生成するように構成されている。
バッファメモリ120は、送受信回路110によって生成された反射波データを一時的に記憶(保存)するように構成されたメモリである。例えば、受信回路110bの制御の下で、バッファメモリ120は、それぞれが1フレームに対応する所定数の反射波データを記憶できるように構成されている。さらに、バッファメモリ120は、それぞれが1フレームに対応する所定数の反射波データを記憶する間に、1フレームに対応する別の反射波データが受信回路110bによって新たに生成されると、受信回路110bの制御の下で、最も先に生成された、1フレームに対応する1つの反射波データを廃棄し、前記1フレームに対応する新たに生成された反射波データを記憶するように構成されている。例えば、バッファメモリ120は、ランダムアクセスメモリ(Random Access Memory:RAM)またはフラッシュメモリなどの半導体メモリ素子を用いることによって実現される。
信号処理回路130は、バッファメモリ120から反射波データを読み取り、様々な種類の信号処理を読み取った反射波データに施し、該様々な種類の信号処理プロセスが施された反射波データをBモードデータまたはドプラデータとして画像生成回路140に出力するように構成されている。信号処理回路130は、例えばプロセッサによって実現される処理回路である。信号処理回路130は信号処理部及び処理部の一例である。
例えば、信号処理回路130は、直交検波並びに対数増幅および/または包絡線検波などの信号処理を、バッファメモリ120から読み出した反射波データに施すことによって、Bモードデータであって、各サンプリングポイントでの信号強度(振幅強度)が輝度の度合で表現されるBモードデータを生成するように構成されている。例えば、信号処理回路130は、生成したBモードデータを画像生成回路140に出力するように構成されている。
さらに、信号処理回路130は、高調波成分が画像内で可視化されるハーモニックイメージングを実現するための信号処理を実行するように構成されている。ハーモニックイメージングの例として、コントラストハーモニックイメージング(Contrast Harmonic Imaging:CHI)やティッシュハーモニックイメージング(Tissue Harmonic Imaging:THI)などがある。さらに、コントラストハーモニックイメージングとティッシュハーモニックイメージングとに対しては、例えば以下のスキャン方法が知られている。すなわち、振幅変調(Amplitude Modulation:AM)法、パルスサブトラクション法およびパルスインバージョン法と呼ばれる位相変調(Phase Modulation:PM)法、およびAM法とPM法とを結合することによってAM法とPM法との両方のメリットが得られるAMPM法などのスキャン方法である。
信号処理回路130は、バッファメモリ120から読み出した反射波データに周波数解析を施すことによって反射波データからドプラ効果に基づく移動体(血流、組織、および/または造影剤のエコー成分など)の動き情報を抽出して、抽出された動き情報を示すドプラデータを生成するように構成されている。例えば、信号処理回路130は、複数のポイントについての平均速度値、平均分散値、平均エネルギ値などを、移動体の動き情報として抽出することにより、抽出された移動体の動き情報を示すドプラデータを生成するように構成されている。信号処理回路130は、生成したドプラデータを画像生成回路140に出力するように構成されている。
前述の信号処理回路130の機能を用いることにより、一実施形態に係る超音波診断装置1は、カラーフローマッピング(Color Flow Mapping:CFM)法とも呼ばれるカラードプラ法を実行することができる。カラーフローマッピング法によれば、超音波の送波と受波とは複数のスキャンライン上で複数回行われる。さらに、カラーフローマッピング法によれば、相互に同じ位置でデータシーケンス内の静止組織または低速移動組織から導かれた信号(クラッタ信号)を抑制しつつ、移動目標指示(Moving Target Indicator:MTI)フィルタを相互に同じ位置で該データシーケンスに適用することによって、血流から導かれた信号(血流信号)が抽出される。さらに、カラーフローマッピング法によれば、血流の速度、血流の分散、血流のエネルギなどの血流情報が、血流信号に基づいて推定される。信号処理回路130は、カラーフローマッピング法を実行することによって推定された血流情報を示すドプラデータを画像生成回路140に出力するように構成されている。
信号処理回路130は、2種類の反射波データ、すなわち2次元反射波データと3次元反射波データとの両方を処理することができる。
信号処理回路130は、方法200および/または500、並びに前述したそれらの変形を実行することができる。
画像生成回路140は、信号処理回路130から出力されるBモードデータとドプラデータとから超音波画像データを生成するように構成されている。例えば、画像生成回路140は、信号処理回路130により生成された2次元Bモードデータから、2次元Bモード画像データであって、反射波の強度が輝度レベルで表される2次元Bモード画像データを生成するように構成されている。さらに、画像生成回路140は、信号処理回路130により生成された2次元ドプラデータから、2次元ドプラ画像データであって、動き情報すなわち血流情報が画像中に可視化されている2次元ドプラ画像データを生成するように構成されている。2次元ドプラ画像データは、速度画像データ、分散画像データ、パワー画像データ、またはこれらの種類の画像データを合成した画像データである。画像生成回路140は、プロセッサにより実現される。
一般に画像生成回路140は、(スキャン変換処理を実行することによって)スキャンライン信号シーケンスを超音波スキャンから(例えば、テレビに用いられる)ビデオフォーマットのスキャンライン信号シーケンスに変換して、表示目的の超音波画像データを生成するように構成されている。例えば、画像生成回路140は、超音波プローブ101に使用される超音波スキャンモードに準拠した座標変換処理を、信号処理回路130から出力されたデータに施すことによって、表示目的の超音波画像データを生成するように構成されている。さらに、スキャン変換処理以外の様々な種類の画像処理として、画像生成回路140は、スキャン変換処理によって生じる複数の画像フレームを用いることによって、例えば、平均輝度値の画像を再生成する画像処理(平滑化処理)や、画像の内側に微分フィルタを用いる画像処理(エッジ強調処理)などを実行するように構成されている。また、画像生成回路140は、目盛りや、ボディマークなどの様々な種類のパラメータのテキスト情報を超音波画像データと合成するように構成されている。
さらに、画像生成回路140は、信号処理回路130によって生成された3次元Bモードデータに座標変換処理を施すことによって、3次元Bモード画像データを生成するように構成されている。さらに、画像生成回路140は、信号処理回路130によって生成された3次元ドプラデータに座標変換処理を施すことによって、3次元ドプラ画像データを生成するように構成されている。言い換えると、画像生成回路140は、「3次元Bモード画像データ」と「3次元ドプラ画像データ」とを「3次元超音波画像データ(ボリュームデータ)」として生成するように構成されている。さらに、画像生成回路140は、様々な種類のレンダリング処理をボリュームデータに施して、ボリュームデータを表示装置103に表示するために使用される、様々な種類の2次元画像データを生成するように構成されている。
画像生成回路140によって実行されるレンダリング処理の例として、多断面再構成(Multi Planar Reconstruction:MPR)法を用いることによってボリュームデータから多断面再構成(MPR)画像データを生成する処理がある。さらに、画像生成回路140によって実行されるレンダリング処理の他の例として、3次元情報を反映する2次元画像データを生成するボリュームレンダリング(Volume Rendering:VR)処理がある。画像生成回路140は画像生成部の一例である。
Bモードデータとドプラデータとはそれぞれスキャン変換処理前の超音波画像データである。画像生成回路140によって生成されたデータは、スキャン変換処理後の、表示目的の超音波画像データである。Bモードデータとドプラデータとは生データ(Raw Data)とも呼ばれる。
メモリ150は、画像生成回路140によって生成された、様々な種類の画像データを保存するように構成されたメモリである。さらに、メモリ150は、信号処理回路130によって生成されたデータを記憶するように構成されたメモリでもある。また、メモリ150は、トレーニング済ネットワークを記憶するように構成されたメモリでもある。ユーザは、例えば、診断プロセス後、メモリ150に記憶されたBモードデータとドプラデータとを呼び出すことができる。呼び出されたデータは、画像生成回路140を経由した後、表示目的の超音波画像データとなる。
さらに、メモリ150は、スキャン(超音波の送受波)と、画像処理と、表示処理とを行うための制御プログラム、並びに診断情報(例えば、患者IDや、医師の診察結果など)、診断プロトコル、および様々な種類のボディマークなどの様々な種類のデータを記憶するように構成されている。例えば、メモリ150は、RAMまたはフラッシュメモリなどの半導体メモリ素子、ハードディスク、または光ディスクを用いることによって実現される。メモリ150は、記憶部の一例である。
制御回路160は、超音波診断装置1によって実行される処理全体を制御するように構成されている。より具体的には、制御回路160は、送受信回路110と、信号処理回路130と、画像生成回路140とによって実行される処理を、入力インタフェース102を介してユーザから入力された様々な種類の設定要求と、メモリ150から読み出した様々な種類の制御プログラムおよび様々な種類のデータとに基づいて、制御するように構成されている。さらに、制御回路160は、表示装置103を制御して、メモリ150に記憶された表示目的の超音波画像データに基づく超音波画像を制御するように構成されている。制御回路160は、制御部及び表示制御部の一例である。例えば、制御回路160はプロセッサによって実現される。超音波画像は画像の一例である。
さらに、制御回路160は、送受信回路110を介して超音波プローブ101を制御することによって超音波スキャンを制御するように構成されている。
図7を参照して、実施形態に係る超音波診断装置1の構成の一例について説明した。上述したように、超音波診断装置1は、メモリ150と、信号処理回路130と、制御回路160とを備える。メモリ150は、医用画像データのノイズを除去するための少なくとも1つのトレーニング済モデルを記憶する。信号処理回路130は、少なくとも1つのトレーニング済モデルのうちの対応するトレーニング済モデルのトレーニングに用いられたトレーニングデータのノイズ特性情報に近似させるように、医用画像データのノイズ特性情報を正規化することにより処理済医用画像データを取得する。そして、信号処理回路130は、処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得する。そして、制御回路160は、取得された出力データに基づく医用画像を表示装置103に表示させる。
また、メモリ150に記憶された少なくとも1つのトレーニング済モデルは、複数のトレーニング済モデルを含む。そして、信号処理回路130は、さらに、医用画像データの収集に用いたシステムのシステムパラメータを用いて複数のトレーニング済モデルから対応するトレーニング済モデルを選択する。また、信号処理回路130は、超音波診断装置1によるエアスキャンを用いて複数のトレーニング済モデルから対応するトレーニング済モデルを選択する。
また、上述した実施形態において、ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である。また、医用画像データは、IQデータ、RFデータ及び画像データの少なくとも1つのデータである。また、医用画像データは、超音波診断装置である超音波診断装置1から取得されてもよい。
また、超音波診断装置1のメモリ150は、第1医用画像データと、第1医用画像データのノイズ特性情報と、第1医用画像データに基づく第2医用画像データであって、第1医用画像データよりノイズが少ない第2医用画像データとに基づく機械学習によって生成されたトレーニング済モデルを記憶する。信号処理回路130は、医用画像データをトレーニング済モデルに入力して出力データを取得する。そして、制御回路160は、取得された出力データに基づく医用画像を表示部に表示させる。
信号処理回路130は、第1医用画像データの収集に用いられたシステムのシステムパラメータを解析することにより、第1医用画像データのノイズ特性情報を取得する。また、第1医用画像データのノイズ特性情報は、第1医療画像データの収集に用いられたシステムにおいてプリスキャンを実行することにより取得されてもよい。
また、超音波診断装置1が実行する方法は、医用画像データのノイズ特性情報を正規化して、少なくとも1つのトレーニング済モデルのうちの対応するトレーニング済モデルのトレーニングに用いられたトレーニングデータのノイズ特性情報に近似させることにより、処理済医用画像データを取得することと、処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得することと、取得された出力データに基づく医用画像を表示することと、を含む。
本明細書に記載の方法とシステムとは複数のテクノロジで実施可能であるが、概ね本記載の諸技術を実行する処理回路に関するものである。一実施形態において、この処理回路は、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA)、ジェネリック論理アレイ(Generic Array of Logic:GAL)、プログラマブル論理アレイ(Programmable Array of Logic:PAL)、ロジックゲートのプログラム書き込みを1回だけ可能にする回路(例えば、ヒューズを用いた回路など)、またはリプログラマブルロジックゲートの、いずれかまたはそれらの組合せとして実装される。さらに、この処理回路は、コンピュータプロセッサと、埋め込みおよび/または外部の不揮発性コンピュータ読み取り可能なメモリ(例えば、RAM、SRAM、FRAM(登録商標)、PROM、EPROM、および/またはEEPROMなど)であって、本明細書に記載の処理を実行するようにコンピュータのプロセッサを制御するコンピュータの命令(バイナリ実行可能命令および/または解釈済コンピュータ命令)を記憶するメモリとを含むこともある。コンピュータプロセッサ回路は、シングルプロセッサまたはマルチプロセッサであって、それぞれが1つまたは複数のスレッドをサポートし、かつ1つまたは複数のコアを有する、シングルプロセッサまたはマルチプロセッサとして実装してもよい。ニューラルネットワークを用いる実施形態において、人工ニューラルネットワークのトレーニングに用いる処理回路は、本記載のノイズ除去を実行するトレーニング済人工ニューラルネットワークの実施に用いた処理回路と同じでなくてもよい。例えば、プロセッサ回路とメモリとを用いてトレーニング済人工ニューラルネットワーク(例えば、その相互接続と重みとによって定義された人工ニューラルネットワーク)を生成し、FPGAを用いてそのトレーニング済人工ニューラルネットワークを実装してもよい。また、トレーニング済人工ニューラルネットワークのトレーニングおよび使用においては、直列実装または(例えば、トレーニング済ニューラルネットワークを、グラフィックスプロセッサアーキテクチャなどの並列プロセッサアーキテクチャで実装することによる)高性能向けの並列実装を用いてもよい。
以上の実施形態に関し、発明の一側面及び選択的な特徴として以下の付記を開示する。
(1)医用画像処理装置であって、医用画像データのノイズを除去するための1つ以上のトレーニング済モデルを保存するメモリと、処理回路であって、(1)医用画像データのノイズ特性情報を正規化して1つ以上のトレーニング済モデルの内の対応するトレーニング済モデルのトレーニングに用いたトレーニングデータのノイズ特性情報に近似させることによって処理済医用画像データを取得すると共に、(2)前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得するように構成された処理回路と、取得された出力データに基づく医用画像を表示装置に表示させるように構成された表示制御回路と、を備えた装置。
(2)(1)の装置において、前記メモリに保存された医用画像データのノイズを除去するための1つ以上のトレーニング済モデルは複数のトレーニング済モデルを含み、前記処理回路はさらに、前記医用画像データの収集に用いたシステムのシステムパラメータを用いて前記複数のトレーニング済モデルから対応するトレーニング済モデルを選択するように構成された処理回路を含む装置。
(3)(1)および(2)のいずれかの装置において、前記メモリに保存された医用画像データのノイズを除去するための1つ以上のトレーニング済モデルは複数のトレーニング済モデルを含み、前記処理回路はさらに、前記装置による空気のプリスキャンを用いて前記複数のトレーニング済モデルから対応するトレーニング済モデルを選択するように構成された処理回路を含む装置。
(4)(1)~(3)のいずれかの装置において、前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である装置。
(5)(1)~(4)のいずれかの装置において、前記医用画像処理装置は超音波診断装置である装置。
(6)(1)~(5)のいずれかの装置において、前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である装置。
(7)(1)~(6)のいずれかの装置において、前記超音波診断装置は超音波Bモードイメージングを実行する装置。
(8)(1)~(7)のいずれかの装置において、前記超音波診断装置はドプラ超音波法を実行する装置。
(9)医用画像処理装置であって、第1医用画像データと、第1医用画像データのノイズ特性情報と、第1医用画像データに基づく第2医用画像データであって、第1医用画像データよりノイズが少ない第2医用画像データとに基づく機械学習プロセスによって生成されたトレーニング済モデルを保存するメモリと、処理回路であって、医用画像データをトレーニング済モデルに入力して出力データを取得するように構成された処理回路と、取得された出力データに基づく医用画像を表示装置に表示させるように構成された表示制御回路と、を備えた装置。
(10)(9)の装置において、前記第1医用画像データと第1医用画像データのノイズ特性情報とは入力学習データとして用いられ、前記第2医用画像データは出力学習データとして用いられる装置。
(11)(9)および(10)のいずれかの装置において、前記第1医用画像データのノイズ特性情報は、該第1医用画像データの収集に用いられたシステムのシステムパラメータを解析することによって取得される装置。
(12)(9)~(11)のいずれかの装置において、前記第1医用画像データのノイズ特性情報は、該第1医用画像データの収集に用いられたシステムでプリスキャン方式を実行することによって取得される装置。
(13)(9)~(12)のいずれかの装置において、前記処理回路はさらに、前記医用画像データのノイズ特性情報を前記トレーニング済モデルに入力するように構成された装置。
(14)方法であって、医用画像データのノイズ特性情報を正規化して1つ以上のトレーニング済モデルの内の対応するトレーニング済モデルのトレーニングに用いたトレーニングデータのノイズ特性情報に近似させることにより処理済医用画像データを取得することと、前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得することと、取得された出力データに基づく医用画像を表示することと、を含む方法。
(15)(14)の方法はさらに、医用画像データの収集に用いたシステムのシステムパラメータを用いて1つ以上のトレーニング済モデルから対応するトレーニング済モデルを選択することを含み、前記1つ以上のトレーニング済モデルは複数のトレーニング済モデルを含む方法。
(16)(14)および(15)のいずれかの方法はさらに、前記装置による空気のプリスキャンを用いて1つ以上のトレーニング済モデルから対応するトレーニング済モデルを選択することを含み、前記1つ以上のトレーニング済モデルは複数のトレーニング済モデルを含む方法。
(17)(14)~(16)のいずれかの方法において、前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である方法。
(18)(14)~(17)のいずれかの方法において、前記医用画像データは超音波診断装置から取得される方法。
(19)(14)~(18)のいずれかの方法において、前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である方法。
(20)(14)~(19)のいずれかの方法において、前記超音波診断装置は、ドプラ超音波法と超音波Bモードイメージングとの少なくとも一方を実行する方法。
(21)(1)~(13)のいずれかの装置において、前記医用画像データはIQデータである装置。
(22)(1)~(13)のいずれかの装置において、前記医用画像データは画像データである装置。
(23)(1)~(13)のいずれかの装置において、前記医用画像データは生データである装置。
(24)(1)~(13)のいずれかの装置において、前記医用画像データは再構成画像データである装置。
(25)(1)~(13)のいずれかの装置において、前記医用画像データはRFデータである装置。
(26)(14)~(20)のいずれかの方法において、前記医用画像データはIQデータである方法。
(27)(14)~(20)のいずれかの方法において、前記医用画像データは画像データである方法。
(28)(14)~(20)のいずれかの方法において、前記医用画像データは生データである方法。
(29)(14)~(20)のいずれかの方法において、前記医用画像データは再構成画像データである方法。
(30)(14)~(20)のいずれかの方法において、前記医用画像データはRFデータである方法。
以上の説明では、ニューラルネットワークを用いて超音波画像のノイズを除去する特定の方法とシステムなどの、具体的事項についての詳細な説明、およびそれら方法とシステムとで用いた様々な構成要素と処理とについての説明を行った。しかし言うまでもなく、本明細書に記載の技術は上記具体的事項から離れた他の実施形態で実施可能であり、それら具体的事項は説明のためのものであって限定するためのものではない。これまで添付図面を参照して本開示の諸実施形態を説明してきた。同様に、説明のために、特定の数、材料、および構成を記述して十分な理解が得られるようにした。しかしながら、各実施形態はそれら具体的事項を含まずに実施することも可能である。また、実質的に同一の機能構成を有する複数の構成要素には同一の参照符号を付して、冗長な記述を省略することがある。
各実施形態の円滑な理解を図るために様々な技術を複数の個別の操作として説明した。説明の順序はそれらの操作が必ずしも順序依存性があることを意味するものではない。実際にはこれらの操作は説明した順通りに実行されなくてもよい。また、本記載の諸操作を前述の実施形態とは異なる順に実行してもよい。様々な追加操作を実行してもよい、かつ/またはさらなる実施形態において本記載の操作を省略してもよい。
以上説明した本技術の作用には、本発明と同じ目的を達成しつつ多くの変形があり得ることは当業者に明らかである。それらの変形も本開示の範囲に包含されるものとする。したがって、前述した本発明の実施形態の説明は限定するためのものではない。本発明の実施形態は請求項によってのみ制限される。
(その他の実施形態)
上述した実施形態以外にも、種々の異なる形態にて実施されてもよい。
例えば、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。更に、各装置にて行なわれる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、或いは、ワイヤードロジックによるハードウェアとして実現され得る。
また、実施形態において説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部又は一部を手動的に行なうこともでき、或いは、手動的に行なわれるものとして説明した処理の全部又は一部を公知の方法で自動的に行なうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
また、実施形態で説明した方法は、予め用意されたプログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することによって実現することができる。このプログラムは、インターネット等のネットワークを介して配布することができる。また、この制御プログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO、DVD等のコンピュータで読み取り可能な非一過性の記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
以上説明した少なくとも1つの実施形態によれば、より良好な信号対ノイズ比を得ることができる。
いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、実施形態同士の組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 超音波診断装置
130 信号処理回路
150 メモリ
160 制御回路

Claims (17)

  1. 医用画像データのノイズを除去するための少なくとも1つのトレーニング済モデルを記憶する記憶部と、
    前記少なくとも1つのトレーニング済モデルのうちの対応するトレーニング済モデルのトレーニングに用いられたトレーニングデータのノイズ特性情報に近似させるように、前記医用画像データのノイズ特性情報を正規化することにより処理済医用画像データを取得し、前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得する処理部と、
    前記取得された出力データに基づく医用画像を表示部に表示させる表示制御部と、
    を備える、医用画像処理装置。
  2. 前記記憶部に記憶された前記少なくとも1つのトレーニング済モデルは、複数のトレーニング済モデルを含み、
    前記処理部は、さらに、前記医用画像データの収集に用いたシステムのシステムパラメータを用いて前記複数のトレーニング済モデルから前記対応するトレーニング済モデルを選択する、
    請求項1に記載の医用画像処理装置。
  3. 前記記憶部に記憶された前記少なくとも1つのトレーニング済モデルは、複数のトレーニング済モデルを含み、
    前記処理部は、さらに、前記医用画像処理装置によるエアスキャンを用いて前記複数のトレーニング済モデルから前記対応するトレーニング済モデルを選択する、
    請求項1に記載の医用画像処理装置。
  4. 前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である、
    請求項1に記載の医用画像処理装置。
  5. 前記医用画像処理装置は、超音波診断装置である、
    請求項1に記載の医用画像処理装置。
  6. 前記超音波診断装置は、超音波Bモードイメージング及びドプライメージングの少なくとも1つを実行する、
    請求項5に記載の医用画像処理装置。
  7. 前記医用画像データは、IQデータ、RFデータ及び画像データの少なくとも1つのデータである、
    請求項1に記載の医用画像処理装置。
  8. 第1医用画像データと、前記第1医用画像データのノイズ特性情報と、前記第1医用画像データに基づく第2医用画像データであって、前記第1医用画像データよりノイズが少ない第2医用画像データとに基づく機械学習によって生成されたトレーニング済モデルを記憶する記憶部と、
    医用画像データを前記トレーニング済モデルに入力して出力データを取得する処理部と、
    前記取得された出力データに基づく医用画像を表示部に表示させる表示制御部と、
    を備える、医用画像処理装置。
  9. 前記処理部は、前記第1医用画像データの収集に用いられたシステムのシステムパラメータを解析することにより、前記第1医用画像データの前記ノイズ特性情報を取得する、
    請求項8に記載の医用画像処理装置。
  10. 前記第1医用画像データの前記ノイズ特性情報は、前記第1医用画像データの収集に用いられたシステムにおいてプリスキャンを実行することにより取得される、請求項8に記載の医用画像処理装置。
  11. 医用画像データのノイズ特性情報を正規化して、少なくとも1つのトレーニング済モデルのうちの対応するトレーニング済モデルのトレーニングに用いられたトレーニングデータのノイズ特性情報に近似させることにより、処理済医用画像データを取得することと、
    前記処理済医用画像データを前記対応するトレーニング済モデルに入力して出力データを取得することと、
    前記取得された出力データに基づく医用画像を表示することと、を含む、方法。
  12. 前記少なくとも1つのトレーニング済モデルは、複数のトレーニング済モデルを含み、
    前記方法は、さらに、前記医用画像データの収集に用いたシステムのシステムパラメータを用いて前記複数のトレーニング済モデルから前記対応するトレーニング済モデルを選択する、
    請求項11に記載の方法。
  13. 前記少なくとも1つのトレーニング済モデルは、複数のトレーニング済モデルを含み、
    前記方法は、さらに、医用画像処理装置によるエアスキャンを用いて前記複数のトレーニング済モデルから前記対応するトレーニング済モデルを選択する、
    請求項11に記載の方法。
  14. 前記ノイズ特性情報は、超音波診断装置に関連した深さ特有のノイズ情報である、
    請求項11に記載の方法。
  15. 前記医用画像データは超音波診断装置から取得される、
    請求項11に記載の方法。
  16. 前記超音波診断装置は、超音波Bモードイメージング及びドプライメージングの少なくとも1つを実行する、
    請求項15に記載の方法。
  17. 前記医用画像データは、IQデータ、RFデータ及び画像データの少なくとも1つのデータである、
    請求項11に記載の方法。
JP2022076690A 2021-05-07 2022-05-06 医用画像処理装置及び方法 Pending JP2022173154A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163185680P 2021-05-07 2021-05-07
US63/185,680 2021-05-07
US17/730,954 US20220367039A1 (en) 2021-05-07 2022-04-27 Adaptive ultrasound deep convolution neural network denoising using noise characteristic information
US17/730,954 2022-04-27

Publications (1)

Publication Number Publication Date
JP2022173154A true JP2022173154A (ja) 2022-11-17

Family

ID=83997976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022076690A Pending JP2022173154A (ja) 2021-05-07 2022-05-06 医用画像処理装置及び方法

Country Status (2)

Country Link
US (1) US20220367039A1 (ja)
JP (1) JP2022173154A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117351216B (zh) * 2023-12-05 2024-02-02 成都宜图智享信息科技有限公司 一种基于监督深度学习的图像自适应去噪方法

Also Published As

Publication number Publication date
US20220367039A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
JP5925438B2 (ja) 超音波診断装置
JP7230255B2 (ja) 解析装置及び解析プログラム
JP6608232B2 (ja) 医用画像診断装置、医用画像処理装置および医用情報の表示制御方法
JP6073563B2 (ja) 超音波診断装置、画像処理装置及び画像処理プログラム
JP2017093913A (ja) 超音波診断装置、信号処理装置及び解析プログラム
JP7043193B2 (ja) 解析装置、超音波診断装置、及び解析プログラム
JP2017104526A (ja) 解析装置
US8216145B2 (en) Ultrasonic diagonstic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing method
JP6640444B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP2023158119A (ja) 解析装置及び解析プログラム
JP5566841B2 (ja) 画像処理装置及びプログラム
JP2022173154A (ja) 医用画像処理装置及び方法
JP2015085038A (ja) 超音波診断装置、画像処理装置及び画像処理プログラム
JP7305438B2 (ja) 解析装置及びプログラム
JP5269517B2 (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
JP5823184B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
WO2020149191A1 (ja) 画像解析装置
JP7346212B2 (ja) 解析装置及び解析プログラム
JP6727363B2 (ja) 医用診断装置、医用画像処理装置及び医用画像処理方法
JP2022164443A (ja) 超音波診断装置及び医用画像処理装置
JP2021186237A (ja) 医用画像診断装置及び医用画像処理装置
JP7297485B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
JP7066487B2 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JP6793502B2 (ja) 超音波診断装置
JP2019141586A (ja) 解析装置、及び解析方法