JP2022169195A - Angular ball bearing - Google Patents

Angular ball bearing Download PDF

Info

Publication number
JP2022169195A
JP2022169195A JP2021075067A JP2021075067A JP2022169195A JP 2022169195 A JP2022169195 A JP 2022169195A JP 2021075067 A JP2021075067 A JP 2021075067A JP 2021075067 A JP2021075067 A JP 2021075067A JP 2022169195 A JP2022169195 A JP 2022169195A
Authority
JP
Japan
Prior art keywords
retainer
diameter
cage
ball bearing
angular contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021075067A
Other languages
Japanese (ja)
Inventor
章一 金澤
Shoichi Kanazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2021075067A priority Critical patent/JP2022169195A/en
Priority to KR1020237040778A priority patent/KR20240004650A/en
Priority to PCT/JP2022/018237 priority patent/WO2022230730A1/en
Priority to CN202280030928.7A priority patent/CN117242271A/en
Priority to DE112022002363.5T priority patent/DE112022002363T5/en
Priority to TW111115734A priority patent/TW202300793A/en
Publication of JP2022169195A publication Critical patent/JP2022169195A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3887Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6662Details of supply of the liquid to the bearing, e.g. passages or nozzles the liquid being carried by air or other gases, e.g. mist lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/43Aeroplanes; Helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3806Details of interaction of cage and race, e.g. retention, centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/3856Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

To provide an angular ball bearing which employs an outer ring guide cage and which can improve the strength of the cage while maintaining the dimensions and fundamental performance of the bearing.SOLUTION: An angular ball bearing 11 comprises inner and outer rings 12, 13, a plurality of balls 14 interposed between the inner and outer rings 12, 13, and a cage 15 for holding the balls 14 in cylindrical pockets Pt which are formed at a plurality of points in a circumferential direction. The cage 15 is of a type of a cage guide for guiding the outer ring. An inside diameter Hd of the cylindrical cage 15 is set to a value which is obtained by subtracting 0.25 to 0.35 times of a diameter Da of the ball 14 from a pitch circle diameter P.C.D. of the ball 14. A wall thickness of the cage 15 in a radial direction is 0.40 to 0.45 times of the diameter Da of the ball 14, and a width of the cage 15 in an axial direction is 1.6 to 2.0 times of the diameter Da of the ball 14 within a range that prevents it from protruding from both ends of the inner ring 12 and the outer ring 13 in the axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、工作機械の主軸およびその他の機器に用いられるアンギュラ玉軸受に関する。 TECHNICAL FIELD The present invention relates to angular contact ball bearings used, for example, in spindles of machine tools and other equipment.

工作機械の主軸をはじめ、高速運転用の回転体を支持する軸受には、アンギュラ玉軸受が広く使用されている。そのアンギュラ玉軸受の保持器には、外輪案内保持器または転動体案内保持器が使用されることが多い。前記保持器としては、遠心力による影響を小さくするため、軽量な樹脂製の保持器が採用されることが多い。前記樹脂はガラス繊維またはカーボン繊維等で補強されたナイロンまたは高融点のポリアミド樹脂、ポリエーテルエーテルケトン樹脂(略称:PEEK材)、フェノール樹脂等の樹脂材料を円筒形状に形成している(例えば、特許文献1~3)。 Angular contact ball bearings are widely used for bearings that support rotating bodies for high-speed operation, including the spindles of machine tools. An outer ring guide retainer or a rolling element guide retainer is often used for the retainer of the angular contact ball bearing. As the retainer, a lightweight resin retainer is often used in order to reduce the influence of centrifugal force. The resin is a resin material such as nylon reinforced with glass fiber or carbon fiber, high melting point polyamide resin, polyether ether ketone resin (abbreviation: PEEK material), phenol resin, etc., and is formed into a cylindrical shape (for example, Patent documents 1-3).

工作機械の高効率化および省スペース化を実現するためには、工作機械の主軸を支持するアンギュラ玉軸受の高速回転化および耐荷重性能の向上が必要になる。軸受が高速回転または高負荷条件で回転する際に、保持器には遠心力およびボールの進み遅れに伴う過大な荷重がボールから負荷されるため、保持器は十分な強度を有する必要がある。 In order to realize high efficiency and space saving of machine tools, it is necessary to increase the rotation speed and improve the load capacity of the angular contact ball bearings that support the spindles of the machine tools. When the bearing rotates at high speed or under high load conditions, the cage is subjected to centrifugal force and an excessive load due to lead/lag of the balls from the balls, so the cage must have sufficient strength.

特開2011-117542号公報JP 2011-117542 A 特開2014-95469号公報JP 2014-95469 A 特開2016-145644号公報JP 2016-145644 A

アンギュラ玉軸受の基本的な性能はボール径およびボール個数に左右されるが、ボールの大径化またはボール個数を増加させた場合、保持器を構成できるスペースが小さくなり、保持器が十分な強度を有することが困難になる可能性がある。
保持器が十分な強度を有するためには、保持器の円環厚さ、軸方向幅、ポケットの間隔を大きくすることが必要になる。しかし、一般に軸受の基本性能はボール径およびボール個数に左右されるため、軸受内の限られた空間の中で、軸受の基本性能を確保しつつ、保持器強度を向上させる保持器形状を提案する。
The basic performance of angular contact ball bearings depends on the ball diameter and the number of balls, but if the ball diameter is increased or the number of balls is increased, the space available for the cage will become smaller, and the cage will not have sufficient strength. can become difficult to have
In order for the retainer to have sufficient strength, it is necessary to increase the ring thickness, axial width, and pocket spacing of the retainer. However, since the basic performance of a bearing generally depends on the ball diameter and the number of balls, we propose a cage shape that improves the cage strength while ensuring the basic performance of the bearing in the limited space inside the bearing. do.

本発明の目的は、外輪案内保持器を適用したアンギュラ玉軸受において、軸受の寸法、基本性能を維持した状態で、保持器の強度を向上させることができるアンギュラ玉軸受を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an angular contact ball bearing to which an outer ring guide cage is applied, in which the strength of the cage can be improved while maintaining the dimensions and basic performance of the bearing.

本発明のアンギュラ玉軸受は、内輪と、外輪と、これら内輪と外輪間に介在する複数のボールと、これらボールを円周方向複数箇所に設けられたポケットに保持する保持器とを備え、前記保持器は外輪案内の保持器案内形式であり、前記保持器の外輪案内面となる位置における保持器の外周面が軸方向円筒形状に形成されたアンギュラ玉軸受であって、
前記保持器の外径をHDとし、前記保持器の内径をHdとし、前記ボールのピッチ円直径P.C.D.とした時、HD-P.C.D.>P.C.D.-Hdの関係を満たし、
前記保持器の内径Hdを、前記ボールのピッチ円直径P.C.D.から前記ボールの直径Daの0.25~0.35倍減じた値とし、
前記保持器の径方向の肉厚Tを、前記ボールの直径Daの0.40~0.45倍とした。
An angular contact ball bearing according to the present invention comprises an inner ring, an outer ring, a plurality of balls interposed between the inner ring and the outer ring, and a retainer for holding the balls in pockets provided at a plurality of locations in the circumferential direction. The angular contact ball bearing, wherein the retainer is of a retainer guide type with an outer ring guide, and the outer peripheral surface of the retainer at a position serving as the outer ring guide surface of the retainer is formed in an axially cylindrical shape,
Let HD be the outside diameter of the cage, Hd be the inside diameter of the cage, and P.D. be the pitch circle diameter of the balls. C. D. When HD-P. C. D. >P. C. D. - satisfies the relationship of Hd,
The inner diameter Hd of the cage is defined by the pitch diameter P.D. of the balls. C. D. A value obtained by subtracting 0.25 to 0.35 times the diameter Da of the ball from
The radial thickness T of the retainer is 0.40 to 0.45 times the diameter Da of the ball.

この構成によると、外輪案内保持器の内径Hdをボールのピッチ円直径P.C.D.からボールの直径Daの0.25~0.35倍減じた値とすることで、P.C.D.から保持器のポケットの内径側部分までの径方向寸法につき十分な距離を確保できる。このため、保持器の振れ周りおよびボールと保持器の接触により発生する接触楕円が保持器のポケットの内径側エッジ部に接触しない。例えば、保持器の内径HdがP.C.D.-Da×0.20以下では、前記接触楕円がポケットの内径側エッジ部に接触する。保持器の内径HdがP.C.D.-Da×0.40以上では、保持器肉厚との関係上、保持器内径側が内輪に接する内輪案内となり、外輪案内が成立しない場合があるか、または保持器内径側と内輪外径側のすきまが比較的狭い状態になると、軸受使用時の保持器外径部の摩耗を考慮した場合、外輪案内で無くなる、あるいはそれに近い状態になる可能性がある。 According to this construction, the inner diameter Hd of the outer ring guide retainer is set to the pitch circle diameter P. C. D. by subtracting 0.25 to 0.35 times the ball diameter Da from the P.D. C. D. to the inner diameter side portion of the retainer pocket. Therefore, a contact ellipse generated by whirling of the cage and contact between the balls and the cage does not contact the inner diameter side edge portion of the pocket of the cage. For example, if the inner diameter Hd of the retainer is P.M. C. D. At −Da×0.20 or less, the contact ellipse contacts the inner diameter edge of the pocket. The inner diameter Hd of the retainer is P.M. C. D. If -Da×0.40 or more, due to the cage wall thickness, the inner ring guides in contact with the inner ring, and the outer ring guide may not be established. If the clearance is relatively narrow, there is a possibility that the outer ring guide will be eliminated or close to it, considering the wear of the outer diameter portion of the retainer during use of the bearing.

さらに保持器の径方向の肉厚Tを、ボールの直径Daの0.40~0.45倍とした。これにより、高速運転かつ高荷重条件で発生する遠心力またはボールの進み遅れに伴い発生する荷重に対し、十分な保持器強度を有することができる。例えば、保持器の肉厚TがDa×0.35以下では、保持器強度または耐荷重性能が不十分となる可能性がある。保持器の肉厚TがDa×0.50以上では、保持器の構成上不可能となる。これは内輪の肩部と外輪の肩部につき所望の寸法が必要となる分保持器の径方向領域が規制されるためである。
よって、外輪案内保持器を適用したアンギュラ玉軸受において、軸受の寸法、基本性能を維持した状態で、保持器の強度を向上させることができる。
Furthermore, the radial thickness T of the retainer is set to 0.40 to 0.45 times the ball diameter Da. As a result, the retainer has sufficient strength against the centrifugal force generated under high-speed operation and high-load conditions or the load generated due to lead/lag of the balls. For example, if the thickness T of the cage is Da×0.35 or less, the cage strength or load bearing performance may be insufficient. If the thickness T of the retainer is Da×0.50 or more, it is impossible due to the structure of the retainer. This is because the radial area of the retainer is restricted to the extent that the shoulders of the inner ring and the shoulders of the outer ring require desired dimensions.
Therefore, in the angular contact ball bearing to which the outer ring guide retainer is applied, the strength of the retainer can be improved while maintaining the dimensions and basic performance of the bearing.

前記保持器の軸方向幅HBを、このアンギュラ玉軸受の前記内輪と前記外輪の軸方向両端から突出しない範囲で、前記ボールの直径Daの1.6~2.0倍としてもよい。外輪案内保持器において、保持器強度および耐荷重性能を向上するため、内径側に保持器を大きくするには限界がある。このため、軸方向領域を内輪と外輪の軸方向両端から突出しない範囲で最大限利用して保持器を大きくしている。また保持器を軸方向に伸ばすことで、外輪内周面と保持器外周面との摺接部分が広くなり、軸受回転時の安定性を増すことができる。 The axial width HB of the retainer may be 1.6 to 2.0 times the diameter Da of the balls within a range that does not protrude from both axial ends of the inner ring and the outer ring of the angular contact ball bearing. There is a limit to enlarging the cage on the inner diameter side in order to improve the cage strength and load bearing performance in the outer ring guide cage. For this reason, the retainer is enlarged by maximally utilizing the axial region within a range that does not protrude from both ends of the inner ring and the outer ring in the axial direction. Further, by extending the retainer in the axial direction, the sliding contact portion between the inner peripheral surface of the outer ring and the outer peripheral surface of the retainer is widened, and the stability during rotation of the bearing can be increased.

前記保持器の内周面に、軸方向外側に向かうに従って径方向外方に至るように傾斜する傾斜部が設けられていてもよい。この場合、潤滑剤がアンギュラ玉軸受の外部から傾斜部に沿って軸受空間に流入し易くなり潤滑性の向上を図れる。 An inner peripheral surface of the retainer may be provided with an inclined portion that is inclined radially outward as it extends axially outward. In this case, the lubricant easily flows from the outside of the angular contact ball bearing into the bearing space along the inclined portion, thereby improving lubricity.

前記保持器は、各ポケット内の保持器内径側縁にポケット内側へ突出したボール保持突部を有してもよい。このように保持器のボール保持突部でボールを抱え込むような形状にする場合、保持器の円周方向の強度を確保することができ、保持器の強度をさらに向上させることが可能となる。 The retainer may have a ball retaining projection protruding toward the inner side of the pocket on an inner diameter side edge of the retainer in each pocket. When the ball holding projections of the retainer are shaped to hold the balls in this manner, the strength of the retainer in the circumferential direction can be ensured, and the strength of the retainer can be further improved.

前記保持器の内周面は径方向内方に突出する突出部分を有し、前記内輪の小径側の外径d1とし、大径側の外径をd2とし、前記突出部分の内径をHd2とした時、d1<Hd2<d2の関係を満たしてもよい。前記関係とすることで、保持器を組み込むための必要代を残した状態で保持器ポケットの強度を最大限とすることができる。 The inner peripheral surface of the retainer has protruding portions that protrude radially inward. , the relationship d1<Hd2<d2 may be satisfied. With the above relationship, the strength of the cage pocket can be maximized while leaving a necessary margin for incorporating the cage.

回転翼およびこの回転翼を回転させるモータを有する駆動部を複数備え、前記回転翼の回転によって飛行する電動垂直離着陸機に搭載されるアンギュラ玉軸受であって、
前記駆動部における回転軸を回転可能に支持する本発明の上記いずれかの構成のアンギュラ玉軸受である場合、本発明のアンギュラ玉軸受につき前述した各効果が得られる。
An angular contact ball bearing mounted on an electric vertical take-off and landing aircraft that is equipped with a plurality of drive units having rotor blades and a motor that rotates the rotor blades, and that flies by rotating the rotor blades,
In the case of the angular contact ball bearing having any one of the configurations described above for rotatably supporting the rotating shaft of the driving portion, the angular contact ball bearing of the present invention has the effects described above.

本発明のアンギュラ玉軸受によれば、HD-P.C.D.>P.C.D.-Hdの関係を満たしつつ、外輪案内保持器の内径Hdをボールのピッチ円直径P.C.D.からボールの直径Daの0.25~0.35倍減じた値とし、保持器の径方向の肉厚Tを、前記ボールの直径Daの0.40~0.45倍とすることで、外輪案内保持器を適用したアンギュラ玉軸受において、軸受の寸法、基本性能を維持した状態で、保持器の強度を向上させることができる。 According to the angular contact ball bearing of the present invention, HD-P. C. D. >P. C. D. -Hd, the inner diameter Hd of the outer ring guide retainer is changed to the pitch diameter of the balls P. C. D. 0.25 to 0.35 times the diameter Da of the balls, and the thickness T in the radial direction of the retainer is 0.40 to 0.45 times the diameter Da of the balls. In an angular contact ball bearing to which a guide cage is applied, the strength of the cage can be improved while maintaining the dimensions and basic performance of the bearing.

本発明の第1の実施形態に係るアンギュラ玉軸受の縦断面図である。1 is a longitudinal sectional view of an angular contact ball bearing according to a first embodiment of the invention; FIG. 同アンギュラ玉軸受の拡大縦断面図である。It is an enlarged vertical cross-sectional view of the same angular contact ball bearing. 同保持器を軸方から見た要部の部分拡大図である。FIG. 3 is a partially enlarged view of a main portion of the retainer as seen from the axial direction; 同保持器を従来の保持器と比較するための図である。It is a figure for comparing the cage with the conventional cage. 本発明の他の実施形態に係るアンギュラ玉軸受の縦断面図である。FIG. 5 is a longitudinal sectional view of an angular contact ball bearing according to another embodiment of the invention; 同アンギュラ玉軸受および潤滑機構を備えた軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a bearing device provided with the same angular contact ball bearing and a lubricating mechanism. 本発明のさらに他の実施形態に係るアンギュラ玉軸受の縦断面図である。FIG. 6 is a vertical cross-sectional view of an angular contact ball bearing according to still another embodiment of the present invention; 本発明のさらに他の実施形態に係るアンギュラ玉軸受の縦断面図である。FIG. 6 is a vertical cross-sectional view of an angular contact ball bearing according to still another embodiment of the present invention; 本発明のアンギュラ玉軸受を備えた電動垂直離着陸機の斜視図である。1 is a perspective view of an electric vertical take-off and landing aircraft equipped with an angular contact ball bearing of the present invention; FIG. 同アンギュラ玉軸受およびモータ等の縦断面図である。It is a longitudinal cross-sectional view of the same angular contact ball bearing, a motor, and the like. 従来例の保持器を備えたアンギュラ玉軸受の縦断面図である。FIG. 10 is a longitudinal sectional view of an angular contact ball bearing provided with a conventional retainer;

[第1の実施形態]
本発明の実施形態に係るアンギュラ玉軸受を図1ないし図4と共に説明する。
図1に示すように、このアンギュラ玉軸受11は、内外輪12,13と、複数のボール14と、保持器15とを備える。複数のボール14は、内外輪12,13の軌道面12a,13a間に介在する。ボール14は鋼球またはセラミックス等からなる。保持器15は、円筒形状の円周方向複数箇所に設けられたポケットPtに複数のボール14を保持する。このアンギュラ玉軸受11は、主要寸法(内径、外径および幅)に応じた一般的なボール径およびボール個数が適用される。
[First Embodiment]
An angular contact ball bearing according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG.
As shown in FIG. 1 , this angular contact ball bearing 11 includes inner and outer rings 12 and 13 , a plurality of balls 14 and a retainer 15 . A plurality of balls 14 are interposed between the raceway surfaces 12 a and 13 a of the inner and outer rings 12 and 13 . The balls 14 are made of steel balls, ceramics, or the like. The retainer 15 retains a plurality of balls 14 in pockets Pt provided at a plurality of locations in a cylindrical shape in the circumferential direction. The angular ball bearing 11 has a general ball diameter and number of balls corresponding to the main dimensions (inner diameter, outer diameter and width).

外輪13の正面側の端面13cに、正面側内周面13bを介して軌道面13aが繋がる。正面側内周面13bは、正面側の端面13cから軌道面13aに向かうに従って径方向内方に傾斜するテーパ面であり、カウンタボアである。軌道面13aと、外輪13の背面側の端面13dとの間に、保持器15に案内される背面側内周面13eが形成されている。背面側内周面13eは、正面側内周面13bよりも径方向内側に位置している。内輪12の正面側の端面12cに、正面側外周面12bを介して軌道面12aが繋がる。軌道面12aと、内輪12の背面側の端面12dとの間に、背面側外周面12eが形成されている。背面側外周面12eは、正面側外周面12bよりも径方向外側に位置している。内外輪12,13の正面側の端面12c,13cとは、アキシアル荷重を支持しない側の側面を表し、内外輪12,13の背面側の端面12d,13dとは、アキシアル荷重を支持する側の側面を表す。
内輪12の背面側外周面12e、つまり前記正面側内周面13bに対し径方向に対向する周面は、この内輪12の正面側外周面12bよりも径方向外方に所定寸法大径に形成されている。また、本実施形態においては、外輪13の正面側内周面13bをテーパ面としているが、内輪12の正面側外周面12bがテーパ面で構成してもよく、両方をテーパ面で構成してもよい。
A raceway surface 13a is connected to a front end surface 13c of the outer ring 13 via a front inner peripheral surface 13b. The front-side inner peripheral surface 13b is a tapered surface that slopes radially inward from the front-side end surface 13c toward the raceway surface 13a, and is a counterbore. A rear-side inner peripheral surface 13 e guided by the retainer 15 is formed between the raceway surface 13 a and the rear-side end surface 13 d of the outer ring 13 . The back-side inner peripheral surface 13e is located radially inward of the front-side inner peripheral surface 13b. A raceway surface 12a is connected to a front end surface 12c of the inner ring 12 via a front outer peripheral surface 12b. A rear outer peripheral surface 12e is formed between the raceway surface 12a and the rear end surface 12d of the inner ring 12 . The back-side outer peripheral surface 12e is located radially outside the front-side outer peripheral surface 12b. The front end faces 12c and 13c of the inner and outer rings 12 and 13 represent the side faces that do not support the axial load, and the back end faces 12d and 13d of the inner and outer rings 12 and 13 represent the side faces that support the axial load. represent the sides.
The outer peripheral surface 12e on the back side of the inner ring 12, that is, the peripheral surface radially opposed to the inner peripheral surface 13b on the front side, is formed radially outwardly of the outer peripheral surface 12b on the front side of the inner ring 12 to have a predetermined dimension and a larger diameter. It is In the present embodiment, the front inner peripheral surface 13b of the outer ring 13 is tapered, but the front outer peripheral surface 12b of the inner ring 12 may be tapered, or both may be tapered. good too.

<保持器15について>
保持器15は、外輪13の背面側内周面13eに案内する外輪案内の保持器案内形式であり、この保持器15の外周面は円筒形状に形成されている。少なくとも、保持器の外輪案内面となる位置における保持器15の外周面が軸方向円筒形状に形成されていればよい。保持器の外輪案内面となる位置における保持器15の外周面を軸方向円筒形状とする事で、軸受回転時の安定性を向上することが出来る。この保持器15は、樹脂から成る円筒形状である。保持器15の各ポケットPtは、それぞれ径方向に沿う丸孔状に形成されている。前記樹脂は、ガラス繊維またはカーボン繊維等で補強されたナイロンまたは高融点のポリアミド樹脂、ポリエーテルエーテルケトン樹脂(略称:PEEK材)、フェノール樹脂等を適用する。
<About retainer 15>
The retainer 15 is of an outer ring-guided retainer guide type that is guided to the rear inner peripheral surface 13e of the outer ring 13, and the outer peripheral surface of the retainer 15 is formed in a cylindrical shape. At least, the outer peripheral surface of the retainer 15 at the position that serves as the outer ring guide surface of the retainer should be formed in an axially cylindrical shape. By forming the outer peripheral surface of the retainer 15 in the axially cylindrical shape at the position that serves as the outer ring guide surface of the retainer, the stability during rotation of the bearing can be improved. The retainer 15 is made of resin and has a cylindrical shape. Each pocket Pt of the retainer 15 is formed in the shape of a circular hole along the radial direction. As the resin, nylon reinforced with glass fiber, carbon fiber, or the like, polyamide resin with a high melting point, polyetheretherketone resin (abbreviation: PEEK material), phenol resin, or the like is applied.

この保持器15は、以下の構成1,2,3および4を備える。 This retainer 15 has configurations 1, 2, 3 and 4 below.

<構成1:(HD-P.C.D.)>(P.C.D.-Hd)>
図1に示すように、保持器15の外径HDからボール14のピッチ円直径P.C.D.を減じた値は、前記ピッチ円直径P.C.D.から保持器15の内径Hdを減じた値よりも大きいという関係を満たす。
<Configuration 1: (HD-P.C.D.)>(P.C.D.-Hd)>
As shown in FIG. 1, the pitch diameter P.D. C. D. is the pitch circle diameter P. C. D. is larger than the value obtained by subtracting the inner diameter Hd of the retainer 15 from

<構成2:HD=D1-SrおよびP.C.D.-0.35Da≦Hd≦P.C.D.-0.25Da>
保持器15の外径HDは、円筒形状の外周面の直径寸法であり、外輪内径D1から保持器径方向すきまSrを減じた値である。外輪内径D1とは、外輪13の背面側内周面13eの内径寸法である。保持器径方向すきまSrは、例えば、各軸受構成部品の寸法許容差およびラジアルすきま等を考慮して適宜に定められる。
<Structure 2: HD=D1-Sr and P.S. C. D. -0.35 Da≤Hd≤P. C. D. -0.25 Da>
The outer diameter HD of the retainer 15 is the diameter dimension of the cylindrical outer peripheral surface, and is a value obtained by subtracting the retainer radial clearance Sr from the outer ring inner diameter D1. The outer ring inner diameter D1 is the inner diameter dimension of the back side inner peripheral surface 13 e of the outer ring 13 . The cage radial clearance Sr is appropriately determined in consideration of, for example, the dimensional tolerance and radial clearance of each bearing component.

保持器15の内径Hdは、円筒形状の内周面の直径寸法であり、ボール14のピッチ円直径P.C.D.からボール14の直径Daの0.25~0.35倍減じた値としている。
このため、保持器15の振れ周りおよびボール14と保持器15の接触により発生する接触楕円Ce(図3)が保持器15のポケットPtの内径側エッジ部15aに接触しない。
表1に、呼び番号7014(内径φ70mm×外径φ110mm、幅20mm)のアンギュラ玉軸受で13/32インチ(10.31875mm)の玉を適用し、保持器内径および保持器肉厚を変更した例を示す。
The inner diameter Hd of the cage 15 is the diameter dimension of the cylindrical inner peripheral surface, and the pitch diameter P.D. C. D. 0.25 to 0.35 times the diameter Da of the ball 14.
Therefore, the contact ellipse Ce (FIG. 3) generated by whirling of the cage 15 and contact between the balls 14 and the cage 15 does not contact the inner diameter side edge portion 15a of the pocket Pt of the cage 15 .
Table 1 shows an example of an angular contact ball bearing with bearing number 7014 (inner diameter 70 mm x outer diameter 110 mm, width 20 mm) with 13/32 inch (10.31875 mm) balls and changes in cage inner diameter and cage wall thickness. indicates

Figure 2022169195000002
Figure 2022169195000002

表1において、後述するリング圧縮荷重等により保持器強度および耐荷重性能が十分であり、且つ外輪案内保持器として成立するものを「〇」、それ以外のものを「×」として表した。
例えば、保持器の内径HdがP.C.D.-Da×0.20以下では、図3に示すように、前記接触楕円Ceが保持器15のポケットPtの内径側エッジ部15aに接触する。保持器の内径HdがP.C.D.-Da×0.40以上では、保持器肉厚との関係上、保持器内径側が内輪に接する内輪案内となり、外輪案内が成立しない場合があるか、または保持器内径側と内輪外径側のすきまが比較的狭い状態になると、軸受使用時の保持器外径部の摩耗を考慮した場合、外輪案内で無くなる、あるいはそれに近い状態になる可能性がある。
In Table 1, cages with sufficient cage strength and load-bearing performance due to the ring compression load, etc. described later, and which can be used as outer ring guide cages are marked with "O", and other cages are marked with "X".
For example, if the inner diameter Hd of the retainer is P.M. C. D. At −Da×0.20 or less, the contact ellipse Ce comes into contact with the inner diameter side edge portion 15a of the pocket Pt of the retainer 15, as shown in FIG. The inner diameter Hd of the retainer is P.M. C. D. If -Da×0.40 or more, the inner ring guides the inner ring in contact with the inner ring due to the cage wall thickness, and the outer ring guide may not be established. If the clearance is relatively narrow, the outer ring guide may be eliminated or close to it, considering the wear of the outer diameter portion of the retainer during use of the bearing.

<構成3:0.40Da≦T≦0.45Da>
図2に示すように、保持器15の径方向の肉厚(板厚)Tは、ボール14の直径Daの0.40~0.45倍としている。例えば、保持器の肉厚TがDa×0.35以下では、保持器強度または耐荷重性能が不十分となる可能性がある。保持器の肉厚TがDa×0.50以上では、保持器の構成上不可能となる。これは内輪の肩部と外輪の肩部につき所望の寸法が必要となる分保持器の径方向領域が規制されるためである。そのため、表1において、保持器の肉厚TがDa×0.35の場合とDa×0.5の場合については「×」となっている。
<Configuration 3: 0.40 Da ≤ T ≤ 0.45 Da>
As shown in FIG. 2, the radial thickness (plate thickness) T of the retainer 15 is 0.40 to 0.45 times the diameter Da of the balls 14 . For example, if the thickness T of the cage is Da×0.35 or less, the cage strength or load bearing performance may be insufficient. If the thickness T of the retainer is Da×0.50 or more, it is impossible due to the structure of the retainer. This is because the radial area of the retainer is restricted to the extent that the shoulders of the inner ring and the shoulders of the outer ring require desired dimensions. Therefore, in Table 1, the case where the thickness T of the retainer is Da×0.35 and the case where the cage thickness is Da×0.5 are marked with “×”.

<構成4:1.6Da≦HB≦2.0Da>
保持器15の軸方向幅HBは、このアンギュラ玉軸受11の軸方向両端から突出しない範囲で、ボール14の直径Daの1.6~2.0倍としている。外輪案内保持器において、保持器強度および耐荷重性能を向上するため、内径側に保持器を大きくするには限界がある。このため、軸方向領域を内輪12と外輪13の軸方向両端から突出しない範囲で最大限利用して保持器15を大きくしている。また保持器15を軸方向に伸ばすことで、外輪13の背面側内周面13eと保持器外周面との摺接部分が広くなり、軸受回転時の安定性を増すことができる。
<Configuration 4: 1.6 Da ≤ HB ≤ 2.0 Da>
The axial width HB of the retainer 15 is set to 1.6 to 2.0 times the diameter Da of the balls 14 within a range not protruding from both ends of the angular contact ball bearing 11 in the axial direction. There is a limit to enlarging the cage on the inner diameter side in order to improve the cage strength and load bearing performance in the outer ring guide cage. For this reason, the retainer 15 is enlarged by maximally utilizing the axial region within a range that does not protrude from both ends of the inner ring 12 and the outer ring 13 in the axial direction. Further, by extending the retainer 15 in the axial direction, the sliding contact portion between the inner peripheral surface 13e on the back side of the outer ring 13 and the outer peripheral surface of the retainer is widened, and the stability during rotation of the bearing can be increased.

図4に示す本実施形態のアンギュラ玉軸受11の保持器15と、従来のアンギュラ玉軸受50の保持器51(図11)とを同一の軸受サイズで比較した。図4および図11のアンギュラ玉軸受11,50で適用されるボール径およびボール個数は同一条件であり、主要寸法に応じてそれぞれ定められている。また図11に示す従来のアンギュラ玉軸受50は、外輪案内保持器であるが、保持器の径方向の肉厚はボール52の直径Daの0.40倍未満である。さらに従来の保持器51の軸方向幅HBaは、このアンギュラ玉軸受50の軸方向両端から突出しない範囲であるものの、ボール52の直径Daの1.6倍未満としている。 The retainer 15 of the angular contact ball bearing 11 of the present embodiment shown in FIG. 4 and the retainer 51 (FIG. 11) of the conventional angular contact ball bearing 50 were compared with the same bearing size. The ball diameter and the number of balls applied to the angular contact ball bearings 11 and 50 of FIGS. 4 and 11 are the same, and are determined according to the main dimensions. The conventional angular contact ball bearing 50 shown in FIG. 11 is an outer ring guide retainer, and the radial thickness of the retainer is less than 0.40 times the diameter Da of the balls 52 . Further, the axial width HBa of the conventional retainer 51 is set to be less than 1.6 times the diameter Da of the balls 52, although it does not protrude from both ends of the angular contact ball bearing 50 in the axial direction.

この場合、同じ荷重条件で、従来の保持器50(図11)では、ポケットPtの内径側エッジ部にボール52と保持器51の接触楕円が接触するのに対して、図4の保持器15では、ポケットPtの内径側エッジ部15aに接触楕円が接触しない。加えて、従来の保持器51(図11)に対して図4の保持器15は、保持器15の最薄部の断面積が増加することで、リング圧縮剛性、および保持器15の疲労限荷重に対してボール14が保持器15を押す力を除した値がその分増加することを確認できた。したがって、図4の保持器15は、従来の保持器51(図11)に対して十分な強度を有することが確認できた。前記リング圧縮剛性とは、円筒の軸方向圧縮応力(円筒のつぶれ強度)である。 In this case, under the same load conditions, in the conventional cage 50 (FIG. 11), the contact ellipses of the balls 52 and the cage 51 come into contact with the inner diameter side edge portion of the pocket Pt, whereas the cage 15 in FIG. Then, the contact ellipse does not contact the inner diameter side edge portion 15a of the pocket Pt. In addition, compared to the conventional cage 51 (FIG. 11), the cage 15 of FIG. It was confirmed that the value obtained by dividing the force of the balls 14 pushing the retainer 15 against the load increased by that amount. Therefore, it was confirmed that the retainer 15 of FIG. 4 has sufficient strength as compared with the conventional retainer 51 (FIG. 11). The ring compressive rigidity is the axial compressive stress of the cylinder (cylinder crushing strength).

<作用効果>
以上説明したアンギュラ玉軸受11によると、保持器15の外径HDを外輪内径D1と保持器径方向すきまSrの差とする外輪案内保持器において、保持器15の内径Hdをボール14のピッチ円直径P.C.D.からボール14の直径Daの0.25~0.35倍減じた値とすることで、P.C.D.から保持器15のポケットPtの内径側部分までの径方向寸法につき十分な距離を確保できる。このため、保持器15の振れ周りおよびボール14と保持器15の接触により発生する接触楕円が保持器15のポケットの内径側エッジ部15aに接触しない。加えて保持器15の径方向の肉厚Tをボール14の直径Daの0.40~0.45倍とし、かつ、保持器15の軸方向幅HBをボール14の直径Daの1.6~2.0倍とする。
<Effect>
According to the angular contact ball bearing 11 described above, in the outer ring guide retainer in which the outer diameter HD of the retainer 15 is the difference between the outer ring inner diameter D1 and the retainer radial direction clearance Sr, the inner diameter Hd of the retainer 15 is set to the pitch circle of the balls 14. diameter p.m. C. D. by subtracting 0.25 to 0.35 times the diameter Da of the ball 14 from the P.D. C. D. , to the inner diameter side portion of the pocket Pt of the retainer 15 for the radial dimension. Therefore, the whirling of the cage 15 and the contact ellipse generated by the contact between the balls 14 and the cage 15 do not contact the inner diameter side edge portion 15 a of the pocket of the cage 15 . In addition, the radial thickness T of the cage 15 is 0.40 to 0.45 times the diameter Da of the balls 14, and the axial width HB of the cage 15 is 1.6 to 1.6 times the diameter Da of the balls 14. 2.0 times.

これにより、高速運転かつ高荷重条件で発生する遠心力またはボール14の進み遅れに伴い発生する荷重に対し、十分な保持器強度を有することができる。よって、外輪案内保持器を適用したアンギュラ玉軸受11において、軸受の寸法、基本性能を維持した状態で、保持器15の強度を向上させることができる。 As a result, the retainer has sufficient strength against the centrifugal force generated under high-speed operation and high-load conditions or the load generated as the balls 14 lead and lag. Therefore, in the angular contact ball bearing 11 to which the outer ring guide retainer is applied, the strength of the retainer 15 can be improved while maintaining the dimensions and basic performance of the bearing.

<他の実施形態について>
以下の説明においては、各実施形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
<About other embodiments>
In the following description, the same reference numerals are given to the parts corresponding to the items previously described in each embodiment, and redundant description is omitted. When only a portion of the configuration is described, the other portions of the configuration are the same as those previously described unless otherwise specified. The same configuration has the same effect. It is possible not only to combine the parts specifically described in each embodiment, but also to partially combine the embodiments if there is no problem with the combination.

[第2の実施形態:図5~図6]
図5に示すように、保持器15Aの内周面におけるポケットPtの軸方向両側部分に、それぞれ軸方向外側に向かうに従って径方向外方に至るように傾斜する傾斜部16が設けられてもよい。各傾斜部16は、前記保持器15Aの内周面において、軸方向片側部分の軸方向中間付近部から径方向外方に傾斜して保持器端面まで図5の縦断面で直線状に延びる。
[Second Embodiment: FIGS. 5 and 6]
As shown in FIG. 5, inclined portions 16 may be provided on both sides of the pocket Pt on the inner peripheral surface of the retainer 15A in the axial direction so as to extend radially outward toward the axially outer side. . Each inclined portion 16 extends linearly in the longitudinal section of FIG. 5 from the axially intermediate portion of the inner peripheral surface of the retainer 15A to the radially outwardly inclined portion to the end surface of the retainer.

図6に示す縦断面において、傾斜部16の軸方向に対する傾斜角度α、傾斜部16における保持器端面の径方向位置P1は、エアオイル潤滑用の潤滑機構17からエアオイルが円滑に軸受空間に流入するように、前記潤滑機構17のノズル18の径方向位置、およびノズル18の軸方向に対する傾斜角度β等に応じて定められる。傾斜角度αとβを、(α―5°)<β<(α+5°)の関係とする事で、前記傾斜部16がエアオイルを軸受空間に流入する際の妨げとならず、エアオイルを円滑に軸受空間に流入する事が出来る。その他の構成1,2,3および4については、第1の実施形態と同様である。 In the longitudinal section shown in FIG. 6, the inclination angle α with respect to the axial direction of the inclined portion 16 and the radial position P1 of the retainer end face at the inclined portion 16 allow air-oil to smoothly flow into the bearing space from the lubrication mechanism 17 for air-oil lubrication. , it is determined according to the radial position of the nozzle 18 of the lubricating mechanism 17, the inclination angle β of the nozzle 18 with respect to the axial direction, and the like. By setting the inclination angles α and β to satisfy the relationship of (α−5°)<β<(α+5°), the inclined portion 16 does not interfere with the flow of the air-oil into the bearing space, and the air-oil flows smoothly. It can flow into the bearing space. Other configurations 1, 2, 3 and 4 are the same as in the first embodiment.

この構成によると、潤滑機構17のノズル18からエアオイルがアンギュラ玉軸受11の外部から傾斜部16に沿って軸受空間に流入し易くなり潤滑性の向上を図れる。傾斜部16は、所定の傾斜角度αから成る複雑でない形状のため、金型による成形を容易に行うことが可能となる。また、金型成形後の成形品を金型から容易に取り出すことができる。なお傾斜部16は、前記直線状に限定されるものではなく、曲線状または直線と曲線が滑らかに繋がる形状であってもよい。 With this configuration, air oil can easily flow from the outside of the angular ball bearing 11 into the bearing space along the inclined portion 16 from the nozzle 18 of the lubricating mechanism 17, thereby improving the lubricating property. Since the inclined portion 16 has a simple shape with a predetermined inclination angle α, it can be easily molded using a mold. In addition, the molded product after mold molding can be easily removed from the mold. The inclined portion 16 is not limited to the linear shape, and may have a curved shape or a shape in which a straight line and a curved line are smoothly connected.

[第3の実施形態:図7]
図7に示すように、保持器15Bは、各ポケットPt内の保持器内径側縁にポケット内側へ突出したボール保持突部19を有してもよい。ボール保持突部19は、保持器15Bのピッチ円直径P.C.D.付近から径方向内方に向かうに従ってポケット内側に大きく傾斜する傾斜角度を有する傾斜面19aを成す。その他の構成1,2,3および4については、第1の実施形態と同様である。
保持器15Bのボール保持突部19でボール14を抱え込むような形状にする場合、保持器15Bの円周方向の強度を確保することができ、保持器全体の強度をさらに向上させることが可能となる。ボール保持突部19も前述の傾斜部16(図5)と同様に金型による成形を容易に行うことが可能となる。また、金型成形後の成形品を金型から容易に取り出すことができる。
[Third Embodiment: FIG. 7]
As shown in FIG. 7, the retainer 15B may have a ball holding protrusion 19 protruding toward the inside of the pocket on the inner diameter side edge of the retainer in each pocket Pt. The ball holding projections 19 have a pitch circle diameter P.1 of the cage 15B. C. D. An inclined surface 19a having an inclination angle that greatly inclines toward the inside of the pocket as it goes radially inward from the vicinity is formed. Other configurations 1, 2, 3 and 4 are the same as in the first embodiment.
When the ball holding projections 19 of the retainer 15B are shaped to hold the balls 14, the strength of the retainer 15B in the circumferential direction can be ensured, and the strength of the entire retainer can be further improved. Become. The ball holding projection 19 can also be easily molded by a mold, like the inclined portion 16 (FIG. 5). In addition, the molded product after mold molding can be easily removed from the mold.

[第4の実施形態:図8]
図8に示すように、保持器15Cは、軸方向転動体箇所のみ厚肉としてもよい。具体的には、保持器15Cの内周面は、軸方向転動体箇所が径方向内方に突出する突出部分20と、この突出部分20に繋がる軸方向両側の傾斜部分21と、各傾斜部分21に繋がり軸方向両端まで延びる二つの円筒部分22とを有する。前記円筒部分22の内径Hd1を、ボール14のピッチ円直径P.C.Dからボールの直径Daの0.25~0.35倍減じた値としている。
[Fourth Embodiment: FIG. 8]
As shown in FIG. 8, the retainer 15C may be thick only at the axial rolling elements. Specifically, the inner peripheral surface of the retainer 15C is composed of projecting portions 20 where the axial rolling elements protrude radially inward, inclined portions 21 on both sides in the axial direction connected to the projecting portions 20, and each inclined portion. 21 and extending to both ends in the axial direction. The inner diameter Hd1 of the cylindrical portion 22 is determined by the pitch diameter of the balls 14 P.D. C. A value obtained by subtracting 0.25 to 0.35 times the ball diameter Da from D.

突出部分20の内径Hd2は、内輪12の小径側の外径d1に、組込み必要代γを加えた値としている。前記組込み必要代γとは、この保持器15Cおよびボール14を内外輪12,13間の軸受空間に組み込むための必要代である。軸方向両側の傾斜部分21,21は、突出部分20の軸方向両側縁部からそれぞれ軸方向外側に向かうに従って径方向外方に傾斜する。これら傾斜部分21,21の軸方向外側縁部から円筒部分22,22が軸方向外側にそれぞれ延びる。また、内輪12の大径側の外径をd2とした時、突出部分20の内径Hd2と、内輪12の小径側の外径d1との関係を、d1<Hd2<d2としても良い。前記関係とする事で保持器15Cを組み込むための必要代を残した状態で保持器ポケットの強度を最大限とすることが出来る。その他の構成1,2,3および4については、第1の実施形態と同様である。保持器15Cの軸方向転動体箇所のみ厚肉とすると、保持器15Cの円周方向の強度を確保することができ、保持器全体の強度をさらに向上させることが可能となる。 The inner diameter Hd2 of the protruding portion 20 is the sum of the outer diameter d1 on the smaller diameter side of the inner ring 12 and the required assembly margin γ. The required assembling margin γ is a requisite allowance for assembling the retainer 15C and the balls 14 into the bearing space between the inner and outer rings 12,13. The inclined portions 21 , 21 on both sides in the axial direction are inclined radially outward from both axial side edges of the projecting portion 20 toward the outside in the axial direction. Cylindrical portions 22, 22 extend axially outward from the axially outer edges of the inclined portions 21, 21, respectively. When the outer diameter of the inner ring 12 on the large diameter side is d2, the relationship between the inner diameter Hd2 of the projecting portion 20 and the outer diameter d1 of the inner ring 12 on the small diameter side may be d1<Hd2<d2. By establishing the above relationship, it is possible to maximize the strength of the cage pocket while leaving a necessary margin for incorporating the cage 15C. Other configurations 1, 2, 3 and 4 are the same as in the first embodiment. If only the axial rolling elements of the retainer 15C are thickened, the strength of the retainer 15C in the circumferential direction can be ensured, and the strength of the entire retainer can be further improved.

<電動垂直離着陸機への適用例:図9、図10>
アンギュラ玉軸受を電動垂直離着陸機へ適用してもよい。
近年では、自動車に代わる移動手段として飛行可能な自動車、いわゆる空飛ぶクルマが注目されている。空飛ぶクルマは、地域内移動、地域間移動、観光・レジャー、救急医療、災害救助など、様々な場面での活用が期待されている。
<Examples of application to electric vertical take-off and landing aircraft: Figures 9 and 10>
You may apply an angular contact ball bearing to an electric vertical take-off and landing aircraft.
In recent years, so-called flying cars, which are capable of flying, have attracted attention as means of transportation in place of automobiles. Flying cars are expected to be used in various situations such as transportation within and between regions, tourism and leisure, emergency medical care, and disaster relief.

空飛ぶクルマとしては、垂直離着陸機(VTOL;Vertical Take-Off and Landing aircraft)が注目されている。垂直離着陸機は、空と離発着場を垂直に昇降できることから、滑走路が必要とならず、利便性に優れる。特に、近年ではCOの削減に向けた社会的要請などからバッテリとモータで飛行するタイプの電動垂直離着陸機(eVTOL)が開発の主流となっている。 As a flying car, a vertical take-off and landing aircraft (VTOL) attracts attention. Vertical take-off and landing aircraft can ascend and descend vertically between the sky and the takeoff and landing site, so they do not require a runway and are highly convenient. In recent years, in particular, electric vertical take-off and landing aircraft (eVTOL), which fly with batteries and motors, have become the mainstream of development due to social demands for reducing CO2 emissions.

図9に示すように、電動垂直離着陸機1は、機体中央に位置する本体部2と、前後左右に配置された4つの駆動部3を有するマルチコプターである。駆動部3は、電動垂直離着陸機1の揚力および推進力を発生させる装置であり、駆動部3の駆動によって電動垂直離着陸機1が飛行する。電動垂直離着陸機1において駆動部3は複数あればよく、4つに限定されない。 As shown in FIG. 9, the electric vertical take-off and landing aircraft 1 is a multicopter having a main body 2 positioned at the center of the aircraft body and four drive units 3 arranged on the front, rear, left and right sides. The drive unit 3 is a device that generates lift and propulsion of the electric vertical take-off and landing aircraft 1 , and the electric vertical take-off and landing aircraft 1 flies by driving the drive unit 3 . The electric vertical take-off and landing aircraft 1 may have a plurality of driving units 3, and the number is not limited to four.

本体部2は乗員(例えば1~2名程度)が搭乗可能な居住空間を有している。この居住空間には、進行方向および高度などを決めるための操作系、高度、速度、飛行位置などを示す計器類などが設けられている。本体部2からは4本のアーム2aがそれぞれ放射状に延び、各アーム2aの先端に駆動部3が設けられている。図9において、アーム2aには、回転翼4を保護するため、回転翼4の回転周囲を覆う円環部が一体に設けられている。また、本体部2の下部には、着陸時に機体を支えるスキッド2bが設けられている。 The body part 2 has a living space in which passengers (for example, about one or two people) can board. This living space is equipped with an operating system for determining the direction of travel and altitude, as well as instruments for indicating altitude, speed, flight position, and the like. Four arms 2a extend radially from the body portion 2, and a driving portion 3 is provided at the tip of each arm 2a. In FIG. 9, the arm 2a is integrally provided with an annular portion that covers the rotating circumference of the rotor blade 4 in order to protect the rotor blade 4. As shown in FIG. A skid 2b is provided at the bottom of the main body 2 to support the aircraft during landing.

駆動部3は、回転翼4と、この回転翼4を回転させるモータ5とを有する。駆動部3において、回転翼4はモータ5を挟んで軸方向両側に一対設けられている。各回転翼4は、径方向外方へ延びる2枚の羽根をそれぞれ有する。 The drive unit 3 has a rotor blade 4 and a motor 5 that rotates the rotor blade 4 . In the drive unit 3, a pair of rotor blades 4 are provided on both sides of the motor 5 in the axial direction. Each rotor blade 4 has two blades extending radially outward.

図10は、駆動部におけるモータ5の一部断面図を示している。モータ5の回転軸7の一端側(図10上側)には前記回転翼4(図9)が取り付けられ、他端側(図10下側)にはモータ5のロータ5aが取り付けられる。モータ5は、ハウジング6に固定されたステータ5bにロータ5aが対向配置され、このロータ5aがステータ5bに対して回転可能なインナーロータ型でダイレクトドライブ形式である。なお、モータ5は、アウターロータ型のブラシレスモータまたはインナーロータ型のブラシレスモータの構成を採用できる。 FIG. 10 shows a partial cross-sectional view of the motor 5 in the drive section. The rotating blade 4 (FIG. 9) is attached to one end side (the upper side in FIG. 10) of the rotating shaft 7 of the motor 5, and the rotor 5a of the motor 5 is attached to the other end side (the lower side in FIG. 10). The motor 5 is of the inner rotor type, in which the rotor 5a is arranged opposite to the stator 5b fixed to the housing 6, and the rotor 5a is rotatable with respect to the stator 5b, and is of the direct drive type. It should be noted that the motor 5 can employ a configuration of an outer rotor type brushless motor or an inner rotor type brushless motor.

図10において、モータ5は、ハウジング6と、ロータ5aと、ステータ5bと、前述のいずれかの実施形態に係る2個のアンギュラ玉軸受11,11とを備える。ハウジング6は外筒6aと内筒6bを有し、これら外筒6aと内筒6bとの間には冷却媒体を流す流路6cが設けられている。この流路6cに冷却媒体を流すことにより、モータ5の過度の温度上昇を防止できる。 In FIG. 10, the motor 5 includes a housing 6, a rotor 5a, a stator 5b, and two angular ball bearings 11, 11 according to any of the embodiments described above. The housing 6 has an outer cylinder 6a and an inner cylinder 6b, and a passage 6c for flowing a cooling medium is provided between the outer cylinder 6a and the inner cylinder 6b. Excessive temperature rise of the motor 5 can be prevented by flowing the cooling medium through the flow path 6c.

アンギュラ玉軸受11は、ハウジング6内で回転軸7を回転可能に支持している。アンギュラ玉軸受11の外輪13の外径形状は、ハウジング内周の嵌合部と同一の形状であり、ハウジング6に対して、軸受ハウジングなどを介さずに直接嵌合される。2個のアンギュラ玉軸受11,11は、この例では内外輪間座8,9を介して背面組み合わせで配置され、予圧が印加されている。 The angular ball bearing 11 rotatably supports the rotating shaft 7 within the housing 6 . The outer ring 13 of the angular ball bearing 11 has the same outer diameter shape as the fitting portion on the inner periphery of the housing, and is directly fitted to the housing 6 without a bearing housing or the like. In this example, the two angular ball bearings 11, 11 are arranged back-to-back via inner and outer ring spacers 8, 9, and are preloaded.

<制御系について>
本体部2には、複数のモータ5等を制御する制御装置31と、各モータ5および制御装置31に電力を供給するバッテリ32とが設けられている。制御装置31は、バッテリ32の直流電力を交流電圧に変換するインバータと、操作系に応じて生成されるトルク指令により前記インバータの出力をPWM制御等で制御する制御部とを有する。
前記制御部は、現姿勢と目標姿勢の差から揚力を調整すべきモータ5に回転数変更の指令を出力することで、モータ5および回転翼4(図9)の回転数が変更される。モータ5の回転数の調整は、複数のモータ5に対して同時に実施され、それによって機体の姿勢が決まる。
<Regarding the control system>
The body portion 2 is provided with a control device 31 that controls the plurality of motors 5 and the like, and a battery 32 that supplies power to each motor 5 and the control device 31 . The control device 31 has an inverter that converts the DC power of the battery 32 into an AC voltage, and a control unit that controls the output of the inverter by PWM control or the like according to a torque command generated according to the operation system.
The controller changes the rotation speed of the motor 5 and the rotor blade 4 (FIG. 9) by outputting a command to change the rotation speed to the motor 5 whose lift is to be adjusted based on the difference between the current attitude and the target attitude. The adjustment of the number of rotations of the motors 5 is performed simultaneously for a plurality of motors 5, thereby determining the attitude of the airframe.

図10では、モータ5の回転軸と回転翼4(図9)の回転軸とを同一の回転軸としたが、モータの回転軸と回転翼の回転軸とが伝達機構を介して接続された構成であってもよい。この場合、駆動部における回転軸を支持するアンギュラ玉軸受は、モータの回転軸を支持するアンギュラ玉軸受でもよく、回転翼の回転軸を支持するアンギュラ玉軸受でもよい。 In FIG. 10, the rotating shaft of the motor 5 and the rotating shaft of the rotor blade 4 (FIG. 9) are the same rotating shaft, but the rotating shaft of the motor and the rotating shaft of the rotor blade are connected via a transmission mechanism. It may be a configuration. In this case, the angular ball bearing that supports the rotating shaft of the drive unit may be an angular ball bearing that supports the rotating shaft of the motor, or an angular ball bearing that supports the rotating shaft of the rotor.

アンギュラ玉軸受を正面組み合わせで用いることも可能である。
アンギュラ玉軸受を電動垂直離着陸機以外の用途に適用することも可能である。
アンギュラ玉軸受の保持器は、金型による成形だけでなく、例えば、機械加工または3Dプリンターで製作してもよい。
It is also possible to use angular ball bearings in a face-to-face combination.
It is also possible to apply angular contact ball bearings to applications other than electric vertical take-off and landing aircraft.
The retainer of the angular contact ball bearing may be manufactured not only by molding with a mold, but also by machining or by a 3D printer, for example.

以上、実施形態に基づいて本発明を実施するための形態を説明したが、今回開示された実施形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, embodiment disclosed this time is an illustration and is not restrictive at all points. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.

1…電動垂直離着陸機、3…駆動部、4…回転翼、5…モータ、7…回転軸、11…アンギュラ玉軸受、12…内輪、13…外輪、14…ボール、15,15A,15B,15C…保持器、16…傾斜部、19…ボール保持突部、20…突出部分、Pt…ポケット

DESCRIPTION OF SYMBOLS 1... Electric vertical take-off and landing aircraft, 3... Drive part, 4... Rotor blade, 5... Motor, 7... Rotating shaft, 11... Angular contact ball bearing, 12... Inner ring, 13... Outer ring, 14... Ball, 15, 15A, 15B, 15C... Cage, 16... Inclined portion, 19... Ball holding protrusion, 20... Protruding part, Pt... Pocket

Claims (6)

内輪と、外輪と、これら内輪と外輪間に介在する複数のボールと、これらボールを円周方向複数箇所に設けられたポケットに保持する保持器とを備え、前記保持器は外輪案内の保持器案内形式であり、前記保持器の外輪案内面となる位置における保持器の外周面が軸方向円筒形状に形成されたアンギュラ玉軸受であって、
前記保持器の外径をHDとし、前記保持器の内径をHdとし、前記ボールのピッチ円直径P.C.D.とした時、HD-P.C.D.>P.C.D.-Hdの関係を満たし、
前記保持器の内径Hdを、前記ボールのピッチ円直径P.C.D.から前記ボールの直径Daの0.25~0.35倍減じた値とし、
前記保持器の径方向の肉厚Tを、前記ボールの直径Daの0.40~0.45倍としたアンギュラ玉軸受。
An inner ring, an outer ring, a plurality of balls interposed between the inner ring and the outer ring, and a retainer for holding the balls in pockets provided at a plurality of locations in the circumferential direction, the retainer being an outer ring-guided retainer. An angular contact ball bearing of a guide type in which an outer peripheral surface of the retainer at a position serving as an outer ring guide surface of the retainer is formed in an axially cylindrical shape,
Let HD be the outside diameter of the cage, Hd be the inside diameter of the cage, and P.D. be the pitch circle diameter of the balls. C. D. When HD-P. C. D. >P. C. D. - satisfies the relationship of Hd,
The inner diameter Hd of the cage is defined by the pitch diameter P.D. of the balls. C. D. A value obtained by subtracting 0.25 to 0.35 times the diameter Da of the ball from
An angular contact ball bearing in which the radial thickness T of the retainer is 0.40 to 0.45 times the diameter Da of the ball.
請求項1に記載のアンギュラ玉軸受において、前記保持器の軸方向幅HBを、このアンギュラ玉軸受の前記内輪と前記外輪の軸方向両端から突出しない範囲で、前記ボールの直径Daの1.6~2.0倍としたアンギュラ玉軸受。 2. The angular contact ball bearing according to claim 1, wherein the axial width HB of the retainer is 1.6 times the diameter Da of the balls within a range not protruding from both axial ends of the inner ring and the outer ring of the angular contact ball bearing. Angular contact ball bearings with a factor of ~2.0. 請求項1または請求項2に記載のアンギュラ玉軸受において、前記保持器の内周面に、軸方向外側に向かうに従って径方向外方に至るように傾斜する傾斜部が設けられているアンギュラ玉軸受。 3. The angular contact ball bearing according to claim 1, wherein the inner peripheral surface of the retainer is provided with an inclined portion inclined radially outward toward the axially outward side. . 請求項1ないし請求項3のいずれか1項に記載のアンギュラ玉軸受において、前記保持器は、各ポケット内の保持器内径側縁にポケット内側へ突出したボール保持突部を有するアンギュラ玉軸受。 4. The angular contact ball bearing according to any one of claims 1 to 3, wherein said retainer has ball retaining projections protruding inwardly of said pocket on inner diameter side edges of said retainer in each pocket. 請求項4に記載のアンギュラ玉軸受において、前記保持器の内周面は径方向内方に突出する突出部分を有し、前記内輪の小径側の外径d1とし、大径側の外径をd2とし、前記突出部分の内径をHd2とした時、d1<Hd2<d2の関係を満たすアンギュラ玉軸受。 5. The angular contact ball bearing according to claim 4, wherein the inner peripheral surface of the retainer has a protruding portion that protrudes radially inward. An angular contact ball bearing that satisfies the relationship d1<Hd2<d2, where d2 is the inner diameter of the projecting portion and Hd2 is the inner diameter of the projecting portion. 回転翼およびこの回転翼を回転させるモータを有する駆動部を複数備え、前記回転翼の回転によって飛行する電動垂直離着陸機に搭載されるアンギュラ玉軸受であって、
前記駆動部における回転軸を回転可能に支持する請求項1ないし請求項5のいずれか1項に記載のアンギュラ玉軸受。
An angular contact ball bearing mounted on an electric vertical take-off and landing aircraft that is equipped with a plurality of drive units having rotor blades and a motor that rotates the rotor blades, and that flies by rotating the rotor blades,
6. The angular contact ball bearing according to any one of claims 1 to 5, wherein the rotary shaft in the driving portion is rotatably supported.
JP2021075067A 2021-04-27 2021-04-27 Angular ball bearing Pending JP2022169195A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021075067A JP2022169195A (en) 2021-04-27 2021-04-27 Angular ball bearing
KR1020237040778A KR20240004650A (en) 2021-04-27 2022-04-20 Angular ball bearings
PCT/JP2022/018237 WO2022230730A1 (en) 2021-04-27 2022-04-20 Angular ball bearing
CN202280030928.7A CN117242271A (en) 2021-04-27 2022-04-20 Angular contact ball bearing
DE112022002363.5T DE112022002363T5 (en) 2021-04-27 2022-04-20 Angular contact ball bearings
TW111115734A TW202300793A (en) 2021-04-27 2022-04-26 Angular contact ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021075067A JP2022169195A (en) 2021-04-27 2021-04-27 Angular ball bearing

Publications (1)

Publication Number Publication Date
JP2022169195A true JP2022169195A (en) 2022-11-09

Family

ID=83847036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021075067A Pending JP2022169195A (en) 2021-04-27 2021-04-27 Angular ball bearing

Country Status (6)

Country Link
JP (1) JP2022169195A (en)
KR (1) KR20240004650A (en)
CN (1) CN117242271A (en)
DE (1) DE112022002363T5 (en)
TW (1) TW202300793A (en)
WO (1) WO2022230730A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054450A (en) * 2000-08-10 2002-02-20 Nsk Ltd Rotary support device for turbo-charger
JP2002323048A (en) * 2000-10-27 2002-11-08 Nsk Ltd Bearing device and main spindle of machine tool
JP5506354B2 (en) 2009-12-04 2014-05-28 Ntn株式会社 Rolling bearings and cages for rolling bearings
JP2014095469A (en) 2012-10-09 2014-05-22 Nsk Ltd Rolling bearing
JP6686483B2 (en) 2015-02-04 2020-04-22 日本精工株式会社 Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
JP6493580B2 (en) * 2018-02-13 2019-04-03 日本精工株式会社 Angular contact ball bearings
JP7245728B2 (en) * 2018-09-12 2023-03-24 Ntn株式会社 Rotor support device for unmanned aircraft
JP7243574B2 (en) 2019-11-05 2023-03-22 トヨタ自動車株式会社 ELECTRIC VEHICLE AND CONTROL METHOD OF ELECTRIC VEHICLE

Also Published As

Publication number Publication date
KR20240004650A (en) 2024-01-11
CN117242271A (en) 2023-12-15
DE112022002363T5 (en) 2024-04-04
WO2022230730A1 (en) 2022-11-03
WO2022230730A8 (en) 2023-11-09
TW202300793A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
US20070003178A1 (en) Cylindrical roller bearing and retainer for cylindrical roller bearing
US7150565B1 (en) Cylindrical roller bearing
US9746027B2 (en) Auxiliary bearing of the ball bearing type for a magnetically suspended rotor system
US9897140B2 (en) Hybrid duplex ball bearing assembly
EP2835545B1 (en) Bearing cage with oil circulation means
EP3543553A1 (en) Rolling bearing cage and rolling bearing
US7048445B2 (en) Cylindrical roller bearing
WO2022230730A1 (en) Angular ball bearing
EP2956684B1 (en) Angular contact ball bearing
JP2014005846A (en) Ball bearing and spindle device for machine tool
WO2022202544A1 (en) Seal-equipped bearing
CN111656032B (en) Angular contact ball bearing
CN104074793B (en) The dual lubrication formula axial rolling bearing of centrifugal pump
WO2022202899A1 (en) Bearing with seal
CN112013020A (en) Polyamide retainer of cylindrical roller bearing for high speed and heavy load and bearing
JP2022169216A (en) rolling bearing
CN211314842U (en) Special bearing for aviation control system
WO2018225720A1 (en) Holder for rolling bearing, and rolling bearing
CN112893890B (en) Air supporting main shaft and lathe
US20100074778A1 (en) Closed-circuit hydraulic propeller
CN212615937U (en) Polyamide retainer of cylindrical roller bearing for high speed and heavy load and bearing
CN116517959B (en) High-speed lightweight enhanced heat dissipation bearing retainer
KR20240022519A (en) bearing with seal
JP2022149318A (en) rolling bearing
JP2022149315A (en) rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240326