WO2022202544A1 - Seal-equipped bearing - Google Patents

Seal-equipped bearing Download PDF

Info

Publication number
WO2022202544A1
WO2022202544A1 PCT/JP2022/011933 JP2022011933W WO2022202544A1 WO 2022202544 A1 WO2022202544 A1 WO 2022202544A1 JP 2022011933 W JP2022011933 W JP 2022011933W WO 2022202544 A1 WO2022202544 A1 WO 2022202544A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
sliding surface
bearing
circumferential direction
protrusion
Prior art date
Application number
PCT/JP2022/011933
Other languages
French (fr)
Japanese (ja)
Inventor
克明 佐々木
悠介 鈴木
雄太 望月
吉稀 竹田
武仁 櫻井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022202544A1 publication Critical patent/WO2022202544A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/324Arrangements for lubrication or cooling of the sealing itself

Definitions

  • the present invention relates to a sealed bearing comprising a rolling bearing and a sealing member.
  • a seal member is used to prevent early damage to the rolling bearing. For example, in transmissions mounted on vehicles such as automobiles and various construction machines, foreign matter such as wear powder of gears is mixed, so a seal member prevents the wear powder from entering the inside of the bearing.
  • the sealing member has a ring-shaped sealing lip made of a rubber-like material or the like.
  • a mating part such as a bearing ring, a slinger, or the like, which rotates relative to the seal member in the circumferential direction as the bearing rotates, is formed with a seal sliding surface that makes sliding contact with the seal lip.
  • the seal lip and the seal sliding surface are in sliding contact all around, and microscopically, there is a solid contact area.
  • the drag resistance (seal torque) of the seal lip causes an increase in bearing torque.
  • the sliding contact contributes to the temperature rise of the rolling bearing.
  • the pressure difference between the inside and the outside of the bearing causes the seal lip to press against the seal sliding surface, causing an adsorption effect, which may increase the seal torque. For these reasons, there is a limit to the high-speed operation of bearings with common sealing members.
  • seal lip of the seal member is arranged so as not to contact the mating part and forms a labyrinth seal, it is possible to eliminate the seal torque. It is difficult to manage various errors that can be prevented.
  • the seal lip has a plurality of projections arranged in the circumferential direction.
  • a seal-equipped bearing has been proposed in which the seal lip and the seal sliding surface can be brought into a fluid lubrication state by an oil film of lubricating oil that is dragged between the projection and the seal sliding surface through the gap (Patent Document 1). .
  • lubrication on the seal sliding surface is achieved by allowing lubricating oil to flow between the internal space and the outside of the rolling bearing through a gap that can prevent foreign matter of a predetermined particle size from entering.
  • Lubricating with oil the wedge effect when lubricating oil is drawn between the projections and the seal sliding surface as the bearing rotates forms a thick oil film, completely separating each projection and the seal sliding surface with the oil film. , a fluid lubricating state can be established between the seal lip and the seal sliding surface. Therefore, according to the sealed bearing of Patent Document 1, the seal torque can be significantly reduced while preventing the intrusion of foreign matter of a predetermined particle size and enabling the bearing to operate at high speed.
  • the problem to be solved by the present invention is to provide a sealed bearing in which a plurality of protrusions on the seal lip allow fluid lubrication between the seal lip and the seal sliding surface. It is to suppress the intrusion of foreign matter.
  • the present invention provides a seal member for sealing the internal space of a rolling bearing from the outside, and a seal sliding surface that slides in the circumferential direction against the seal member.
  • the seal member has a ring-shaped seal lip
  • the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections are adjacent to each other in the circumferential direction
  • the seal lip and the seal are separated from each other by an oil film of lubricating oil that is drawn between the protrusion and the seal sliding surface through the gap as the bearing rotates.
  • the protrusions are configured to extend in a direction inclined to one side in the circumferential direction toward the outside. .
  • the projections extend outward in the circumferential direction. Since it extends in a direction inclined to the side, it is arranged in a threaded manner around the seal sliding surface. Therefore, when using a bearing with a seal, if the rotation direction of the bearing is selected so that the projections pressurize the lubricating oil in the clearance to the outside as the bearing rotates, the projections and the seal sliding surface will prevent Since a screw pumping action is provided to prevent foreign matter from entering the bearing, entry of foreign matter into the bearing can be suppressed.
  • the protrusion is formed in a straight line that is inclined with respect to the radial direction.
  • the projection is formed in a curved shape that curves to one side in the circumferential direction.
  • the projections are longer than the linearly formed projections, so the pressure loss of the lubricating oil flow in the gaps is increased (labyrinth effect), and the intrusion of foreign matter can be further suppressed. .
  • the present invention provides a seal member that seals the internal space of a rolling bearing from the outside, and a seal sliding surface that rotates relative to the seal member in the circumferential direction.
  • the seal member has a ring-shaped seal lip
  • the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections are adjacent to each other in the circumferential direction
  • the seal lip and the seal are separated from each other by an oil film of lubricating oil that is drawn between the protrusion and the seal sliding surface through the gap as the bearing rotates.
  • the seal lip is arranged out of phase with the plurality of projections so as to face the gap, and the A structure having ribs spaced apart from the seal sliding surface was adopted.
  • the second means it is possible to bring the seal lip and the seal sliding surface into a fluid lubrication state by means of the plurality of projections of the seal lip as the bearing rotates. Since the ribs face the gaps out of phase with the plurality of protrusions, a labyrinth in which part of the lubricating oil flowing out from the gaps into the internal space collides with the ribs is formed together with the protrusions adjacent in the circumferential direction. By forming it, it is possible to suppress the entry of foreign matter into the bearing. Since the ribs are spaced apart from the seal sliding surface, they are not in contact with the seal sliding surface. resistance does not increase. This avoids the ribs from adversely affecting seal torque reduction.
  • the protrusion and the rib each extend linearly in a direction perpendicular to the circumferential direction.
  • the protrusion and the rib are each hemispherical. By doing so, it is possible to suppress the shear resistance of the lubricating oil between the seal sliding surface and the linear projections or ribs.
  • the present invention provides a seal member for sealing the internal space of a rolling bearing against the outside, and a seal sliding surface that rotates relative to the seal member in the circumferential direction.
  • the seal member has a ring-shaped seal lip
  • the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections are adjacent to each other in the circumferential direction
  • the seal lip and the seal are separated from each other by an oil film of lubricating oil that is drawn between the protrusion and the seal sliding surface through the gap as the bearing rotates.
  • the protrusions adjacent to each other in the circumferential direction extend in opposite directions in the circumferential direction. adopted the configuration.
  • the third means it is possible to bring the seal lip and the seal sliding surface into a state of fluid lubrication by means of the plurality of projections of the seal lip as the bearing rotates. Since the protrusions adjacent to each other in the circumferential direction extend in opposite directions to each other in the circumferential direction, it is possible to reduce the gap serving as a path for foreign matter to enter, thereby suppressing foreign matter from entering the bearing.
  • a first projection extending in a direction inclined to one side in the circumferential direction, and a direction adjacent to the other side in the circumferential direction of the first projection and inclined to the other side in the circumferential direction
  • the second protrusions extending to the inner space are continuous with each other at the ends on the inner space side.
  • the projection has a streamlined end positioned closer to the internal space than the sliding portion with the seal sliding surface, and the streamlined end is: It is preferable that the protrusion has a shape in which the circumferential width and height of the protrusion gradually decrease toward the inner space side. With this configuration, the streamlined end of the projection prevents the lubricating oil flowing through the gap along the projection toward the internal space from becoming turbulent, which is suitable for reducing the stirring resistance of the lubricating oil.
  • the angle ⁇ formed by the seal lip and the seal sliding surface toward the inner space side from the sliding portion of the protrusion and the seal sliding surface is , 0° ⁇ 45°. In this way, a pumping action can be generated to discharge the lubricating oil to the outside in the region where the angle ⁇ between the seal lip and the seal sliding surface is formed.
  • the combined roughness ⁇ of the protrusion and the seal sliding surface is preferably 0.9 ⁇ m or less. This is suitable for bringing the sliding portion between the protrusion and the seal sliding surface into a fluid lubrication state from an extremely low peripheral speed.
  • a plurality of projections on the seal lip provide fluid lubrication between the seal lip and the seal sliding surface. Entry of foreign matter into the bearing can be suppressed in a sealed bearing capable of
  • FIG. 1 is a cross-sectional view showing a sealed bearing according to a first embodiment of the present invention
  • FIG. 2 is a partial sectional view showing the natural state of the seal lip of FIG. 1; Enlarged left side view near the protrusion in FIG. Enlarged view of the vicinity of the protrusion in Fig. 1 Enlarged right side view near the gap in Fig. 1 Sectional view of the VI-VI cutting line of FIG.
  • FIG. 3 is a left side view of a seal lip according to a second embodiment of the invention, similar to FIG.
  • FIG. 7 is a cross-sectional view similar to FIG. 6 showing the gap according to the second embodiment of the present invention;
  • FIG. 6 is a right side view similar to FIG.
  • FIG. 4 is a plan development view showing a projection according to a third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing the seal lip according to the fourth embodiment of the present invention along the line XII-XII in FIG. 14;
  • FIG. 5 is a cross-sectional view similar to FIG.
  • FIG. 4 showing a seal lip according to a fifth embodiment of the present invention
  • FIG. 5 is a cross-sectional view similar to FIG. 4 showing a seal lip according to a sixth embodiment of the present invention
  • the left side view which shows the seal lip which concerns on 6th embodiment similarly to FIG.
  • the rolling bearing 1 is composed of an inner ring 3, an outer ring 4, a plurality of rolling elements 5 interposed between the inner ring 3 and the outer ring 4, and a retainer 6 that holds the plurality of rolling elements 5.
  • the sealing member 2 seals the inner space 7 of the rolling bearing 1 from the outside. The purpose of this sealing is to prevent foreign matter from entering the inner space 7 between the inner and outer rings 3 and 4, which is the periphery of the sealed bearing, and prevent early damage to the rolling bearing 1. It is not to seal the space 7 in a liquid-tight manner.
  • the inner ring 3 and outer ring 4 have raceway surfaces corresponding to the rolling elements 5 .
  • the inner ring 3 is attached to the rotating shaft S and rotates together with the rotating shaft S.
  • the outer ring 4 is attached to a member such as a housing, a gear, or the like that applies a load from the rotating shaft.
  • the rolling elements 5 revolve while being interposed between the inner ring 3 and the outer ring 4 .
  • a ball is adopted as the rolling element 5.
  • This sealed bearing is a deep groove ball bearing.
  • the internal space 7 is lubricated with lubricating oil (not shown; hereinafter the same) supplied from the outside.
  • Lubricating methods include, for example, a splashing method in which lubricating oil is applied to the bearing with a seal, and an oil bath method in which the lower portion of the bearing with a seal is immersed in an oil bath.
  • An appropriate amount of grease may be filled in the internal space 7 as an initial lubricant.
  • the rotating shaft S is provided as a rotating part provided in any one of, for example, a vehicle transmission, differential, constant velocity joint, propeller shaft, turbocharger, machine tool, wind power generator, and wheel bearing.
  • the direction along the bearing center axis (not shown, hereinafter the same) of the bearing with seal will be referred to as the "axial direction”.
  • a direction orthogonal to the axial direction is called a “radial direction”.
  • the circumferential direction around the bearing center axis is called the “circumferential direction”.
  • the bearing center axis is the center axis of the inner ring 3 which is a rotating ring, and corresponds to the left-right direction in the figure.
  • a seal groove 8 for holding the seal member 2 is formed at the end of the inner circumference of the outer ring 4 .
  • the seal member 2 is attached to the outer ring 4 by press-fitting its outer peripheral edge into the seal groove 8 .
  • the sealing member 2 is for preventing foreign matter from entering the internal space 7 from the outside.
  • the sealing member 2 has a core metal 9 made of a metal plate and a seal lip 10 formed in an annular shape.
  • the cored bar 9 is a press-worked part that is annularly formed and continues in the circumferential direction.
  • the seal lip 10 is made of vulcanized rubber. Examples of rubber materials include nitrile rubber (NBR), acrylic rubber (ACM), and fluororubber (FKM).
  • a seal sliding surface 11 that slides on the seal lip 10 in the circumferential direction is formed on the outer circumference of the inner ring 3 .
  • the seal sliding surface 11 is in the shape of a cylindrical surface that continues along the entire circumferential direction.
  • the seal lip 10 is a radial lip.
  • the radial lip is a seal lip that exerts a sealing action with a seal sliding surface along the axial direction or a seal sliding surface having an acute angle gradient of 45° or less with respect to the axial direction. It has a radial interference between it and the moving surface.
  • FIG. 2 shows the cross-sectional shape (shape at the time of molding) when the seal lip 10 is in a natural state by itself.
  • the seal lip 10 has an annular waist portion which is radially continuous with a constant width in the axial direction, and a head portion which is shaped like a projecting piece that curves outward from the waist portion.
  • the head of the seal lip 10 has a leading edge that defines the inner diameter of the seal lip 10 in the state of FIG. 1, the seal lip 10 is pressed against the seal sliding surface 11 due to the interference with the seal sliding surface 11, and deforms rubber-like elastically to the outside. , produces a straining force of the seal lip 10 . Mounting errors, manufacturing errors, etc. of the seal member 2 are absorbed by changes in the degree of bending of the seal lip 10 .
  • FIG. 3 shows an enlarged left side view of the vicinity of the head portion of the seal lip 10 in FIG.
  • FIG. 4 shows an enlarged view of the vicinity of the head portion of the seal lip 10 of FIG.
  • FIG. 5 shows an enlarged view of the gap 13 viewed axially from the outside.
  • FIG. 6 shows a section taken along line VI-VI of FIG.
  • the seal lip 10 has a plurality of projections 12 arranged in the circumferential direction.
  • the projection 12 is formed in a straight line inclined with respect to the radial direction of the seal lip 10 over its entire length.
  • the direction of inclination of the projection 12 is set in a direction inclined to one side in the circumferential direction from the outer diameter side to the inner diameter side of the seal lip 10 (corresponding to a straight line direction inclined leftward downward in the figure). ing.
  • the height of the protrusion 12 is constant over its entire length.
  • Each protrusion 12 is located in a line with a fixed pitch in the circumferential direction.
  • the entire length of the protrusion 12 extends over the entire range with a radial interference between the protrusion 12 and the seal sliding surface 11 .
  • the sealing lip 10 has only one row of protrusions 12 .
  • the overall shape of the seal lip 10 is rotationally symmetrical corresponding to the pitch of the protrusions 12 .
  • the protrusion 12 has a height in a direction perpendicular to the seal sliding surface 11 on a virtual plane including the bearing center axis.
  • the protrusion 12 stretches against the straining force of the seal lip 10. - ⁇ As a result, as shown in FIGS. 4 to 6, a gap 13 communicating with the internal space 7 and the outside is generated between the protrusions 12 adjacent in the circumferential direction and between the seal sliding surface 11 and the seal lip 10.
  • the channel cross-sectional height of the gap 13 corresponds to the radial distance between the seal sliding surface 11 and the lip portion connecting the protrusions 12 adjacent in the circumferential direction.
  • the seal lip 10 slides on the seal sliding surface 11 only on the plurality of protrusions 12, and the lip portion connecting the protrusions 12 adjacent in the circumferential direction is kept in a non-contact state with the seal sliding surface 11. It's like
  • the protrusion 12 is axially inclined from the inner space 7 side to the outer side in the circumferential direction (to the right in FIG. 6). (corresponding to the upward tilted direction). Therefore, if the rolling bearing 1 shown in FIG.
  • the seal sliding surface 11 exerts a screw pumping action that prevents foreign matter from entering the bearing through the clearance 13 .
  • the protrusion 12 has a shape such that it gradually moves away from the seal sliding surface 11 from the center portion in the circumferential direction of the protrusion 12 toward both sides in the circumferential direction. Therefore, the protrusion 12 forms a wedge-shaped gap with the seal sliding surface 11 that is large on the gap 13 side and small on the protrusion 12 side.
  • each protrusion 12 has a semicircular shape on a cut surface along the circumferential direction.
  • the protrusion 12 has a region generally along the seal sliding surface 11 on a virtual plane including the bearing center axis. This region has a width in the direction along the seal sliding surface 11 (corresponding to the axial direction in the illustrated example). Therefore, there is a wedge effect when the protrusion 12 and the seal sliding surface 11 slide along with the rotation of the bearing, that is, when the protrusion 12 drags the lubricating oil in the gap 13 in the circumferential direction between the seal sliding surface 11 and the protrusion 12.
  • the shear resistance of the lubricating oil between the rounded projection 12 and the seal sliding surface 11 is suppressed as described above. Since the sharpness of the central portion is avoided to prevent the oil film from being cut off by the protrusion 12, the wedge effect effectively promotes the formation of the oil film. Therefore, when the peripheral speed of the relative rotation of the projection 12 and the seal sliding surface 11 becomes more than a certain value due to the rotation of the bearing, the oil film thickness between the projection 12 and the seal sliding surface 11 is , and each protrusion 12 and the seal sliding surface 11 are completely separated by an oil film, resulting in a fluid lubrication state.
  • a fluid lubrication state in which the seal lip 10 and the seal sliding surface 11 are completely separated by an oil film can be achieved.
  • the sealing torque of the seal member 2 can be reduced to the same level as that of a non-contact type seal, thereby suppressing the temperature rise of the sealed bearing and preventing the adsorption action of the seal lip 10. can.
  • the peripheral speed is less than a certain value after the bearing is stopped, microscopically, a boundary lubrication state or a mixed lubrication state including a solid contact area occurs.
  • the sealed bearing is generally lubricated by an appropriate method such as splashing or an oil bath. Therefore, lubricating oil supplied from the outside exists around the seal lip 10 .
  • the lubricating oil is also commonly used for other lubricating parts such as gears present in the transmission.
  • the lubricating oil is circulated by an oil pump and filtered by an oil filter provided in the circulation path. If a large foreign matter with a grain size exceeding 0.05 mm enters the internal space 7, it is considered to have an adverse effect on the life of the bearing.
  • the height of the protrusion 12 By setting the height of the protrusion 12 to 0.07 mm or less, it is possible to create a gap 13 through which such a large foreign matter cannot easily pass.
  • the height of the projections 12 is 0.07 mm or less, for example, the distance between adjacent projections 12 in the circumferential direction is 0.3 mm or more and 2.6 mm or less, and the circumferential width of the projections 12 is 0.2 mm or more and 1.0 mm or less.
  • the radius of curvature of the surface of the projection 12 can be set in the range of 0.15 mm or more and less than 2.0 mm. In this example, when the oil temperature is 30 to 120° C.
  • the dimensionless number determined by Greenwood-Johnson is In the lubrication region diagram (Johnson chart) based on the viscous parameter gv and the elastic parameter ge, either the constant viscosity-rigid region (RI mode) or the constant viscosity-elastic region (EI mode, soft EHL) It is considered to be in the lubrication mode, that is, the fluid lubrication state described above.
  • the minimum oil film thickness h is obtained based on elastohydrodynamic lubrication theory.
  • the combined roughness ⁇ ⁇ ((Rq 1 2 +Rq 2 2 )/2).
  • Rq 1 is the root-mean-square roughness of the seal sliding surface 11 forming the aforementioned sliding portion.
  • Rq2 is the root-mean-square roughness of the surface of the projection 12, and the root-mean-square roughness is the value ( ⁇ m) of the root-mean-square roughness Rq defined in JIS (B0601:2013).
  • the oil film parameter ⁇ depends on the synthetic roughness ⁇ , and the smaller the synthetic roughness ⁇ , the thicker the oil film can be.
  • synthetic roughness ⁇ of 0.9 ⁇ m transmission oil (30 cst, 40° C.) as lubricating oil, ambient temperature of 20° C., and peripheral speed of 0.2 m/s, the oil lubrication mode by the Johnson chart was determined.
  • the minimum oil film thickness h was 2.8 ⁇ m
  • the oil film parameter ⁇ was 3 or more
  • the lubrication mode was the EI mode. Therefore, if the combined roughness ⁇ of the protrusion 12 and the seal sliding surface 11 is 0.9 ⁇ m or less, it is expected that the bearing will reliably be in a fluid lubricating state in the actual usage range.
  • the seal lip 10 moves from the sliding portion between the projection 12 and the seal sliding surface 11 toward the inner space 7 (in the illustrated example, toward the inner space 7 in the axial direction). and the seal sliding surface 11 form an angle ⁇ of 0° ⁇ 45°.
  • a space region 7a forming an angle ⁇ in the internal space 7 is a wedge-shaped space that narrows toward the outside in the axial direction.
  • the space area 7a opens toward the rolling elements 5 and the cage 6.
  • the inflow of lubricating oil into the internal space 7 is secured by the gap 13, but this is contrary to the improvement of the inflow of lubricating oil into the internal space 7, and the resistance ( The bearing torque increases due to agitation resistance).
  • the lubricating oil is pushed from the rolling elements 5 and the retainer 6 and flows toward the wedge-shaped space region 7a. hydraulic pressure increases. Therefore, a pumping action is generated to discharge the lubricating oil that has been pushed aside into the space region 7a through the gap 13 to the outside.
  • the lubricating oil can be discharged from the internal space 7 better, the stirring resistance is reduced, and the internal torque of the bearing is reduced. Therefore, it becomes possible to use the rolling bearing 1 with even lower torque.
  • the seal lip 10 and the seal sliding surface 11 can be in a state of fluid lubrication by the plurality of projections 12 of the seal lip 10, and the projections 12 are attached to the seal. Since the projections 12 extend in a direction inclined to one side in the circumferential direction toward the outer side of the bearing, when the bearing with seal is used, the projections 12 are pushed in the direction to release the lubricating oil in the clearance 13 to the outside as the bearing rotates. If the direction of rotation of the bearing is selected so as to apply pressure, the protrusions 12 and the seal sliding surface 11 provide a screw pumping action that prevents foreign matter from entering the bearing interior (internal space 7) through the gap 13. As a result, entry of foreign matter into the bearing can be suppressed.
  • this sealed bearing is suitable for promoting the discharge of lubricating oil from the internal space 7 and reducing the stirring resistance of the lubricating oil by the rolling elements 5 and the like.
  • the combined roughness ⁇ of the projection 12 and the seal sliding surface 11 is 0.9 ⁇ m or less, so that the sliding portion of the projection 12 and the seal sliding surface 11 can be moved even at extremely low peripheral speeds. Suitable for fluid lubrication.
  • the second embodiment will be described based on FIGS. 7 to 9 (hereinafter, refer to FIGS. 1 and 4 as appropriate).
  • the second embodiment is another example of the invention according to the first means. It should be noted that the following description of each embodiment is limited to the points of difference from the first embodiment.
  • the protrusion 21 according to the second embodiment is formed in a curved shape that curves from the inner space 7 side to the outer side in the circumferential direction. For this reason, the protrusions 21 are longer than the protrusions of the first embodiment, and accordingly, the gaps 22 formed between the protrusions 21 adjacent in the circumferential direction are also the same as in FIG. As shown in the cross-sectional view corresponding to the line VI-VI, the gap is curved longer than the gap in the first embodiment. Therefore, in the sealed bearing according to the second embodiment, not only the protrusions 21 exhibit the screw pumping action, but also the pressure loss (labyrinth effect) of the flow of lubricating oil in the gap 22 is reduced compared to the first embodiment. By increasing the size, the intrusion of foreign matter can be further suppressed.
  • FIG. 10 A third embodiment will be described based on FIGS. 10 and 11.
  • FIG. The third embodiment is still another example of the invention according to the first means.
  • the protrusion 31 according to the third embodiment has a streamlined end portion 32 positioned closer to the internal space 7 than the sliding portion with the seal sliding surface 11 .
  • the streamlined end portion 32 has a predetermined length from the end on the inner space 7 side of the entire length of the protrusion 31 , and has a shape in which the circumferential width and height of the protrusion 31 gradually decrease toward the inner space 7 side.
  • the rest of the protrusion 31 other than the streamlined end 32 has a semicircular cross-section with constant circumferential width and height.
  • This shape change of the streamlined end portion 32 with respect to the remaining portion prevents the lubricating oil flowing along the protrusion 31 in the gap 33 toward the internal space 7 from separating from the protrusion 31 until it passes through the protrusion 31 (gap 33). , to suppress turbulence. If this flow becomes turbulent and flows out from the gap 33 into the internal space 7, the rolling elements 5 and the retainer 6 are in contact with the turbulent flow and the stirring resistance increases, so it is preferable to suppress the turbulent flow.
  • the wedge effect between the projection 31 and the seal sliding surface 11 can be reduced by sharpening the region of the projection 31 that slides with the seal sliding surface 11 like a streamlined end portion 32. , which is not desirable.
  • the streamlined end 32 should have a streamlined shape that does not become turbulent until it passes over the protrusion 31 at a typical speed of the lubricating oil flowing along the protrusion 31 toward the inner space 7 side.
  • the shape of the streamlined end 32 can be determined, for example, based on Fuhrmann's streamlined body of revolution.
  • the streamlined end portion 32 of the projection 31 prevents the lubricating oil flowing through the gap 33 along the projection 31 toward the internal space 7 from becoming turbulent. , the agitation resistance of the lubricating oil in the internal space 7 can be reduced as compared with the first embodiment.
  • FIG. 12 to 14 A fourth embodiment will be described based on FIGS. 12 to 14.
  • FIG. The fourth embodiment is an example of the invention according to the second means.
  • a seal lip 41 according to the fourth embodiment has ribs 44 facing gaps 43 between protrusions 42 adjacent in the circumferential direction.
  • the protrusions 42 and the ribs 44 each extend linearly in a direction orthogonal to the circumferential direction.
  • the protrusions 42 and ribs 44 are arranged at a constant pitch angle. Therefore, the rows of the protrusions 42 arranged in the circumferential direction and the rows of the ribs 44 arranged in the circumferential direction form two rows with a constant phase difference therebetween.
  • the rib 44 is located closer to the internal space 7 side than the protrusion 42 .
  • the rib 44 is spaced apart from the seal sliding surface 11 . Sufficient oil permeability is ensured so that the protrusion 42 and the seal sliding surface 11 are in a state of fluid lubrication by the lubricating oil supplied to the gap 43 from the outside and the lubricating oil flowing out from the internal space 7 into the gap 43. is possible.
  • the rib 44 faces the gap 43 at its outer end 45 .
  • the opposing direction is the length direction of the protrusion 42 (the length direction of the gap 43) on the above-described imaginary plane, the direction along the gap 43 and the seal sliding surface 11, and the axial direction in the illustrated example. .
  • a space is formed between the end portion 45 of the rib 44 and the projection 42 .
  • the plurality of projections 42 of the seal lip 41 can provide fluid lubrication between the seal lip 41 and the seal sliding surface 11. Since the seal lip 41 has the plurality of projections 42 and the ribs 44 arranged out of phase with each other so as to face the gaps 43, the projections 42 adjacent in the circumferential direction and the ribs 44 form a labyrinth to form a bearing. Intrusion of foreign matter into the interior can be suppressed. As a result, since the labyrinth suppresses the flow of the external lubricating oil to the internal space 7, a reduction in stirring resistance can be expected.
  • the ribs 44 are spaced apart from the seal sliding surface 11, they are not in contact with the seal sliding surface 11, and the ribs 44 and the seal sliding surface 11 do not contact each other.
  • the shear resistance of the lubricating oil does not increase between This prevents the ribs 44 from adversely affecting seal torque reduction.
  • the shape of the cut surface along the circumferential direction of the rib 44 is the same shape as the protrusion 42 . Therefore, even if the gap between the rib 44 and the seal sliding surface 11 disappears due to abnormal flexural deformation of the seal lip 41, the sliding portion between the rib 44 and the seal sliding surface 11 is in a fluid lubrication state. so there is no problem.
  • the rib 44 is formed discontinuously with the projection 42, but the rib may be formed continuously with the projection, or the rib may be formed as a connecting portion for connecting circumferentially adjacent projections in a series. .
  • FIG. 15 and 16 A fifth embodiment will be described based on FIGS. 15 and 16.
  • FIG. The fifth embodiment is another example of the invention according to the second means. Here, only changes from the fourth embodiment will be described.
  • the protrusions 51 and ribs 52 according to the fifth embodiment are hemispherical.
  • the hemispherical shape means that the surface forms a convex curved shape on the cut surface along the circumferential direction, and the surface also forms a convex curved shape on the cut surface perpendicular to the circumferential direction, and the convex curved shape is a circle.
  • a solitary shape is also included, but it is not limited to a form in which half of a sphere protrudes.
  • the hemispherical shape has a curvature capable of securing a Hertzian contact area necessary for achieving fluid lubrication at the sliding portion with the seal sliding surface 11 .
  • the lubricating oil between the projection 51 and the seal sliding surface 11 can reduce the shear resistance of
  • the hemispherical ribs 52 can suppress the shear resistance of the lubricating oil particularly on the outer side of the ribs 52 near the seal sliding surface 11 .
  • FIG. 17 to 19 A sixth embodiment will be described based on FIGS. 17 to 19.
  • FIG. The sixth embodiment is an example of the invention according to the third means.
  • the protrusions 62a and 62b that are adjacent in the circumferential direction are inclined in opposite directions in the circumferential direction. extending in the direction of
  • the projections 62a and 62b have a substantially rectangular shape with rounded two corners on the seal sliding surface 11 side.
  • a first projection 62a extending in a direction inclined to one side in the circumferential direction and a first projection 62a adjacent to the other side in the circumferential direction of the first projection 62a and the other side in the circumferential direction
  • the second protrusion 62b extending in a direction inclined to the side is continuous at an end portion 62c on the inner space 7 side.
  • a pair of the first protrusion 62a and the second protrusion 62b extends in a V shape outward from the end 62c.
  • the gap 63a formed by the pair is wide on the outside and narrow on the inner space 7 side.
  • the gap 63b between two pairs adjacent in the circumferential direction is narrow on the outside and wide on the inner space 7 side. Since the gap 63a formed by the pair of projections 62a and 62b becomes narrower toward the internal space 7 side, part of the lubricating oil flowing toward the internal space 7 collides with the gap 63a, and as with the ribs described above, it is possible to prevent foreign matter from entering. can. Since the gap 63b is narrow on the outside, foreign matter does not particularly easily enter through the gap 63b.
  • first projection 62a and the second projection 62b extend in directions inclined in directions opposite to each other in the circumferential direction, and the pair of the first projection 62a and the second projection 62b provide a wide range in the circumferential direction. Therefore, even if the number of protrusions 62a and 62b arranged in the circumferential direction is reduced, that is, even if the number of gaps 63a and 63b is reduced, the number of protrusions 62a , 62b do not come into solid contact with the seal sliding surface 11 due to the tightening force, the rigidity of the seal lip 61 can be secured.
  • the plurality of projections 62a and 62b of the seal lip 61 can provide fluid lubrication between the seal lip 61 and the seal sliding surface 11. Since the first projection 62a and the second projection 62b, which are adjacent in the circumferential direction, extend in opposite directions in the circumferential direction, the gaps 63a and 63b, which serve as paths for foreign matter to enter, are reduced to reduce the gaps 63a and 63b. Intrusion of foreign matter into the interior can be suppressed.
  • the bearing with seal according to the sixth embodiment has a plurality of protrusions 62a and 62b, the first protrusion 62a extending in a direction inclined to one side in the circumferential direction, and the other side in the circumferential direction of the first protrusion 62a. Since the second projections 62b adjacent to each other and extending in a direction inclined to the other side in the circumferential direction are continuous with each other at the end portion 62c on the side of the internal space 7, the pair of the first projection 62a and the second projection 62b are connected to each other.
  • the mold transfer surface for molding can be processed in series, and the processing cost can be suppressed.
  • the mold transfer surface can be processed by cutting a series of grooves on the mold so as to draw a V-shaped trajectory with an end mill.
  • a pair of the first projection and the second projection can be molded as discontinuous portions at the ends on the inner space side of each other. It is necessary to move the end mill up and down in order to switch between the cutting of the transfer surface for forming the second protrusion, which is disadvantageous in terms of processing cost.
  • the seal member is composed of a metal core and a vulcanized rubber material, but the present invention is applicable to a seal member formed of a single material such as a rubber material or a resin material. It is also possible to
  • the present invention is applied to a seal lip (axial lip) that exhibits a sealing action with a seal sliding surface having a gradient exceeding 45° with respect to the axial direction. It is also possible to
  • an inner ring rotating radial ball bearing was exemplified, but the present invention can also be applied to an appropriate type such as an outer ring rotating bearing, a thrust bearing, or a roller bearing.
  • an outer ring rotating bearing a thrust bearing
  • a roller bearing a roller bearing
  • the streamlined end portion of the protrusion of the third embodiment can be applied to the protrusions of the above-described embodiments. It is possible to apply
  • flying cars so-called flying cars
  • Flying cars are expected to solve the above social problems, and are expected to be used in various situations such as movement within and between regions, tourism and leisure, emergency medical care, and disaster relief.
  • VTOL vertical take-off and landing aircraft
  • eVTOL electric vertical take-off and landing aircraft
  • the sealed bearing according to the present invention is suitable for high-speed rotation and excellent in low-torque characteristics (energy-saving operability). It is also suitable for parts.
  • FIG. 20 shows an electric vertical take-off and landing aircraft equipped with a sealed bearing according to the present invention.
  • the electric vertical take-off and landing aircraft 101 shown in FIG. 20 is a multicopter having a main body 102 located in the center of the aircraft body and four drive units 103 arranged in the front, rear, left and right.
  • the drive unit 103 is a device that generates lift and propulsion of the electric vertical take-off and landing aircraft 101 , and the electric vertical take-off and landing aircraft 101 flies by driving the drive unit 103 .
  • the electric vertical take-off and landing aircraft 101 may have a plurality of driving units 103, and the number is not limited to four.
  • the body part 102 has a living space in which passengers (for example, about 1-2 people) can board.
  • This living space is equipped with an operating system for determining the direction of travel and altitude, as well as instruments that indicate altitude, speed, flight position, and so on.
  • Four arms 102a extend from the main body portion 102, and a driving portion 103 is provided at the tip of each arm 102a.
  • the arm 102a is integrally provided with an annular portion that covers the rotating circumference of the rotor blade 104 in order to protect the rotor blade 104.
  • a skid 102b is provided at the bottom of the main body 102 to support the aircraft during landing.
  • the drive unit 103 has a rotor blade 104 and a motor 105 that rotates the rotor blade 104 .
  • a pair of rotor blades 104 are provided on both sides of the motor 105 in the axial direction.
  • Each rotor blade 104 has two blades extending radially outward.
  • the main body 102 is provided with a battery (not shown) and a control device (not shown). Controllers are also called flight controllers. Control of the electric vertical take-off and landing aircraft 101 is performed by the control device, for example, as follows. Based on the difference between the current attitude and the target attitude, the control device outputs a rotation speed change command to the motor 105 to adjust the lift force. Based on the command, an amplifier provided in motor 105 adjusts the amount of electric power sent from the battery to motor 105, and the rotation speed of motor 105 (and rotor blade 104) is changed. In addition, the adjustment of the number of rotations of the motors 105 is performed simultaneously for the plurality of motors 105, thereby determining the attitude of the aircraft.
  • FIG. 21 shows a partial cross-sectional view of the motor in the driving section.
  • the above-described rotary blade is attached to one end side (upper side of the drawing) of the rotating shaft 107 of the motor 105, and the rotor is attached to the other end side (lower side of the drawing).
  • the rotor is arranged opposite a stator fixed to the housing 106 and is rotatable relative to the stator.
  • the motor 105 can employ a configuration of an outer rotor type brushless motor or an inner rotor type brushless motor.
  • the motor 105 includes a housing (device housing) 106, a rotor (not shown), a stator (not shown), an amplifier (not shown), and two rolling bearings 110,110.
  • the housing 106 has an outer cylinder 106a and an inner cylinder 106b, between which a cooling medium flow path 106c is provided. Excessive temperature rise can be prevented by flowing the cooling medium through the flow path 106c.
  • the material of the housing 106 is not particularly limited, and for example, an iron-based material, CFRP (carbon fiber reinforced plastic), or the like can be used.
  • the rolling bearing 110 corresponds to any one of the first to sixth embodiments described above.
  • Rolling bearing 110 rotatably supports rotating shaft 107 within housing 106 .
  • the outer ring 111 of the rolling bearing 110 has the same outer diameter shape as the fitting portion on the inner periphery of the housing, and is directly fitted to the housing 106 without interposing a bearing housing or the like.
  • An inner ring spacer 108 is inserted between the inner rings 112 of the rolling bearings 110, 110, an outer ring spacer 109 is inserted between the outer rings 111, and preload is applied.
  • the bearing configuration in the driving portion is not limited to the configuration in FIG. In FIG. 21, the rotating shaft of the motor and the rotating shaft of the rotor blades are the same rotating shaft, but the rotating shaft of the motor and the rotating shaft of the rotor blades may be connected via a transmission mechanism.
  • the rolling bearing that supports the rotating shaft in the drive section may be the rolling bearing that supports the rotating shaft of the motor, or the rolling bearing that supports the rotating shaft of the rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Of Bearings (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Devices (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

The present invention suppresses the intrusion of foreign matter into the interior of a bearing in a seal-equipped bearing in which, due to a plurality of protrusions in a seal lip, a fluid lubrication condition can be created between the seal lip and a seal sliding surface. As a means therefor, the protrusions (12) extend in a diagonal direction such that lubricating oil in gaps (13) between the protrusions (12) is pressurized in the direction of exiting to the exterior, in conjunction with the rotation of the bearing. Alternatively, the seal lip has ribs that are positioned out of phase with the plurality of protrusions so as to face the gaps, and are positioned with a space between the ribs and the seal sliding surface. Alternatively, protrusions that are neighboring in the circumferential direction extend in directions that are slanted with regard to the circumferential direction, in directions opposing one another.

Description

シール付軸受Sealed bearing
 この発明は、転がり軸受及びシール部材を備えるシール付軸受に関する。 The present invention relates to a sealed bearing comprising a rolling bearing and a sealing member.
 転がり軸受の早期破損を防止するため、シール部材が利用されている。例えば、自動車、各種建設用機械等の車両に搭載されたトランスミッション内にはギアの摩耗粉等の異物が混在するため、シール部材により、摩耗粉等の軸受内部への侵入を防止している。 A seal member is used to prevent early damage to the rolling bearing. For example, in transmissions mounted on vehicles such as automobiles and various construction machines, foreign matter such as wear powder of gears is mixed, so a seal member prevents the wear powder from entering the inside of the bearing.
 一般に、シール部材は、ゴム状材料等で環状に形成されたシールリップを有する。軌道輪、スリンガ等、軸受回転に伴ってシール部材に対して周方向に相対回転する相手部品には、シールリップと摺接するシール摺動面が形成されている。 Generally, the sealing member has a ring-shaped sealing lip made of a rubber-like material or the like. A mating part such as a bearing ring, a slinger, or the like, which rotates relative to the seal member in the circumferential direction as the bearing rotates, is formed with a seal sliding surface that makes sliding contact with the seal lip.
 一般的なシール部材は、シールリップとシール摺動面が全周で滑り接触し、微視的には固体接触領域を伴っている。シールリップの引き摺り抵抗(シールトルク)は、軸受トルクの上昇を招く。また、その滑り接触は、転がり軸受の温度上昇の一因となる。また、軸受内部が外部に対してシール部材で閉塞されるので、軸受内部と外部間の圧力差によってシールリップがシール摺動面に押し付けられる吸着作用が生じてシールトルクが増大することがある。これらのことから、一般的なシール部材では、軸受の高速運転に限界がある。 In general seal members, the seal lip and the seal sliding surface are in sliding contact all around, and microscopically, there is a solid contact area. The drag resistance (seal torque) of the seal lip causes an increase in bearing torque. Moreover, the sliding contact contributes to the temperature rise of the rolling bearing. In addition, since the inside of the bearing is closed off from the outside by the seal member, the pressure difference between the inside and the outside of the bearing causes the seal lip to press against the seal sliding surface, causing an adsorption effect, which may increase the seal torque. For these reasons, there is a limit to the high-speed operation of bearings with common sealing members.
 シール部材のシールリップを相手部品と非接触に配置し、ラビリンスシールを形成すれば、シールトルクを無くすことは可能だが、シール部材及び相手部品間の隙間の大きさについて所定粒径の異物侵入を防止できるような各種誤差の管理が難しい。 If the seal lip of the seal member is arranged so as not to contact the mating part and forms a labyrinth seal, it is possible to eliminate the seal torque. It is difficult to manage various errors that can be prevented.
 これに対し、シールリップが周方向に並んだ複数の突起を有し、これら複数の突起が周方向に隣り合う突起同士の間を通じて軸受内部と外部に連通する隙間を生じさせ、かつ軸受回転に伴って隙間から突起とシール摺動面間に引き摺り込まれる潤滑油の油膜によってシールリップ及びシール摺動面間を流体潤滑状態にすることができるシール付軸受が提案されている(特許文献1)。 On the other hand, the seal lip has a plurality of projections arranged in the circumferential direction. A seal-equipped bearing has been proposed in which the seal lip and the seal sliding surface can be brought into a fluid lubrication state by an oil film of lubricating oil that is dragged between the projection and the seal sliding surface through the gap (Patent Document 1). .
 特許文献1のシール付軸受は、所定粒径の異物侵入を防ぐことが可能な隙間を通じて転がり軸受の内部空間と外部間での潤滑油の流通を許すことにより、シール摺動面上での潤滑油を潤沢とし、軸受回転に伴って潤滑油を突起とシール摺動面間に引き摺り込ませる際のくさび効果により、油膜を厚く形成して各突起とシール摺動面を油膜で完全に分離させ、シールリップとシール摺動面間を流体潤滑状態にすることができる。このため、特許文献1のシール付軸受によれば、所定粒径の異物侵入を防ぎつつ軸受の高速運転に対応可能でありながら、シールトルクを著しく低減することができる。 In the bearing with seal of Patent Document 1, lubrication on the seal sliding surface is achieved by allowing lubricating oil to flow between the internal space and the outside of the rolling bearing through a gap that can prevent foreign matter of a predetermined particle size from entering. Lubricating with oil, the wedge effect when lubricating oil is drawn between the projections and the seal sliding surface as the bearing rotates forms a thick oil film, completely separating each projection and the seal sliding surface with the oil film. , a fluid lubricating state can be established between the seal lip and the seal sliding surface. Therefore, according to the sealed bearing of Patent Document 1, the seal torque can be significantly reduced while preventing the intrusion of foreign matter of a predetermined particle size and enabling the bearing to operate at high speed.
国際公開第2016/143786号WO2016/143786
 しかしながら、特許文献1のシールリップは、放射方向に真っすぐ延びる多数の突起を一列だけ有するため、周方向に隣り合う突起同士の間に生じた隙間は、直線的に軸受内部と外部に連通する。隙間の流路断面高さよりも小さい粒径の異物は、隙間を直線的に流されて軸受内部へ侵入し易い。前述の小異物といえども、軸受内部に多く侵入すれば、小異物による軌道面のピーリング、面荒れから音響劣化や振動の発生に至る虞がある。このため、小異物であっても軸受内部への侵入を抑えることが好ましく、この点で特許文献1のシール付軸受には改良の余地がある。 However, since the seal lip of Patent Document 1 has only one row of a large number of projections extending straight in the radial direction, gaps generated between adjacent projections in the circumferential direction communicate linearly between the inside and outside of the bearing. Foreign matter with a particle diameter smaller than the cross-sectional height of the passage of the gap is likely to flow straight through the gap and enter the bearing. Even the above-mentioned small foreign matters may cause peeling and surface roughness of the raceway surface due to the small foreign matters if they enter the inside of the bearing in large amounts, leading to deterioration of sound and generation of vibration. For this reason, it is preferable to prevent even small foreign matter from entering the bearing.
 上述の背景に鑑み、この発明が解決しようとする課題は、シールリップの複数の突起によってシールリップとシール摺動面間を流体潤滑状態にすることが可能なシール付軸受において、軸受内部への異物侵入を抑制することである。 In view of the background described above, the problem to be solved by the present invention is to provide a sealed bearing in which a plurality of protrusions on the seal lip allow fluid lubrication between the seal lip and the seal sliding surface. It is to suppress the intrusion of foreign matter.
 上記の課題を達成するための第一の手段として、この発明は、転がり軸受の内部空間を外部に対して密封するシール部材と、前記シール部材に対して周方向に摺動するシール摺動面とを備え、前記シール部材は、環状に形成されたシールリップを有し、前記シールリップは、周方向に並んだ複数の突起を有し、前記複数の突起は、周方向に隣り合う前記突起同士の間を通じて前記内部空間と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突起と前記シール摺動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シール摺動面間を流体潤滑状態にすることが可能な態様で形成されているシール付軸受において、前記突起は、外部側に向かって周方向一方側へ傾いた方向に延びている構成を採用した。 As a first means for achieving the above object, the present invention provides a seal member for sealing the internal space of a rolling bearing from the outside, and a seal sliding surface that slides in the circumferential direction against the seal member. wherein the seal member has a ring-shaped seal lip, the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections are adjacent to each other in the circumferential direction The seal lip and the seal are separated from each other by an oil film of lubricating oil that is drawn between the protrusion and the seal sliding surface through the gap as the bearing rotates. In the sealed bearing formed in such a manner that the sliding surfaces can be fluidly lubricated, the protrusions are configured to extend in a direction inclined to one side in the circumferential direction toward the outside. .
 上記第一の手段によれば、シールリップの複数の突起によってシールリップとシール摺動面間を流体潤滑状態にすることが可能なシール付軸受において、それら突起が外部側に向かって周方向一方側へ傾いた方向に延びているので、シール摺動面の周囲にねじ状に配置されることになる。したがって、シール付軸受の使用に際し、突起が軸受回転に伴って隙間内の潤滑油を外部へ出す方向に加圧するように軸受回転方向を選択すれば、それら突起とシール摺動面により、隙間から軸受内部への異物侵入を阻害するようなスクリューポンピング作用が奏されるので、軸受内部への異物侵入を抑制することができる。 According to the above first means, in the sealed bearing in which the seal lip and the seal sliding surface can be brought into a state of fluid lubrication by the plurality of projections of the seal lip, the projections extend outward in the circumferential direction. Since it extends in a direction inclined to the side, it is arranged in a threaded manner around the seal sliding surface. Therefore, when using a bearing with a seal, if the rotation direction of the bearing is selected so that the projections pressurize the lubricating oil in the clearance to the outside as the bearing rotates, the projections and the seal sliding surface will prevent Since a screw pumping action is provided to prevent foreign matter from entering the bearing, entry of foreign matter into the bearing can be suppressed.
 例えば、前記突起は、径方向に対して傾斜した直線状に形成されている。 For example, the protrusion is formed in a straight line that is inclined with respect to the radial direction.
 好ましくは、前記突起は、周方向一方側へ曲がる曲線状に形成されているとよい。このようにすると、直線状に形成された突起に比して突起が長くなるので、隙間での潤滑油の流れの圧力損失を大きくして(ラビリンス効果)、より異物侵入を抑制することができる。 Preferably, the projection is formed in a curved shape that curves to one side in the circumferential direction. In this way, the projections are longer than the linearly formed projections, so the pressure loss of the lubricating oil flow in the gaps is increased (labyrinth effect), and the intrusion of foreign matter can be further suppressed. .
 上記の課題を達成するための第二の手段として、この発明は、転がり軸受の内部空間を外部に対して密封するシール部材と、前記シール部材に対して周方向に相対回転するシール摺動面とを備え、前記シール部材は、環状に形成されたシールリップを有し、前記シールリップは、周方向に並んだ複数の突起を有し、前記複数の突起は、周方向に隣り合う前記突起同士の間を通じて前記内部空間と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突起と前記シール摺動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シール摺動面間を流体潤滑状態にすることが可能な態様で形成されているシール付軸受において、前記シールリップは、前記隙間と対向するように前記複数の突起と位相をずらして配置されかつ前記シール摺動面との間に間隔を空けて配置されたリブを有する構成を採用した。 As a second means for achieving the above object, the present invention provides a seal member that seals the internal space of a rolling bearing from the outside, and a seal sliding surface that rotates relative to the seal member in the circumferential direction. wherein the seal member has a ring-shaped seal lip, the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections are adjacent to each other in the circumferential direction The seal lip and the seal are separated from each other by an oil film of lubricating oil that is drawn between the protrusion and the seal sliding surface through the gap as the bearing rotates. In a bearing with a seal formed in such a manner that a fluid lubricating state can be established between sliding surfaces, the seal lip is arranged out of phase with the plurality of projections so as to face the gap, and the A structure having ribs spaced apart from the seal sliding surface was adopted.
 上記第二の手段によれば、軸受回転に伴い、シールリップの複数の突起によってシールリップとシール摺動面間を流体潤滑状態にすることが可能である。リブは、それら複数の突起と位相をずらして隙間と対向しているので、隙間から内部空間側へ流出する潤滑油の一部がリブに衝突するようなラビリンスを周方向に隣り合う突起同士と共に形成して、軸受内部への異物侵入を抑制することができる。そのリブは、シール摺動面との間に間隔を空けて配置されているので、シール摺動面と非接触の状態にあり、また、リブとシール摺動面との間で潤滑油のせん断抵抗が大きくならない。これにより、リブがシールトルク低減性に悪影響を及ぼすことが避けられる。 According to the second means, it is possible to bring the seal lip and the seal sliding surface into a fluid lubrication state by means of the plurality of projections of the seal lip as the bearing rotates. Since the ribs face the gaps out of phase with the plurality of protrusions, a labyrinth in which part of the lubricating oil flowing out from the gaps into the internal space collides with the ribs is formed together with the protrusions adjacent in the circumferential direction. By forming it, it is possible to suppress the entry of foreign matter into the bearing. Since the ribs are spaced apart from the seal sliding surface, they are not in contact with the seal sliding surface. resistance does not increase. This avoids the ribs from adversely affecting seal torque reduction.
 例えば、前記突起と前記リブは、それぞれ周方向に対して直交する方向に直線状に延びている。 For example, the protrusion and the rib each extend linearly in a direction perpendicular to the circumferential direction.
 好ましくは、前記突起と前記リブは、それぞれ半球状であるとよい。このようにすると、直線状の突起、リブに比してシール摺動面との間での潤滑油のせん断抵抗を抑えることができる。 Preferably, the protrusion and the rib are each hemispherical. By doing so, it is possible to suppress the shear resistance of the lubricating oil between the seal sliding surface and the linear projections or ribs.
 上記の課題を達成するための第三の手段として、この発明は、転がり軸受の内部空間を外部に対して密封するシール部材と、前記シール部材に対して周方向に相対回転するシール摺動面とを備え、前記シール部材は、環状に形成されたシールリップを有し、前記シールリップは、周方向に並んだ複数の突起を有し、前記複数の突起は、周方向に隣り合う前記突起同士の間を通じて前記内部空間と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突起と前記シール摺動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シール摺動面間を流体潤滑状態にすることが可能な態様で形成されているシール付軸受において、前記周方向に隣り合う突起同士は、互いに周方向に相反する方へ傾いた方向に延びている構成を採用した。 As a third means for achieving the above object, the present invention provides a seal member for sealing the internal space of a rolling bearing against the outside, and a seal sliding surface that rotates relative to the seal member in the circumferential direction. wherein the seal member has a ring-shaped seal lip, the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections are adjacent to each other in the circumferential direction The seal lip and the seal are separated from each other by an oil film of lubricating oil that is drawn between the protrusion and the seal sliding surface through the gap as the bearing rotates. In the bearing with a seal formed in such a manner that the sliding surfaces can be fluidly lubricated, the protrusions adjacent to each other in the circumferential direction extend in opposite directions in the circumferential direction. adopted the configuration.
 上記第三の手段によれば、軸受回転に伴い、シールリップの複数の突起によってシールリップとシール摺動面間を流体潤滑状態にすることが可能である。周方向に隣り合う突起同士は、互いに周方向に相反する方へ傾いた方向に延びているので、異物侵入経路となる隙間を減少させて軸受内部への異物侵入を抑制することができる。 According to the third means, it is possible to bring the seal lip and the seal sliding surface into a state of fluid lubrication by means of the plurality of projections of the seal lip as the bearing rotates. Since the protrusions adjacent to each other in the circumferential direction extend in opposite directions to each other in the circumferential direction, it is possible to reduce the gap serving as a path for foreign matter to enter, thereby suppressing foreign matter from entering the bearing.
 具体的には、前記複数の突起のうち、周方向一方側へ傾いた方向に延びる第一の突起と、前記第一の突起の周方向他方側に隣接しかつ周方向他方側へ傾いた方向に延びる第二の突起は、互いの内部空間側の端部で連続しているとよい。このようにすると、一対の第一の突起と第二の突起を成形するための金型転写面を一連に加工することができ、ひいては加工コストを抑えることができる。 Specifically, among the plurality of projections, a first projection extending in a direction inclined to one side in the circumferential direction, and a direction adjacent to the other side in the circumferential direction of the first projection and inclined to the other side in the circumferential direction It is preferable that the second protrusions extending to the inner space are continuous with each other at the ends on the inner space side. By doing so, the mold transfer surfaces for molding the pair of first projections and second projections can be processed in series, and the processing cost can be suppressed.
 上記第一から第三の手段の各手段では、前記突起は、前記シール摺動面との摺動部よりも内部空間側に位置する流線形端部を有し、前記流線形端部は、内部空間側に向かって前記突起の周方向幅及び高さを次第に小さくした形状であるとよい。このようにすると、突起の流線形端部により、隙間を突起に沿って内部空間側へ流れる潤滑油の乱流化が防止されるので、潤滑油の攪拌抵抗を減少させるのに好適である。 In each of the above first to third means, the projection has a streamlined end positioned closer to the internal space than the sliding portion with the seal sliding surface, and the streamlined end is: It is preferable that the protrusion has a shape in which the circumferential width and height of the protrusion gradually decrease toward the inner space side. With this configuration, the streamlined end of the projection prevents the lubricating oil flowing through the gap along the projection toward the internal space from becoming turbulent, which is suitable for reducing the stirring resistance of the lubricating oil.
 また、上記第一から第三の手段の各手段では、前記突起と前記シール摺動面の摺動部から内部空間側に向かって前記シールリップと前記シール摺動面とが形成する角度αは、0°<α≦45°であるとよい。このようにすると、シールリップとシール摺動面の角度αを形成する領域において潤滑油を外部へ排出するようなポンピング作用を発生させることができ、ひいては、軸受内部での潤滑油の撹拌抵抗を減少させるのに好適である。 Further, in each of the first to third means, the angle α formed by the seal lip and the seal sliding surface toward the inner space side from the sliding portion of the protrusion and the seal sliding surface is , 0°<α≦45°. In this way, a pumping action can be generated to discharge the lubricating oil to the outside in the region where the angle α between the seal lip and the seal sliding surface is formed. suitable for reducing
 また、上記第一から第三の手段の各手段では、前記突起と前記シール摺動面の合成粗さσは、0.9μm以下であるとよい。このようにすると、突起とシール摺動面の摺動部を極めて低周速のときから流体潤滑状態にするのに好適である。 Further, in each of the first to third means, the combined roughness σ of the protrusion and the seal sliding surface is preferably 0.9 μm or less. This is suitable for bringing the sliding portion between the protrusion and the seal sliding surface into a fluid lubrication state from an extremely low peripheral speed.
 この発明は、上記第一から第三の手段の中の少なくとも一つの手段に係る構成を採用することにより、シールリップの複数の突起によってシールリップとシール摺動面間を流体潤滑状態にすることが可能なシール付軸受において、軸受内部への異物侵入を抑制することができる。 According to the present invention, by adopting a configuration relating to at least one of the above first to third means, a plurality of projections on the seal lip provide fluid lubrication between the seal lip and the seal sliding surface. Entry of foreign matter into the bearing can be suppressed in a sealed bearing capable of
この発明の第一実施形態に係るシール付軸受を示す断面図1 is a cross-sectional view showing a sealed bearing according to a first embodiment of the present invention; 図1のシールリップの自然状態を示す部分断面図FIG. 2 is a partial sectional view showing the natural state of the seal lip of FIG. 1; 図2の突起付近の拡大左側面図Enlarged left side view near the protrusion in FIG. 図1の突起付近の拡大図Enlarged view of the vicinity of the protrusion in Fig. 1 図1の隙間付近の拡大右側面図Enlarged right side view near the gap in Fig. 1 図4のVI-VI切断線の断面図Sectional view of the VI-VI cutting line of FIG. この発明の第二実施形態に係るシールリップを図3と同様に示す左側面図FIG. 3 is a left side view of a seal lip according to a second embodiment of the invention, similar to FIG. この発明の第二実施形態に係る隙間を図6と同様に示す断面図FIG. 7 is a cross-sectional view similar to FIG. 6 showing the gap according to the second embodiment of the present invention; この発明の第二実施形態に係る隙間付近を図5と同様に示す右側面図FIG. 6 is a right side view similar to FIG. 5 showing the vicinity of the gap according to the second embodiment of the present invention; この発明の第三実施形態に係る突起を示す平面展開図FIG. 4 is a plan development view showing a projection according to a third embodiment of the present invention; この発明の第三実施形態に係る突起の斜視図The perspective view of the protrusion which concerns on 3rd embodiment of this invention この発明の第四実施形態に係るシールリップを図14のXII-XII切断線で示す断面図FIG. 14 is a cross-sectional view showing the seal lip according to the fourth embodiment of the present invention along the line XII-XII in FIG. 14; 第四実施形態に係るシールリップを図3と同様に示す左側面図The left side view showing the seal lip according to the fourth embodiment in the same manner as in FIG. 図12に示す突起の長さ方向に沿ったXIV-XIV切断線の断面図Cross-sectional view of the XIV-XIV section line along the length direction of the protrusion shown in FIG. この発明の第五実施形態に係るシールリップを図4と同様に示す断面図FIG. 5 is a cross-sectional view similar to FIG. 4 showing a seal lip according to a fifth embodiment of the present invention; 図15に示す突起の長さ方向に沿ったXVI-XVI切断線の断面図Cross-sectional view of the XVI-XVI cutting line along the length direction of the protrusion shown in FIG. この発明の第六実施形態に係るシールリップを図4と同様に示す断面図FIG. 5 is a cross-sectional view similar to FIG. 4 showing a seal lip according to a sixth embodiment of the present invention; 図17に示す突起の長さ方向に沿ったXVIII-XVIII切断線の断面図Cross-sectional view of section line XVIII-XVIII along the length of the protrusion shown in FIG. 第六実施形態に係るシールリップを図3と同様に示す左側面図The left side view which shows the seal lip which concerns on 6th embodiment similarly to FIG. この発明のシール付軸受が搭載される電動垂直離着陸機の斜視図A perspective view of an electric vertical take-off and landing aircraft equipped with the sealed bearing of the present invention. 図20に示す電動垂直離着陸機の駆動部におけるモータの一部断面図Partial cross-sectional view of the motor in the drive unit of the electric vertical take-off and landing aircraft shown in FIG.
 上記第一の手段に係る発明の一例として、第一実施形態に係るシール付軸受を添付図面の図1~図6に基づいて説明する。 As an example of the invention according to the first means, a sealed bearing according to the first embodiment will be described with reference to FIGS. 1 to 6 of the accompanying drawings.
 図1に示すこのシール付軸受は、転がり軸受1と、転がり軸受1の両側に配置された二つのシール部材2とを備える。  This sealed bearing shown in FIG.
 転がり軸受1は、内輪3と、外輪4と、内輪3と外輪4との間に介在する複数の転動体5と、複数の転動体5を保持する保持器6とで構成されている。シール部材2は、転がり軸受1の内部空間7を外部に対して密封する。この密封の目的は、このシール付軸受の周囲である外部の異物が内外輪3、4間の内部空間7に侵入することを抑制して転がり軸受1の早期損傷を防止することであり、内部空間7を液密に密封することではない。 The rolling bearing 1 is composed of an inner ring 3, an outer ring 4, a plurality of rolling elements 5 interposed between the inner ring 3 and the outer ring 4, and a retainer 6 that holds the plurality of rolling elements 5. The sealing member 2 seals the inner space 7 of the rolling bearing 1 from the outside. The purpose of this sealing is to prevent foreign matter from entering the inner space 7 between the inner and outer rings 3 and 4, which is the periphery of the sealed bearing, and prevent early damage to the rolling bearing 1. It is not to seal the space 7 in a liquid-tight manner.
 内輪3及び外輪4は、転動体5に対応の軌道面を有する。内輪3は、回転軸Sに取り付けられ、回転軸Sと一体に回転する。外輪4は、ハウジング、ギア等、回転軸からの荷重を負荷させる部材に取り付けられる。転動体5は、内輪3及び外輪4間に介在しながら公転する。 The inner ring 3 and outer ring 4 have raceway surfaces corresponding to the rolling elements 5 . The inner ring 3 is attached to the rotating shaft S and rotates together with the rotating shaft S. The outer ring 4 is attached to a member such as a housing, a gear, or the like that applies a load from the rotating shaft. The rolling elements 5 revolve while being interposed between the inner ring 3 and the outer ring 4 .
 転動体5として、玉が採用されている。このシール付軸受は、深溝玉軸受となっている。 A ball is adopted as the rolling element 5. This sealed bearing is a deep groove ball bearing.
 内部空間7は、外部から供給される潤滑油(図示省略。以下、同じ。)によって潤滑される。潤滑方式としては、例えば、潤滑油をシール付軸受に掛けるはね掛け方式、又はシール付軸受の下部をオイルバスに漬ける油浴方式が挙げられる。初期潤滑剤として内部空間7に適量のグリースが封入されていてもよい。 The internal space 7 is lubricated with lubricating oil (not shown; hereinafter the same) supplied from the outside. Lubricating methods include, for example, a splashing method in which lubricating oil is applied to the bearing with a seal, and an oil bath method in which the lower portion of the bearing with a seal is immersed in an oil bath. An appropriate amount of grease may be filled in the internal space 7 as an initial lubricant.
 回転軸Sは、例えば、車両のトランスミッション、ディファレンシャル、等速ジョイント、プロペラシャフト、ターボチャージャ、工作機械、風力発電機及びホイール軸受の中のいずれか一つに備わる回転部として設けられる。 The rotating shaft S is provided as a rotating part provided in any one of, for example, a vehicle transmission, differential, constant velocity joint, propeller shaft, turbocharger, machine tool, wind power generator, and wheel bearing.
 なお、以下では、シール付軸受の軸受中心軸(図示省略、以下、同じ。)に沿った方向を「軸方向」という。軸方向に直交する方向を「径方向」という。軸受中心軸回りの円周方向を「周方向」という。図示例において、軸受中心軸は、回転輪とする内輪3の中心軸であり、同図において左右方向に相当する。 In addition, hereinafter, the direction along the bearing center axis (not shown, hereinafter the same) of the bearing with seal will be referred to as the "axial direction". A direction orthogonal to the axial direction is called a “radial direction”. The circumferential direction around the bearing center axis is called the “circumferential direction”. In the illustrated example, the bearing center axis is the center axis of the inner ring 3 which is a rotating ring, and corresponds to the left-right direction in the figure.
 外輪4の内周の端部に、シール部材2を保持するシール溝8が形成されている。シール部材2は、その外周縁をシール溝8に圧入することにより、外輪4に取り付けられる。 A seal groove 8 for holding the seal member 2 is formed at the end of the inner circumference of the outer ring 4 . The seal member 2 is attached to the outer ring 4 by press-fitting its outer peripheral edge into the seal groove 8 .
 このシール付軸受を囲む外部には、ギアの摩耗粉、クラッチの摩耗粉、微小砕石等、このシール付軸受の組み込み先に応じた異物が存在する。このような粉状の異物は、潤滑油や雰囲気の流れによってシール部材2付近に到達し得る。シール部材2は、外部から内部空間7への異物侵入を抑制するためのものである。  Externally surrounding this sealed bearing, there are foreign matter depending on where this sealed bearing is installed, such as gear wear powder, clutch wear powder, fine crushed stones, etc. Such powdery foreign matter can reach the vicinity of the seal member 2 due to the flow of lubricating oil or atmosphere. The sealing member 2 is for preventing foreign matter from entering the internal space 7 from the outside.
 シール部材2は、金属板製の芯金9と、環状に形成されたシールリップ10とを有する。芯金9は、周方向に連なる環状に形成されたプレス加工部品になっている。シールリップ10は、加硫成形されたゴム材により形成されている。ゴム材として、例えば、ニトリルゴム(NBR)、アクリルゴム(ACM)、フッ素ゴム(FKM)等が挙げられる。 The sealing member 2 has a core metal 9 made of a metal plate and a seal lip 10 formed in an annular shape. The cored bar 9 is a press-worked part that is annularly formed and continues in the circumferential direction. The seal lip 10 is made of vulcanized rubber. Examples of rubber materials include nitrile rubber (NBR), acrylic rubber (ACM), and fluororubber (FKM).
 内輪3の外周には、シールリップ10に対して周方向に摺動するシール摺動面11が形成されている。シール摺動面11は、周方向全周に連続する円筒面状になっている。 A seal sliding surface 11 that slides on the seal lip 10 in the circumferential direction is formed on the outer circumference of the inner ring 3 . The seal sliding surface 11 is in the shape of a cylindrical surface that continues along the entire circumferential direction.
 シールリップ10は、ラジアルリップになっている。ここで、ラジアルリップは、軸方向に沿ったシール摺動面又は軸方向に対して45°以内の鋭角の勾配をもったシール摺動面と密封作用を奏するシールリップであって、当該シール摺動面との間に径方向の締め代をもったもののことをいう。 The seal lip 10 is a radial lip. Here, the radial lip is a seal lip that exerts a sealing action with a seal sliding surface along the axial direction or a seal sliding surface having an acute angle gradient of 45° or less with respect to the axial direction. It has a radial interference between it and the moving surface.
 図2は、シールリップ10が単独で自然な状態ときの断面形状(成形時の形状)を示す。シールリップ10は、軸方向に一定の幅で径方向に連続する円環状に形成された腰部と、腰部から外部側へ曲がる突片状に形成された頭部とを有する。 FIG. 2 shows the cross-sectional shape (shape at the time of molding) when the seal lip 10 is in a natural state by itself. The seal lip 10 has an annular waist portion which is radially continuous with a constant width in the axial direction, and a head portion which is shaped like a projecting piece that curves outward from the waist portion.
 シールリップ10の頭部は、図2の状態においてシールリップ10の内径を規定する先端縁を有する。シール部材2を図1の所定配置に取り付けると、シールリップ10は、シール摺動面11に対する締め代により、シール摺動面11に押し付けられて、外部側へ曲がったゴム状弾性の変形を生じ、シールリップ10の緊迫力を生む。シール部材2の取り付け誤差、製造誤差等は、シールリップ10の撓み具合の変化によって吸収される。 The head of the seal lip 10 has a leading edge that defines the inner diameter of the seal lip 10 in the state of FIG. 1, the seal lip 10 is pressed against the seal sliding surface 11 due to the interference with the seal sliding surface 11, and deforms rubber-like elastically to the outside. , produces a straining force of the seal lip 10 . Mounting errors, manufacturing errors, etc. of the seal member 2 are absorbed by changes in the degree of bending of the seal lip 10 .
 図3は、図2のシールリップ10の頭部付近の左側面視を拡大して示す。図4は、図1のシールリップ10の頭部付近を拡大して示す。図5は、隙間13を外部から軸方向に視た拡大図を示す。図6は、図4のVI-VI線の切断面を示す。 FIG. 3 shows an enlarged left side view of the vicinity of the head portion of the seal lip 10 in FIG. FIG. 4 shows an enlarged view of the vicinity of the head portion of the seal lip 10 of FIG. FIG. 5 shows an enlarged view of the gap 13 viewed axially from the outside. FIG. 6 shows a section taken along line VI-VI of FIG.
 図3~図5に示すように、シールリップ10は、周方向に並んだ複数の突起12を有する。 As shown in FIGS. 3 to 5, the seal lip 10 has a plurality of projections 12 arranged in the circumferential direction.
 図3に示すように、突起12は、その全長に亘ってシールリップ10の径方向に対して傾斜した直線状に形成されている。突起12の傾斜方向は、シールリップ10の外径側から内径側に向かって周方向一方側へ傾斜した方向(同図において下方向に向かって左方へ傾斜した直線方向に相当)に設定されている。突起12の高さは、その全長に亘って一定になっている。各突起12は、周方向に一定のピッチで並んでいる。突起12の全長は、シール摺動面11との間に径方向の締め代をもった範囲の全域に亘っている。シールリップ10は、突起12を一列だけ有する。シールリップ10の全体的な形状は、突起12のピッチに対応した回転対称形になっている。 As shown in FIG. 3, the projection 12 is formed in a straight line inclined with respect to the radial direction of the seal lip 10 over its entire length. The direction of inclination of the projection 12 is set in a direction inclined to one side in the circumferential direction from the outer diameter side to the inner diameter side of the seal lip 10 (corresponding to a straight line direction inclined leftward downward in the figure). ing. The height of the protrusion 12 is constant over its entire length. Each protrusion 12 is located in a line with a fixed pitch in the circumferential direction. The entire length of the protrusion 12 extends over the entire range with a radial interference between the protrusion 12 and the seal sliding surface 11 . The sealing lip 10 has only one row of protrusions 12 . The overall shape of the seal lip 10 is rotationally symmetrical corresponding to the pitch of the protrusions 12 .
 図1のようにシール部材2を転がり軸受1に取り付ける際、複数の突起12がシール摺動面11に接触する。突起12は、軸受中心軸を含む仮想平面上においてシール摺動面11に対して直角な方向に高さをもつ。突起12がシールリップ10の緊迫力に抗して突っ張る。これにより、図4~図6に示すように、周方向に隣り合う突起12同士の間かつシール摺動面11とシールリップ10との間において、内部空間7と外部に連通する隙間13が生じさせられる。隙間13の流路断面高さは、周方向に隣り合う突起12同士を繋ぐリップ部分とシール摺動面11との間の径方向距離に相当する。シールリップ10は、複数の突起12上でのみシール摺動面11と摺動し、周方向に隣り合う突起12同士を繋ぐリップ部分は、シール摺動面11と非接触の状態に保たれるようになっている。  When the seal member 2 is attached to the rolling bearing 1 as shown in FIG. The protrusion 12 has a height in a direction perpendicular to the seal sliding surface 11 on a virtual plane including the bearing center axis. The protrusion 12 stretches against the straining force of the seal lip 10. - 特許庁As a result, as shown in FIGS. 4 to 6, a gap 13 communicating with the internal space 7 and the outside is generated between the protrusions 12 adjacent in the circumferential direction and between the seal sliding surface 11 and the seal lip 10. Let me. The channel cross-sectional height of the gap 13 corresponds to the radial distance between the seal sliding surface 11 and the lip portion connecting the protrusions 12 adjacent in the circumferential direction. The seal lip 10 slides on the seal sliding surface 11 only on the plurality of protrusions 12, and the lip portion connecting the protrusions 12 adjacent in the circumferential direction is kept in a non-contact state with the seal sliding surface 11. It's like
 図1のようにシール部材2を転がり軸受1に取り付けると、図3に示すような前述の傾斜をもった複数の突起12は、シール摺動面11の周囲にねじ状を成すように配置されることになる。すなわち、図6に示す周方向に沿った切断面に現れるように、突起12は、軸方向に内部空間7側から外部側に向かって周方向一方側へ傾いた方向(同図において右方向に向かって上方へ傾いた方向に相当)に延びている。このため、突起12が軸受回転に伴って隙間13内の潤滑油を外部へ出す方向(同図において右方)に加圧するように図2の転がり軸受1を回転させれば、それら突起12とシール摺動面11により、隙間13から軸受内部への異物侵入を阻害するようなスクリューポンピング作用が奏される。 When the seal member 2 is attached to the rolling bearing 1 as shown in FIG. 1, the plurality of inclined projections 12 as shown in FIG. will be 6, the protrusion 12 is axially inclined from the inner space 7 side to the outer side in the circumferential direction (to the right in FIG. 6). (corresponding to the upward tilted direction). Therefore, if the rolling bearing 1 shown in FIG. The seal sliding surface 11 exerts a screw pumping action that prevents foreign matter from entering the bearing through the clearance 13 .
 突起12は、図5に示すように、突起12の周方向中央部から周方向両側に向かって次第にシール摺動面11から遠ざかる形状になっている。このため、突起12は、隙間13側で大、突起12側で小となるくさび状隙間をシール摺動面11との間に形成する。図示例において、各突起12は、周方向に沿った切断面において半円状を成している。 As shown in FIG. 5, the protrusion 12 has a shape such that it gradually moves away from the seal sliding surface 11 from the center portion in the circumferential direction of the protrusion 12 toward both sides in the circumferential direction. Therefore, the protrusion 12 forms a wedge-shaped gap with the seal sliding surface 11 that is large on the gap 13 side and small on the protrusion 12 side. In the illustrated example, each protrusion 12 has a semicircular shape on a cut surface along the circumferential direction.
 また、突起12は、図4に示すように、軸受中心軸を含む仮想平面上において、概ねシール摺動面11に沿った領域をもつ。この領域は、シール摺動面11に沿った方向(図示例においては軸方向に相当)に幅をもって存在する。このため、軸受回転に伴う突起12とシール摺動面11の摺動部、すなわち、突起12が隙間13内の潤滑油をシール摺動面11との間に周方向に引き摺り込む際のくさび効果によって油膜形成が促進され、突起12とシール摺動面11との間に油膜が介在させられる領域は、同図の仮想平面上においてシール摺動面11に沿った方向に所定以上の有限長Lで生じる。このような突起12とシール摺動面11の摺動部は、Hertzの弾性接触理論に基づく接触楕円状に生じると考えられる。 In addition, as shown in FIG. 4, the protrusion 12 has a region generally along the seal sliding surface 11 on a virtual plane including the bearing center axis. This region has a width in the direction along the seal sliding surface 11 (corresponding to the axial direction in the illustrated example). Therefore, there is a wedge effect when the protrusion 12 and the seal sliding surface 11 slide along with the rotation of the bearing, that is, when the protrusion 12 drags the lubricating oil in the gap 13 in the circumferential direction between the seal sliding surface 11 and the protrusion 12. promotes the formation of an oil film, and the region in which the oil film is interposed between the projection 12 and the seal sliding surface 11 has a finite length L occurs in Such a sliding portion between the protrusion 12 and the seal sliding surface 11 is considered to occur in a contact elliptical shape based on Hertz's theory of elastic contact.
 突起12とシール摺動面11の摺動部では、前述のように丸まった形状の突起12とシール摺動面11との間での潤滑油のせん断抵抗が抑えられつつ、突起12の周方向中央部が鋭利になることを避けて突起12による油膜切りが防止されるので、くさび効果によって油膜形成が効果的に促される。このため、軸受回転によって突起12とシール摺動面11の相対回転の周速が一定以上になると、突起12とシール摺動面11間の油膜厚さは、突起12とシール摺動面11間の合成粗さσを余裕で上回り、各突起12とシール摺動面11が油膜で完全に分離させられた流体潤滑状態になる。これにより、シールリップ10とシール摺動面11間を油膜で完全に分離させた流体潤滑状態にすることができる。このような流体潤滑状態になれば、シール部材2によるシールトルクを非接触式のシールと同等まで低減し、ひいてはシール付軸受の温度上昇を抑制し、シールリップ10の吸着作用を防止することができる。なお、軸受停止時から前述の周速が一定未満のとき、微視的には固体接触領域を含む境界潤滑状態ないし混合潤滑状態となる。 In the sliding portion between the projection 12 and the seal sliding surface 11, the shear resistance of the lubricating oil between the rounded projection 12 and the seal sliding surface 11 is suppressed as described above. Since the sharpness of the central portion is avoided to prevent the oil film from being cut off by the protrusion 12, the wedge effect effectively promotes the formation of the oil film. Therefore, when the peripheral speed of the relative rotation of the projection 12 and the seal sliding surface 11 becomes more than a certain value due to the rotation of the bearing, the oil film thickness between the projection 12 and the seal sliding surface 11 is , and each protrusion 12 and the seal sliding surface 11 are completely separated by an oil film, resulting in a fluid lubrication state. As a result, a fluid lubrication state in which the seal lip 10 and the seal sliding surface 11 are completely separated by an oil film can be achieved. In such a fluid lubrication state, the sealing torque of the seal member 2 can be reduced to the same level as that of a non-contact type seal, thereby suppressing the temperature rise of the sealed bearing and preventing the adsorption action of the seal lip 10. can. When the peripheral speed is less than a certain value after the bearing is stopped, microscopically, a boundary lubrication state or a mixed lubrication state including a solid contact area occurs.
 例えば、車両のトランスミッション内の回転部を支持する用途では、一般に、跳ねかけ、オイルバス等の適宜の方式でシール付軸受に給油される。よって、シールリップ10の周辺には、外部から供給される潤滑油が存在している。その潤滑油は、トランスミッション内に存在するギア等の他の潤滑部分でも共通に用いられる。その潤滑油は、オイルポンプで循環されており、その循環経路に設けられたオイルフィルタによって濾過される。粒径0.05mmを超える大きな異物が内部空間7に侵入すると、軸受寿命に悪影響を及ぼすと考えられる。突起12の高さを0.07mm以下に設定すれば、そのような大きな異物が容易に通過できない隙間13を生じさせることができる。突起12の高さが0.07mm以下の場合、例えば、周方向に隣り合う突起12同士の間隔が0.3mm以上2.6mm以下、突起12の周方向幅が0.2mm以上1.0mm以下、かつ突起12の表面の曲率半径を0.15mm以上2.0mm未満の範囲に設定することができる。この例では、その油温30~120℃、シールリップ10とシール摺動面11の相対的な周速が0.2m/s以上の場合に、計算上、Greenwood-Johnsonの決めた無次元数である粘性パラメータgvと弾性パラメータgeに基づく潤滑領域図(Johnsonチャート)において等粘度-剛体領域(R-Iモード)又は等粘度-弾性体領域(E-Iモード,ソフトEHL)のいずれかの潤滑モード、すなわち前述の流体潤滑状態になると考えられる。 For example, in applications that support rotating parts in vehicle transmissions, the sealed bearing is generally lubricated by an appropriate method such as splashing or an oil bath. Therefore, lubricating oil supplied from the outside exists around the seal lip 10 . The lubricating oil is also commonly used for other lubricating parts such as gears present in the transmission. The lubricating oil is circulated by an oil pump and filtered by an oil filter provided in the circulation path. If a large foreign matter with a grain size exceeding 0.05 mm enters the internal space 7, it is considered to have an adverse effect on the life of the bearing. By setting the height of the protrusion 12 to 0.07 mm or less, it is possible to create a gap 13 through which such a large foreign matter cannot easily pass. When the height of the projections 12 is 0.07 mm or less, for example, the distance between adjacent projections 12 in the circumferential direction is 0.3 mm or more and 2.6 mm or less, and the circumferential width of the projections 12 is 0.2 mm or more and 1.0 mm or less. Moreover, the radius of curvature of the surface of the projection 12 can be set in the range of 0.15 mm or more and less than 2.0 mm. In this example, when the oil temperature is 30 to 120° C. and the relative peripheral speed of the seal lip 10 and the seal sliding surface 11 is 0.2 m/s or more, the dimensionless number determined by Greenwood-Johnson is In the lubrication region diagram (Johnson chart) based on the viscous parameter gv and the elastic parameter ge, either the constant viscosity-rigid region (RI mode) or the constant viscosity-elastic region (EI mode, soft EHL) It is considered to be in the lubrication mode, that is, the fluid lubrication state described above.
 なお、前述の間隔が2.6mmの場合、突起12とシール摺動面11との間には、計算上、約3μmの油膜が形成され、2.6mmより小さい場合に油膜が厚くなる傾向がある。また、前述の間隔が2.6mm以下では、軸受回転トルクが低下傾向(すなわちシールトルクの低下傾向)を示す。前述の間隔が0.3mm未満では、ボールエンドミルで金型に突起12を成形するための転写面を加工することが困難になる。金型での成形を考慮すると、突起12の前述の曲率半径を0.15mm以上2.0mm未満に設定することが好ましい。突起12の周方向幅が前述の曲率半径に相関するので、突起12の周方向幅を0.2mm以上1.0mm以下に設定することが好ましい。 When the above-mentioned interval is 2.6 mm, an oil film of approximately 3 μm is formed between the protrusion 12 and the seal sliding surface 11, and when the interval is smaller than 2.6 mm, the oil film tends to be thicker. be. Further, when the above-described interval is 2.6 mm or less, the bearing rotating torque tends to decrease (that is, the seal torque tends to decrease). If the above-described interval is less than 0.3 mm, it becomes difficult to process the transfer surface for forming the protrusions 12 on the mold with a ball end mill. Considering molding with a mold, it is preferable to set the aforementioned radius of curvature of the protrusion 12 to 0.15 mm or more and less than 2.0 mm. Since the circumferential width of the projections 12 correlates with the aforementioned radius of curvature, it is preferable to set the circumferential width of the projections 12 to 0.2 mm or more and 1.0 mm or less.
 ここで、油膜パラメータΛ≧3であれば、摺動部の潤滑モードは流体潤滑状態であると考えられる。油膜パラメータΛは、摺動部での最小油膜厚さhに対する合成粗さσの比であり、Λ=h/σである。最小油膜厚さhは、弾性流体潤滑理論に基づいて求められる。合成粗さσ=√((Rq1 +Rq2 )/2)である。Rqは、前述の摺動部を成すシール摺動面11の二乗平均平方根粗さである。Rqは、突起12の表面における二乗平均平方根粗さとすると、二乗平均平方根粗さは、JIS(B0601:2013)に規定された二乗平均平方根粗さRqの値(μm)である。 Here, if the oil film parameter Λ≧3, the lubrication mode of the sliding portion is considered to be fluid lubrication. The oil film parameter Λ is the ratio of the combined roughness σ to the minimum oil film thickness h on the sliding portion, where Λ=h/σ. The minimum oil film thickness h is obtained based on elastohydrodynamic lubrication theory. The combined roughness σ=√((Rq 1 2 +Rq 2 2 )/2). Rq 1 is the root-mean-square roughness of the seal sliding surface 11 forming the aforementioned sliding portion. Rq2 is the root-mean-square roughness of the surface of the projection 12, and the root-mean-square roughness is the value (μm) of the root-mean-square roughness Rq defined in JIS (B0601:2013).
 油膜パラメータΛは合成粗さσに依存し、合成粗さσが小さいほど油膜を厚くすることができる。前述の周速が極低速のときから突起12とシール摺動面11の摺動部を流体潤滑状態とするため、その摺動部における合成粗さσを0.9μm以下にすることが好ましい。例えば、合成粗さσが0.9μm、潤滑油をミッション油(30cst,40℃)、雰囲気温度を20℃、周速0.2m/sの計算条件において、Johnsonチャートによる油潤滑モードを判定したところ、最小油膜厚さhが2.8μm、油膜パラメータΛが3以上となり、潤滑モードがE-Iモードとなった。したがって、突起12とシール摺動面11の合成粗さσが0.9μm以下であれば、軸受の実使用領域において確実に流体潤滑状態になることが見込まれる。 The oil film parameter Λ depends on the synthetic roughness σ, and the smaller the synthetic roughness σ, the thicker the oil film can be. In order to keep the sliding portion between the protrusion 12 and the seal sliding surface 11 in a fluid lubrication state from the time when the peripheral speed is extremely low, it is preferable to set the combined roughness σ of the sliding portion to 0.9 μm or less. For example, under the calculation conditions of synthetic roughness σ of 0.9 μm, transmission oil (30 cst, 40° C.) as lubricating oil, ambient temperature of 20° C., and peripheral speed of 0.2 m/s, the oil lubrication mode by the Johnson chart was determined. However, the minimum oil film thickness h was 2.8 μm, the oil film parameter Λ was 3 or more, and the lubrication mode was the EI mode. Therefore, if the combined roughness σ of the protrusion 12 and the seal sliding surface 11 is 0.9 μm or less, it is expected that the bearing will reliably be in a fluid lubricating state in the actual usage range.
 図4に示す前述の仮想平面上において、突起12とシール摺動面11の摺動部から内部空間7側に向かって(図示例においては軸方向に内部空間7側に向かって)シールリップ10とシール摺動面11とが形成する角度αは、0°<α≦45°である。内部空間7のうち、角度αを成す空間領域7aは、軸方向に外部側に向かって狭くなるくさび状の空間になっている。空間領域7aは、転動体5及び保持器6に向かって開放している。 On the virtual plane shown in FIG. 4, the seal lip 10 moves from the sliding portion between the projection 12 and the seal sliding surface 11 toward the inner space 7 (in the illustrated example, toward the inner space 7 in the axial direction). and the seal sliding surface 11 form an angle α of 0°<α≦45°. A space region 7a forming an angle α in the internal space 7 is a wedge-shaped space that narrows toward the outside in the axial direction. The space area 7a opens toward the rolling elements 5 and the cage 6. As shown in FIG.
 内部空間7への潤滑油流入は隙間13によって確保されているが、内部空間7への潤滑油流入性の向上と背反し、転動体5と保持器6が潤滑油を撹拌する際の抵抗(撹拌抵抗)による軸受トルクが増大する。その攪拌に際し、潤滑油が転動体5、保持器6から押されてくさび状の空間領域7aに向かって流れ、くさび効果により、突起12とシール摺動面11の摺動部に接近するに連れて油圧が高くなる。このため、空間領域7aに押し退けられた潤滑油を隙間13から外部側へ排出するようなポンピング作用が発生する。このため、内部空間7からの潤滑油排出性が向上し、撹拌抵抗が減少して軸受内部トルクが減少する。したがって、転がり軸受1を更なる低トルクで使用することが可能になる。 The inflow of lubricating oil into the internal space 7 is secured by the gap 13, but this is contrary to the improvement of the inflow of lubricating oil into the internal space 7, and the resistance ( The bearing torque increases due to agitation resistance). During the agitation, the lubricating oil is pushed from the rolling elements 5 and the retainer 6 and flows toward the wedge-shaped space region 7a. hydraulic pressure increases. Therefore, a pumping action is generated to discharge the lubricating oil that has been pushed aside into the space region 7a through the gap 13 to the outside. As a result, the lubricating oil can be discharged from the internal space 7 better, the stirring resistance is reduced, and the internal torque of the bearing is reduced. Therefore, it becomes possible to use the rolling bearing 1 with even lower torque.
 なお、角度αが45°を超えた場合、シールリップ10の緊迫力が低下し、シールリップ10がシール摺動面11から離れやすくなりすぎて異物に対する密封性が低下する懸念がある。 If the angle α exceeds 45°, the straining force of the seal lip 10 is reduced, and the seal lip 10 becomes too easily separated from the seal sliding surface 11, which may reduce the sealing performance against foreign matter.
 このシール付軸受は、上述のように、シールリップ10の複数の突起12によってシールリップ10とシール摺動面11間を流体潤滑状態にすることが可能であって、それら突起12が当該シール付軸受の外部側に向かって周方向一方側へ傾いた方向に延びているので、このシール付軸受の使用に際し、突起12が軸受回転に伴って隙間13内の潤滑油を外部へ出す方向に加圧するように軸受回転方向を選択すれば、それら突起12とシール摺動面11により、隙間13から軸受内部(内部空間7)への異物侵入を阻害するようなスクリューポンピング作用が奏されることになり、これにより、軸受内部への異物侵入を抑制することができる。 In this bearing with seal, as described above, the seal lip 10 and the seal sliding surface 11 can be in a state of fluid lubrication by the plurality of projections 12 of the seal lip 10, and the projections 12 are attached to the seal. Since the projections 12 extend in a direction inclined to one side in the circumferential direction toward the outer side of the bearing, when the bearing with seal is used, the projections 12 are pushed in the direction to release the lubricating oil in the clearance 13 to the outside as the bearing rotates. If the direction of rotation of the bearing is selected so as to apply pressure, the protrusions 12 and the seal sliding surface 11 provide a screw pumping action that prevents foreign matter from entering the bearing interior (internal space 7) through the gap 13. As a result, entry of foreign matter into the bearing can be suppressed.
 また、このシール付軸受は、突起12とシール摺動面11の摺動部(有限長Lの領域)から内部空間7側に向かってシールリップ10とシール摺動面11とが形成する角度αが0°<α≦45°であるため、角度αを形成する空間領域7aにおいて潤滑油を外部へ排出するようなポンピング作用を発生させることができる。したがって、このシール付軸受は、内部空間7からの潤滑油の排出を促し、転動体5等による潤滑油の撹拌抵抗を減少させるのに好適である。 In this bearing with seal, the seal lip 10 and the seal sliding surface 11 form an angle .alpha. is 0°<α≦45°, a pumping action for discharging the lubricating oil to the outside can be generated in the spatial region 7a forming the angle α. Therefore, this sealed bearing is suitable for promoting the discharge of lubricating oil from the internal space 7 and reducing the stirring resistance of the lubricating oil by the rolling elements 5 and the like.
 また、このシール付軸受は、突起12とシール摺動面11の合成粗さσが0.9μm以下であるため、突起12とシール摺動面11の摺動部を極めて低周速のときから流体潤滑状態にするのに好適である。 In addition, in this bearing with seal, the combined roughness σ of the projection 12 and the seal sliding surface 11 is 0.9 μm or less, so that the sliding portion of the projection 12 and the seal sliding surface 11 can be moved even at extremely low peripheral speeds. Suitable for fluid lubrication.
 第二実施形態を図7~図9に基づいて説明する(以下、適宜に図1、図4を参照のこと。)。第二実施形態は、上記第一の手段に係る発明の別例である。なお、これ以降の各実施形態の説明は、第一実施形態との相違点を述べるに留める。 The second embodiment will be described based on FIGS. 7 to 9 (hereinafter, refer to FIGS. 1 and 4 as appropriate). The second embodiment is another example of the invention according to the first means. It should be noted that the following description of each embodiment is limited to the points of difference from the first embodiment.
 第二実施形態に係る突起21は、内部空間7側から外部側に向かって周方向一方側へ曲がる曲線状に形成されている。このため、第一実施形態の突起に比して突起21が長くなり、従い、周方向に隣り合う突起21同士の間に形成された隙間22も、図8に第二実施形態における図4のVI-VI線相当の断面図を示すように、第一実施形態の隙間に比して長く曲がって生じることになる。このため、第二実施形態に係るシール付軸受は、突起21がスクリューポンピング作用を奏するだけでなく、第一実施形態に比して隙間22での潤滑油の流れの圧力損失(ラビリンス効果)を大きくして、より異物侵入を抑制することができる。 The protrusion 21 according to the second embodiment is formed in a curved shape that curves from the inner space 7 side to the outer side in the circumferential direction. For this reason, the protrusions 21 are longer than the protrusions of the first embodiment, and accordingly, the gaps 22 formed between the protrusions 21 adjacent in the circumferential direction are also the same as in FIG. As shown in the cross-sectional view corresponding to the line VI-VI, the gap is curved longer than the gap in the first embodiment. Therefore, in the sealed bearing according to the second embodiment, not only the protrusions 21 exhibit the screw pumping action, but also the pressure loss (labyrinth effect) of the flow of lubricating oil in the gap 22 is reduced compared to the first embodiment. By increasing the size, the intrusion of foreign matter can be further suppressed.
 第三実施形態を図10、図11に基づいて説明する。第三実施形態は、上記第一の手段に係る発明のさらに別の例である。 A third embodiment will be described based on FIGS. 10 and 11. FIG. The third embodiment is still another example of the invention according to the first means.
 第三実施形態に係る突起31は、シール摺動面11との摺動部よりも内部空間7側に位置する流線形端部32を有する。流線形端部32は、突起31の全長において内部空間7側の端から所定の長さをもっており、内部空間7側に向かって突起31の周方向幅及び高さを次第に小さくした形状である。突起31の流線形端部32以外の残部は、一定の周方向幅及び高さをもった断面半円状である。この残部に対する流線形端部32の形状変化は、隙間33を突起31に沿って内部空間7側へ流れる潤滑油が突起31(隙間33)を通り過ぎるまで突起31から剥離することを防ぎ、これにより、乱流化を抑制する。この流れが乱流になって隙間33から内部空間7に流出すると、転動体5や保持器6にとっては乱流に接して攪拌抵抗が増すため、乱流化を抑制することが好ましい。 The protrusion 31 according to the third embodiment has a streamlined end portion 32 positioned closer to the internal space 7 than the sliding portion with the seal sliding surface 11 . The streamlined end portion 32 has a predetermined length from the end on the inner space 7 side of the entire length of the protrusion 31 , and has a shape in which the circumferential width and height of the protrusion 31 gradually decrease toward the inner space 7 side. The rest of the protrusion 31 other than the streamlined end 32 has a semicircular cross-section with constant circumferential width and height. This shape change of the streamlined end portion 32 with respect to the remaining portion prevents the lubricating oil flowing along the protrusion 31 in the gap 33 toward the internal space 7 from separating from the protrusion 31 until it passes through the protrusion 31 (gap 33). , to suppress turbulence. If this flow becomes turbulent and flows out from the gap 33 into the internal space 7, the rolling elements 5 and the retainer 6 are in contact with the turbulent flow and the stirring resistance increases, so it is preferable to suppress the turbulent flow.
 突起31のうち、シール摺動面11との摺動部となる領域を流線形端部32のように尖らせていくと、突起31とシール摺動面11間でのくさび効果を小さくすることになるので、好ましくない。 The wedge effect between the projection 31 and the seal sliding surface 11 can be reduced by sharpening the region of the projection 31 that slides with the seal sliding surface 11 like a streamlined end portion 32. , which is not desirable.
 流線形端部32は、理想的には、突起31に沿って内部空間7側へ流れる潤滑油の代表的な速度において突起31を通り過ぎるまで乱流にならない流線形状にするとよい。流線形端部32の形状は、例えば、フールマンの流線形回転体に基づいて定めることができる。 Ideally, the streamlined end 32 should have a streamlined shape that does not become turbulent until it passes over the protrusion 31 at a typical speed of the lubricating oil flowing along the protrusion 31 toward the inner space 7 side. The shape of the streamlined end 32 can be determined, for example, based on Fuhrmann's streamlined body of revolution.
 このように、第三実施形態に係るシール付軸受は、突起31の流線形端部32により、隙間33を突起31に沿って内部空間7側へ流れる潤滑油の乱流化が防止されるので、第一実施形態に比して、内部空間7における潤滑油の攪拌抵抗を減少させることができる。 Thus, in the sealed bearing according to the third embodiment, the streamlined end portion 32 of the projection 31 prevents the lubricating oil flowing through the gap 33 along the projection 31 toward the internal space 7 from becoming turbulent. , the agitation resistance of the lubricating oil in the internal space 7 can be reduced as compared with the first embodiment.
 第四実施形態を図12~図14に基づいて説明する。第四実施形態は、上記第二の手段に係る発明の一例である。 A fourth embodiment will be described based on FIGS. 12 to 14. FIG. The fourth embodiment is an example of the invention according to the second means.
 第四実施形態に係るシールリップ41は、周方向に隣り合う突起42同士の間の隙間43と対向するリブ44を有する。 A seal lip 41 according to the fourth embodiment has ribs 44 facing gaps 43 between protrusions 42 adjacent in the circumferential direction.
 突起42とリブ44は、それぞれ周方向に対して直交する方向に直線状に延びている。 The protrusions 42 and the ribs 44 each extend linearly in a direction orthogonal to the circumferential direction.
 突起42とリブ44は、それぞれ一定のピッチ角度で配置されている。したがって、周方向に並ぶ突起42の列と、周方向に並ぶリブ44の列とは、互いに一定の位相差をもって二列を成している。 The protrusions 42 and ribs 44 are arranged at a constant pitch angle. Therefore, the rows of the protrusions 42 arranged in the circumferential direction and the rows of the ribs 44 arranged in the circumferential direction form two rows with a constant phase difference therebetween.
 リブ44は、突起42に対して内部空間7側に寄った位置にある。リブ44は、シール摺動面11との間に間隔を空けて配置されている。外部から隙間43に供給される潤滑油や、内部空間7から隙間43に流出する潤滑油により、突起42とシール摺動面11間を流体潤滑状態にするのに十分な通油性を確保することが可能である。 The rib 44 is located closer to the internal space 7 side than the protrusion 42 . The rib 44 is spaced apart from the seal sliding surface 11 . Sufficient oil permeability is ensured so that the protrusion 42 and the seal sliding surface 11 are in a state of fluid lubrication by the lubricating oil supplied to the gap 43 from the outside and the lubricating oil flowing out from the internal space 7 into the gap 43. is possible.
 リブ44は、その外部側の端部45において隙間43と対向する。その対向方向は、前述の仮想平面上において突起42の長さ方向(隙間43の長さ方向)であり、隙間43とシール摺動面11に沿った方向であり、図示例において軸方向である。リブ44の端部45と、突起42との間には空間が形成されている。 The rib 44 faces the gap 43 at its outer end 45 . The opposing direction is the length direction of the protrusion 42 (the length direction of the gap 43) on the above-described imaginary plane, the direction along the gap 43 and the seal sliding surface 11, and the axial direction in the illustrated example. . A space is formed between the end portion 45 of the rib 44 and the projection 42 .
 周方向に隣り合う突起42同士と、これら突起42間の隙間43に最寄りのリブ44とは、隙間43から内部空間7側へ流出する潤滑油の一部がリブ44の端部45に衝突するようなラビリンスを形成する。このため、隙間43から内部空間7側へ流出する潤滑油は、その衝突によって圧力損失を生じ、異物が隙間43から内部空間7へ侵入しにくくなる。 Between the protrusions 42 adjacent in the circumferential direction and the rib 44 closest to the gap 43 between these protrusions 42, part of the lubricating oil flowing out from the gap 43 toward the internal space 7 collides with the end 45 of the rib 44. form a labyrinth. Therefore, the lubricating oil flowing out from the gap 43 to the inner space 7 side causes a pressure loss due to the collision, and foreign matter is less likely to enter the inner space 7 through the gap 43 .
 また、潤滑油に流される異物がリブ44の端部45と最寄りの突起42との間に挟まったり、端部45にぶつかって跳ね返る潤滑油の流れや、内部空間7から外部へ排出される潤滑油の流れによって、外部へ排出されたりする。 In addition, foreign matter flowing into the lubricating oil is caught between the end 45 of the rib 44 and the nearest protrusion 42, the flow of the lubricating oil hitting the end 45 and rebounding, and the lubricating oil discharged from the internal space 7 to the outside. It is discharged to the outside by the flow of oil.
 このように、第四実施形態に係るシール付軸受は、シールリップ41の複数の突起42によってシールリップ41とシール摺動面11間を流体潤滑状態にすることが可能なものでありながら、そのシールリップ41が隙間43と対向するように複数の突起42と位相をずらして配置されたリブ44を有するため、周方向に隣り合う突起42同士と、リブ44とがラビリンスを形成して、軸受内部への異物侵入を抑制することができる。結果的には、外部の潤滑油が内部空間7へ至る流れがラビリンスによって抑制されるので、攪拌抵抗の減少も見込める。 As described above, in the sealed bearing according to the fourth embodiment, the plurality of projections 42 of the seal lip 41 can provide fluid lubrication between the seal lip 41 and the seal sliding surface 11. Since the seal lip 41 has the plurality of projections 42 and the ribs 44 arranged out of phase with each other so as to face the gaps 43, the projections 42 adjacent in the circumferential direction and the ribs 44 form a labyrinth to form a bearing. Intrusion of foreign matter into the interior can be suppressed. As a result, since the labyrinth suppresses the flow of the external lubricating oil to the internal space 7, a reduction in stirring resistance can be expected.
 また、そのリブ44がシール摺動面11との間に間隔を空けて配置されているので、シール摺動面11と非接触の状態にあり、また、リブ44とシール摺動面11との間で潤滑油のせん断抵抗が大きくならない。これにより、リブ44がシールトルク低減性に悪影響を及ぼすことが避けられる。 Further, since the ribs 44 are spaced apart from the seal sliding surface 11, they are not in contact with the seal sliding surface 11, and the ribs 44 and the seal sliding surface 11 do not contact each other. The shear resistance of the lubricating oil does not increase between This prevents the ribs 44 from adversely affecting seal torque reduction.
 なお、リブ44の周方向に沿った切断面の形状は、突起42と同形状になっている。このため、仮に、異常なシールリップ41の撓み変形が生じてリブ44とシール摺動面11間の間隔が無くなったとしても、リブ44とシール摺動面11の摺動部が流体潤滑状態になるので、問題ない。 In addition, the shape of the cut surface along the circumferential direction of the rib 44 is the same shape as the protrusion 42 . Therefore, even if the gap between the rib 44 and the seal sliding surface 11 disappears due to abnormal flexural deformation of the seal lip 41, the sliding portion between the rib 44 and the seal sliding surface 11 is in a fluid lubrication state. so there is no problem.
 図示例では、リブ44を突起42と非連続に形成したが、リブを突起と一連に形成してもよく、周方向に隣り合う突起同士を一連にする接続部位としてリブを形成してもよい。 In the illustrated example, the rib 44 is formed discontinuously with the projection 42, but the rib may be formed continuously with the projection, or the rib may be formed as a connecting portion for connecting circumferentially adjacent projections in a series. .
 第五実施形態を図15、図16に基づいて説明する。第五実施形態は、上記第二の手段に係る発明の別例である。ここでは、更に第四実施形態からの変更点を述べるに留める。 A fifth embodiment will be described based on FIGS. 15 and 16. FIG. The fifth embodiment is another example of the invention according to the second means. Here, only changes from the fourth embodiment will be described.
 第五実施形態に係る突起51とリブ52は、それぞれ半球状である。ここで、半球状とは、周方向に沿った切断面において表面が凸曲線状を成し、周方向に直交する切断面においても表面が凸曲線状を成すことをいい、凸曲線状を円孤線状とすることも含まれるが、球形の半分が突出した態様に限定されない。その半球状は、シール摺動面11との摺動部での流体潤滑状態を実現するのに必要なヘルツ接触領域を確保できる曲率になっている。 The protrusions 51 and ribs 52 according to the fifth embodiment are hemispherical. Here, the hemispherical shape means that the surface forms a convex curved shape on the cut surface along the circumferential direction, and the surface also forms a convex curved shape on the cut surface perpendicular to the circumferential direction, and the convex curved shape is a circle. A solitary shape is also included, but it is not limited to a form in which half of a sphere protrudes. The hemispherical shape has a curvature capable of securing a Hertzian contact area necessary for achieving fluid lubrication at the sliding portion with the seal sliding surface 11 .
 半球状の突起51は、第四実施形態のような直線状に形成された突起に比してシール摺動面11から逃げる形状であるため、突起51とシール摺動面11間での潤滑油のせん断抵抗を減少させることができる。また、半球状のリブ52は、特にシール摺動面11に近いリブ52の外部側での潤滑油のせん断抵抗を抑えることができる。 Since the hemispherical projection 51 has a shape that escapes from the seal sliding surface 11 compared to the projection formed in a straight line as in the fourth embodiment, the lubricating oil between the projection 51 and the seal sliding surface 11 can reduce the shear resistance of In addition, the hemispherical ribs 52 can suppress the shear resistance of the lubricating oil particularly on the outer side of the ribs 52 near the seal sliding surface 11 .
 第六実施形態を図17~図19に基づいて説明する。第六実施形態は、上記第三の手段に係る発明の一例である。 A sixth embodiment will be described based on FIGS. 17 to 19. FIG. The sixth embodiment is an example of the invention according to the third means.
 図17、図18に示すように、第六実施形態に係るシールリップ61の複数の突起62a、62bのうち、周方向に隣り合う突起62a、62b同士は、互いに周方向に相反する方へ傾いた方向に延びている。 As shown in FIGS. 17 and 18, among the plurality of protrusions 62a and 62b of the seal lip 61 according to the sixth embodiment, the protrusions 62a and 62b that are adjacent in the circumferential direction are inclined in opposite directions in the circumferential direction. extending in the direction of
 図19に示すように、突起62a、62bは、シール摺動面11側の二隅部を丸めた略矩形状になっている。 As shown in FIG. 19, the projections 62a and 62b have a substantially rectangular shape with rounded two corners on the seal sliding surface 11 side.
 図18に示すように、複数の突起62a、62bのうち、周方向一方側へ傾いた方向に延びる第一の突起62aと、第一の突起62aの周方向他方側に隣接しかつ周方向他方側へ傾いた方向に延びる第二の突起62bとは、互いの内部空間7側の端部62cで連続している。第一の突起62aと第二の突起62bの一対は、その端部62cから外部側に向かってV字状に延びている。 As shown in FIG. 18, among the plurality of projections 62a and 62b, a first projection 62a extending in a direction inclined to one side in the circumferential direction and a first projection 62a adjacent to the other side in the circumferential direction of the first projection 62a and the other side in the circumferential direction The second protrusion 62b extending in a direction inclined to the side is continuous at an end portion 62c on the inner space 7 side. A pair of the first protrusion 62a and the second protrusion 62b extends in a V shape outward from the end 62c.
 第一の突起62aと第二の突起62bが互いに周方向に相反する方へ傾いた方向に延びていることにより、一対で形成する隙間63aは、外部側で広く、内部空間7側で狭くなり、周方向に隣り合う二対間の隙間63bは、外部側で狭く、内部空間7側で広くなっている。一対の突起62a、62bによる隙間63aが内部空間7側に向かって狭くなるため、内部空間7側へ流れる潤滑油の一部が衝突し、前述のリブと同様に異物の侵入抑制を図ることができる。隙間63bは外部側で狭いため、格別、隙間63bから異物が侵入し易くなることはない。 Since the first protrusion 62a and the second protrusion 62b extend in directions inclined in directions opposite to each other in the circumferential direction, the gap 63a formed by the pair is wide on the outside and narrow on the inner space 7 side. , the gap 63b between two pairs adjacent in the circumferential direction is narrow on the outside and wide on the inner space 7 side. Since the gap 63a formed by the pair of projections 62a and 62b becomes narrower toward the internal space 7 side, part of the lubricating oil flowing toward the internal space 7 collides with the gap 63a, and as with the ribs described above, it is possible to prevent foreign matter from entering. can. Since the gap 63b is narrow on the outside, foreign matter does not particularly easily enter through the gap 63b.
 また、第一の突起62aと第二の突起62bが互いに周方向に相反する方へ傾いた方向に延びており、一対の第一の突起62aと第二の突起62bにより、周方向に幅広い範囲でシールリップ61の緊迫力に抵抗する強度を得ることが可能なため、突起62a、62bの周方向の並び数を減少させても、すなわち隙間63a、63bの本数を減少させても、突起62a、62b同士を繋ぐリップ部分が緊迫力でシール摺動面11に固体接触しないようにシールリップ61の剛性を確保することができる。 In addition, the first projection 62a and the second projection 62b extend in directions inclined in directions opposite to each other in the circumferential direction, and the pair of the first projection 62a and the second projection 62b provide a wide range in the circumferential direction. Therefore, even if the number of protrusions 62a and 62b arranged in the circumferential direction is reduced, that is, even if the number of gaps 63a and 63b is reduced, the number of protrusions 62a , 62b do not come into solid contact with the seal sliding surface 11 due to the tightening force, the rigidity of the seal lip 61 can be secured.
 このように、第六実施形態に係るシール付軸受は、シールリップ61の複数の突起62a、62bによってシールリップ61とシール摺動面11間を流体潤滑状態にすることが可能なものでありながら、周方向に隣り合う第一の突起62aと第二の突起62b同士が互いに周方向に相反する方へ傾いた方向に延びているため、異物侵入経路となる隙間63a、63bを減少させて軸受内部への異物侵入を抑制することができる。 Thus, in the sealed bearing according to the sixth embodiment, the plurality of projections 62a and 62b of the seal lip 61 can provide fluid lubrication between the seal lip 61 and the seal sliding surface 11. Since the first projection 62a and the second projection 62b, which are adjacent in the circumferential direction, extend in opposite directions in the circumferential direction, the gaps 63a and 63b, which serve as paths for foreign matter to enter, are reduced to reduce the gaps 63a and 63b. Intrusion of foreign matter into the interior can be suppressed.
 また、第六実施形態に係るシール付軸受は、複数の突起62a、62bのうち、周方向一方側へ傾いた方向に延びる第一の突起62aと、第一の突起62aの周方向他方側に隣接しかつ周方向他方側へ傾いた方向に延びる第二の突起62bが互いの内部空間7側の端部62cで連続しているため、一対の第一の突起62aと第二の突起62bを成形するための金型転写面を一連に加工することができ、ひいては加工コストを抑えることができる。 Further, the bearing with seal according to the sixth embodiment has a plurality of protrusions 62a and 62b, the first protrusion 62a extending in a direction inclined to one side in the circumferential direction, and the other side in the circumferential direction of the first protrusion 62a. Since the second projections 62b adjacent to each other and extending in a direction inclined to the other side in the circumferential direction are continuous with each other at the end portion 62c on the side of the internal space 7, the pair of the first projection 62a and the second projection 62b are connected to each other. The mold transfer surface for molding can be processed in series, and the processing cost can be suppressed.
 具体的には、エンドミルで金型にV字状の軌跡を描くように一連の溝を削ることにより、その金型転写面を加工することができる。一対の第一の突起と第二の突起は、互いの内部空間側の端部で非連続な部位として成形することも可能だが、この場合、第一の突起成形用の転写面の切削と第二の突起成形用の転写面の切削とを切り替えるためにエンドミルを昇降させる必要があり、その分、加工コストの点で不利となる。 Specifically, the mold transfer surface can be processed by cutting a series of grooves on the mold so as to draw a V-shaped trajectory with an end mill. A pair of the first projection and the second projection can be molded as discontinuous portions at the ends on the inner space side of each other. It is necessary to move the end mill up and down in order to switch between the cutting of the transfer surface for forming the second protrusion, which is disadvantageous in terms of processing cost.
 上述の各実施形態では、突起を周方向に均一配置した例を示したが、不均一に配置することも可能である。また、第一、二、六実施形態については、第四、五実施形態同様、突起とシール摺動面の摺動部(有限長Lの領域)を長くすることも可能である。 In each of the above-described embodiments, an example in which the protrusions are arranged uniformly in the circumferential direction has been shown, but it is also possible to arrange them unevenly. Further, in the first, second, and sixth embodiments, it is possible to lengthen the sliding portion (region of finite length L) between the protrusion and the seal sliding surface, as in the fourth and fifth embodiments.
 また、上述の各実施形態では、シール部材を芯金と加硫ゴム材とから構成したものを例示したが、この発明は、ゴム材、樹脂材等の単材により形成されるシール部材に適用することも可能である。 Further, in each of the above-described embodiments, the seal member is composed of a metal core and a vulcanized rubber material, but the present invention is applicable to a seal member formed of a single material such as a rubber material or a resin material. It is also possible to
 また、上述の各実施形態では、ラジアルリップを例示したが、この発明は、軸方向に対して45°を超える勾配をもったシール摺動面と密封作用を奏するシールリップ(アキシアルリップ)に適用することも可能である。 Moreover, although the radial lip is illustrated in each of the above-described embodiments, the present invention is applied to a seal lip (axial lip) that exhibits a sealing action with a seal sliding surface having a gradient exceeding 45° with respect to the axial direction. It is also possible to
 また、上述の各実施形態では、内輪回転のラジアル玉軸受を例示したが、この発明は、外輪回転の軸受、スラスト軸受、ころ軸受等の適宜の形式にも適用することも可能である。また、シール摺動面を回転輪に形成した例を示したが、固定輪に形成する場合にこの発明を適用することも可能である。 In addition, in each of the above-described embodiments, an inner ring rotating radial ball bearing was exemplified, but the present invention can also be applied to an appropriate type such as an outer ring rotating bearing, a thrust bearing, or a roller bearing. Also, although an example in which the seal sliding surface is formed on the rotating ring has been shown, it is also possible to apply the present invention when forming the seal sliding surface on the stationary ring.
 また、第三実施形態の突起の流線形端部は、上述の各実施形態の突起に適用することも可能であり、この発明で前提とする流体潤滑仕様のシール付軸受であれば、適宜に適用することが可能である。 Further, the streamlined end portion of the protrusion of the third embodiment can be applied to the protrusions of the above-described embodiments. It is possible to apply
 また、近年では、自動車に代わる移動手段として飛行可能な自動車、いわゆる空飛ぶクルマが注目されている。空飛ぶクルマは、上記の社会的問題の解消に期待されており、地域内移動、地域間移動、観光・レジャー、救急医療、災害救助など、様々な場面での活用が期待されている。 Also, in recent years, flying cars, so-called flying cars, have attracted attention as a means of transportation that can replace cars. Flying cars are expected to solve the above social problems, and are expected to be used in various situations such as movement within and between regions, tourism and leisure, emergency medical care, and disaster relief.
 空飛ぶクルマとしては、垂直離着陸機(VTOL;Vertical Take-Off and Landing aircraft)が注目されている。垂直離着陸機は、空と離発着場を垂直に昇降できることから、滑走路が必要とならず、利便性に優れる。特に、近年ではCOの削減に向けた社会的要請などからバッテリとモータで飛行するタイプの電動垂直離着陸機(eVTOL)が開発の主流となっている。なお、ここでの垂直離着陸機の概念には、車輪を具備しないものも含まれる。 As a flying car, a vertical take-off and landing aircraft (VTOL) attracts attention. Vertical take-off and landing aircraft can ascend and descend vertically between the sky and the takeoff and landing site, so they do not require a runway and are highly convenient. In recent years, in particular, electric vertical take-off and landing aircraft (eVTOL), which fly with batteries and motors, have become the mainstream of development due to social demands for reducing CO2 emissions. Note that the concept of a vertical take-off and landing aircraft also includes those that do not have wheels.
 この発明に係るシール付軸受は、上述のように高速回転に好適で低トルク性(省エネ運転性)にも優れるので、電動モータのバッテリ駆動で回転翼の高速回転を行う電動垂直離着陸機の駆動部にも好適である。その一例として、この発明に係るシール付軸受が搭載される電動垂直離着陸機を図20に示す。 As described above, the sealed bearing according to the present invention is suitable for high-speed rotation and excellent in low-torque characteristics (energy-saving operability). It is also suitable for parts. As an example, FIG. 20 shows an electric vertical take-off and landing aircraft equipped with a sealed bearing according to the present invention.
 図20に示す電動垂直離着陸機101は、機体中央に位置する本体部102と、前後左右に配置された4つの駆動部103を有するマルチコプターである。駆動部103は、電動垂直離着陸機101の揚力および推進力を発生させる装置であり、駆動部103の駆動によって電動垂直離着陸機101が飛行する。電動垂直離着陸機101において駆動部103は複数あればよく、4つに限定されない。 The electric vertical take-off and landing aircraft 101 shown in FIG. 20 is a multicopter having a main body 102 located in the center of the aircraft body and four drive units 103 arranged in the front, rear, left and right. The drive unit 103 is a device that generates lift and propulsion of the electric vertical take-off and landing aircraft 101 , and the electric vertical take-off and landing aircraft 101 flies by driving the drive unit 103 . The electric vertical take-off and landing aircraft 101 may have a plurality of driving units 103, and the number is not limited to four.
 本体部102は乗員(例えば1~2名程度)が搭乗可能な居住空間を有している。この居住空間には、進行方向や高度などを決めるための操作系や、高度、速度、飛行位置などを示す計器類などが設けられている。本体部102からは4本のアーム102aがそれぞれ延び、各アーム102aの先端に駆動部103が設けられている。図20において、アーム102aには、回転翼104を保護するため、回転翼104の回転周囲を覆う円環部が一体に設けられている。また、本体部102の下部には、着陸時に機体を支えるスキッド102bが設けられている。 The body part 102 has a living space in which passengers (for example, about 1-2 people) can board. This living space is equipped with an operating system for determining the direction of travel and altitude, as well as instruments that indicate altitude, speed, flight position, and so on. Four arms 102a extend from the main body portion 102, and a driving portion 103 is provided at the tip of each arm 102a. In FIG. 20, the arm 102a is integrally provided with an annular portion that covers the rotating circumference of the rotor blade 104 in order to protect the rotor blade 104. As shown in FIG. A skid 102b is provided at the bottom of the main body 102 to support the aircraft during landing.
 駆動部103は、回転翼104と、該回転翼104を回転させるモータ105とを有する。駆動部103において、回転翼104はモータ105を挟んで軸方向両側に一対設けられている。各回転翼104は、径方向外側へ延びる2枚の羽根をそれぞれ有する。 The drive unit 103 has a rotor blade 104 and a motor 105 that rotates the rotor blade 104 . In the drive unit 103, a pair of rotor blades 104 are provided on both sides of the motor 105 in the axial direction. Each rotor blade 104 has two blades extending radially outward.
 本体部102には、バッテリ(図示省略)および制御装置(図示省略)が設けられている。制御装置はフライトコントローラとも呼ばれる。電動垂直離着陸機101の制御は、制御装置によって、例えば以下のように実施される。制御装置が、現姿勢と目標姿勢の差から揚力を調整すべきモータ105に回転数変更の指令を出力する。その指令に基づいて、モータ105に備えられたアンプがバッテリからモータ105へ送る電力量を調整し、モータ105(および回転翼104)の回転数が変更される。また、モータ105の回転数の調整は、複数のモータ105に対して、同時に実施され、それによって機体の姿勢が決まる。 The main body 102 is provided with a battery (not shown) and a control device (not shown). Controllers are also called flight controllers. Control of the electric vertical take-off and landing aircraft 101 is performed by the control device, for example, as follows. Based on the difference between the current attitude and the target attitude, the control device outputs a rotation speed change command to the motor 105 to adjust the lift force. Based on the command, an amplifier provided in motor 105 adjusts the amount of electric power sent from the battery to motor 105, and the rotation speed of motor 105 (and rotor blade 104) is changed. In addition, the adjustment of the number of rotations of the motors 105 is performed simultaneously for the plurality of motors 105, thereby determining the attitude of the aircraft.
 図21は、駆動部におけるモータの一部断面図を示している。図21において、モータ105の回転軸107の一端側(図上側)には上述の回転翼が取り付けられ、他端側(図下側)にはロータが取り付けられる。ロータは、ハウジング106に固定されたステータに対向配置され、該ステータに対して回転可能になっている。なお、モータ105は、アウターロータ型のブラシレスモータや、インナーロータ型のブラシレスモータの構成を採用できる。 FIG. 21 shows a partial cross-sectional view of the motor in the driving section. In FIG. 21, the above-described rotary blade is attached to one end side (upper side of the drawing) of the rotating shaft 107 of the motor 105, and the rotor is attached to the other end side (lower side of the drawing). The rotor is arranged opposite a stator fixed to the housing 106 and is rotatable relative to the stator. It should be noted that the motor 105 can employ a configuration of an outer rotor type brushless motor or an inner rotor type brushless motor.
 モータ105は、ハウジング(装置ハウジング)106と、ロータ(図示省略)と、ステータ(図示省略)と、アンプ(図示省略)と、2個の転がり軸受110、110とを備える。ハウジング106は外筒106aと内筒106bを有し、これらの間には冷却媒体流路106cが設けられている。この流路106cに冷却媒体を流すことにより、過度の温度上昇を防止できる。ハウジング106の材質は特に限定されず、例えば鉄系材料やCFRP(炭素繊維強化プラスチック)などを用いることができる。 The motor 105 includes a housing (device housing) 106, a rotor (not shown), a stator (not shown), an amplifier (not shown), and two rolling bearings 110,110. The housing 106 has an outer cylinder 106a and an inner cylinder 106b, between which a cooling medium flow path 106c is provided. Excessive temperature rise can be prevented by flowing the cooling medium through the flow path 106c. The material of the housing 106 is not particularly limited, and for example, an iron-based material, CFRP (carbon fiber reinforced plastic), or the like can be used.
 また、転がり軸受110は、上述の第一~第六実施形態のいずれかに該当するものである。転がり軸受110は、ハウジング106内で回転軸107を回転自在に支持している。転がり軸受110の外輪111の外径形状は、ハウジング内周の嵌合部と同一の形状であり、ハウジング106に対して、軸受ハウジングなどを介さずに直接嵌合される。転がり軸受110,110の内輪112同士の間には内輪間座108が挿入され、外輪111同士の間には外輪間座109が挿入され、予圧が印加されている。 Also, the rolling bearing 110 corresponds to any one of the first to sixth embodiments described above. Rolling bearing 110 rotatably supports rotating shaft 107 within housing 106 . The outer ring 111 of the rolling bearing 110 has the same outer diameter shape as the fitting portion on the inner periphery of the housing, and is directly fitted to the housing 106 without interposing a bearing housing or the like. An inner ring spacer 108 is inserted between the inner rings 112 of the rolling bearings 110, 110, an outer ring spacer 109 is inserted between the outer rings 111, and preload is applied.
 なお、駆動部における軸受構成は、図21の構成に限定されない。図21では、モータの回転軸と回転翼の回転軸とを同一の回転軸としたが、モータの回転軸と回転翼の回転軸とが伝達機構を介して接続された構成であってもよい。この場合、駆動部における回転軸を支持する転がり軸受は、モータの回転軸を支持する転がり軸受でもよく、回転翼の回転軸を支持する転がり軸受でもよい。 It should be noted that the bearing configuration in the driving portion is not limited to the configuration in FIG. In FIG. 21, the rotating shaft of the motor and the rotating shaft of the rotor blades are the same rotating shaft, but the rotating shaft of the motor and the rotating shaft of the rotor blades may be connected via a transmission mechanism. . In this case, the rolling bearing that supports the rotating shaft in the drive section may be the rolling bearing that supports the rotating shaft of the motor, or the rolling bearing that supports the rotating shaft of the rotor.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. Therefore, the scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and scope of equivalents of the scope of the claims.
1、110 転がり軸受
2 シール部材
3 内輪
4、111 外輪
5 転動体
6 保持器
7 内部空間
10、41、61 シールリップ
11 シール摺動面
12、21、31、42、51、62a、62b 突起
13、22、33,43、53、63a、63b 隙間
32 流線形端部
44、52 リブ
62c 端部
101 電動垂直離着陸機
103 駆動部
104 回転翼
105 モータ
107 回転軸
1, 110 Rolling bearing 2 Seal member 3 Inner ring 4, 111 Outer ring 5 Rolling element 6 Cage 7 Internal space 10, 41, 61 Seal lip 11 Seal sliding surface 12, 21, 31, 42, 51, 62a, 62b Projection 13 , 22, 33, 43, 53, 63a, 63b Gap 32 Streamline end portions 44, 52 Rib 62c End portion 101 Electric vertical take-off and landing aircraft 103 Drive unit 104 Rotary blade 105 Motor 107 Rotating shaft

Claims (13)

  1.  転がり軸受の内部空間を外部に対して密封するシール部材と、前記シール部材に対して周方向に摺動するシール摺動面とを備え、
     前記シール部材は、環状に形成されたシールリップを有し、前記シールリップは、周方向に並んだ複数の突起を有し、前記複数の突起は、周方向に隣り合う前記突起同士の間を通じて前記内部空間と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突起と前記シール摺動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シール摺動面間を流体潤滑状態にすることが可能な態様で形成されているシール付軸受において、
     前記突起は、外部側に向かって周方向一方側へ傾いた方向に延びていることを特徴とするシール付軸受。
    A seal member that seals the internal space of the rolling bearing from the outside, and a seal sliding surface that slides in the circumferential direction against the seal member,
    The seal member has a seal lip formed in an annular shape, the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections extend between the circumferentially adjacent projections. A gap that communicates with the internal space and the outside is generated, and an oil film of lubricating oil that is dragged from the gap between the protrusion and the seal sliding surface as the bearing rotates creates a gap between the seal lip and the seal sliding surface. In a sealed bearing that is formed in a manner that can be in a fluid lubricated state,
    A bearing with a seal, wherein the protrusion extends in a direction inclined to one side in the circumferential direction toward the outside.
  2.  前記突起は、径方向に対して傾斜した直線状に形成されている請求項1に記載のシール付軸受。 The sealed bearing according to claim 1, wherein the projection is formed in a straight line inclined with respect to the radial direction.
  3.  前記突起は、周方向一方側へ曲がる曲線状に形成されている請求項1に記載のシール付軸受。 The bearing with seal according to claim 1, wherein the protrusion is formed in a curved shape that curves to one side in the circumferential direction.
  4.  転がり軸受の内部空間を外部に対して密封するシール部材と、前記シール部材に対して周方向に相対回転するシール摺動面とを備え、
     前記シール部材は、環状に形成されたシールリップを有し、前記シールリップは、周方向に並んだ複数の突起を有し、前記複数の突起は、周方向に隣り合う前記突起同士の間を通じて前記内部空間と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突起と前記シール摺動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シール摺動面間を流体潤滑状態にすることが可能な態様で形成されているシール付軸受において、
     前記シールリップは、前記隙間と対向するように前記複数の突起と位相をずらして配置されかつ前記シール摺動面との間に間隔を空けて配置されたリブを有することを特徴とするシール付軸受。
    A seal member that seals the internal space of the rolling bearing from the outside, and a seal sliding surface that rotates relative to the seal member in the circumferential direction,
    The seal member has a seal lip formed in an annular shape, the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections extend between the circumferentially adjacent projections. A gap that communicates with the internal space and the outside is generated, and an oil film of lubricating oil that is dragged from the gap between the protrusion and the seal sliding surface as the bearing rotates creates a gap between the seal lip and the seal sliding surface. In a sealed bearing that is formed in a manner that can be in a fluid lubricated state,
    The seal lip has a rib arranged out of phase with the plurality of projections so as to face the gap and arranged with a gap between the seal sliding surface and the seal lip. bearing.
  5.  前記突起と前記リブは、それぞれ周方向に対して直交する方向に延びている請求項4に記載のシール付軸受。 The sealed bearing according to claim 4, wherein the protrusion and the rib each extend in a direction perpendicular to the circumferential direction.
  6.  前記突起と前記リブは、それぞれ半球状である請求項4に記載のシール付軸受。 The sealed bearing according to claim 4, wherein the protrusion and the rib are hemispherical.
  7.  転がり軸受の内部空間を外部に対して密封するシール部材と、前記シール部材に対して周方向に相対回転するシール摺動面とを備え、
     前記シール部材は、環状に形成されたシールリップを有し、前記シールリップは、周方向に並んだ複数の突起を有し、前記複数の突起は、周方向に隣り合う前記突起同士の間を通じて前記内部空間と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突起と前記シール摺動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シール摺動面間を流体潤滑状態にすることが可能な態様で形成されているシール付軸受において、
     前記周方向に隣り合う突起同士は、互いに周方向に相反する方へ傾いた方向に延びていることを特徴とするシール付軸受。
    A seal member that seals the internal space of the rolling bearing from the outside, and a seal sliding surface that rotates relative to the seal member in the circumferential direction,
    The seal member has a seal lip formed in an annular shape, the seal lip has a plurality of projections arranged in a circumferential direction, and the plurality of projections extend between the circumferentially adjacent projections. A gap that communicates with the internal space and the outside is generated, and an oil film of lubricating oil that is dragged from the gap between the protrusion and the seal sliding surface as the bearing rotates creates a gap between the seal lip and the seal sliding surface. In a sealed bearing that is formed in a manner that can be in a fluid lubricated state,
    A bearing with a seal, wherein the protrusions adjacent to each other in the circumferential direction extend in directions inclined in opposite directions in the circumferential direction.
  8.  前記複数の突起のうち、周方向一方側へ傾いた方向に延びる第一の突起と、前記第一の突起の周方向他方側に隣接しかつ周方向他方側へ傾いた方向に延びる第二の突起は、互いの内部空間側の端部で連続している請求項7に記載のシール付軸受。 Among the plurality of projections, a first projection extending in a direction inclined to one side in the circumferential direction, and a second projection adjacent to the other side in the circumferential direction of the first projection and extending in a direction inclined to the other side in the circumferential direction 8. The sealed bearing according to claim 7, wherein the protrusions are continuous at the ends on the inner space side.
  9.  前記突起は、前記シール摺動面との摺動部よりも内部空間側に位置する流線形端部を有し、前記流線形端部は、内部空間側に向かって前記突起の周方向幅及び高さを次第に小さくした形状である請求項1から8のいずれか1項に記載のシール付軸受。 The projection has a streamlined end portion positioned closer to the internal space than the sliding portion with the seal sliding surface, and the streamlined end portion extends toward the internal space side from the circumferential width and the width of the projection. 9. The sealed bearing according to any one of claims 1 to 8, which has a shape with gradually decreasing height.
  10.  前記突起と前記シール摺動面の摺動部から内部空間側に向かって前記シールリップと前記シール摺動面とが形成する角度αは、0°<α≦45°である請求項1から9のいずれか1項に記載のシール付軸受。 10. An angle α formed by the seal lip and the seal sliding surface toward the inner space from the protrusion and the sliding portion of the seal sliding surface is 0°<α≦45°. The sealed bearing according to any one of Claims 1 to 3.
  11.  前記突起と前記シール摺動面の合成粗さσは、0.9μm以下である請求項1から10のいずれか1項に記載のシール付軸受。 The bearing with seal according to any one of claims 1 to 10, wherein the combined roughness σ of the protrusion and the seal sliding surface is 0.9 µm or less.
  12.  車両のトランスミッション、ディファレンシャル、等速ジョイント、プロペラシャフト、ターボチャージャ、工作機械、風力発電機及びホイール軸受の中のいずれか一つの回転部を支持する請求項1から11のいずれか1項に記載のシール付軸受。 12. A rotating part of any one of a vehicle transmission, differential, constant velocity joint, propeller shaft, turbocharger, machine tool, wind power generator and wheel bearing according to any one of claims 1 to 11. Sealed bearing.
  13.  回転翼および該回転翼を回転させるモータを有する駆動部を複数備え、前記回転翼の回転によって飛行する電動垂直離着陸機に搭載されるものであって、
     内輪と、外輪と、該内輪および外輪の間に介在する複数の転動体と、これら転動体を保持する保持器とを備え、
     前記駆動部における回転軸を支持する請求項1から11のいずれか1項に記載のシール付軸受。
    It is mounted on an electric vertical take-off and landing aircraft that is equipped with a plurality of drive units having rotating blades and a motor that rotates the rotating blades, and that flies by rotating the rotating blades,
    An inner ring, an outer ring, a plurality of rolling elements interposed between the inner ring and the outer ring, and a retainer for holding these rolling elements,
    12. The sealed bearing according to any one of claims 1 to 11, which supports a rotating shaft in said driving portion.
PCT/JP2022/011933 2021-03-24 2022-03-16 Seal-equipped bearing WO2022202544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-049824 2021-03-24
JP2021049824A JP2022148225A (en) 2021-03-24 2021-03-24 Bearing having seal

Publications (1)

Publication Number Publication Date
WO2022202544A1 true WO2022202544A1 (en) 2022-09-29

Family

ID=83397202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011933 WO2022202544A1 (en) 2021-03-24 2022-03-16 Seal-equipped bearing

Country Status (2)

Country Link
JP (1) JP2022148225A (en)
WO (1) WO2022202544A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049466A1 (en) * 2009-10-15 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Clutch release bearing i.e. tapered seat-spherical bearing, for use in diaphragm spring clutch in drive strand in motor vehicle, has sealing lip provided with return conveying structure that stands in connection with sealing surface
JP2020041659A (en) * 2018-09-13 2020-03-19 Ntn株式会社 Ball bearing
JP2020159382A (en) * 2019-03-25 2020-10-01 Ntn株式会社 Bearing with seal
JP2021011896A (en) * 2019-07-04 2021-02-04 Ntn株式会社 Beating with seal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009049466A1 (en) * 2009-10-15 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Clutch release bearing i.e. tapered seat-spherical bearing, for use in diaphragm spring clutch in drive strand in motor vehicle, has sealing lip provided with return conveying structure that stands in connection with sealing surface
JP2020041659A (en) * 2018-09-13 2020-03-19 Ntn株式会社 Ball bearing
JP2020159382A (en) * 2019-03-25 2020-10-01 Ntn株式会社 Bearing with seal
JP2021011896A (en) * 2019-07-04 2021-02-04 Ntn株式会社 Beating with seal

Also Published As

Publication number Publication date
JP2022148225A (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP6523994B2 (en) Sealed bearing
EP2213913A1 (en) Sealing device, rolling bearing, and rolling bearing for wheel
CN109690101B (en) Bearing with seal
WO2016143786A1 (en) Sealed bearing
WO2022202544A1 (en) Seal-equipped bearing
JP6773425B2 (en) Bearing with seal
JP7201752B2 (en) Sealed bearing
JP6745609B2 (en) Bearing with seal
JP2765487B2 (en) Lubricating device for differential bearings
WO2022202899A1 (en) Bearing with seal
CN117751250A (en) Ball bearing
WO2017150609A1 (en) Seal-equipped bearing, and ball bearing
JP7240975B2 (en) Sealed bearing
JP6797719B2 (en) Oil seal and bearing with seal
WO2022264910A1 (en) Sealed bearing
WO2022230730A1 (en) Angular ball bearing
JP7331053B2 (en) Sealed bearing
JP6833414B2 (en) Bearing with seal
JP6887046B2 (en) Tapered roller bearing
WO2022202545A1 (en) Bearing with seal
WO2022181437A1 (en) Seal-attached bearing
JP2022149315A (en) rolling bearing
JP2022149318A (en) rolling bearing
JP6725264B2 (en) Tapered roller bearing
JP2022169216A (en) rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775332

Country of ref document: EP

Kind code of ref document: A1