JP2022167074A - 流路構造体、流体撹拌方法及び脂質粒子の製造方法 - Google Patents

流路構造体、流体撹拌方法及び脂質粒子の製造方法 Download PDF

Info

Publication number
JP2022167074A
JP2022167074A JP2021072609A JP2021072609A JP2022167074A JP 2022167074 A JP2022167074 A JP 2022167074A JP 2021072609 A JP2021072609 A JP 2021072609A JP 2021072609 A JP2021072609 A JP 2021072609A JP 2022167074 A JP2022167074 A JP 2022167074A
Authority
JP
Japan
Prior art keywords
channel
flow path
channel structure
depth
lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021072609A
Other languages
English (en)
Inventor
くみ 益永
Kumi Masunaga
征人 秋田
Masato Akita
光章 加藤
Mitsuaki Kato
美津子 石原
Mitsuko Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2021072609A priority Critical patent/JP2022167074A/ja
Priority to CN202280005789.2A priority patent/CN116096485A/zh
Priority to EP22711683.7A priority patent/EP4326429A1/en
Priority to PCT/JP2022/009431 priority patent/WO2022224595A1/en
Publication of JP2022167074A publication Critical patent/JP2022167074A/ja
Priority to US18/182,788 priority patent/US20230330618A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/305Micromixers using mixing means not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • B01F25/43231Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors the channels or tubes crossing each other several times
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】 横渦を発生させることで流体をより均一に混合することができる流路構造体、流体撹拌方法及び脂質粒子の製造方法を提供することである。【解決手段】 実施形態に従う流路構造体は、第1の流路と、第1の流路に合流する第2の流路とを備え、第2の流路の第1の流路側の端は、第1の流路より深さが浅い領域を有する。【選択図】図1

Description

本発明の実施形態は、流路構造体、流体撹拌方法及び脂質粒子の製造方法に関する。
2液を速やか且つ均一に混合させるためには撹拌することが適切である。近年流体の取り扱いにマイクロ流路が用いられているが、2液が少量である場合、レイノルズ数が小さいマイクロ流路内においては乱流が発生しにくく、2液を撹拌混合する事が困難である。よって、マイクロ流路内で定常的な旋回流(渦、スワール)を生成させることにより混合を促進する事が試みられてきている。マイクロ流路内で旋回流を発生させるには立体的な流体制御が必要となり、そのために繊細な金型や流路加工、又は高精度な複数流路の積層成形が求められる。
一方、医療用等、クロスコンタミネーションを避けることが望まれる状況で使用されるマイクロ流路は、使い捨て(ディスポーザブル)品であることが好ましい。その場合、精度を強く要求しない低コストな設計のマイクロ流路が求められる。
特表2019-506286号公報 特表2019-503271号公報
Stroock, Abraham D., et al. Science, Jan 2002, 295.5555: 647-651
本発明が解決しようとする課題は、横渦を発生させることで流体をより均一に混合することができる流路構造体、流体撹拌方法及び脂質粒子の製造方法を提供することである。
実施形態に従う流路構造体は、第1の流路と、第1の流路に合流する第2の流路とを備え、第2の流路の第1の流路側の端は、第1の流路より深さが浅い領域を有する。
図1は、第1実施形態の流路構造体の一例を示す平面図及び断面図である。 図2は、第1実施形態の流路構造体の一例を示す斜視図である。 図3は、実施形態の流路構造体の流路断面の一例を示す断面図である。 図4は、第2実施形態の流路構造体の一例を示す平面図である。 図5は、第3実施形態の流路構造体の一例を示す平面図である。 図6は、第4実施形態の流路構造体の一例を示す平面図である。 図7は、第4実施形態の流路構造体の一例を示す平面図である。 図8は、第4実施形態の流路構造体の一例を示す平面図である。 図9は、第5実施形態の流路構造体の一例を示す平面図である。 図10は、実施形態の流路構造体の一例を示す断面図である。 図11は、実施形態の脂質粒子の一例を示す図である。 図12は、実施形態の脂質粒子の製造方法の一例を示すフローチャートである。 図13は、実施形態の脂質粒子の製造方法に用いる流路構造体の一例を示す図である。 図14は、例1の実験結果を示す画像である。 図15は、例2の実験結果を示す画像である。 図16は、例2のシミュレーション結果を示す画像である。 図17は、例3の実験結果を示す写真である。 図18は、例4の実験結果を示す写真である。 図19は、例4の実験結果を示す写真である。 図20は、例4の実験結果を示すグラフである。 図21は、例4の実験結果を示すグラフである。 図22は、例5のシミュレーション結果を示す画像である。 図23は、例6で使用した流路構造体を示す平面図である。 図24は、例6の実験結果を示すグラフである。 図25は、例7で使用した流路構造体を示す平面図である。 図26は、例10のシミュレーション結果を示す画像である。
以下、実施形態について、添付の図面を参照して説明する。なお、各実施形態において、実質的に同一の構成部位には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、各部の厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。
(第1実施形態)
図1の(a)の平面図に示す通り、第1実施形態の流路構造体1は、第1の流路2と、第1の流路2に合流する第2の流路3とを含む。第1の流路2と、第2の流路3とは、流路構造体1の内部に形成された空洞であり、即ちその天面は蓋を有し、液密に構成されている。以下、後述する第3の流路及び第4の流路もまた同様に流路構造体内部に形成された空洞の形状である。
第2の流路3の第1の流路2側の端は、第1の流路2より深さが浅い第1の領域を有する。第1の領域を以下、第1の浅部4とも称する。図1の(a)のB-B’に沿って切断した断面図である図1の(b)に示す通り、例えば第1の浅部4は、第1の浅部4よりも上流の領域(以下、「深部5」と称する)、及び第1の流路2よりも底面が突出し、流路の内腔を狭くしている。深部5及び第1の流路2の深さは同じであり得る。なお、本図では流体の進行方向を矢印で示す。図に示すように、第1の流路2の流体の進行方向は、第2の流路3と異なる。第1の流路2の、第2の流路3から流体が合流する領域を「混合領域6」と称する。
例えば、第1の流路2と、第2の流路3とはマイクロ流路である。
図2は、第2の流路3から流体を流した時の様子を示す。矢印は流体の進行方向を示す。流体は第1の浅部4を通過することで第1の流路2に流れ込む際に横渦が発生する。横渦はその回転軸が第1の流路2の長軸と一致した旋回流である。この例では第2の流路3の右側の第1の流路2の端が閉鎖されており壁になっているため、流体は横渦を発生させながら左方向に(図2では横渦を発生させながら右方向に)第1の流路2の長軸に沿って流れる。横渦の発生により流体をよく混合、撹拌することができる。
図1の(b)に示すように、第1の浅部4の深さdは第1の流路2の深さdに対して1/2未満であることが好ましい。d/dは1/3以下であればより好ましい。このような深さとすることにより、第1の浅部4から第1の流路2へ流体が流れ込む際の流速が上がり、横渦がより発生しやすくなる。
第1の浅部4の深さdが浅い方がより大きく強い横渦を発生させる流速を得られるものの、浅くしすぎると過剰な圧力損失が起こる可能性があり、また万が一異物が存在する場合に閉塞を招く可能性もある。そのため、例えば実験又はシミュレーションにより、d/dを1/3、1/4、1/5等とより浅く設計していったとき、最終的に流路の工作上の精度又は圧力損失、異物に対するロバスト性から妥当な深さdを決定すればよい。
実際には、本流路構造体の製造に用いられる好ましい手法である金型成形又は切削加工の精度が一般的に5μmであることから、誤差による流路の閉塞を回避するためにも、最低でも浅部4の深さは10μm以上であることが望ましい。
また、定常的に安定な横渦を形成させるため、またキャビテーションによる予期せぬ反応を起こさせぬためにも、流速が乱流域に至るような浅さにまで浅部4の深さを削減することは避けた方がよい。
第1の浅部4の長さは、第2の流路3の流路幅と同じかそれ以上の長さとすることが好ましい。それにより、深部5から第1の浅部4へ流体が流れた時に生じる流れの乱れが、第1の浅部4内で適度に収まり得る。流れの乱れを抑えることで、より効率的に横渦の発生させることができる。しかしながら、第1の浅部4を無用に長くすることは、圧力(流体抵抗)を過剰に上げる可能性があるため好ましくなく、第1の浅部4の長さは通常、最長で流路幅の約3倍程度であることが好ましい。しかしながら、ポンプの吐出性能が許すのであれば、流路の配置等の都合から、必要であれば3倍よりも長くすることも可能である。
第2の流路3は、例えば第1の流路2に直角に合流している。第2の流路3と第1の流路2とがなす角度θは、必ずしも直角である必要はないが、角度θが大きくなるほど層流合流になりやすい。したがって、角度θは可能な限り直角に近いことが好ましい。また、図1の例では第1の流路2は、第2の流路3から見て左側に流れが屈曲するように構成されているが、右側に屈曲する構成としてもよい。
第1の流路2の流路断面は、図3の(a)に示すように幅及び深さが同じ長さである正方形であることが好ましい。しかしながら精密に正方形にする必要はなく、一方の辺が僅かに長い略正方形であってもよい。また、可能であれば図3の(b)に示すように断面の底部の2隅をR形状とした形状もまた好ましく、又は図3の(c)に示すように断面の底部を正方形の辺の半分の距離を半径としたR形状としてもよい。このような断面形状により、横渦がより真円に近い形状となり、横渦がより長く維持される。その結果、流体をよく混合及び撹拌することができる。なお、第1の流路2の全域に亘りこのような断面形状にする必要はなく、少なくとも混合領域6がこのような断面形状になっていればよい。
第2の流路3の深部5及び第1の流路2の流路幅及び深さ、第1の浅部4の深さ、並びに流体の供給量は限定されるものではなく、流体の種類に従って決定される。例えば、横渦を発生させるためにも層流となることを防止する目的で、第1の浅部4以外の通常の深さを有する流路部分におけるレイノルズ数が10以上となるように調節することが好ましい。また均一な横渦を作る目的において乱流を避けるためにも、少なくともレイノルズ数を2300未満とすることが好ましい。更に好ましくは、一般的に入手できるポンプの性能と、実効的な横渦の強さを念頭に入れ、レイノルズ数が50~約1000であることが好ましい。
例えば、深部5及び第1の流路2の断面を0.3mm角とする場合、流速を約0.5m/s以上とすることが好ましい。流体を水に近いものと想定すると、室温付近では、この際のレイノルズ数は100前後である。
例えばレイノルズ数を一定に維持したまま流路断面の一辺の長さを短くすると、圧力へは2乗で影響する。そのため、例えば一辺0.3mmの流路において、第1の浅部4の深さdを0.1mmとすることで第1の浅部4における圧力損失は10倍になる。また第1の浅部4における圧力の10倍前後の上昇により、流量範囲に対する適用可能なポンプの仕様変更の必要性が高くなり、またその場合ポンプの種類も限られる。そのため、第1の浅部4の深さdが0.1mm以上となるように深部5及び第1の流路2の深さを設計することが望ましい。またポンプの負担を軽減するために圧力の上昇の上限は10倍程度とすることが好ましい。
一方で、本流路構造体でポンプを用いる場合、脈動を起こさないポンプを用いることが好ましい。そのようなポンプとしては1ml/sec程度の送液量のものが容易に入手できる。それを考慮した場合、深部5及び第1の流路2の断面の幅及び深さは3mm程度が妥当な上限であり得る。
以上に説明した通り、実施形態の流路構造体1によれば、横渦を発生させることで流体をより混合及び撹拌することができる。詳しくは後述するが、この流路構造体は製造時、基材にトンネル構造を成形する必要がなく、溝状の流路に平面の蓋をする構成(つまり流路同士の積層を行わない構成)とすることができる。そのため、製造時高い工作精度を要求せず、簡単且つ低コストで製造することができる。
(第2実施形態)
第2実施形態の流路構造体は、第1の流路の、第2の流路との合流点のすぐ上流に直列に接続する第3の流路7を更に備える。例えば、図4の(a)に示す流路構造体10のように、例えば第3の流路7及び第1の流路2は一体の直線状の流路を成し、第2の流路3は直角に第1の流路2に合流する。このとき、第2の流路3と第1の流路2とがなす角θ及び第2の流路3と第3の流路7とがなす角θはどちらも直角である。
更なる実施形態においては、図4の(b)に示す流路構造体11のように第2の流路3と第3の流路7とが、例えば同じ角度で第1の流路2に合流し、全体としてY字形状を成している。第2の流路3と第3の流路7との為す角θは直角であることが好ましい。また、これら2つの流路が第1の流路2に同じ角度で合流し、言い換えれば第1の流路2の長軸を対称軸として第2の流路3と第3の流路7とが互いに対称に接続している。例えば角θは直角であるとき、第2の流路3と第1の流路2とがなす角θは例えば135°である。
流路構造体10、11では、第2の流路3に加え、第3の流路7からもまた流体を流す。それにより混合領域6において2流体が合流する。また第1の浅部4により混合領域6で横渦が発生することにより、2流体が混合及び撹拌される。
流路構造体11は、流路構造体10よりも第2の流路3からの合流直後の流れの乱れが少なくなり得る。流れの乱れは攪拌効果を増大させるが、乱れを少なくすることでより均一に混合を行うことが可能であり、また、この場合横渦の寿命(エネルギー)を無駄に消費することが無く、横渦をより持続させることができる。したがって、撹拌効果よりも均一な混合が望まれる場合は流路構造体10よりも流路構造体11を用いることが好ましい。反対に、より急激な混合が望まれる場合は流路構造体10を用いることが好ましい。
第2実施形態の流路構造体10、11においても第1の浅部4の深さdは、第1の流路2の深さdに対して1/2未満であることが好ましい。例えば、第1の浅部4を設けない場合、第2の流路3及び第3の流路7から同量に近い流量で流体を流すと、合流後、流体が断面積を1/2ずつ占有するので合流後に層流になろうとする要素が強くなる。したがってd/dを1/2とした場合、それと同様の状況が体現されるため横渦が発生しにくい可能性がある。したがって、d/dを1/2未満とすることでより横渦が発生しやすくなり得る。
第2実施形態の流路構造体10、11は、例えば2流体の混合に使用することができ、2流体をより効率よく且つ均一に混合することが可能である。
(第3実施形態)
第3実施形態の流路構造体は、第1実施形態又は第2実施形態の流路構造体の第1の流路の下流の端に、更に流体を混合する流路群(混合ユニット)を備える。図5は、第3実施形態の流路構造体20の一例を示す。流路構造体20は、合流ユニット21と、混合ユニット22とを備える。本図では便宜上浅部(第1の浅部4a~第3の第3の浅部4c)を斜線パターンで示す。また、流体の流れる向きを矢印で示す。
合流ユニット21は、2つの流体が合流するための流路群を備える。合流ユニット21は例えば第2実施形態の流路構造体10又は11と同じ構造を有する。ここでは流路構造体11と同じ構造を図示する。合流ユニット21では、第2実施形態において説明した通り、流体が第1の浅部4aを通過することにより混合領域6aで横渦が発生し、第2の流路3及び第3の流路7からそれぞれ流れてきた2つの流体が第1の流路2で混合される。その後流体は下流の混合ユニット22へと流れる。
混合ユニット22は、合流ユニット21の下流に連結され、合流ユニット21で合流した流体を更に混合及び撹拌する流路群を備える。この流路群は、例えば第1の流路2から流入する流体を2つに分岐させて2つの分流を形成し、この2つの分注を第4の流路に合流させる第1の分岐合流路23及び第2の分岐合流路24を備える。
例えば、第2の分岐合流路24はその中間部にその上流側及び下流側よりも深さが浅い第2の領域(第2の浅部4b)を有し、その下流は屈曲して前記第4の流路に合流する。第2の浅部4bと屈曲により、横渦が発生し、流体を混合及び撹拌することができる。また、第1の分岐合流路23の第4の流路側の端は、第4の流路よりも深さが浅い第3の領域(第3の浅部4c)を有する。第3の浅部4cにより、流体が第4の流路で合流する際に横渦が発生し、流体を混合及び撹拌することができる。
以下第1の分岐合流路23及び第2の分岐合流路24の構造についてより詳しく説明する。第1の分岐合流路23は、例えば上流から下流に向けて分岐部23aと、中間部23bと、合流部23cとを含む。第2の分岐合流路24も同様に、例えば分岐部24aと、中間部24bと、合流部24cとを含む。
分岐部23a及び分岐部24aは、第1の流路2の下流の端に連結され、流体を分岐させる部分である。分岐部23a及び分岐部24aは、流量を同等とするために例えば同じ角度で、即ち第1の流路2を軸として互いに対称に連結され、また同じ流路幅及び深さとすることが好ましい。分岐部23aと分岐部24aとがなす角は限定されるものではないが、例えば直角である。
しかしながら、必ずしも2つの分岐部の流量を同等にしなくとも下流の第2の浅部4b、4cで横渦を発生させることは可能であるため、流路の大きさ又は角度を互いに異なるものにすることも可能である。しかしながら、その場合一方の流量を下げることとなり、流量が少ない方の流路では圧力調整の困難度(必要精度)が上がる可能性がある。よって、おおよそ同量に分岐させることが製品のロバスト性において好ましい。
分岐部23a及び分岐部24aのそれぞれ下流の中間部23b及び中間部24bでは、第1の流路2の長軸と平行な角度に流路が屈曲している。続いてその下流の合流部23c、24cで更に内側に屈曲し、第4の流路25に接続している。
中間部24bは、例えば合流部24cの深さに対して1/2未満の深さを有する第2の浅部4bとなっている。混合ユニット22で一方の流路が第3の浅部4cを有しているため、分岐するときに圧力バランスが偏り、均等に分岐されない可能性がある。そこで、例えば、第2の浅部4bを配置することにより、2つの分流の圧力を同様にすることができる。第2の浅部4bは、分岐部24aに設けることも可能であるが、中間部24bに配置する方が、分流化がより単純となるため好ましい。第2の浅部4bの下流の合流部24cで流路が屈曲しているため、合流部24cの上流付近(混合領域6b)で横渦が発生する。それにより、そこで流体を更に撹拌することができる。混合領域6bの流路の断面形状は、図3に示す何れかの形状となっていることが好ましい。
合流部23c及び合流部24cは、例えば互いに同じ角度で、即ち第4の流路25を軸として互いに対称に第4の流路25に連結している。合流部23cと合流部24cとがなす角は直角であることが好ましい。
例えば合流部23cは、第4の流路25の深さに対して1/2未満の深さを有する第3の浅部4cとなっている。第3の浅部4cにより第4の流路25の入り口付近(混合領域6c)で横渦が発生する。それにより流体を更に混合及び撹拌することができる。混合領域6cの流路の断面形状は、図3に示す何れかの形状となっていることが好ましい。
単に横渦を生成するだけであるならば、必ずしも第2の浅部4bを設けなくともよく、圧力の調整を図った上で第2の分岐合流路24全域にわたり同じ深さとすることも可能である。しかしながら、図5に示す第1の分岐合流路23及び第2の分岐合流路24の両方に浅部が配置される構成は、万が一異物の混入によって片方の流路が閉塞した場合でも、どちらか一方の流路で浅部を経由させ、流体を混合及び撹拌することができる点においても好ましい。
図5では、合流ユニット21の浅部4aを有する流路(ここでは第2の流路3)の対角に配置された流路(ここでは第2の分岐合流路24)が中間部24bに第2の浅部4bを有しているが、後述する図6のように第1の分岐合流路23と、第2の分岐合流路24とが反転して配置されていてもよい。
(第4実施形態)
第4実施形態に従う流路構造体は複数の混合ユニット22を備える。例えば、図6の(a)に示すように、流路構造体30は、直列に配置された3つの混合ユニット、即ち第1の混合ユニット22a、第2の混合ユニット22b及び第3の混合ユニット22cを備える。
図6の(b)に示す流路構造体31は、第2の混合ユニット22bにおいて、第1の分岐合流路23(合流部に第3の浅部4cを備える)と、第2の分岐合流路24(中間部に第2の浅部4bを備える)とが第4の流路25を軸として反転して配置されている。この例のように第1の分岐合流路23及び第2の分岐合流路24の配置が反転した混合ユニットを交互に配置することで、より均等に流体を混合することができる。
混合ユニット22の数は3つに限られるものではなく、2つ若しくは4つ、5つ、6つ又はそれ以上としてもよい。
更なる実施形態によれば、図7に示す流路構造体40のように、複数の混合ユニット22a~2cを並列に配置した流路構造としてもよい。例えば、上流で流体を分岐させ、複数の混合ユニット22a~cを通過させた後、その下流で再び1つの流路に合流させる。この配置は、直列に配置する場合と比較して流量が多い場合も送液の抵抗を低減することができる。送液ポンプを用いる場合は、ポンプへの負荷がより少ない。
また、直列配置と並列配置とを併用した構造としてもよい。その場合、送液の抵抗を調節することができ、且つ撹拌混合の効果を高めることが可能である。例えば、図8に示す流路構造体50は、直列に配置された2つの混合ユニット22を備える流路構造が4組あり、これら4組の流路構造が並列に配置されている。また、並列に配置された混合ユニット22の下流で流体が合流する部分では、混合及び撹拌を促進するために、合流する流路の一方に浅部を配置することが好ましい。直列配置と並列配置とを併用した流路構造は図8に示す例に限定されるものではなく、流体の種類又は用途に応じて改変することが可能である。
第4実施形態に従う流路構造体によれば、混合ユニット22を一つ備える場合と比べて更に流体を混合及び撹拌することができる。
(第5実施形態)
第5実施形態の流路構造体は、図9に示す流路構造体60のように、合流ユニット21の第3の流路7及び第1の流路2は一体の直線状の流路を成している。第2の流路3は、第1の流路2に対して直角に合流している(即ち、図4の(a)と同様の流路構造)。
また、第1の混合ユニット22aの合流部23cは、第4の流路25に直列に接続し、第4の流路25と一体の直線の流路を成している。合流部24cは、第4の流路25に対して直角に合流している。第2の混合ユニット22bでは、第1の分岐合流路23と第2の分岐合流路24とが反転して配置されているが、同様に合流部23cと第4の流路25とが直線の流路を成し、そこに合流部24cが直角に合流している。
第1の流路2及び第4の流路25は、次の分岐の直前で2つの分岐流路の対称軸に沿うように屈曲している。或いは、第1の流路2及び第4の流路25を屈曲させずにそのまま次の分岐部23aに直列に連結してもよい。
この例において混合ユニット22はいくつ連結してもよく、例えば、1つ若しくは3つ、4つ、5つ、6つ又はそれ以上連結してもよい。
このように2つの浅部を有する流路を直角に合流させることによって、流体がより早く混合及び撹拌され得る。これは、合流時に流れの乱れが大きくなることが一因と考えらえる。流れの乱れは、混合の均一性の効果は少ないものの、攪拌の効果を高め得る。そのため、均一性よりも攪拌の早さを求める場合には、このような流路構造とすることが好ましい。
(流路構造体の製造方法)
以上に説明した流路構造体(以下、まとめて「流路構造体100」と記す)の製造方法について、以下図10を用いて説明する。図10の(a)に示すように、流路構造体100は、例えば流路として機能する溝101が形成された基板102と、溝101の天面を塞ぐように基板102に接合された板状の蓋部103とを備える。
基板102の材料は、アクリル、ポリエチレン、ポリプロピレン等の樹脂、ガラス、セラミックス又は金属等から用途によって適切なものを選択すればよい。例えば、流路構造体が医療用途であるならば、シクロオレフィンポリマー等も好ましい例である。何度も再利用するのであればガラス、石英などのセラミックスが安定性から好ましく、温度などの調整を図るのであれば、表面に耐食性の処理を施した金属を用いてもよい。溝101は、例えば金型を用いたプレス加工又は切削により形成することができる。浅部に相当する箇所は、他の部分よりも溝101を浅く形成又は切削すればよい。
蓋部103の材料は、例えば、基板102で説明したものと同様の材料を使用することができる。蓋部103は、例えば板状であり得る。又は、図10の(b)に示すように薄いフィルム状の蓋部104を用いてもよい。
フィルム状の蓋部104は、流体の状態を監視するためのセンサー端子105を取り付けることも可能である。又は蓋部104に高い熱伝導性若しくは特定の物質に対して特定の処理を行う機能(図示せず)等、様々な機能又は特性を付与することも可能である。
蓋部104が内圧により膨らむことが懸念される場合には、図10の(c)に示すように、押さえ板106を蓋部104の上から押し付けることで膨らみを抑制してもよい。押さえ板106は、その内部に配置された熱交換用の熱媒流路107、又はセンサー機能を有する電気端子(図示せず)等を備えてもよい。
このように基板102に溝101を形成して蓋部103又は104を接合するという単純な手順で流路構造体100を製造することができる。したがって、例えば基板102と蓋部103の両方に溝を形成すること、また、それによる両者の精密な位置合わせが不要であるため、量産性が非常に高い。
更なる実施形態によれば、浅部の溝101の深さを他の部分と同じ深さとしておき、対応する箇所に凸部を有する蓋部104を取り付けることで形成されてもよい。即ち、このように形成された浅部4の流路内腔は、上から凹むことによって流路が狭くなっている。このような構造は、上記のような底が突出する構造と比較して蓋部の形成、位置合わせ等の製造の手順は増えるが、同様に横渦を発生させることは可能である。
(流体撹拌方法)
実施形態によれば、流体撹拌方法が提供される。流体撹拌方法は、実施形態の流路構造体に撹拌したい流体を流すことを含む。流体撹拌方法によれば、実施形態の流路構造体を用いることにより、流体をより混合及び撹拌することができる。
本方法は、第1実施形態の流路構造体を用いる場合、第2の流路3から第1の流路2に第1の流体を流すことを含む。また、本方法は、第2~第5実施形態の流路構造体を用いる場合、第3の流路7に第2の流体を流すことを更に含む。第1の流体と第2の流体とは、互に異なる種類の流体であってもよく、第2~第5実施形態の流路構造体によれば、第1の流体と第2の流体とをより混合及び撹拌することができる。また、より均一な混合が可能である。
(薬剤を内包する脂質粒子の製造方法)
以下、実施形態の流路構造体を用いて薬剤を内包する脂質粒子を製造する方法について説明する。
まず、本方法で製造される脂質粒子について説明する。図11に示すように、脂質粒子200は脂質分子が配列して形成された脂質膜からなり、中空の略球状である。脂質粒子200の内腔201に薬剤202が内包されている。脂質粒子200は例えば薬剤202を細胞内に送達するために用いられ得る。
製造方法は、例えば図12に示すように次の工程を含む:
薬剤(核酸の場合)を凝縮すること(凝縮工程S1)、
実施形態の流路構造体を用いて、第2の流路3及び第3の流路7の何れか一方から、有機溶媒中に脂質粒子の材料の脂質を含む第1溶液を流し、他方から水性溶媒中に薬剤を含む第2溶液を流して第1溶液と前記第2溶液とを混合し、混合液を得ること(混合工程S2)、
混合液の有機溶媒の濃度を低下させることで脂質を粒子化して薬剤を内包した脂質粒子を生成すること(粒子化工程S3)、及び
脂質粒子溶液を濃縮すること(濃縮工程S4)。
本製造方法は、例えば図13に示す流路構造体を用いて行うことができる。図13の(a)は凝縮工程S1を行うための構成を有する凝集用流路構造体301を示し、(b)は混合工程S2を行うため実施形態の流路構造体302を示し、(c)は粒子化工程S3を行うための構成を有する粒子化用流路構造体303を示し、(d)は濃縮工程S4を行うための構成を有する濃縮用流路構造体304を示す。
以下、本製造方法の手順の例について説明する。
まず第1溶液と第2溶液とを用意する。第1溶液は、有機溶媒中に脂質を含む。脂質は、脂質粒子200を構成する材料となる脂質である。第2溶液は、水性溶媒中に薬剤202を含む。
・凝縮工程S1
薬剤202は、限定されるものではないが、例えば核酸である。核酸の薬剤202は、例えばDNA、RNA及び/又は他のヌクレオチドを含む核酸等であり、例えば特定の遺伝子のmRNA、遺伝子をコードするDNA、遺伝子とプロモーター等の遺伝子を発現するためのその他の配列とを含む遺伝子発現カセットを含むDNA、ベクター等であり得る。薬剤202が核酸である場合、まず核酸(薬剤202)を凝集する凝集工程S1を行ってもよい。
核酸の凝縮は、例えば核酸凝縮ペプチドを用いて行われる。核酸凝縮ペプチドは、核酸を小さく凝縮することにより、脂質粒子200の粒径をより小さくすることができ、また脂質粒子200内により多くの核酸を内包することができる。その結果、脂質粒子200の凝集の原因となり得る脂質粒子200外に残留する核酸がより少なくなり得る。
好ましい核酸凝縮ペプチドは、例えば、カチオン性のアミノ酸を全体の45%以上含むペプチドである。より好ましい核酸凝縮ペプチドは、一方の端にRRRRRR(第1のアミノ酸配列)を有し、他方の端が配列RQRQR(第2のアミノ酸配列)を有する。第1のアミノ酸配列と第2アミノ酸配列との間には、RRRRRR又はRQRQRからなる中間配列を0個又は1個以上含む。また、第1のアミノ酸配列、第2のアミノ酸配列及び中間配列のうち、隣り合う2つの配列の間に2つ以上の中性アミノ酸を含む。中性アミノ酸は、例えば、G又はYである。他方の端は第2のアミノ酸配列に変えて、RRRRRR(第1のアミノ酸配列)を有してもよい。
上記核酸凝縮ペプチドは、好ましくは、以下のアミノ酸配列を有する:
RQRQRYYRQRQRGGRRRRRR (配列番号1)
RQRQRGGRRRRRR (配列番号2)
RRRRRRYYRQRQRGGRRRRRR (配列番号3)。
更に、次のようなアミノ酸配列を有する核酸凝縮ペプチドを上記の何れかの核酸凝縮ペプチドと組み合わせて用いることもできる。このペプチドは、上記核酸凝縮ペプチドで凝縮した核酸凝縮体を更に凝縮することができる。
GNQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY
(M9)(配列番号4)
図13の(a)に示す通り、凝集工程S1を行うための凝集用流路構造体301は、例えばY字型の流路である。Y字型の分岐した一方の流路311の上流の端には例えば凝集剤流入口312が設けられ、そこから核酸凝縮ペプチドを含む凝集剤を流す。他方の流路313の上流の端には薬剤流入口314が設けられ、そこから核酸(薬剤202)を水性溶媒中に含む溶液を流す。水性溶媒は、例えば、水、生理食塩水のような食塩水、グリシン水溶液又は緩衝液等である。その結果、流路311と流路313とが合流する流路315内で凝縮剤と薬剤202を含む溶液とが混合される。混合により、凝縮された薬剤202を含む第2溶液が得られる。
凝縮工程S1は必ずしも流路を用いて行う必要はなく、凝集剤と、核酸(薬剤202)を水性溶媒中に含む溶液とを混合及び撹拌すればよい。
以上の効果を奏することから薬剤202が核酸である場合は凝縮工程S1を行うことが好ましい。しかしながら薬剤202が核酸でない場合、又は核酸であるが凝縮する必要のない場合等は凝縮工程S1を行う必要はない。
・混合工程S2
次に、第1溶液及び第2溶液を混合する。
第2溶液は薬剤202が核酸である場合上記のように作製されたものであってもよい。又は凝縮しない核酸若しくは核酸でない薬剤202を使用する場合は、その種類に応じて選択された上記の何れかの水性溶媒に薬剤202を混合することで第2溶液を作製することができる。核酸でない薬剤202は、例えば、活性成分としてタンパク質、ペプチド、アミノ酸、他の有機化合物又は無機化合物等を含む。薬剤202は、例えば疾患の治療薬又は診断薬等であってもよい。しかしながら薬剤202はこれらに限定されるものではなく、脂質粒子200に内包することができれば何れの物質であってもよい。
薬剤202は必要に応じて、例えばpH調整剤、浸透圧調整剤及び/又は薬剤活性化剤等の試薬を更に含んでもよい。pH調整剤は、例えば、クエン酸等の有機酸及びその塩等である。浸透圧調整剤は、糖又はアミノ酸等である。薬剤活性化剤は、例えば活性成分の活性を補助する試薬である。これらは凝縮工程S1を行う場合、その後に添加してもよい。
薬剤202は、1種類の物質であってもよく、複数の物質を含んでもよい。第2溶液中の薬剤202の濃度は、例えば0.01%~1.0%(重量)であることが好ましい。
第1溶液は、脂質と有機溶媒とを混合することで製造され得る。脂質は、例えば生体膜の主成分の脂質であってもよい。また、脂質は人工的に合成したものであってもよい。脂質は、例えば、リン脂質又はスフィンゴ脂質、例えば、ジアシルホスファチジルコリン、ジアシルホスファチジルエタノールアミン、セラミド、スフィンゴミエリン、ジヒドロスフィンゴミエリン、ケファリン又はセレブロシド、或いはこれらの組み合わせ等のベース脂質を含み得る。
例えば、ベース脂質として、
1,2-ジオレオイル-sn-グリセロ-3-ホスホエタノールアミン(DOPE)、
1,2-ステアロイル-sn-グリセロ-3-ホスホエタノールアミン(DSPE)、
1,2-ジパルミトイル-sn-グリセロ-3-ホスファチジルコリン(DPPC)、
1-パルミトイル-2-オレオイル-sn-グリセロ-3-ホスファチジルコリン(POPC)、
1,2-ジ-O-オクタデシル-3-トリメチルアンモニウムプロパン(DOTMA)、
1,2-ジオレオイル-3-ジメチルアンモニウムプロパン(DODAP)、
1,2-ジミリストイル-3-ジメチルアンモニウムプロパン(14:0 DAP)、
1,2-ジパルミトイル-3-ジメチルアンモニウムプロパン(16:0 DAP)、
1,2-ジステアロイル-3-ジメチルアンモニウムプロパン(18:0 DAP)、
N-(4-カルボキシベンジル)-N,N-ジメチル-2,3-ビス(オレオイロキシ)プロパン(DOBAQ)、
1,2-ジオレオイル-3-トリメチルアンモニウムプロパン(DOTAP)、
1,2-ジオレオイル-sn-グリセロ-3-ホスホクロリン(DOPC)、
1,2-ジリノレオイル-sn-グリセロ-3-ホスホクロリン(DLPC)、
1,2-ジオレオイル-sn-グリセロ-3-ホスホ-L-セリン(DOPS)、又は
コレステロール、
或いはこれらの何れかの組み合わせ等を用いることが好ましい。特にDOTAP及び/又はDOPEを用いることが好ましい。
脂質は、生分解性脂質である第1の脂質化合物及び/又は第2の脂質化合物を更に含むことが好ましい。第1の脂質化合物はQ-CHRの式で表すことができる。
(式中、
Qは、3級窒素を2つ以上含み、酸素を含まない含窒素脂肪族基であり、
Rは、それぞれ独立に、C12~C24の脂肪族基であり、
少なくとも一つのRは、その主鎖中又は側鎖中に、-C(=O)-O-、-O-C(=O)-、-O-C(=O)-O-、-S-C(=O)-、-C(=O)-S-、-C(=O)-NH-、及び-NHC(=O)-からなる群から選択される連結基LRを含む)。
第1の脂質化合物は、例えば下記式で表される構造を有する脂質である。
Figure 2022167074000002

Figure 2022167074000003

Figure 2022167074000004

Figure 2022167074000005
特に、式(1-01)の脂質化合物及び/又は式(1-02)の脂質化合物を用いることが好ましい。
第2の脂質化合物は、P-[X-W-Y-W’-Z]の式で表すことができる。
(式中、
Pは、1つ以上のエーテル結合を主鎖に含むアルキレンオキシであり、
Xは、それぞれ独立に、三級アミン構造を含む2価連結基であり、
Wは、それぞれ独立に、C~Cアルキレンであり、
Yは、それぞれ独立に、単結合、エーテル結合、カルボン酸エステル結合、チオカルボン酸エステル結合、チオエステル結合、アミド結合、カルバメート結合及び尿素結合からなる群から選ばれる2価連結基であり、
W’は、それぞれ独立に、単結合又はC~Cアルキレンであり、
Zは、それぞれ独立に、脂溶性ビタミン残基、ステロール残基、又はC12~C22脂肪族炭化水素基である)。
第2の脂質化合物は、例えば下記式で表される構造を有する脂質である。
Figure 2022167074000006

Figure 2022167074000007

Figure 2022167074000008
特に、式(2-01)の化合物を用いることが好ましい。
第1の脂質化合物及び第2の脂質化合物を含む場合、脂質粒子200への薬剤202の内包量を増加させ、薬剤202の細胞への導入効率を高めることが可能である。また、導入した細胞の細胞死も低減することができる。
ベース脂質は、脂質材料の全体に対して30%~約80%(モル比)含まれることが好ましい。或いは、100%近くがベース脂質から構成されていてもよい。第1及び第2の脂質化合物は、脂質材料の全体に対して約20%~約70%(モル比)で含まれることが好ましい。
脂質は、脂質粒子200同士の凝集を防止する脂質を含むこともまた好ましい。例えば、凝集を防止する脂質は、PEG修飾した脂質、例えば、ポリエチレングリコール(PEG)ジミリストイルグリセロール(DMG-PEG)、オメガ-アミノ(オリゴエチレングリコール)アルカン酸モノマーから誘導されるポリアミドオリゴマー(米国特許第6,320,017号)又はモノシアロガングリオシド等を更に含むことが好ましい。このような脂質は、脂質粒子200の脂質材料全体に対して約1%~約10%(モル比)で含まれることが好ましい。
脂質は、毒性を調整するための相対的に毒性の低い脂質;脂質粒子200に配位子を結合させる官能基を有する脂質;ステロール、例えばコレステロール等の内包物の漏出を抑制するための脂質等の脂質を更に含んでもよい。特に、コレステロールを含ませることが好ましい。
例えば、脂質粒子200は、式(1-01)若しくは式(1-02)の化合物及び/又は式(2-01)の化合物と、DOPE及び/又はDOTAPと、コレステロールと、DMG-PEGとを含むことが好ましい。
脂質の種類及び組成は、目的とする脂質粒子200の酸解離定数(pKa)若しくは脂質粒子200のサイズ、内包物の種類、或いは導入する細胞中での安定性等を考慮して適切に選択される。例えば脂質粒子200を構成する脂質を所望の組成とするためには、第1溶液に含まれる脂質の組成を同じ比率に設定すればよい。
第1溶液の有機溶媒は、例えば、エタノール、メタノール、イソプロピルアルコール、エーテル、クロロホルム、ベンゼン又はアセトン等である。有機溶媒中の脂質の濃度は、例えば0.1%~0.5%(重量)であることが好ましい。
第1溶液と第2溶液との混合は、図13の(b)に示すように実施形態の流路構造体302を用いて行われる。ここでは、流路構造体302として第4実施形態の流路構造体を示すが、流路構造体302はそれに限定されるものではなく、例えば第2、第3又は第5実施形態の流路構造体を使用することも可能である。
凝集工程S1を行う場合は、凝集用流路構造体301の流路315の下流の端が実施形態の流路構造体302の第2の流路3の上流の端に連結されており、第2の流路3に第2溶液が供給される。凝縮工程S1を行わない場合は、第2の流路3の上流の端に第2溶液流入口(図示せず)が設けられ、そこから第2溶液が供給される。第3の流路7は、例えばその上流の端に第1溶液流入口321を備え、そこから第1溶液を供給する。その結果第1溶液及び第2溶液が混合され、混合液8が得られる。そして混合ユニット22を備える場合はそこで混合液8が更に混合及び撹拌される。例えば、凝縮工程S1を行わない場合は第2の流路3に第1溶液を流し、第3の流路7に第2溶液を流してもよい。
・粒子化工程S3
次に粒子化工程S3において混合液8の有機溶媒の濃度を低下させる。例えば、混合液8に水溶液を多量に添加することにより有機溶媒濃度を相対的に低下させることが好ましい。例えば、混合液8の3倍量の水溶液を混合液8に添加する。水溶液として、第1溶液に用いられる水性溶媒と同じものを用いることができる。有機溶媒濃度を低下させることによりにより脂質が粒子化し、薬剤202を内包する脂質粒子200が生成し得る。その結果、脂質粒子200を含む脂質粒子溶液9が得られる。
図13の(c)に示すように粒子化工程S3を行う粒子化用流路構造体303は、例えばY字型の流路である。Y字型の分岐した一方の流路331の上流の端は例えば流路構造体302の最下流の端(この例においては第4の流路25)と連結し、そこから混合液8が供給される。他方の流路332の上流の端は、例えば水溶液流入口333を備え、そこから水溶液を流す。その結果、流路331と流路332とが合流する流路334内で混合液8に水溶液が混合される。その結果、脂質が粒子化し、薬剤202が内包された脂質粒子200が生成し、脂質粒子200を含む脂質粒子溶液9が得られる。
粒子化工程S3は必ずしも流路を用いて行う必要はなく、例えば容器に回収された混合液8に水溶液を添加してもよい。
このようにして、脂質粒子200を製造することができる。
・濃縮工程S4
実施形態の脂質粒子製造方法は、必要に応じて脂質粒子溶液9を濃縮すること(濃縮工程S4)を更に含んでもよい。濃縮は、例えば脂質粒子溶液9から溶媒の一部及び/又は余った脂質と薬剤202とを除去することにより行われる。濃縮は、例えば限外ろ過により行うことができる。限外ろ過には、例えば細孔径2nm~100nmの限外ろ過フィルタを用いることが好ましい。例えばフィルタとしてAmicon(登録商標)Ultra-15(メルク)等を用いることができる。濃縮工程S4を行うことにより純度及び濃度の高い脂質粒子溶液9を得ることができる。濃縮後の脂質粒子溶液9の脂質粒子200の濃度は1×1013個/mL~5×1013個/mL程度であることが好ましい。しかしながら濃縮工程S4は必ずしも行う必要はない。
図13の(d)に示すように、濃縮工程S4を行う濃縮用流路構造体304は、流路341と、流路341の壁面に設けられたフィルタ342とを備える。流路341の上流の端は、例えば粒子化用流路構造体303の流路335と連結している。
フィルタ342は例えば流路341の一部の壁面に代えて設けられている。フィルタ342として上で説明した何れかの限外ろ過用のフィルタを用いることができる。
脂質粒子溶液9を流路341に流すことによって、残留した材料及び余分な溶媒等がフィルタ342を通過して流路341外に排出されて脂質粒子200は流路341内に残り、下流へと流れることで脂質粒子溶液9が濃縮される。流路341の下流の端は、濃縮後の脂質粒子溶液9を回収するための排出口343を備えるか、又は脂質粒子溶液9を回収するためのタンクと連結されていてもよい。
濃縮工程S4は必ずしも流路を用いて行う必要はなく、例えば容器に回収された脂質粒子溶液9をフィルタでろ過してもよい。
また、実施形態の脂質粒子製造方法は、必要に応じて脂質粒子200の品質を向上するための処理を更に行ってもよい。品質の向上とは、例えば薬剤202の脂質粒子200からの漏出の防止、薬剤202の脂質粒子200への内包量の向上、薬剤202を内包する脂質粒子200の割合(内包率)の向上、脂質粒子200同士の凝集の低減及び防止、及び/又は脂質粒子のサイズのばらつきの軽減等であり得る。例えば、脂質粒子溶液9を冷却する処理を行ってもよい。このような処理もまた流路を用いて行ってもよい。
以上に説明した上記の各流路は、例えばマイクロ流路である。流路内の流体の流れ、流体の流路内への注入、タンクからの流体の取り出し及び/又は脂質粒子溶液9の容器への収容等は、例えばこれらの操作が自動的に行われるように構成され及び制御されたポンプ又は押し出し機構等により行われ得る。
実施形態の脂質粒子の製造方法は、上記したように凝縮工程S1、濃縮工程S4を必ずしも行う必要はなく、少なくとも混合工程S2及び粒子化工程S3を含めばよい。
実施形態の脂質粒子の製造方法によれば、混合工程S2を実施形態の流路構造体を用いて行うため、第1溶液と第2溶液とを均一によく混合及び撹拌することができ、より高品質な脂質粒子200を製造することが可能である。例えば、薬剤202の内包量の向上、脂質粒子200の平均粒子径の低減、及び薬剤202が内包されている脂質粒子の割合の向上等の効果が得られ得る。
[例]
例1
図4の(a)に示すものと同様の流路構造体を製造した。第1の流路2の断面の幅×深さは0.3mm×0.3mmとし、浅部4の深さを1/3(0.1mm)とした。第3の流路7の上流(図中向かって右側)から、図中向かって左側方向に水を流し、第2の流路3から蛍光色素を含む水を流し、流路構造体を蛍光顕微鏡で撮影した。各流路での流量は同じであり、第1の流路2の線速はレイノルズ数が50以上となるよう設定した。
撮影した画像を図14に示す。第1の流路2で混合領域6から数mmに亘って横渦が生成することが明らかとなった。
例2
図4の(b)に示すものと同様のY字型の流路構造体を製造した。第3の流路7及び第1の流路2は、一辺0.3mm角とした。第2の流路3は、混合領域6の直前の深さを1/3(0.1mm)とした。
第3の流路7から水を流し、第2の流路3から蛍光色素を含む水を流し、光顕微鏡で撮影した。各流路での流量は同じである。また例1で製造した流路構造体で同様に実験を行い、両者を比較した。
撮影した例1の流路構造体の画像を図15の(a)に、例2の流路構造体の画像を図15の(b)に示す。例2の流路構造体では、例1の流路構造体よりも合流直後の流れの乱れが少なく、均一な混合に好ましいことが明らかとなった。
また、図4の(b)の流路構造体における横渦発生をシミュレーションした。シミュレーションは、流体解析ソフトウェアであるANSYS(登録商標)Fluent(登録商標)を用いて行った。シミュレーション画像を図16に示す。画像から混合領域6において横渦が発生することが明らかとなった。
例3
例2の流路構造体(合流ユニット21)の下流に混合ユニット22を結合して図5に示すものと同様の流路構造体を製造した。浅部以外の流路は一辺0.3mm角とし、浅部は深さを1/3(0.1mm)とした。合流ユニット21の第2の流路3から蛍光色素を含む流体を流し、第3の流路7から水を流した。
合流ユニット21の第1の流路2から混合ユニット22の写真を図17に示す。第2の浅部4bの直後の合流部24cと、第3の浅部4cの直後の第4の流路25とにおいて1mm程度に亘り横渦が観察され、そこで混合が促進されていることが明らかとなった。この結果から、混合ユニット22を設けることにより、更に混合できることが示された。
例4
例2の流路(合流ユニット21)の下流に3つの混合ユニット22を直列に配置して図6の(a)に示すものと同様の流路構造体を製造した。浅部以外の通常流路は一辺0.3mm角とし、浅部は深さを1/3(0.1mm)とした。合流ユニットの第2の流路3からエタノールを流し、第3の流路7から水を流した。合流ユニット、第1の混合ユニットの合流部、第2の混合ユニットの合流部及び第3の混合ユニットの合流部のシュリーレン像を撮影した。
撮影した画像を図18に示す。各ユニットの浅部の下流で横渦の発生が観察された。また、合流ユニットから第3の混合ユニットへと流れるにしたがって、水及びエタノールの屈折率の違いから観察されるムラ(白濁部)がなくなり、よく混合されることが示された。
また、同様の構成の流路構造体で、合流ユニットの一方の流路に蛍光色素を含む水、他方に水を流し、蛍光顕微鏡で撮影した。撮影した画像を図19に示す。画像から、第1の混合ユニットから第3の混合ユニットへと流れるにしたがって、蛍光色素と水とが混ざり合う際にできる筋状の影が無くなり、均等に混合されていることが示された。
また、第1の混合ユニットの分岐点(図19の(a))、第1の混合ユニットと第2の混合ユニットとを結合する流路(図19の(b))、第2の混合ユニットの分岐点(図19の(c))、第2の混合ユニットと第3の混合ユニットとを結合する流路(図19の(d))、第3の混合ユニットの分岐点(図19の(e))、第3の混合ユニットの最下流の流路(図19の(f))の蛍光強度(規格化値)を示すグラフを図20に示し、輝度分散(規格化値)、即ち蛍光強度の平均値からの差分を二乗した値を示すグラフを図21に示す。
図20から、(a)から(f)に流れるにつれて蛍光強度のバラつきが軽減されていくことが明らかとなった。
また、図21に示す通り輝度分散は(a)点では約0.46、(b)点及び(c)点では約0.05、(d)点及び(e)点では約0.02、(f)点では約0.05であった。これらの結果から(a)点から(f)点に流れるにつれ、蛍光強度が平均値に近づいていくことが明らかとなった。
したがって、第1の混合ユニットから第3の混合ユニットに流れるにつれて2液が均一に混合されていくことが明らかとなった。
例5
例1~例4における浅部は、それ以外の流路の深さに対して深さを1/3に設定したが、例5においては例1と同じ形状の流路構造体について浅部の深さを1/1、1/2、1/3又は1/6に設定し、浅部の深さに対する横渦発生の依存性をシミュレーションした。
シミュレーション画像を図22に示す。1/1において、横渦はほとんど発生しなかった。1/2では横渦の発生は非常に少なかった。1/3から顕著な横渦が発生し、さらに薄い1/6ではより強い横渦が発生した。
したがって、浅部の深さは1/2未満、好ましくは1/3以下であることが好ましいことが明らかとなった。
例6
図23に示す流路構造体A(実施例1)及び流路構造体B(実施例2)を製造し、これらの流路構造体を用いて2液混合をシミュレーションして比較した。
流路構造体Aは、合流ユニット21の下流に2つの混合ユニット22が直列に配置されている。流路構造体Aの合流ユニットの第1の流路をα1、第1の混合ユニットと第2の混合ユニットとを結合する流路をα2、第2の混合ユニットの合流後の流路(第4の流路)をα3とする。
流路構造体Bは、合流ユニット21の下流に2つの混合ユニット22が、合流ユニット及び混合ユニットの合流部において2つの流路が直角に交わるように構成されている(図9に示す流路構造と同様)。流路構造体Bの合流ユニットの第1の流路をβ1、第1の混合ユニットの合流部の合流後の流路をβ2、第2の混合ユニットの合流部の合流後の流路をβ3とする。また流路β1の下流の屈曲後(第1の混合ユニットの分岐部の直前)の流路をγ1、流路β2の下流の屈曲後(第2の混合ユニットの分岐部の直前)の流路をγ2、第流路β3の下流の屈曲後の流路をγ3とする。
レイノルズ数が少なくとも50以上になる条件にしてそれぞれの合流ユニットからエタノールと水を同量で導入し、流路α1~3、β1~5、γ1~3の各位置でのエノタール濃度をシミュレーションした。結果を図24に示す。α、β、γそれぞれでのエタノールの最大濃度は、1~3に進むにつれて混合が進み、最終的に完全に混合された濃度である約44%に収束したが、流路構造体B(β、γ)においては、流路構造体A(α)よりも明らかに早く収束した。
これは、通常流路に対して浅部付き流路を直角に合流させた場合に流れの乱れが大きくなることが一因と考えらえる。流れの乱れは攪拌の効果を期待できるため、均一性よりも攪拌の早さを求めるのであれば、流路構造体Bのように通常流路に対して浅部付き流路を直角に合流させる構造が望ましい。
例7
例7においては、実施形態の流路構造体を用いてDNA内包脂質粒子を製造し、脂質粒子のDNA内包量の測定した実験について説明する。
図25に示すように、浅部を含まないY字の構造を有する流路構造体C(比較例1)、合流ユニットに3つの混合ユニットを直列に配置した流路構造体D(実施例3)、及び合流ユニットに6つの混合ユニットを直列に配置した流路構造体E(実施例4)を製造した。
0.1mg/mlのnLucプラスミドDNA180μlを10mM HEPES(pH7.3)1620μlに溶解し、DNA溶液(第2溶液)を得た。脂質粒子材料として6種類の脂質を、FFT10:FFT20:DOPE:DOTAP:コレステロール:DNG-PEG2000=35:70:21:9.4:88.5:9.4(モル比)で混合し、1800μlのエタノールに溶解し、脂質溶液(第1溶液)を得た。
DNA溶液(第2溶液)及び脂質溶液(第1溶液)をそれぞれシリンジに充填し、シリンジポンプに接続した。シリンジポンプに接続した各シリンジには送液チューブを接続し、送液チューブを流路構造体C~Eの合流ユニットの2つの入力口にそれぞれ接続した。出力口にも送液チューブを接続し、混合された溶液を回収するチューブに接続した。その後、シリンジポンプを用いて送液し流路内で混合した。出力口から回収された流体のうち、最初の800μlは廃棄し、最終的にDNA-脂質混合液として2400μlを回収した。このDNA-脂質混合液2.4mlに、7.2mlの10mM HEPES(pH7.3)を添加し粒子化して希脂質粒子溶液を得た。9.6mlの希脂質粒子溶液を、限外ろ過フィルタ (Amicon(登録商標)Ultra15,Merck社)を用いて240μlになるまで遠心濃縮し、脂質粒子溶液とした。
精製水(注射用水、大塚製薬社製)890μlと脂質粒子溶液10μlとを混合し、得られた混合液を粒子径測定専用キュベットに入れ、Zetasaizer(登録商標)Nano ZSP(Malvern社)の粒子径測定モードで、粒子径及び多分散指数(pdi)を測定した。次に、同希釈液について、ゼータ電位測定専用キュベットを用いてゼータ電位測定モードにて、ゼータ電位を測定した。
また、Quant-iTTMPicoGreen(登録商標)ds DNA Assayキット(Theermo Fisher Scientific社)を用いて脂質粒子溶液の脂質粒子に内包されたDNAの濃度を測定した。あらかじめ脂質粒子溶液0.5μlと10mM HEPES(pH7.3)99.5μlとを混合した溶液(A液)を作製した。また、脂質粒子溶液0.5μlと10mM HEPES(pH7.3)84.5μl、1%TritonTM-X 100 10μl、ヘパリン5μlを混合し、脂質粒子からDNAを溶出させた溶液(B液)を作製した。
それぞれを室温で30分静置したのち、PicoGreen溶液100μlを添加し、QuantiFlour(登録商標)(Promega社)で蛍光量を測定した。検量線サンプルを同時に測定し、それぞれのDNA量を算出した。B液のDNA量とA液のDNA量との差分を脂質粒子の内包DNA量とした。測定結果を表1に示した。
Figure 2022167074000009
浅部を持たないY字の流路構造体Cに比べて、実施形態の流路構造体D及びEを使用することによりDNA内包量は約190%向上した。また、実施形態の流路構造体D及びEを使用した場合、より平均粒子径を低減させることができ、6つの混合ユニットを有する流路構造体Eではより平均粒子径の小さな脂質粒子が得られた。
例8
例8においては、実施形態の流路構造体を用いてmRNA内包脂質粒子を製造し、脂質粒子のmRNA内包量の測定した実験について説明する。
0.1mg/mlのNanoLuc(登録商標)をコードするmRNA 180μlを10mM HEPES(pH7.3)1620μlに溶解し、mRNA溶液(第2溶液)を得た。脂質粒子作製用に6種類の脂質を、FFT10:FFT20:DOPE:DOTAP:コレステロール:DNG-PEG2000=35:70:21:9.4:88.5:9.4(モル比)で混合し、1800μlのエタノールに溶解し、脂質溶液を得た(第1溶液)。
mRNA溶液(第2溶液)及び脂質溶液(第1溶液)をそれぞれシリンジに充填し、シリンジポンプに接続した。シリンジポンプに接続した各シリンジには送液チューブを接続し、送液チューブは例7で製造した流路構造体D及びEの2か所の入力口にそれぞれ接続した。出力口にも送液チューブを接続し、混合された溶液を回収するチューブに接続した。その後、シリンジポンプを用いて送液し流路内で混合した。出力口から回収された流体のうち、最初の800μlは廃棄し、最終的にmRNA-脂質混合液として2400μlを回収した。このmRNA-脂質混合液2.4mlに、7.2mlの10mM HEPES(pH7.3)を添加して粒子化し、希脂質粒子溶液を得た。9.6mlの希脂質粒子溶液を、限外ろ過フィルタ(AmiconUltra15)を用いて240μlになるまで遠心濃縮し、脂質粒子溶液とした。
精製水(注射用水、大塚製薬社製)890μlと脂質粒子溶液10μlとを混合して、粒子径測定専用キュベットに入れ、Zetasaizer Nano ZSPの粒子径測定モードで、粒子径と多分散指数(pdi)を測定した。次に、同希釈液について、ゼータ電位測定専用キュベットを用いてゼータ電位測定モードにて、ゼータ電位を測定した。結果を表2に示した。
Figure 2022167074000010
3つの混合ユニットを有する流路構造体Dに比べ、6つの混合ユニットを有する流路構造体Eによって製造された脂質粒子は、より平均粒子径が小さく、混合が更に進んだことが明らかとなった。
例9
例9においては、実施形態の流路構造体を用いて作製した脂質粒子において、mRNAを内包する脂質粒子の存在率を測定した実験について説明する。
0.1mg/mlのNanoLuc(登録商標)をコードするmRNA 180μlを10mM HEPES(pH7.3)1620μlに溶解し、mRNA溶液(第2溶液)を得た。脂質粒子作製用に6種類の脂質を、FFT10:FFT20:DOPE:DOTAP:コレステロール:DNG-PEG2000=35:70:21:9.4:88.5:9.4(モル比)で混合し、1800μlのエタノールに溶解し、脂質溶液(第1溶液)を得た。
mRNA溶液(第2溶液)及び脂質溶液(第1溶液)をそれぞれシリンジに充填し、シリンジポンプに接続した。シリンジポンプに接続した各シリンジには送液チューブを接続し、送液チューブは例7で製造した流路構造体C~Eの2か所の入力口にそれぞれ接続した。出力口にも送液チューブを接続し、混合された溶液を回収するチューブに接続した。その後、シリンジポンプを用いて送液し流路内で混合した。出力口から回収された流体のうち、最初の800μlは廃棄し、最終的にmRNA-脂質混合液として2400μlを回収した。このmRNA-脂質混合液2.4mlに、7.2mlの10mM HEPES(pH7.3)を添加して粒子化し、希脂質粒子溶液を得た。9.6mlの希脂質粒子溶液を、限外ろ過フィルタ(AmiconUltra15)を用いて240μlになるまで遠心濃縮し、脂質粒子溶液とした。
NanoSight(登録商標)NS300(Malvern社)を用いてmRNAを内包している脂質粒子の存在率を測定した。脂質粒子溶液10μlと10mM HEPES(pH7.3)990μlとを混合し希釈した。希脂質粒子溶液10μlにQantiFlour(RNAdye)5μl、HEPES(pH7.3)985μlを混合し、ボルテックス後、30分間遮光して室温で静置した。その後、NanoSightNS300を用いて脂質粒子染色液にレーザーを照射し、側方散乱光の一定以上の強度が得られた粒子数を総脂質粒子数(C)とした。さらに同サンプルをレーザー照射により蛍光励起し、蛍光強度が一定以上の粒子数を、mRNAが内包された内包脂質粒子数(D)とした。DのCに対する割合を算出し、核酸内包脂質粒子の存在率とした。結果を表3に示した。
Figure 2022167074000011
浅部を持たない流路構造体Cに比べ、実施形態の流路構造体D及びEではmRNAが内包されている脂質粒子の存在率が大きく向上することが明らかとなった。この結果は、実施形態の流路構造体D及びEによればmRNA溶液と脂質溶液とが均一に混合されることを示している。
例10
合流ユニット21の後に混合ユニット22を多数直列に連結した流路構造体の渦発生をシミュレーションした。シミュレーション画像を図26に示す。この画像から、各混合ユニットの浅部の下流で横渦が発生していることが明らかとなった。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1、10、11、20、30、31、40、50、60、100…流路構造体、
2…第1の流路、3…第2の流路、
4、4a…第1の浅部、4b…第2の浅部、4c…第3の浅部、
7…第3の流路、8…混合液、9…脂質粒子溶液、
21…合流ユニット、22…混合ユニット、
22a…第1の混合ユニット、
22b…第2の混合ユニット、
22c…第3の混合ユニット、
23…第1の分岐合流路、24…第2の分岐合流路、
25…第4の流路、
200…脂質粒子、202…薬剤。

Claims (25)

  1. 第1の流路と、前記第1の流路に合流する第2の流路とを備え、
    前記第2の流路の前記第1の流路側の端は、前記第1の流路より深さが浅い第1の領域を有する、流路構造体。
  2. 前記第1の流路及び第2の流路は、前記流路構造体内部に形成された空洞である請求項1に記載の流路構造体。
  3. 前記第1の領域の深さは、前記第1の流路の深さの1/2未満である、請求項1又は2に記載の流路構造体。
  4. 前記第2の流路は、前記第1の流路に対して直角に合流する、請求項1~3の何れか1項に記載の流路構造体。
  5. 前記第1の流路の、前記第2の流路との合流点のすぐ上流に直列に接続する第3の流路を更に備える、請求項1~4の何れか1項に記載の流路構造体。
  6. 前記第3の流路は、前記流路構造体内部に形成された空洞である請求項5に記載の流路構造体。
  7. 前記第3の流路及び前記第1の流路は一体の直線状の流路を成し、前記第2の流路は、前記第1の流路に対して直角に合流する、請求項5又は6に記載の流路構造体。
  8. 前記第2の流路と前記第3の流路とは、前記第1の流路の長軸に対して互いに対称に前記第1の流路に接続し、前記第2の流路と前記第3の流路とがなす角は直角である、請求項5又は6に記載の流路構造体。
  9. 前記第1の流路の下流の端に接続された混合ユニットを更に備え、
    前記混合ユニットは、前記第1の流路から流入する流体を2つに分岐させて2つの分流を形成し、前記2つの分流を第4の流路に合流させる第1の分岐合流路及び第2の分岐合流路を含み、
    前記第2の分岐合流路はその中間部に、その上流側及び下流側よりも深さが浅い第2の領域を有し、その下流は屈曲して前記第4の流路に合流する、
    前記第1の分岐合流路の前記第4の流路側の端は、前記第4の流路よりも深さが浅い第3の領域を有し、
    請求項1~8の何れか1項に記載の流路構造体。
  10. 前記第4の流路は、前記流路構造体内部に形成された空洞である請求項9に記載の流路構造体。
  11. 前記第2の領域の深さは、その上流側及び下流側の流路の深さの1/2未満であり、
    前記第3の領域の深さは、前記第4の流路の深さの1/2未満である、
    請求項9又は10に記載の流路構造体。
  12. 前記第1の分岐合流路及び前記第2の分岐合流路の前記第4の流路への合流部は、前記第4の流路の長軸に対して互いに対称な角度で前記第4の流路に接続する、請求項9~11の何れか1項に記載の流路構造体。
  13. 前記第2の分岐合流路の前記第4の流路への合流部は、前記第4の流路に直列に接続し、前記第4の流路と一体の直線の流路を成し、前記第1の分岐合流路の前記合流部は、前記第4の流路に対して直角に合流する、請求項9~11の何れか1項に記載の流路構造体。
  14. 直列に接続された複数の前記混合ユニットを備える請求項9~13の何れか1項に記載の流路構造体。
  15. 並列に接続された複数の前記混合ユニットを備える請求項9~13の何れか1項に記載の流路構造体。
  16. 流路構造体を用いて流体を撹拌する方法であって、
    前記流路構造体は、第1の流路と、前記第1の流路に合流する第2の流路とを備え、前記第2の流路の前記第1の流路側の端は、前記第1の流路より深さが浅い第1の領域を有し、
    前記第2の流路から前記第1の流路に第1の流体を流すことを含む、
    流体撹拌方法。
  17. 前記第1の領域の深さは、前記第1の流路の深さの1/2未満である、請求項16に記載の方法。
  18. 前記流路構造体は、前記第1の流路の、前記第2の流路との合流点のすぐ上流に直列に接続する第3の流路を更に備え、
    前記第3の流路から前記第1の流路に第2の流体を更に流すことを更に含む、
    請求項16又は17に記載の方法。
  19. 前記流路構造体は、第1の流路の下流に、混合ユニットを更に備え、
    前記混合ユニットは、前記第1の流路から流入する流体を2つに分岐させて2つの分流を形成し、前記2つの分流を第4の流路に合流させる第1の分岐合流路及び第2の分岐合流路を含み、
    前記第1の分岐合流路の前記第4の流路側の端は、前記第4の流路よりも深さが浅い第2の領域を有し、
    前記第2の分岐合流路はその中間部に、その上流側及び下流側よりも深さが浅い第3の領域を有し、その下流は屈曲して前記第4の流路に合流する、
    請求項16~18の何れか1項に記載の方法。
  20. 前記第2の領域の深さは、その上流側及び下流側の流路の深さの1/2未満であり、
    前記第3の領域の深さは、前記第4の流路の深さの1/2未満である、
    請求項19に記載の方法。
  21. 前記流路構造体は、直列に接続された複数の前記混合ユニットを備える、請求項19又は20に記載の方法。
  22. 前記流路構造体は、並列に接続された複数の前記混合ユニットを備える、請求項19又は20に記載の方法。
  23. 請求項5~15の何れか1項に記載の流路構造体を用いて薬剤を内包する脂質粒子を製造する方法であって、
    前記第2の流路及び前記第3の流路の何れか一方から、有機溶媒中に前記脂質粒子の材料の脂質を含む第1溶液を流し、他方から水性溶媒中に前記薬剤を含む第2溶液を流して前記第1溶液と前記第2溶液とを混合し、混合液を得ること、及び
    前記混合液の前記有機溶媒の濃度を低下させることで前記脂質を粒子化して前記薬剤を内包した前記脂質粒子を生成すること
    を含む、
    脂質粒子の製造方法。
  24. 前記薬剤は核酸であり、前記第1溶液と前記第2溶液とを混合する前に、前記核酸を凝集することを更に含む、請求項23に記載の方法。
  25. 前記粒子化後に、前記脂質粒子を含む脂質粒子溶液を濃縮する工程を更に含む、請求項23又は24に記載の方法。
JP2021072609A 2021-04-22 2021-04-22 流路構造体、流体撹拌方法及び脂質粒子の製造方法 Pending JP2022167074A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021072609A JP2022167074A (ja) 2021-04-22 2021-04-22 流路構造体、流体撹拌方法及び脂質粒子の製造方法
CN202280005789.2A CN116096485A (zh) 2021-04-22 2022-03-04 流道结构体、搅拌流体的方法和制造脂质粒子的方法
EP22711683.7A EP4326429A1 (en) 2021-04-22 2022-03-04 Flow channel structure, method for agitating fluid and method for manufacturing lipid particles
PCT/JP2022/009431 WO2022224595A1 (en) 2021-04-22 2022-03-04 Flow channel structure, method for agitating fluid and method for manufacturing lipid particles
US18/182,788 US20230330618A1 (en) 2021-04-22 2023-03-13 Flow channel structure, method for agitating fluid and method for manufacturing lipid particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021072609A JP2022167074A (ja) 2021-04-22 2021-04-22 流路構造体、流体撹拌方法及び脂質粒子の製造方法

Publications (1)

Publication Number Publication Date
JP2022167074A true JP2022167074A (ja) 2022-11-04

Family

ID=80819704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021072609A Pending JP2022167074A (ja) 2021-04-22 2021-04-22 流路構造体、流体撹拌方法及び脂質粒子の製造方法

Country Status (5)

Country Link
US (1) US20230330618A1 (ja)
EP (1) EP4326429A1 (ja)
JP (1) JP2022167074A (ja)
CN (1) CN116096485A (ja)
WO (1) WO2022224595A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024042541A (ja) * 2022-09-15 2024-03-28 株式会社東芝 流路構造体、及び脂質粒子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320017B1 (en) 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
KR100931983B1 (ko) * 2008-04-04 2009-12-15 한국과학기술원 미세유체 혼합 장치
US20120218857A1 (en) * 2011-02-28 2012-08-30 Uchicago Argonne, Llc Microfluidic mixer, method for mixing fluids
CA2853316C (en) * 2011-10-25 2018-11-27 The University Of British Columbia Limit size lipid nanoparticles and related methods

Also Published As

Publication number Publication date
US20230330618A1 (en) 2023-10-19
CN116096485A (zh) 2023-05-09
EP4326429A1 (en) 2024-02-28
WO2022224595A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US11938454B2 (en) Continuous flow microfluidic system
US20210023514A1 (en) Continuous flow systems with bifurcating mixers
CA3059714C (en) Flow channel structure and lipid particle or micelle formation method using same
RU2573409C2 (ru) Содержащие нуклеиновые кислоты липидные частицы и относящиеся к ним способы
CN107921381B (zh) 一次性微流控盒
US20070264320A1 (en) Microfluidic device for forming monodisperse lipoplexes
US8920845B2 (en) Method of producing microcapsules
KR20220119432A (ko) 미세유체 장치 및 이의 사용 방법
Aghaei et al. Continuous production of the nanoscale liposome in a double flow-focusing microfluidic device
Ali et al. Microfluidics for development of lipid nanoparticles: paving the way for nucleic acids to the clinic
Xu et al. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy
WO2023186128A2 (zh) 混合单元、混合器、微流控芯片、混合装置
WO2023151567A1 (zh) 波形微结构混合单元及其用途
WO2023023492A1 (en) Methods, compositions, and devices for making solid lipid nanoparticles and nanostructured lipid carriers
US20230330618A1 (en) Flow channel structure, method for agitating fluid and method for manufacturing lipid particles
Mehraji et al. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities
Kawamura et al. Size-controllable and scalable production of liposomes using a v-shaped mixer micro-flow reactor
CN113663573A (zh) 一种用于粒子生成的混合器
WO2024057580A1 (en) Flow channel structure and method for producing lipid particle
Wang et al. Microfluidics‐Prepared Ultra‐small Biomimetic Nanovesicles for Brain Tumor Targeting
JP2022187826A (ja) 核酸送達キャリア、その製造方法、核酸送達方法、細胞製造方法、細胞検出方法及びキット
JP2022183834A (ja) 異物除去用流路構造体、異物除去方法及び脂質粒子製造方法
Tahir et al. Microfluidics: A versatile tool for developing, optimizing, and delivering nanomedicines
US20240033220A1 (en) Method and device for producing a liquid containing liposomes, and produced liquid
JP2018086630A (ja) 固定具及びその使用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507