JP2022161315A - Method of detecting welded portion of steel strip, method of manufacturing steel strip, device for detecting welded portion of steel strip and equipment for manufacturing steel strip - Google Patents

Method of detecting welded portion of steel strip, method of manufacturing steel strip, device for detecting welded portion of steel strip and equipment for manufacturing steel strip Download PDF

Info

Publication number
JP2022161315A
JP2022161315A JP2021066031A JP2021066031A JP2022161315A JP 2022161315 A JP2022161315 A JP 2022161315A JP 2021066031 A JP2021066031 A JP 2021066031A JP 2021066031 A JP2021066031 A JP 2021066031A JP 2022161315 A JP2022161315 A JP 2022161315A
Authority
JP
Japan
Prior art keywords
steel strip
welded portion
magnetic flux
weld
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021066031A
Other languages
Japanese (ja)
Other versions
JP7435530B2 (en
Inventor
美和 大橋
Miwa Ohashi
優 長井
Yu Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021066031A priority Critical patent/JP7435530B2/en
Publication of JP2022161315A publication Critical patent/JP2022161315A/en
Application granted granted Critical
Publication of JP7435530B2 publication Critical patent/JP7435530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Metal Rolling (AREA)

Abstract

To provide a method of detecting a welded portion of a steel strip which makes tracking of the welded portion possible by appropriately detecting the welded portion by suppressing vertical vibrations of the steel strip without using a hole for tracking, a method of manufacturing a steel strip, a device for detecting a welded portion of a steel strip and equipment for manufacturing a steel strip.SOLUTION: A welded portion detecting method of a steel strip detects a welded portion W of the steel strip S formed by welding a preceding steel strip S1 and a following steel strip S2. A vibration width of the steel strip S in a vertical direction with respect to a transfer direction during transportation is suppressed into 20 mm or less, and the welded portion W is detected based on a magnetic flux density change produced on the steel strip S by actuating a high-frequency magnetic flux 24 generated by applying a high-frequency voltage onto the steel strip S.SELECTED DRAWING: Figure 2

Description

本発明は、先行鋼帯と後行鋼帯とを溶接してなる鋼帯の溶接部検出方法、鋼帯の製造方法、鋼帯の溶接部検出装置及び鋼帯の製造装置に関する。 TECHNICAL FIELD The present invention relates to a method for detecting a welded portion of a steel strip, a method for manufacturing a steel strip, a device for detecting a welded portion of a steel strip, and an apparatus for manufacturing a steel strip.

従来、製造ライン上を走行する先行鋼帯と後行鋼帯とを溶接した鋼帯のトラッキングを行うものとして、例えば、特許文献1に示すものが知られている。 2. Description of the Related Art Conventionally, for example, Patent Document 1 discloses a device for tracking a steel strip obtained by welding a preceding steel strip and a succeeding steel strip running on a production line.

特許文献1に示す鋼板穴検出装置の穴精度検出方法においては、先行鋼帯と後行鋼帯の溶接部に形成された穴を鋼板トラッッキング用の穴として用いている。 In the hole accuracy detection method of the steel plate hole detection device disclosed in Patent Document 1, the hole formed in the welded portion of the preceding steel strip and the following steel strip is used as a hole for steel plate tracking.

また、電縫鋼管の中継ぎ溶接部のトラッキングを行うものとして、従来、例えば、特許文献2に示すものが知られている。 Further, conventionally, for example, a device disclosed in Patent Document 2 is known as a device for tracking a relay welded portion of an electric resistance welded steel pipe.

特許文献2に示す電縫鋼管中継ぎ溶接部の検出方法は、製造ライン上を走行する先行鋼帯の後端部に後行鋼帯の先端部を溶接して、鋼帯に中継ぎ溶接部を形成させた後、この鋼帯を円筒状に成形し、突き合せた幅方向両端部を溶接して電縫鋼管にしてから、電縫鋼管に存在する中継ぎ溶接部を検出するものである。 The method for detecting an electric resistance welded steel pipe relay weld described in Patent Document 2 forms a relay weld on the steel strip by welding the front end of the following steel strip to the rear end of the preceding steel strip running on the production line. Then, the steel strip is formed into a cylindrical shape, and the butted ends in the width direction are welded to form an electric resistance welded steel pipe.

そして、特許文献2に示す電縫鋼管中継ぎ溶接部の検出方法においては、電縫鋼管に近接して高周波電圧を印加するコイルを配置し、このコイルが発する高周波磁束により電縫鋼管内に生じる渦電流を常時測定し、その測定値を一定の閾値と比較して、その大小で中継ぎ位置を判定するようにしている。 In the method for detecting an electric resistance welded steel pipe joint weld described in Patent Document 2, a coil for applying a high-frequency voltage is arranged in proximity to an electric resistance welded steel pipe, and a vortex is generated in the electric resistance welded steel pipe by the high-frequency magnetic flux generated by the coil. The current is constantly measured, the measured value is compared with a certain threshold, and the relay position is determined based on the magnitude.

特開2010-85213号公報JP 2010-85213 A 特開2006-68759号公報JP 2006-68759 A

しかしながら、これら従来の特許文献1に示す鋼板穴検出装置の穴精度検出方法及び特許文献2に示す電縫鋼管中継ぎ溶接部の検出方法にあっては、次の問題点があった。
即ち、特許文献1に示す鋼板穴検出装置の穴精度検出方法の場合、先行鋼帯と後行鋼帯の溶接部に形成された穴を鋼板トラッッキング用の穴として用いているが、穴によるトラッキングは、投光・受光型が多く、投光器の光量不足や受光器の汚れによる穴検出不良が多く発生し、溶接部のトラッキングができない場合があった。
However, the hole accuracy detection method of the steel plate hole detection device disclosed in Patent Document 1 and the detection method of the electric resistance welded steel pipe joint weld disclosed in Patent Document 2 have the following problems.
That is, in the case of the hole accuracy detection method of the steel plate hole detection device disclosed in Patent Document 1, the hole formed in the welded portion of the preceding steel strip and the following steel strip is used as a hole for steel plate tracking. Most of them are of the light emitting/receiving type, and hole detection errors often occur due to insufficient light intensity of the light emitter or contamination of the light receiver, and there are cases where tracking of the welded part cannot be performed.

また、穴によるトラッキングでは、穴を加工するパンチダイスやパンチの劣化により、パンチ穴部の加工硬化が大きくなり、特に、冷間圧延ラインでの通板中に溶接された鋼帯が破断するという問題があった。
一方、特許文献2に示す電縫鋼管中継ぎ溶接部の検出方法の場合には、溶接部を検出しそのトラッキングを行うため、トラッキング用の穴を鋼帯に形成する際の不都合はない。
In tracking by holes, work hardening of punched holes increases due to deterioration of the punch dies and punches that process the holes. I had a problem.
On the other hand, in the case of the method for detecting an electric resistance welded steel pipe relay weld described in Patent Document 2, since the welded portion is detected and tracked, there is no problem in forming tracking holes in the steel strip.

しかしながら、特許文献2に示す電縫鋼管中継ぎ溶接部の検出方法は電縫鋼管の中継ぎ溶接部を検出対象としており、冷間圧延鋼帯などの薄鋼帯の溶接部の検出は簡単にはできない。電縫鋼管の場合には走行中における鋼管の上下振動はあまり問題とならないが、薄鋼帯の場合には、走行中における鋼帯の上下振動が大きく、溶接部の検出に困難が伴い、特許文献2に示す電縫鋼管中継ぎ溶接部の検出方法を冷間圧延鋼帯などの薄鋼帯の溶接部の検出に適用することは困難である。 However, the detection method for the joint welds of electric resistance welded steel pipes disclosed in Patent Document 2 targets the joint welds of electric resistance welded steel pipes, and cannot easily detect welded joints of thin steel strips such as cold-rolled steel strips. . In the case of electric resistance welded steel pipes, the vertical vibration of the steel pipe during running is not much of a problem, but in the case of thin steel strips, the vertical vibration of the steel strip during running is large, and it is difficult to detect the welded part. It is difficult to apply the detection method of the joint weld of the electric resistance welded steel pipe shown in Document 2 to the detection of the weld of a thin steel strip such as a cold-rolled steel strip.

従って、本発明はこれら従来の問題に鑑みてなされたものであり、その目的は、トラッキング用の穴を用いることなく、鋼帯の上下振動を抑制することによって溶接部の検出を適切に行うことで、溶接部のトラッキングを可能とした鋼帯の溶接部検出方法、鋼帯の製造方法、鋼帯の溶接部検出装置及び鋼帯の製造設備を提供することにある。 Accordingly, the present invention has been made in view of these conventional problems, and its object is to appropriately detect the weld by suppressing the vertical vibration of the steel strip without using a tracking hole. It is therefore an object of the present invention to provide a steel strip weld zone detection method, a steel strip manufacturing method, a steel strip weld zone detection apparatus, and a steel strip manufacturing facility that enable tracking of the weld zone.

本発明の一態様に係る鋼帯の溶接部検出方法は、先行鋼帯と後行鋼帯とを溶接してなる鋼帯の溶接部を検出する鋼帯の溶接部検出方法であって、搬送中における搬送方向に対する垂直方向への前記鋼帯の振動幅を20mm以下に抑制するとともに、高周波電圧を印加することにより発生する高周波磁束を前記鋼帯に作用させることにより、前記鋼帯に生ずる磁束密度変化に基づいて前記溶接部を検出することを要旨とする。 A steel strip weld zone detection method according to an aspect of the present invention is a steel strip weld zone detection method for detecting a weld zone of a steel strip formed by welding a preceding steel strip and a succeeding steel strip. The magnetic flux generated in the steel strip by suppressing the vibration width of the steel strip in the direction perpendicular to the conveying direction in the steel strip to 20 mm or less and applying a high-frequency voltage to the steel strip by applying a high-frequency magnetic flux to the steel strip. The gist of the invention is to detect the welded portion based on a change in density.

また、本発明の別の態様に係る鋼帯の製造方法は、前述の鋼帯の溶接部検出方法を実行する溶接部検出工程を含むことを要旨とする。 Further, a steel strip manufacturing method according to another aspect of the present invention is summarized in that it includes a weld zone detection step of performing the steel strip weld zone detection method described above.

また、本発明の別の態様に係る鋼帯の溶接部の検出装置は、先行鋼帯と後行鋼帯とを溶接してなる鋼帯の溶接部を検出する鋼帯の溶接部検出装置であって、搬送中における搬送方向に対する垂直方向への前記鋼帯の振動幅を抑制する振動抑制装置と、高周波電圧を印加することにより発生する高周波磁束を前記鋼帯に作用させる電圧印加装置と、該電圧印加装置によって前記鋼帯に高周波磁束を作用させることにより、前記鋼帯に生ずる磁束密度変化を検出する磁束密度変化検出装置と、該磁束密度変化検出装置で検出された磁束密度変化に基づいて前記溶接部を検出する溶接部検出部とを備えていることを要旨とする。 A steel strip weld zone detection device according to another aspect of the present invention is a steel strip weld zone detection device for detecting a weld zone of a steel strip formed by welding a preceding steel strip and a succeeding steel strip. a vibration suppressing device for suppressing vibration width of the steel strip in a direction perpendicular to the transport direction during transport; a voltage applying device for applying a high frequency magnetic flux generated by applying a high frequency voltage to the steel strip; A magnetic flux density change detecting device for detecting a change in magnetic flux density generated in the steel strip by applying a high frequency magnetic flux to the steel strip by the voltage applying device, and a magnetic flux density change detected by the magnetic flux density change detecting device. and a weld detector for detecting the weld.

さらに、本発明の別の態様に係る鋼帯の製造設備は、前述の鋼帯の溶接部検出装置を備えていることを要旨とする。 Further, a steel strip manufacturing facility according to another aspect of the present invention is summarized in including the steel strip weld zone detection device described above.

本発明に係る鋼帯の溶接部検出方法、鋼帯の製造方法、鋼帯の溶接部検出装置及び鋼帯の製造設備によれば、トラッキング用の穴を用いることなく、鋼帯の上下振動を抑制することによって溶接部の検出を適切に行うことで、溶接部のトラッキングを行うことができる。 According to the steel strip weld zone detection method, the steel strip manufacturing method, the steel strip weld zone detection device, and the steel strip manufacturing equipment according to the present invention, the vertical vibration of the steel strip can be detected without using a tracking hole. Proper detection of the weld by suppression allows tracking of the weld.

本発明の一実施形態に係る鋼帯の溶接部検出装置を備えた冷間圧延ラインの概略構成図である。1 is a schematic configuration diagram of a cold rolling line provided with a steel strip weld zone detection device according to an embodiment of the present invention; 図1に示す溶接部検出装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the weld detection device shown in FIG. 1; 実施例において、鋼帯の溶接部が溶接部検出装置下を通過した際の第1検出コイルでの電圧と第2検出コイルでの電圧との電圧差の変化を示すコンター図であり、(A)は鋼帯Sの平面側から見た電圧差の変化を示し、(B)は(A)における線3Bでの電圧差の変化を示している。In the example, (A ) shows the change in voltage difference seen from the plane side of the steel strip S, and (B) shows the change in voltage difference at line 3B in (A). 先行鋼帯と後行鋼帯との溶接部を説明するための図である。FIG. 4 is a diagram for explaining a welded portion between a leading steel strip and a trailing steel strip;

以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. Note that each drawing is schematic and may differ from the actual one. Moreover, the following embodiments are intended to exemplify devices and methods for embodying the technical idea of the present invention, and are not intended to limit the configurations to those described below. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.

図1には、本発明の一実施形態に係る鋼帯の溶接部の検出装置を備えた冷間圧延ラインの概略構成が示されている。図1に示す冷間圧延ライン1は、本発明の一実施形態に係る鋼帯の製造設備であり、冷間圧延ライン1において、ライン入側のペイオフリール2から払い出された圧延材(後行鋼帯)S2の先端部S2a(図2及び図4参照)は、ピンチロール3を経て溶接機4において先行する圧延材(先行鋼帯)S1の尾端部S1a(図2及び図4参照)と溶接される。そして、溶接された鋼帯Sは、ブライドルロール6、入側ルーパ7、及び複数のパスラインロール8等を経てタンデム圧延機9で冷間圧延された後、ピンチロール10を経て切断機11でその溶接部W(図2及び図4参照)が切断除去される。そして、先行鋼帯S1及び後行鋼帯S2のそれぞれは、巻取機12で巻き取られる。先行鋼帯S1と後行鋼帯S2との溶接部Wは、図4に示すように、先行鋼帯S1と後行鋼帯S2とを溶接してなる鋼帯Sのほぼ幅方向全域にわたって延在する。 FIG. 1 shows a schematic configuration of a cold rolling line equipped with a steel strip weld zone detector according to an embodiment of the present invention. A cold rolling line 1 shown in FIG. 1 is a steel strip manufacturing facility according to an embodiment of the present invention. The front end S2a (see FIGS. 2 and 4) of the leading steel strip) S2 passes through the pinch roll 3 and the trailing end S1a (see FIGS. 2 and 4) of the preceding rolled material (preceding steel strip) S1 in the welding machine 4. ). The welded steel strip S passes through a bridle roll 6, an entry-side looper 7, a plurality of pass line rolls 8, etc., and is cold-rolled by a tandem rolling mill 9. The weld W (see FIGS. 2 and 4) is cut off. Then, each of the leading steel strip S1 and the trailing steel strip S2 is wound by the winder 12 . As shown in FIG. 4, the welded portion W between the leading steel strip S1 and the trailing steel strip S2 extends over substantially the entire width direction of the steel strip S formed by welding the leading steel strip S1 and the trailing steel strip S2. exist.

ここで、この冷間圧延ライン1における冷間圧延に際し、鋼帯Sの溶接部Wのトラッキングを行うために、ブライドルロール6の近傍と複数のパスラインロール8のうちの1つの近傍とに溶接部検出装置20が設置されている。 Here, during cold rolling in this cold rolling line 1, in order to track the welded portion W of the steel strip S, welding is performed in the vicinity of the bridle roll 6 and in the vicinity of one of the plurality of pass line rolls 8. A part detection device 20 is installed.

先ず、ブライドルロール6の近傍に設置された溶接部検出装置20について説明すると、溶接部検出装置20は、鋼帯Sの幅方向、すなわち溶接部Wの幅方向に沿って複数併設されている。各溶接部検出装置20は、渦電流探傷法によって鋼帯Sの溶接部Wを検出するものである。複数の溶接部検出装置20の鋼帯幅方向の設置間隔は、例えば、20mm~鋼帯幅-20mmに設定される。 First, the weld detection device 20 installed in the vicinity of the bridle roll 6 will be described. Each weld detecting device 20 detects the weld W of the steel strip S by an eddy current flaw detection method. The installation interval in the steel strip width direction of the plurality of weld detection devices 20 is set to, for example, 20 mm to steel strip width-20 mm.

そして、各溶接部検出装置20は、搬送中における搬送方向(図1においては左から右方向)に対する垂直方向への鋼帯Sの振動幅を抑制する振動抑制装置としてのブライドルロール6を備えている。ブライドルロール6は、搬送される鋼帯Sに張力を付与するものであり、この鋼帯Sに張力を付与する際に搬送中における搬送方向に対する垂直方向への鋼帯Sの振動幅5mm以下(パスラインを中心に上下に2.5mm以内)に抑制する。この鋼帯Sの振動幅が20mmよりも大きいと、溶接部検出装置20の後述する電圧印加装置21や磁束密度変化検出装置22に鋼帯Sが接触するおそれがあり、溶接部Wの検出が適切にできないことがある。 Each weld detection device 20 includes a bridle roll 6 as a vibration suppressing device that suppresses the vibration amplitude of the steel strip S in the direction perpendicular to the conveying direction (from left to right in FIG. 1) during conveying. there is The bridle roll 6 applies tension to the conveyed steel strip S, and when applying tension to the steel strip S, the vibration width of the steel strip S in the direction perpendicular to the conveying direction during conveyance is 5 mm or less ( (within 2.5 mm vertically around the pass line). If the vibration width of the steel strip S is larger than 20 mm, the steel strip S may come into contact with the voltage application device 21 and the magnetic flux density change detection device 22 of the weld detection device 20, which will be described later. Sometimes I can't do it properly.

従来の特許文献2に示す電縫鋼管中継ぎ溶接部の検出方法では電縫鋼管の中継ぎ溶接部を検出対象としており、電縫鋼管の場合には断面係数が大きく走行中における鋼管の上下振動はあまり問題とならないが、本実施形態のような冷延鋼帯のごとき薄鋼帯の場合には、断面係数が小さいため走行中における鋼帯の上下振動が大きくなるおそれがあるので、振動抑制装置としてのブライドルロール6でその振動幅を抑制するようにしている。 In the conventional detection method for an electric resistance welded steel pipe joint weld described in Patent Document 2, the joint welded part of an electric resistance welded steel pipe is targeted for detection. Although this is not a problem, in the case of a thin steel strip such as a cold-rolled steel strip as in this embodiment, since the section modulus is small, there is a risk that the vertical vibration of the steel strip during running may increase. The bridle roll 6 suppresses the vibration width.

また、各溶接部検出装置20は、図2に示すように、高周波電圧を印加することにより発生する高周波磁束24を鋼帯Sに作用させる電圧印加装置21を備えている。電圧印加装置21は、鋼帯Sの搬送方向にそって配置されたE型鉄心20aの搬送方向中央鉄心部に巻かれた励磁コイル21aと、高周波電圧を励磁コイル21aに印加する電圧印加部21bとを備えている。励磁コイル21aに高周波電圧を印加すると、印加された高周波電圧により高周波電流が励磁コイル21aに発生し、さらに励磁コイル21aに発生した高周波電流により高周波磁束24が発生する。そして、その発生した高周波磁束24が鋼帯Sに作用し、鋼帯Sにはその高周波磁束24を打ち消すように渦電流が発生する。そして、鋼帯Sが励磁コイル21aに近くなったり離れたりする(溶接部Wが通過すると励磁コイル21aに近くなる)ことでその渦電流値が変化する。つまり、鋼帯Sに生ずる磁束密度が変化する。 2, each weld detecting device 20 includes a voltage applying device 21 for applying a high frequency magnetic flux 24 to the steel strip S, which is generated by applying a high frequency voltage. The voltage applying device 21 includes an exciting coil 21a wound around the central iron core portion in the conveying direction of the E-shaped iron core 20a arranged along the conveying direction of the steel strip S, and a voltage applying section 21b for applying a high frequency voltage to the exciting coil 21a. and When a high frequency voltage is applied to the excitation coil 21a, the applied high frequency voltage generates a high frequency current in the excitation coil 21a, and the high frequency current generated in the excitation coil 21a generates a high frequency magnetic flux 24. The generated high-frequency magnetic flux 24 acts on the steel strip S, and an eddy current is generated in the steel strip S so as to cancel the high-frequency magnetic flux 24 . The eddy current value changes as the steel strip S approaches or separates from the excitation coil 21a (when the welded portion W passes, it approaches the excitation coil 21a). That is, the magnetic flux density generated in the steel strip S changes.

また、各溶接部検出装置20は、図2に示すように、電圧印加装置21によって鋼帯Sに高周波磁束24を作用させることにより、鋼帯Sに生ずる磁束密度変化を検出する磁束密度変化検出装置22を備えている。E型鉄心20aの搬送方向入側鉄心部に巻かれた第1検出コイル22aと、第1検出コイル22aに流れる電流の電圧を検出する第1電圧検出部22bと、E型鉄心20aの搬送方向出側鉄心部に巻かれた第2検出コイル22cと、第2検出コイル22cに流れる電流の電圧を検出する第2電圧検出部22dと、第1電圧検出部22bで検出された電圧と第2電圧検出部22dで検出された電圧との電圧差を算出する電圧差算出部22eとを備えている。磁束密度変化検出装置22は、鋼帯Sに生ずる磁束密度変化を検出するものとして、第1検出コイル22aに流れる電流の電圧と第2検出コイル22cに流れる電流の電圧との差分を検出している。 As shown in FIG. 2, each weld detecting device 20 detects a change in magnetic flux density generated in the steel strip S by applying a high-frequency magnetic flux 24 to the steel strip S by means of a voltage applying device 21. A device 22 is provided. A first detection coil 22a wound around the entrance-side iron core portion in the conveying direction of the E-shaped iron core 20a, a first voltage detector 22b for detecting the voltage of the current flowing through the first detecting coil 22a, and the conveying direction of the E-shaped iron core 20a. A second detection coil 22c wound around the output side iron core, a second voltage detection section 22d for detecting the voltage of the current flowing through the second detection coil 22c, a voltage detected by the first voltage detection section 22b and the second and a voltage difference calculator 22e for calculating a voltage difference from the voltage detected by the voltage detector 22d. The magnetic flux density change detection device 22 detects the magnetic flux density change occurring in the steel strip S, and detects the difference between the voltage of the current flowing through the first detection coil 22a and the voltage of the current flowing through the second detection coil 22c. there is

鋼帯Sにおいて溶接部W等の母板部と異なる部分がなければ、第1検出コイル22aでの電圧と第2検出コイル22cでの電圧とがほぼ等しくなり(位相も等しくなる)、電圧差算出部22eで算出される電圧差もほぼゼロとなる。一方、鋼帯Sの溶接部Wが溶接部検出装置20下を通過した場合、第1検出コイル22aでの電圧と第2検出コイル22cでの電圧とが異なり、電圧差算出部22eで算出される電圧差が大きくなる。例えば、図3には、実施例における鋼帯Sの溶接部Wが溶接部検出装置20下を通過した際の第1検出コイル22aでの電圧と第2検出コイル22cでの電圧との電圧差の変化が示されており、溶接部Wが第1検出コイル22aの下を通過した時には電圧差算出部22eで算出される電圧差が+側にa(V)となっている。また、溶接部Wが第2検出コイル22cの下を通過した時には電圧差算出部22eで算出される電圧差が-側にb(V)となっている。 If the steel strip S does not have a portion different from the mother plate portion such as the welded portion W, the voltage at the first detection coil 22a and the voltage at the second detection coil 22c will be substantially equal (the phases will also be equal), and the voltage difference will be The voltage difference calculated by the calculator 22e is also substantially zero. On the other hand, when the welded portion W of the steel strip S passes under the welded portion detection device 20, the voltage at the first detection coil 22a and the voltage at the second detection coil 22c are different, and are calculated by the voltage difference calculator 22e. voltage difference increases. For example, FIG. 3 shows the voltage difference between the voltage at the first detection coil 22a and the voltage at the second detection coil 22c when the welded portion W of the steel strip S in the embodiment passes under the welded portion detection device 20. , and when the weld W passes under the first detection coil 22a, the voltage difference calculated by the voltage difference calculator 22e is a (V) on the positive side. Further, when the welded portion W passes under the second detection coil 22c, the voltage difference calculated by the voltage difference calculation section 22e is b (V) on the minus side.

更に、各溶接部検出装置20は、磁束密度変化検出装置22で検出された磁束密度変化に基づいて溶接部Wを検出する溶接部検出部23を備えている。 Further, each weld detection device 20 includes a weld detector 23 that detects the weld W based on the magnetic flux density change detected by the magnetic flux density change detector 22 .

溶接部検出部23は、磁束密度変化検出装置22で検出された磁束密度変化が所定の閾値を超える場合、具体的には、電圧差算出部22eで算出される電圧差が所定の閾値を超える場合には、その検出対象箇所を溶接部Wと特定する。つまり、検出対象箇所が第1検出コイル22aの下を通過した時の電圧差算出部22eで算出される電圧差と、検出対象箇所が第2検出コイル22cの下を通過した時の電圧差算出部22eで算出される電圧差との差が所定の閾値を超える場合には、その検出対象箇所を溶接部Wとする。例えば、図3に示す例では、検出対象箇所となる溶接部Wが第1検出コイル22aの下を通過した時の電圧差算出部22eで算出される電圧差(+a(V))と、溶接部Wが第2検出コイル22cの下を通過した時の電圧差算出部22eで算出される電圧差(-b(V))との差(+a-(-b)=a+b(V))が所定の閾値を超えており、その検出対象箇所が溶接部Wと特定される。なお、この所定の閾値は、鋼帯Sにおける溶接部W以外の部分が第1検出コイル22aの下を通過した時の電圧差算出部22eで算出される電圧差と、当該溶接部W以外の部分が第2検出コイル22cの下を通過した時の電圧差算出部22eで算出される電圧差との差の中央値に設定される。 Specifically, when the magnetic flux density change detected by the magnetic flux density change detection device 22 exceeds a predetermined threshold, the weld detection unit 23 detects that the voltage difference calculated by the voltage difference calculation unit 22e exceeds the predetermined threshold. In this case, the welded portion W is identified as the detection target location. That is, the voltage difference calculated by the voltage difference calculator 22e when the detection target location passes under the first detection coil 22a and the voltage difference calculation when the detection target location passes under the second detection coil 22c If the difference from the voltage difference calculated at the portion 22e exceeds a predetermined threshold value, the welded portion W is set as the detection target portion. For example, in the example shown in FIG. 3, the voltage difference (+a (V)) calculated by the voltage difference calculator 22e when the welded portion W serving as the detection target portion passes under the first detection coil 22a, and the welding The difference (+a−(−b)=a+b(V)) from the voltage difference (−b(V)) calculated by the voltage difference calculating unit 22e when the portion W passes under the second detection coil 22c is It exceeds a predetermined threshold, and the detection target location is identified as the welded portion W. Note that this predetermined threshold value is the voltage difference calculated by the voltage difference calculator 22e when a portion of the steel strip S other than the welded portion W passes under the first detection coil 22a, It is set to the median value of the difference from the voltage difference calculated by the voltage difference calculator 22e when the part passes under the second detection coil 22c.

これにより、トラッキング用の穴を用いることなく、鋼帯Sの上下振動を抑制することによって溶接部Wの検出を適切に行うことで、溶接部Wのトラッキングを行うことができる。 As a result, the welded portion W can be tracked by appropriately detecting the welded portion W by suppressing the vertical vibration of the steel strip S without using a tracking hole.

そして、前述したように、溶接部検出装置20は、溶接部Wの幅方向に沿って複数併設されており、それぞれの溶接部検出装置20の電圧印加装置21から溶接部Wの幅方向に沿う複数個所に高周波磁束を作用させ、それぞれの溶接部検出装置20の磁束密度変化検出装置22が各高周波磁束により鋼帯Sの各箇所に生ずる磁束密度変化を検出し、各溶接部検出部23が磁束密度変化検出装置22で検出した各高周波磁束により鋼帯Sの各箇所に生ずる磁束密度変化に基づいて溶接部Wを検出する。 As described above, a plurality of the weld detection devices 20 are arranged along the width direction of the weld W, and the voltage application device 21 of each weld detection device 20 detects the voltage along the width direction of the weld W. High-frequency magnetic flux is applied to a plurality of locations, and the magnetic flux density change detectors 22 of the respective weld detection devices 20 detect the magnetic flux density changes occurring at each location of the steel strip S due to each high-frequency magnetic flux. The welded portion W is detected based on the magnetic flux density change generated at each location of the steel strip S by each high-frequency magnetic flux detected by the magnetic flux density change detection device 22 .

そして、複数の溶接部検出装置20は、鋼帯Sの各箇所に生ずる磁束密度変化の全てが所定の閾値を超える場合に、検出対象箇所が溶接部Wであると特定する。つまり、各溶接部検出装置20の溶接部検出部23は図示しない別の共通溶接部検出部に接続されており、全ての溶接部検出装置20の全ての溶接部検出部23で検出対象箇所が第1検出コイル22aの下を通過した時の電圧差算出部22eで算出される電圧差と、検出対象箇所が第2検出コイル22cの下を通過した時の電圧差算出部22eで算出される電圧差との差が所定の閾値を超えて溶接部Wと特定したときに、別の共通溶接部検出部は当該検出対象箇所が溶接部Wと特定する。 The plurality of welded portion detection devices 20 identify the welded portion W as the detection target portion when all changes in the magnetic flux density occurring at each portion of the steel strip S exceed a predetermined threshold value. That is, the weld detector 23 of each weld detector 20 is connected to another common weld detector (not shown), and all the weld detectors 23 of all the weld detectors 20 have detection target locations. The voltage difference calculated by the voltage difference calculation unit 22e when passing under the first detection coil 22a and the voltage difference calculation unit 22e when the detection target location passes under the second detection coil 22c. When the difference from the voltage difference exceeds a predetermined threshold value and the welded portion W is identified, another common welded portion detecting portion identifies the detected portion as the welded portion W.

これにより、溶接部検出装置20を溶接部Wの幅方向に沿って複数併設し、同時に溶接部Wとして検出した場合のみ当該検出対象箇所を溶接部Wとすることで、鋼帯Sの溶接部W以外の表面欠陥が溶接部検出装置20の下を通過したときにその表面欠陥を誤って溶接部Wとして検出する可能性を回避することができる。これにより、溶接部Wと表面欠陥の検出の識別が可能となる。いずれかの溶接部検出装置20の溶接部検出部23で検出対象箇所が第1検出コイル22aの下を通過した時の電圧差算出部22eで算出される電圧差と、検出対象箇所が第2検出コイル22cの下を通過した時の電圧差算出部22eで算出される電圧差との差が所定の閾値を超えていない場合には、別の共通溶接部検出部は当該検出対象箇所が溶接部Wでないと判断する。 As a result, a plurality of weld detection devices 20 are provided side by side along the width direction of the weld W, and only when the weld is detected as the weld W at the same time, the detection target location is the weld W. The possibility of erroneously detecting a surface defect other than W as a weld W when it passes under the weld detector 20 can be avoided. This makes it possible to distinguish between welds W and detection of surface defects. The voltage difference calculated by the voltage difference calculator 22e when the detection target location passes under the first detection coil 22a in the weld detection unit 23 of any of the weld detection devices 20, and the voltage difference calculated by the voltage difference calculation unit 22e when the detection target location is the second If the difference between the voltage difference calculated by the voltage difference calculation unit 22e when passing under the detection coil 22c does not exceed a predetermined threshold, another common weld detection unit detects that the detection target location is welded. It is judged that it is not part W.

ここで、各溶接部検出装置20のうちの電圧印加装置21及び磁束密度変化検出装置22は、鋼帯Sを挟んで振動抑制装置としてのブライドルロール6に対向して配置されている。
そして、各溶接部検出装置20の電圧印加装置21を構成する励磁コイル21a、磁束密度変化検出装置22を構成する第1検出コイル22a及び第2検出コイル22cと鋼帯Sの表面との間隔(リフトオフ)は、5~100mmに設定されることが好ましい。
Here, the voltage application device 21 and the magnetic flux density change detection device 22 of each weld detection device 20 are arranged to face the bridle roll 6 as a vibration suppression device with the steel strip S interposed therebetween.
The distance between the excitation coil 21a constituting the voltage applying device 21 of each weld detection device 20, the first detection coil 22a and the second detection coil 22c constituting the magnetic flux density change detection device 22, and the surface of the steel strip S ( lift-off) is preferably set to 5 to 100 mm.

また、励磁コイル21a、第1検出コイル22a及び第2検出コイル22cの鋼帯Sの搬送方向の間隔は、励磁コイル21aと第1検出コイル22aとの間及び励磁コイル21aと第2検出コイル22cとの間とも10~80mmに設定されることが好ましい。 Also, the intervals in the conveying direction of the steel strip S between the excitation coil 21a, the first detection coil 22a and the second detection coil 22c are the intervals between the excitation coil 21a and the first detection coil 22a and the intervals between the excitation coil 21a and the second detection coil 22c. is preferably set to 10 to 80 mm.

なお、各溶接部検出装置20毎に溶接部検出部23が設けられているが、複数の溶接部検出装置20に対して1つの溶接部検出部を設け、この溶接部検出部で鋼帯Sの各箇所に生ずる磁束密度変化の全てが所定の閾値を超える場合に、検出対象箇所が溶接部Wであると特定するようにしてもよい。 Although the weld detection unit 23 is provided for each weld detection device 20, one weld detection unit is provided for a plurality of weld detection devices 20, and the steel strip S is detected by this weld detection unit. It is also possible to specify that the detection target location is the welded portion W when all changes in the magnetic flux density occurring at each location exceed a predetermined threshold value.

次に、複数のパスラインロール8のうちの1つの近傍に設置された溶接部検出装置20は、ブライドルロール6の近傍に設置された溶接部検出装置20と同様に、鋼帯Sの幅方向、すなわち溶接部Wの幅方向に沿って複数併設されている。複数の溶接部検出装置20の鋼帯幅方向の設置間隔は、例えば、20mm~鋼帯幅-50mmに設定される。 Next, the weld detection device 20 installed in the vicinity of one of the plurality of pass line rolls 8, like the weld detection device 20 installed in the vicinity of the bridle roll 6, the width direction of the steel strip S That is, along the width direction of the welded portion W, a plurality of them are arranged side by side. The installation interval in the steel strip width direction of the plurality of weld detection devices 20 is set to, for example, 20 mm to steel strip width-50 mm.

そして、各溶接部検出装置20の基本構成はブライドルロール6の近傍に設置された溶接部検出装置20と同様であり、搬送中における搬送方向に対する垂直方向への鋼帯Sの振動幅を抑制する振動抑制装置としてのパスラインロール8と、高周波電圧を印加することにより発生する高周波磁束24を鋼帯Sに作用させる電圧印加装置21と、電圧印加装置21によって鋼帯Sに高周波磁束24を作用させることにより、鋼帯Sに生ずる磁束密度変化を検出する磁束密度変化検出装置22と、磁束密度変化検出装置22で検出された磁束密度変化に基づいて溶接部Wを検出する溶接部検出部23とを備えている。しかし、図1に示すように、各溶接部検出装置20の電圧印加装置21及び磁束密度変化検出装置22が、溶接部Wの一方面(上面)及び他方面(下面)のそれぞれに対向して1対設置されている点でブライドルロール6の近傍に設置された溶接部検出装置20と異なる。 The basic configuration of each weld detection device 20 is the same as the weld detection device 20 installed near the bridle roll 6, and suppresses the vibration width of the steel strip S in the direction perpendicular to the conveying direction during conveying. A pass line roll 8 as a vibration suppressing device, a voltage applying device 21 that applies a high frequency magnetic flux 24 generated by applying a high frequency voltage to the steel strip S, and a high frequency magnetic flux 24 applied to the steel strip S by the voltage applying device 21. A magnetic flux density change detection device 22 for detecting a change in magnetic flux density occurring in the steel strip S, and a weld detection unit 23 for detecting a weld W based on the magnetic flux density change detected by the magnetic flux density change detection device 22. and However, as shown in FIG. 1, the voltage application device 21 and the magnetic flux density change detection device 22 of each weld detection device 20 face one surface (upper surface) and the other surface (lower surface) of the weld W, respectively. It is different from the weld detection device 20 installed near the bridle roll 6 in that it is installed as a pair.

このように、各溶接部検出装置20の電圧印加装置21及び磁束密度変化検出装置22を、溶接部Wの一方面及び他方面のそれぞれに対向して1対設置することで、溶接部Wの一方面のみに電圧印加装置21及び磁束密度変化検出装置22を設置する場合と比べて、板表層の欠陥との識別可能という利点がある。 In this manner, a pair of the voltage application device 21 and the magnetic flux density change detection device 22 of each weld detection device 20 are installed on one surface and the other surface of the weld W so as to face each other. Compared with the case where the voltage application device 21 and the magnetic flux density change detection device 22 are installed only on one side, there is an advantage that it is possible to identify defects on the plate surface layer.

パスラインロール8は、鋼帯Sを搬送させるものであり、この鋼帯Sを搬送させる際に搬送中における搬送方向に対する垂直方向への鋼帯Sの振動幅20mm以下(パスラインを中心に上下に10mm以内)に抑制する。この鋼帯Sの振動幅が20mmよりも大きいと、溶接部検出装置20の後述する電圧印加装置21や磁束密度変化検出装置22に鋼帯Sが接触するおそれがあり、溶接部Wの検出が適切にできないことがある。 The pass line rolls 8 transport the steel strip S. When transporting the steel strip S, the vibration width of the steel strip S in the direction perpendicular to the transport direction during transport is 20 mm or less (up and down around the pass line within 10 mm). If the vibration width of the steel strip S is larger than 20 mm, the steel strip S may come into contact with the voltage application device 21 and the magnetic flux density change detection device 22 of the weld detection device 20, which will be described later. Sometimes I can't do it properly.

また、溶接部Wの一方面に対向して配置される磁束密度変化検出装置22に接続された溶接部検出部23と溶接部Wの他方面に対向して配置される磁束密度変化検出装置22に接続された溶接部検出部23とは共通の溶接部検出部で構成されている。そして、この共通の溶接部検出部は、溶接部Wの一方面に対向して配置される磁束密度変化検出装置22の電圧差算出部22eで算出される電圧差と、溶接部Wの他方面に対向して配置される磁束密度変化検出装置22の電圧差算出部22eで算出される電圧差との両方の電圧差が所定の閾値を超える場合には、その検出対象箇所を溶接部Wと特定する。 In addition, a weld detection unit 23 connected to a magnetic flux density change detection device 22 arranged to face one surface of the weld W and a magnetic flux density change detection device 22 arranged to face the other surface of the weld W The welding part detection part 23 connected to is configured by a common welding part detection part. Then, this common welded portion detection unit detects the voltage difference calculated by the voltage difference calculation unit 22e of the magnetic flux density change detection device 22 arranged to face one surface of the welded portion W, and the other surface of the welded portion W. When the voltage difference between the voltage difference calculated by the voltage difference calculation unit 22e of the magnetic flux density change detection device 22 and the voltage difference exceeds a predetermined threshold value, the detection target location is the welded portion W and Identify.

これにより、トラッキング用の穴を用いることなく、鋼帯Sの上下振動を抑制することによって溶接部Wの検出を適切に行うことで、溶接部Wのトラッキングを行うことができる。 As a result, the welded portion W can be tracked by appropriately detecting the welded portion W by suppressing the vertical vibration of the steel strip S without using a tracking hole.

そして、前述したように、溶接部検出装置20は、溶接部Wの幅方向に沿って複数併設されており、それぞれの溶接部検出装置20の電圧印加装置21から溶接部Wの幅方向に沿う複数個所に高周波磁束24を作用させ、磁束密度変化検出装置22が各高周波磁束24により鋼帯Sの各箇所に生ずる磁束密度変化を検出し、共通の溶接部検出部が磁束密度変化検出装置22で検出した各高周波磁束24により鋼帯Sの各箇所に生ずる磁束密度変化に基づいて溶接部Wを検出する。 As described above, a plurality of the weld detection devices 20 are arranged along the width direction of the weld W, and the voltage application device 21 of each weld detection device 20 detects the voltage along the width direction of the weld W. The high-frequency magnetic flux 24 is applied to a plurality of locations, and the magnetic flux density change detector 22 detects the magnetic flux density variation generated at each location of the steel strip S by each high-frequency magnetic flux 24. The welded portion W is detected based on the change in magnetic flux density generated at each location of the steel strip S by each high-frequency magnetic flux 24 detected in .

そして、複数の溶接部検出装置20は、ブライドルロール6の近傍に設置された溶接部検出装置20と同様に、鋼帯Sの各箇所に生ずる磁束密度変化の全てが所定の閾値を超える場合に、検出対象箇所が溶接部Wであると特定する。つまり、各溶接部検出装置20の前述の共通の溶接部検出部は図示しない別の共通溶接部検出部に接続されており、全ての溶接部検出装置20の全ての共通の溶接部検出部で検出対象箇所が溶接部Wと特定されたときに、別の共通溶接部検出部が当該検出対象箇所を溶接部Wと特定する。 Then, in the same way as the weld detection devices 20 installed near the bridle roll 6, the plurality of weld detection devices 20 detect when all changes in the magnetic flux density occurring at each location of the steel strip S exceed a predetermined threshold value. , that the detection target location is the welded portion W. That is, the aforementioned common weld detection unit of each weld detection device 20 is connected to another common weld detection unit (not shown), and all the common weld detection units of all the weld detection devices 20 When the detection target location is identified as the welded portion W, another common welded portion detection unit identifies the detection target location as the welded portion W.

これにより、溶接部検出装置20を溶接部Wの幅方向に沿って複数併設し、同時に溶接部Wとして検出した場合のみ当該検出対象箇所を溶接部Wとすることで、鋼帯Sの溶接部W以外の表面欠陥が溶接部検出装置20の下を通過したときにその表面欠陥を誤って溶接部Wとして検出する可能性を回避することができる。 As a result, a plurality of weld detection devices 20 are provided side by side along the width direction of the weld W, and only when the weld is detected as the weld W at the same time, the detection target location is the weld W. The possibility of erroneously detecting a surface defect other than W as a weld W when it passes under the weld detector 20 can be avoided.

なお、各溶接部検出装置20毎に2つの溶接部検出部23で構成される共通の溶接部検出部が設けられているが、複数の溶接部検出装置20に対して1つの溶接部検出部を設け、この溶接部検出部で鋼帯Sの各箇所に生ずる磁束密度変化の全てが所定の閾値を超える場合に、検出対象箇所が溶接部Wであると特定するようにしてもよい。 Although a common weld detection unit composed of two weld detection units 23 is provided for each weld detection device 20 , one weld detection unit is provided for a plurality of weld detection devices 20 . may be provided, and the welded portion W may be specified as the detection target portion when all changes in the magnetic flux density occurring at each portion of the steel strip S exceed a predetermined threshold value.

ここで、上流側(ブライドルロール6側)に設置された溶接部検出装置20が溶接部Wと検出した位置と、下流側(パスラインロール8側)に設置された溶接部検出装置20が溶接部Wと検出した位置とのずれが所定の閾値内(実ラインではコイル長の10%以内)の場合には、下流側の溶接部検出装置20が溶接部Wと検出した位置を「正」とし、溶接部Wの位置を下流側の溶接部検出装置20が検出した位置に補正する。 Here, the position where the weld detection device 20 installed on the upstream side (the bridle roll 6 side) detected the weld W, and the position where the weld detection device 20 installed on the downstream side (the pass line roll 8 side) detected the weld. If the deviation between the weld W and the detected position is within a predetermined threshold value (within 10% of the coil length in the actual line), the position detected as the weld W by the weld detector 20 on the downstream side is "positive". , and the position of the welded portion W is corrected to the position detected by the welded portion detection device 20 on the downstream side.

一方、上流側の溶接部検出装置20が溶接部Wと検出した位置と、下流側の溶接部検出装置20が溶接部Wと検出した位置とのずれが所定の閾値超えの場合、板表面性欠陥による検出不良の可能性が高く、溶接部Wはないものとして取り扱う。 On the other hand, if the difference between the position detected as the weld W by the weld detection device 20 on the upstream side and the position detected as the weld W by the weld detection device 20 on the downstream side exceeds a predetermined threshold value, the plate surface roughness There is a high possibility of detection failure due to a defect, and it is treated as if there is no weld W.

なお、上流側の溶接部検出装置20及び下流側の溶接部検出装置20のいずれか一方が溶接部Wを検出し、他方が溶接部Wを検出した場合には、前述の位置ずれが所定の閾値超えの場合と同様に、板表面性欠陥による検出不良の可能性が高く、溶接部Wはないものとして取り扱う。 If one of the welded portion detection device 20 on the upstream side and the welded portion detection device 20 on the downstream side detects the welded portion W and the other detects the welded portion W, the above-described positional deviation may As in the case of exceeding the threshold value, there is a high possibility of detection failure due to plate surface defects, and the welded portion W is treated as non-existent.

そして、冷間圧延ライン1は、ブライドルロール6の近傍及びパスラインロール8の近傍に設置された溶接部検出装置20で検出した鋼帯Sの溶接部Wの幅方向端部にノッチング加工を施すノッチング装置5を備えている。ノッチング装置5は、溶接機4とブライドルロール6との間に設置されている。 Then, the cold rolling line 1 performs notching on the widthwise end of the welded portion W of the steel strip S detected by the welded portion detection device 20 installed near the bridle roll 6 and near the pass line roll 8. A notching device 5 is provided. A notching device 5 is installed between the welder 4 and the bridle roll 6 .

このように構成された冷間圧延ライン1において、ブライドルロール6の近傍及びパスラインロール8の近傍のそれぞれに設置された溶接部検出装置20により鋼帯Sの溶接部Wを検出するに際し、すなわち、溶接部検出工程では、溶接部検出装置20は、搬送中における搬送方向に対する垂直方向への鋼帯Sの振動幅を20mm以下に抑制するとともに、高周波電圧を印加することにより発生する高周波磁束を鋼帯Sに作用させることにより、鋼帯Sに生ずる磁束密度変化に基づいて溶接部Wを検出する。 In the cold rolling line 1 configured in this way, when detecting the welded portion W of the steel strip S by the welded portion detection devices 20 installed in the vicinity of the bridle roll 6 and the pass line roll 8, respectively, In the weld detection step, the weld detection device 20 suppresses the vibration width of the steel strip S in the direction perpendicular to the conveying direction during conveyance to 20 mm or less, and suppresses the high-frequency magnetic flux generated by applying the high-frequency voltage. By acting on the steel strip S, the welded portion W is detected based on the change in magnetic flux density occurring in the steel strip S.

これにより、トラッキング用の穴を用いることなく、鋼帯Sの上下振動を抑制することによって溶接部Wの検出を適切に行うことで、溶接部Wのトラッキングを行うことができる。 As a result, the welded portion W can be tracked by appropriately detecting the welded portion W by suppressing the vertical vibration of the steel strip S without using a tracking hole.

また、溶接部Wの幅方向に沿って複数併設された複数の溶接部検出装置20により、溶接部Wの幅方向に沿う複数個所に高周波磁束24を作用させ、各高周波磁束24により鋼帯Sの各箇所に生ずる磁束密度変化に基づいて溶接部Wを検出し、鋼帯Sの各箇所に生ずる磁束密度変化の全てが所定の閾値を超える場合に、検出対象箇所が溶接部Wであると特定する。 In addition, a plurality of weld detection devices 20 arranged along the width direction of the weld W are used to apply high-frequency magnetic fluxes 24 to a plurality of locations along the width direction of the weld W, and each high-frequency magnetic flux 24 detects the steel strip S. The welded portion W is detected based on the magnetic flux density change occurring at each location of the steel strip S, and when all the magnetic flux density changes occurring at each location of the steel strip S exceed a predetermined threshold value, it is determined that the detection target location is the welded portion W Identify.

これにより、複数の溶接部検出装置20が同時に溶接部Wとして検出した場合のみ当該検出対象箇所を溶接部Wとすることで、鋼帯Sの溶接部W以外の表面欠陥が溶接部検出装置20の下を通過したときにその表面欠陥を誤って溶接部Wとして検出する可能性を回避することができる。 As a result, only when a plurality of welded portion detection devices 20 detect the welded portion W at the same time, the detection target location is the welded portion W, so that the surface defects of the steel strip S other than the welded portion W are detected by the welded portion detection devices 20 . The possibility of falsely detecting that surface defect as a weld W when passing under the W can be avoided.

そして、鋼帯Sの製造に際しては、溶接部検出工程で検出した鋼帯Sの溶接部Wの幅方向端部にノッチング加工を施す(ノッチング工程)。
これにより、溶接部Wに行うノッチング加工を正確に検出された鋼帯Sの溶接部Wの幅方向端部に行うことができる。
Then, in manufacturing the steel strip S, notching is performed on the widthwise end portion of the welded portion W of the steel strip S detected in the welded portion detection step (notching step).
As a result, the notching process performed on the welded portion W can be performed on the widthwise end portion of the welded portion W of the steel strip S that has been detected accurately.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに、種々の変更、改良を行うことができる。 Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications and improvements can be made.

例えば、磁束密度変化検出装置22は、鋼帯Sに生ずる磁束密度変化を検出するものとして、第1検出コイル22aに流れる電流の電圧と第2検出コイル22cに流れる電流の電圧との差分を検出している。しかし、磁束密度変化検出装置22は、鋼帯Sに生ずる磁束密度変化を検出するものとして、鋼帯Sに生じた渦電流値を検出コイルに流れる電流値を測定することによって検出するようにしてもよい。 For example, the magnetic flux density change detection device 22 detects the magnetic flux density change occurring in the steel strip S, and detects the difference between the voltage of the current flowing through the first detection coil 22a and the voltage of the current flowing through the second detection coil 22c. is doing. However, the magnetic flux density change detecting device 22 detects the magnetic flux density change occurring in the steel strip S, and detects the eddy current value occurring in the steel strip S by measuring the current value flowing through the detection coil. good too.

また、本実施形態のように検出コイルに流れる電圧を検出するにしても、各溶接部検出装置20は、E型鉄心20aの搬送方向中央鉄心部に励磁コイル21aを巻回し、E型鉄心20aの搬送方向入側鉄心部に第1検出コイル22aを巻回し、E型鉄心20aの搬送方向出側鉄心部に第2検出コイル22cを巻回するものでなくてもよい。 Further, even if the voltage flowing through the detection coil is detected as in the present embodiment, each weld detection device 20 winds the excitation coil 21a around the central core portion of the E-shaped core 20a in the conveying direction. It is not necessary to wind the first detection coil 22a around the iron core portion on the conveying direction entry side of the E-shaped iron core 20a and wind the second detection coil 22c around the iron core portion on the conveying direction exit side of the E-shaped iron core 20a.

また、振動抑制装置としてブライドルロール6やパスラインロール8を用いているが、他の部材であってもよい。この場合、溶接部検出装置20は、ブライドルロール6の近傍及びパスラインロール8の近傍ではなく、当該別の部材の近傍に設置されればよい。 Also, although the bridle rolls 6 and the pass line rolls 8 are used as the vibration suppressing device, other members may be used. In this case, the weld detection device 20 may be installed in the vicinity of the separate member instead of the vicinity of the bridle roll 6 and the passline roll 8 .

また、溶接部検出装置20は鋼帯Sの幅方向に沿って複数併設されているが、複数設置せずに1つだけ設置するようにしてもよい。 In addition, although a plurality of weld detection devices 20 are provided side by side along the width direction of the steel strip S, only one device may be provided instead of a plurality of devices.

また、本実施形態では、鋼帯の製造設備として冷間圧延ライン1をあげて説明してあるが、溶接部検出装置20は、溶接が適用される鋼帯の製造設備に備えられていればよく、冷間圧延ライン1のみならず、例えば、熱間圧延ラインに備えられていてもよい。 In addition, in the present embodiment, the cold rolling line 1 is used as the steel strip manufacturing equipment, but the weld detection device 20 is provided in the steel strip manufacturing equipment to which welding is applied. It may be provided not only in the cold rolling line 1 but also in, for example, a hot rolling line.

図1に示す冷間圧延ライン1において、ブライドルロール6の近傍に設置した溶接部検出装置20により鋼帯Sの溶接部Wを検出した。溶接部検出装置20は、鋼帯幅方向に沿って所定間隔(20cm)で複数(2個)設置されている。 In the cold rolling line 1 shown in FIG. 1 , the welded portion W of the steel strip S was detected by the welded portion detection device 20 installed near the bridle rolls 6 . A plurality (two pieces) of the weld detection devices 20 are installed at predetermined intervals (20 cm) along the width direction of the steel strip.

各溶接部検出装置20における電圧印加装置21の励磁周波数は16kHz、励磁電圧は2.5Vとして測定を実施した。図3には、この実施例における鋼帯の溶接部が溶接部検出装置下を通過した際の第1検出コイルでの電圧と第2検出コイルでの電圧との電圧差の変化が示されている。 The excitation frequency of the voltage application device 21 in each weld detection device 20 was 16 kHz, and the excitation voltage was 2.5V. FIG. 3 shows the change in voltage difference between the voltage at the first detection coil and the voltage at the second detection coil when the welded portion of the steel strip in this embodiment passes under the welded portion detection device. there is

そして、各溶接部検出装置20の電圧印加装置21を構成する励磁コイル21a、磁束密度変化検出装置22を構成する第1検出コイル22a及第2検出コイル22cと鋼帯Sの表面との間隔(リフトオフ)を、15mm~100mmまで測定を実施し、溶接部Wが検出可能なことを確認した。鋼帯Sの板厚は0.5mm~10mmにて測定を実施し、溶接部Wの検出が可能であった。 The distance between the excitation coil 21a constituting the voltage applying device 21 of each weld detection device 20, the first detection coil 22a and the second detection coil 22c constituting the magnetic flux density change detection device 22, and the surface of the steel strip S ( Lift-off) was measured from 15 mm to 100 mm, and it was confirmed that the weld W was detectable. The thickness of the steel strip S was measured at 0.5 mm to 10 mm, and the welded portion W could be detected.

1 冷間圧延ライン(鋼帯の製造設備)
2 ペイオフリール
3 ピンチロール
4 溶接機
5 ノッチング装置
6 ブライドルロール
7 入側ルーパ
8 パスラインロール(振動抑制装置)
9 タンデム圧延機
10 ピンチロール(振動抑制装置)
11 切断機
12 巻取機
20 溶接部検出装置
20a E型鉄心
21 電圧印加装置
21a 励磁コイル
21b 電圧印加部
22 磁束密度変化検出装置
22a 第1検出コイル
22b 第1電圧検出部
22c 第2検出コイル
22d 第2電圧検出部
22e 電圧差算出部
23 溶接部検出部
24 高周波磁束
S 鋼帯
S1 先行鋼帯
S1a 尾端部
S2 後行鋼帯
S2a 先端部
W 溶接部
1 Cold rolling line (manufacturing equipment for steel strips)
2 payoff reel 3 pinch roll 4 welding machine 5 notching device 6 bridle roll 7 entry side looper 8 pass line roll (vibration suppression device)
9 tandem rolling mill 10 pinch roll (vibration suppression device)
Reference Signs List 11 cutting machine 12 winding machine 20 weld detection device 20a E-shaped iron core 21 voltage application device 21a excitation coil 21b voltage application section 22 magnetic flux density change detection device 22a first detection coil 22b first voltage detection section 22c second detection coil 22d Second voltage detector 22e Voltage difference calculator 23 Welded portion detector 24 High-frequency magnetic flux S Steel strip S1 Leading steel strip S1a Tail end S2 Trailing steel strip S2a Tip W Welding

Claims (11)

先行鋼帯と後行鋼帯とを溶接してなる鋼帯の溶接部を検出する鋼帯の溶接部検出方法であって、
搬送中における搬送方向に対する垂直方向への前記鋼帯の振動幅を20mm以下に抑制するとともに、高周波電圧を印加することにより発生する高周波磁束を前記鋼帯に作用させることにより、前記鋼帯に生ずる磁束密度変化に基づいて前記溶接部を検出することを特徴とする鋼帯の溶接部検出方法。
A method for detecting a welded portion of a steel strip for detecting a welded portion of a steel strip formed by welding a preceding steel strip and a trailing steel strip, comprising:
The vibration width of the steel strip in the direction perpendicular to the conveying direction during transportation is suppressed to 20 mm or less, and a high-frequency magnetic flux generated by applying a high-frequency voltage is applied to the steel strip, thereby generating in the steel strip. A method for detecting a welded portion of a steel strip, comprising detecting the welded portion based on a change in magnetic flux density.
前記溶接部の幅方向に沿う複数個所に高周波磁束を作用させ、各高周波磁束により前記鋼帯の各箇所に生ずる磁束密度変化に基づいて前記溶接部を検出することを特徴とする請求項1に記載の鋼帯の溶接部検出方法。 A high-frequency magnetic flux is applied to a plurality of locations along the width direction of the welded portion, and the welded portion is detected based on a change in magnetic flux density generated at each location of the steel strip by each high-frequency magnetic flux. A method for detecting welds in the steel strip described. 前記鋼帯の各箇所に生ずる磁束密度変化の全てが所定の閾値を超える場合に、検出対象箇所が前記溶接部であると特定することを特徴とする請求項2に記載の鋼帯の溶接部検出方法。 3. The welded portion of the steel strip according to claim 2, wherein the detected portion is specified as the welded portion when all changes in magnetic flux density occurring at each portion of the steel strip exceed a predetermined threshold value. Detection method. 請求項1乃至3のうちのいずれか一項に記載の鋼帯の溶接部検出方法を実行する溶接部検出工程を含むことを特徴とする鋼帯の製造方法。 A method for manufacturing a steel strip, comprising a weld detection step of performing the steel strip weld detection method according to any one of claims 1 to 3. 前記溶接部検出工程で検出した鋼帯の溶接部の幅方向端部にノッチング加工を施すノッチング工程を含むことを特徴とする請求項4に記載の鋼帯の製造方法。 5. The method for manufacturing a steel strip according to claim 4, further comprising a notching step of performing notching on the width direction end portion of the welded portion of the steel strip detected in the welded portion detecting step. 先行鋼帯と後行鋼帯とを溶接してなる鋼帯の溶接部を検出する鋼帯の溶接部検出装置であって、
搬送中における搬送方向に対する垂直方向への前記鋼帯の振動幅を抑制する振動抑制装置と、
高周波電圧を印加することにより発生する高周波磁束を前記鋼帯に作用させる電圧印加装置と、
該電圧印加装置によって前記鋼帯に高周波磁束を作用させることにより、前記鋼帯に生ずる磁束密度変化を検出する磁束密度変化検出装置と、
該磁束密度変化検出装置で検出された磁束密度変化に基づいて前記溶接部を検出する溶接部検出部とを備えていることを特徴とする鋼帯の溶接部検出装置。
A steel strip welded portion detection device for detecting a welded portion of a steel strip formed by welding a preceding steel strip and a trailing steel strip,
a vibration suppressing device that suppresses the vibration width of the steel strip in the direction perpendicular to the transport direction during transport;
a voltage applying device that applies a high frequency magnetic flux generated by applying a high frequency voltage to the steel strip;
a magnetic flux density change detecting device for detecting a magnetic flux density change occurring in the steel strip by applying a high-frequency magnetic flux to the steel strip by the voltage applying device;
and a weld detection unit for detecting the weld based on the magnetic flux density change detected by the magnetic flux density change detection device.
前記電圧印加装置及び前記磁束密度変化検出装置は、前記鋼帯を挟んで前記振動抑制装置に対向して配置されることを特徴とする請求項6に記載の鋼帯の溶接部検出装置。 7. The steel strip welded portion detection device according to claim 6, wherein the voltage application device and the magnetic flux density change detection device are arranged to face the vibration suppression device with the steel strip interposed therebetween. 前記電圧印加装置及び前記磁束密度変化検出装置は、前記溶接部の一方面及び他方面のそれぞれに対向して少なくとも1対以上設置されることを特徴とする請求項6に記載の鋼帯の溶接部検出装置。 7. The welding of steel strips according to claim 6, wherein at least one pair of the voltage applying device and the magnetic flux density change detecting device are installed facing each of the one surface and the other surface of the welded portion. Part detection device. 前記電圧印加装置及び前記磁束密度変化検出装置は、前記溶接部の幅方向に沿って複数併設されることを特徴とする請求項6乃至8のうちいずれか一項に記載の鋼帯の溶接部検出装置。 The steel strip weld according to any one of claims 6 to 8, wherein a plurality of the voltage application device and the magnetic flux density change detection device are provided side by side along the width direction of the weld. detection device. 請求項6乃至9のうちのいずれか一項に記載の鋼帯の溶接部検出装置を備えていることを特徴とする鋼帯の製造設備。 A steel strip manufacturing facility comprising the steel strip weld zone detection device according to any one of claims 6 to 9. 前記鋼帯の溶接部検出装置で検出した鋼帯の溶接部の幅方向端部にノッチング加工を施すノッチング装置を備えていることを特徴とする請求項10に記載の鋼帯の製造設備。 11. The steel strip manufacturing facility according to claim 10, further comprising a notching device for performing notching on the width direction end portion of the welded portion of the steel strip detected by the steel strip welded portion detection device.
JP2021066031A 2021-04-08 2021-04-08 Steel strip weld detection method, steel strip manufacturing method, steel strip weld detection device, and steel strip manufacturing equipment Active JP7435530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021066031A JP7435530B2 (en) 2021-04-08 2021-04-08 Steel strip weld detection method, steel strip manufacturing method, steel strip weld detection device, and steel strip manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021066031A JP7435530B2 (en) 2021-04-08 2021-04-08 Steel strip weld detection method, steel strip manufacturing method, steel strip weld detection device, and steel strip manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2022161315A true JP2022161315A (en) 2022-10-21
JP7435530B2 JP7435530B2 (en) 2024-02-21

Family

ID=83658912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021066031A Active JP7435530B2 (en) 2021-04-08 2021-04-08 Steel strip weld detection method, steel strip manufacturing method, steel strip weld detection device, and steel strip manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7435530B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068759A (en) 2004-08-31 2006-03-16 Jfe Steel Kk Method for inspecting joint welded portion of electroseamed steel pipe
JP2008139233A (en) 2006-12-05 2008-06-19 Sumitomo Kinzoku Technol Kk Device and method for monitoring spot welding

Also Published As

Publication number Publication date
JP7435530B2 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP4661252B2 (en) Marked metal strip
JP4878485B2 (en) Cold continuous rolling equipment
WO2005016566A1 (en) Method of manufacturing steel strip or surface-treated steel strip
JPH07116732A (en) Device for detecting position of welding part of metal strip
JP2022161315A (en) Method of detecting welded portion of steel strip, method of manufacturing steel strip, device for detecting welded portion of steel strip and equipment for manufacturing steel strip
CN107497856A (en) The method and apparatus of pipe continuous rolling
KR101647079B1 (en) Apparatus and Method for preventing erroneous detection of welding part
JP2006241578A (en) Method for producing metal strip and metal strip treating process line
JP4289074B2 (en) Steel strip manufacturing method
JP2006224119A (en) Rolling method by cold tandem mill
JP2007125581A (en) Defect marking and defect removing method for steel sheet and device therefor
JP3358537B2 (en) Automatic deceleration method and apparatus for defect handling in continuous line
JP2006068759A (en) Method for inspecting joint welded portion of electroseamed steel pipe
JP2006218504A (en) Method of manufacturing metallic strip
JP2008030046A (en) Butt-welding machine for steel strip
JPH03273186A (en) Weld zone detecting device for metallic belt
JP2011016143A (en) Method and apparatus for manufacturing welded wide flange shape
JP5200462B2 (en) Welding machine, method for monitoring welding of metal strip, welding method, and manufacturing method
JP2005195526A (en) Flaw detecting method due to leakage flux and line for detecting flaw of steel sheet
JP2000246490A (en) Method and equipment for joining steel strips to each other
JP2006281275A (en) Method for judging level difference at welded part formed by flash butt welding
JPS61288151A (en) Method and device for detecting abnormal part of strip material
JP2015155107A (en) Coil winding shape adaptability determination method and device
JP4635625B2 (en) Method for detecting double-up of material to be processed in finishing line
JP2000084695A (en) Continuous welding method in longitudinal direction of beltlike steel plate and its welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150