JP2022160875A - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
JP2022160875A
JP2022160875A JP2021065362A JP2021065362A JP2022160875A JP 2022160875 A JP2022160875 A JP 2022160875A JP 2021065362 A JP2021065362 A JP 2021065362A JP 2021065362 A JP2021065362 A JP 2021065362A JP 2022160875 A JP2022160875 A JP 2022160875A
Authority
JP
Japan
Prior art keywords
vehicle
depolarization
voltage
time
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021065362A
Other languages
English (en)
Inventor
淳 菊池
Atsushi Kikuchi
真美 大澤
Mami Osawa
大智 秋山
Daichi Akiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2021065362A priority Critical patent/JP2022160875A/ja
Priority to US17/707,549 priority patent/US20220324431A1/en
Publication of JP2022160875A publication Critical patent/JP2022160875A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/248Age of storage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Figure 2022160875000001
【課題】車両走行中に蓄電デバイスの分極を解消する。
【解決手段】車両走行中に蓄電デバイスの分極を解消する車両用制御装置であって、互いに通信可能に接続されるプロセッサおよびメモリからなり、前記蓄電デバイスの通電状態を制御して分極を解消する分極解消モードを備える制御システムを有する。前記制御システムは、前記蓄電デバイスの分極状態に基づいて分極解消までの第1所要時間を設定し、かつ車両が目的地に到着するまでの第2所要時間を取得し、前記第1所要時間が前記第2所要時間を下回る場合に、車両走行中における前記分極解消モードの実行を許可する。
【選択図】図9B

Description

本発明は、蓄電デバイスの分極を解消する車両用制御装置に関する。
ハイブリッド車両等の車両には、リチウムイオンバッテリ等の蓄電デバイスが搭載されている。また、蓄電デバイスを搭載した車両においては、蓄電デバイスの端子電圧に基づきSOC等が算出されている(特許文献1~4参照)。
特開2013-122450号公報 特開2011-215125号公報 国際公開第2017/199629号 特開2008-96166号公報
ところで、蓄電デバイスには充放電に伴って分極が生じるため、端子電圧が開放電圧から乖離してしまう虞がある。このため、端子電圧に基づきSOC等を高精度に算出するためには、蓄電デバイスの電気化学的な平衡状態を待つことにより、開放電圧に対して端子電圧を近づけることが必要であった。しかしながら、蓄電デバイスを電気化学的な平衡状態にするためには、長い時間が必要になることが多く、車両停止直後から端子電圧を用いたSOC算出等の各種制御を行うことが困難となっていた。このため、車両走行中に蓄電デバイスの分極を解消することが求められている。
本発明の目的は、車両走行中に蓄電デバイスの分極を解消することにある。
一実施形態の車両用制御装置は、車両走行中に蓄電デバイスの分極を解消する車両用制御装置であって、互いに通信可能に接続されるプロセッサおよびメモリからなり、前記蓄電デバイスの通電状態を制御して分極を解消する分極解消モードを備える制御システム、を有し、前記制御システムは、前記蓄電デバイスの分極状態に基づいて分極解消までの第1所要時間を設定し、かつ車両が目的地に到着するまでの第2所要時間を取得し、前記第1所要時間が前記第2所要時間を下回る場合に、車両走行中における前記分極解消モードの実行を許可し、前記第1所要時間が前記第2所要時間を上回る場合に、車両走行中における前記分極解消モードの実行を許可しない。
一実施形態の車両用制御装置は、蓄電デバイスの通電状態を制御して分極を解消する分極解消モードを備える制御システムを有する。制御システムは、蓄電デバイスの分極状態に基づいて分極解消までの第1所要時間を設定し、かつ車両が目的地に到着するまでの第2所要時間を取得し、第1所要時間が第2所要時間を下回る場合に、車両走行中における分極解消モードの実行を許可する。これにより、車両走行中に蓄電デバイスの分極を解消することができる。
本発明の一実施の形態である車両用制御装置を備えた車両の構成例を示す図である。 車両用制御装置の構成例を示す図である。 電力供給システムの一例を示す図である。 各制御ユニットの基本構造を簡単に示した図である。 SOH算出処理の実行手順の一例を示すフローチャートである。 SOC-OCV曲線の一例を示す図である。 SOHの算出状況を示す図である。 高電圧バッテリを放電させたときの分極状態を示す図である。 高電圧バッテリを充電したときの分極状態を示す図である。 分極解消モードAの実施判定の実行手順の一例を示すフローチャートである。 分極解消モードAの実施判定の実行手順の一例を示すフローチャートである。 分極解消モードAの実施判定の実行状況を示す図である。 分極解消モードAの実施判定の実行状況を示す図である。 高電圧バッテリの等価回路モデルを示す図である。 分極解消モードAの実行手順の一例を示すフローチャートである。 分極解消モードAの実行状況の一例を示す図である。 分極解消モードAの実行状況の一例を示す図である。 SOC-OCV曲線の一例を示す図である。 分極解消モードBの実施判定の実行手順の一例を示すフローチャートである。 分極解消モードBの実施判定の実行手順の一例を示すフローチャートである。 分極解消モードBの実施判定の実行状況を示す図である。 分極解消モードBの実施判定の実行状況を示す図である。 分極解消モードBの実行手順の一例を示すフローチャートである。 分極解消モードBの実行状況の他の例を示す図である。 分極解消モードBの実行状況の他の例を示す図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、以下の説明において、同一または実質的に同一の構成や要素については、同一の符号を付して繰り返しの説明を省略する。
[全体構成]
図1は本発明の一実施の形態である車両用制御装置10を備えた車両11の構成例を示す図である。図1に示すように、車両11には、エンジン12および変速機13を備えたパワートレイン14が搭載されている。図示する車両11はハイブリッド車両であり、変速機13には動力源としてのモータジェネレータ15が組み込まれている。さらに、変速機13の出力軸16には、プロペラ軸17およびデファレンシャル機構18を介して車輪19が連結されている。なお、図示するパワートレイン14は、後輪駆動用のパワートレインであるが、これに限られることはなく、前輪駆動用や全輪駆動用のパワートレインであっても良い。
図2は車両用制御装置10の構成例を示す図である。図2に示すように、パワートレイン14には、プライマリプーリ20およびセカンダリプーリ21からなる無段変速機構23が設けられている。プライマリプーリ20の一方側には、前進クラッチ24およびトルクコンバータ25を介してエンジン12が連結されている。また、プライマリプーリ20の他方側には、モータクラッチ26を介してモータジェネレータ15のロータ15rが連結されている。さらに、セカンダリプーリ21には、出力軸16、プロペラ軸17、およびデファレンシャル機構18を介して車輪19が連結されている。なお、前進クラッチ24は、前後進切替機構の一部を構成するクラッチである。
エンジン12のクランク軸30には、発電機および電動機として機能するスタータジェネレータ31が連結されている。このスタータジェネレータ31は、所謂ISG(Integrated Starter Generator)であり、発電電圧、発電トルク、力行トルク等を制御する機能を有している。また、エンジン12には、スロットルバルブやインジェクタ等のエンジン補機32が設けられている。さらに、エンジン12の運転状態を制御するため、エンジン補機32やスタータジェネレータ31には、電子制御ユニットであるエンジン制御ユニットCU1が接続されている。また、パワートレイン14の前進クラッチ24、モータクラッチ26、無段変速機構23およびトルクコンバータ25等を制御するため、パワートレイン14には複数の電磁バルブや油路等からなるバルブユニット33が設けられている。バルブユニット33を介して前進クラッチ24等の作動状態を制御するため、バルブユニット33には電子制御ユニットである変速機制御ユニットCU2が接続されている。
車両11には、運転者が設定した目的地へのルート案内を行うナビゲーションシステム40が搭載されている。このナビゲーションシステム40は、GPS(Global Positioning System)衛星からの信号を受信するGPS受信機41と、外部のサーバ等から渋滞情報を受信する通信ユニット42と、を有している。また、ナビゲーションシステム40には、電子制御ユニットであるナビゲーション制御ユニットCU3が設けられている。ナビゲーション制御ユニットCU3は、GPS受信機41の受信信号から算出される自車両11の走行位置、および通信ユニット42が受信した渋滞情報に基づいて、目的地までの走行ルート、走行距離、所要時間および到着時刻等を算出する機能を有している。なお、図示する例では、車両11に搭載される固定式のビゲーションシステムを用いているが、これに限られることはなく、スマートフォン等の携帯型情報端末をナビゲーションシステム40として用いても良い。
[電力供給システム]
続いて、車両11に搭載される電力供給システム50について説明する。図3は電力供給システム50の一例を示す図である。図3に示すように、車両11に搭載される電力供給システム50は、高電圧システム60、低電圧システム70および外部充電システム80によって構成されている。そして、高電圧システム60は、モータジェネレータ15、インバータ61およびバッテリモジュール62によって構成されている。モータジェネレータ15のステータ15sには、通電ライン63を介して電力変換機器であるインバータ61が接続されている。また、インバータ61には電源ライン64,65を介してバッテリモジュール62が接続されており、バッテリモジュール62には高電圧バッテリ(蓄電デバイス)66を構成する複数のバッテリセル67が組み込まれている。さらに、バッテリモジュール62には、電源ライン64,65に対する高電圧バッテリ66の接続を制御するメインリレー68が設けられるとともに、高電圧バッテリ66の充放電電流、端子電圧および温度等を検出するバッテリセンサ69が設けられている。
図2に示すように、バッテリモジュール62には、電子制御ユニットであるバッテリ制御ユニットCU4が接続されている。バッテリ制御ユニットCU4は、高電圧バッテリ66の充放電を監視するとともにメインリレー68等を制御する機能を有している。また、バッテリ制御ユニットCU4は、バッテリセンサ69によって検出される充放電電流や端子電圧等に基づいて、高電圧バッテリ66の充電状態であるSOC(State of Charge)を算出する機能を有している。なお、高電圧バッテリ66のSOCとは、高電圧バッテリ66の電気残量を示す比率であり、高電圧バッテリ66の満充電容量に対する蓄電量の比率である。例えば、高電圧バッテリ66が上限容量まで充電された場合には、SOCが100%として算出され、高電圧バッテリ66が下限容量まで放電した場合には、SOCが0%として算出される。
また、ステータ15sの通電状態を制御するインバータ61には、電子制御ユニットであるモータ制御ユニットCU5が接続されている。モータ制御ユニットCU5は、複数のスイッチング素子等からなるインバータ61を制御することにより、モータジェネレータ15の力行トルクや発電トルクを制御している。モータジェネレータ15を力行状態に制御する際には、高電圧バッテリ66からの直流電力がインバータ61を介して交流電力に変換されてモータジェネレータ15に供給される。一方、モータジェネレータ15を回生状態に制御する際には、モータジェネレータ15からの交流電力がインバータ61を介して直流電力に変換されて高電圧バッテリ66に供給される。
続いて、外部電源81を用いて高電圧バッテリ66を充電する外部充電システム80について説明する。図3に示すように、外部充電システム80は、バッテリモジュール62に接続される車載充電器82と、車載充電器82に通電ライン83,84を介して接続されるインレット85と、を有している。また、車載充電器82には、電子制御ユニットである充電制御ユニットCU6が接続されている。充電制御ユニットCU6は、複数のスイッチング素子等からなる車載充電器82を制御することにより、高電圧バッテリ66に対する充電電圧や充電電流を制御している。なお、図2に示すように、外部電源81を用いて高電圧バッテリ66を充電する際には、外部電源81から延びる充電ケーブル86のコネクタ87がインレット85に着脱可能に接続される。そして、外部電源81を用いて高電圧バッテリ66を充電(以下、プラグ充電と記載する。)する際には、外部電源81からの交流電力が車載充電器82を介して直流電力に変換されて高電圧バッテリ66に供給される。
次いで、高電圧システム60にコンバータ71を介して接続される低電圧システム70について説明する。低電圧システム70は、コンバータ71、スタータジェネレータ31、低電圧バッテリ72および電気機器群73によって構成されている。コンバータ71には正極ライン74が接続され、スタータジェネレータ31には正極ライン75が接続される。また、低電圧バッテリ72には正極ライン76が接続され、電気機器群73には正極ライン77が接続される。これらの正極ライン74~77は、接続点78を介して互いに接続されている。なお、コンバータ71、スタータジェネレータ31、低電圧バッテリ72および電気機器群73に接続される負極ラインは、基準電位点である車体に接続されている。
このように、高電圧システム60と低電圧システム70とは、電力変換機器であるコンバータ71を介して互いに接続されている。また、コンバータ71には、電子制御ユニットであるコンバータ制御ユニットCU7が接続されている。コンバータ制御ユニットCU7は、スイッチング素子やコイル等からなるコンバータ71を制御することにより、高電圧システム60と低電圧システム70との間で電力を供給する。高電圧システム60から低電圧システム70に電力を供給する際には、高電圧システム60からの直流電力がコンバータ71を介して降圧されて低電圧システム70に供給される。一方、低電圧システム70から高電圧システム60に電力を供給する際には、低電圧システム70からの直流電力がコンバータ71を介して昇圧されて高電圧システム60に供給される。
これまで説明したように、高電圧システム60を構成するバッテリモジュール62には、低電圧システム70のコンバータ71が接続されるとともに、外部充電システム80の車載充電器82が接続されている。これにより、図3に矢印X1で示すように、バッテリモジュール62は、モータジェネレータ15との間で充放電を行うだけでなく、矢印X2で示すように、低電圧システム70との間で充放電を行うことができる。また、充電ケーブル86のコネクタ87がインレット85に接続されている場合には、矢印X3で示すように、バッテリモジュール62は、外部充電システム80からの電力によって充電される。
[制御システム]
図2に示すように、車両用制御装置10には、パワートレイン14および電力供給システム50等を制御するため、複数の電子制御ユニットからなる制御システム90が設けられている。制御システム90を構成する電子制御ユニットとして、前述したエンジン制御ユニットCU1、変速機制御ユニットCU2、ナビゲーション制御ユニットCU3、バッテリ制御ユニットCU4、モータ制御ユニットCU5、充電制御ユニットCU6およびコンバータ制御ユニットCU7がある。また、制御システム90を構成する電子制御ユニットとして、各制御ユニットCU1~CU7に制御信号を出力する車両制御ユニットCU8がある。これらの制御ユニットCU1~CU8は、CAN(Controller Area Network)等の車載ネットワーク91を介して互いに通信可能に接続されている。車両制御ユニットCU8は、各種制御ユニットCU1~CU7や後述する各種センサからの入力情報に基づき、パワートレイン14および電力供給システム50の作動目標を設定する。そして、パワートレイン14や電力供給システム50の作動目標に応じた制御信号を生成し、これらの制御信号を各種制御ユニットに対して出力する。
車両制御ユニットCU8に接続されるセンサとして、車両11の走行速度である車速を検出する車速センサ92があり、アクセルペダルの操作量を検出するアクセルセンサ93があり、ブレーキペダルの操作量を検出するブレーキセンサ94がある。また、車両制御ユニットCU8には、図示しない燃料タンク内の燃料残量を検出するため、燃料タンク内の液面高さを検出する燃料レベルセンサ95が接続されている。なお、車両制御ユニットCU8には、制御システム90を起動する際に運転者によって操作されるスタートスイッチ96が接続されている。
図4は各制御ユニットCU1~CU8の基本構造を簡単に示した図である。図4に示すように、各制御ユニットCU1~CU8は、プロセッサ100およびメモリ101等が組み込まれたマイクロコントローラ102を有している。メモリ101には所定のプログラムが格納されており、プロセッサ100によってプログラムの命令セットが実行される。プロセッサ100とメモリ101とは、互いに通信可能に接続されている。なお、図示する例では、マイクロコントローラ102に1つのプロセッサ100と1つのメモリ101が組み込まれているが、これに限られることはなく、マイクロコントローラ102に複数のプロセッサ100を組み込んでも良く、マイクロコントローラ102に複数のメモリ101を組み込んでも良い。
また、各制御ユニットCU1~CU8には、入力変換回路103、駆動回路104、通信回路105、外部メモリ106および電源回路107等が設けられている。入力変換回路103は、各種センサから入力される信号を、マイクロコントローラ102に入力可能な信号に変換する。駆動回路104は、マイクロコントローラ102から出力される信号に基づき、前述したバルブユニット33等のアクチュエータに対する駆動信号を生成する。通信回路105は、マイクロコントローラ102から出力される信号を、他の制御ユニットに向けた通信信号に変換する。また、通信回路105は、他の制御ユニットから受信した通信信号を、マイクロコントローラ102に入力可能な信号に変換する。さらに、電源回路107は、マイクロコントローラ102、入力変換回路103、駆動回路104、通信回路105および外部メモリ106等に対し、安定した電源電圧を供給する。また、不揮発性メモリ等の外部メモリ106には、非通電時にも保持すべきデータ等が記憶される。
[SOH算出処理]
高電圧バッテリ66のSOH(State of Health)を算出するSOH算出処理について説明する。高電圧バッテリ66のSOHとは、初期状態つまり新品の高電圧バッテリ66に対する現在の高電圧バッテリ66の容量維持率、つまり初期電池容量に対する現在電池容量の比率である。高電圧バッテリ66の劣化が進行していない場合には、初期状態に対する現在の容量維持率が高いことからSOHは高く算出される。一方、高電圧バッテリ66の劣化が進行している場合には、初期状態に対する現在の容量維持率が低いことからSOHは低く算出される。この高電圧バッテリ66のSOHは、高電圧バッテリ66の劣化状態を示す指標として用いられる。SOHを算出するSOH算出処理については、高電圧バッテリ66の充放電電流が安定した状態で算出することが望ましい。このため、SOH算出処理は、外部電源81を用いたプラグ充電に併せて実行されている。
図5はSOH算出処理の実行手順の一例を示すフローチャートである。図6はSOC-OCV曲線の一例を示す図であり、図7はSOHの算出状況を示す図である。図5のフローチャートに示される各ステップには、制御システム90を構成する1つまたは複数のプロセッサ100によって実行される処理が示されている。また、図5に示されるSOH算出処理は、プラグ充電を開始するボタン操作等を作業者が行った場合に、制御システム90によって実行される処理である。
図5に示すように、ステップS10では、制御システム90が、車載充電器82を用いて高電圧バッテリ66を充電する前に、高電圧バッテリ66の第1SOCである充電開始SOC(以下、SOCsと記載する。)を算出する。つまり、ステップS10において、制御システム90は、高電圧バッテリ66の端子電圧を用いてSOC―OCV線図を参照し、端子電圧に基づいてSOCsを算出する。例えば、図6に示すように、高電圧バッテリ66の端子電圧が「V1」であった場合には、SOCsが「S1」として算出される。なお、SOC―OCV線図は、高電圧バッテリ66の開放電圧であるOCV(Open Circuit Voltage)と高電圧バッテリ66のSOCとの関係を示した線図である。
図5に示すように、ステップS10において、高電圧バッテリ66のSOCsが算出されると、制御システム90は、ステップS11に進み、車載充電器82から高電圧バッテリ66に電力を供給し、ステップS12に進み、プラグ充電が完了したか否かを判定する。なお、ステップS12において、プラグ充電完了と判定される条件としては、例えば、高電圧バッテリ66のSOCが所定の目標値に到達したことや、プラグ充電の実行時間が所定の設定時間に到達したことが挙げられる。ステップS12において、プラグ充電が完了したと判定されると、制御システム90は、ステップS13に進み、高電圧バッテリ66の第2SOCである充電完了SOC(以下、SOCfと記載する。)を算出する。つまり、ステップS13において、制御システム90は、高電圧バッテリ66の端子電圧を用いてSOC―OCV線図を参照し、端子電圧に基づいてSOCfを算出する。このように、ステップS13においては、車載充電器82を用いて高電圧バッテリ66を充電した後に、高電圧バッテリ66のSOCfが算出される。
続いて、ステップS14では、制御システム90が、車載充電器82から高電圧バッテリ66に供給された充電電気量CPを算出する。充電電気量CPとはプラグ充電によって充電された電荷量であり、この充電電気量CPの単位はアンペアアワー[Ah]である。ステップS14において充電電気量CPが算出されると、制御システム90は、ステップS15に進み、以下の式(1)に基づき現在電池容量CB2を算出し、ステップS16に進み、以下の式(2)に基づき高電圧バッテリ66のSOHを算出する。
CB2[Ah/SOC]=CP/(SOCf-SOCs) ・・式(1)
SOH[%]=CB2/CB1×100 ・・式(2)
式(1),(2)において、「SOCs」は充電開始SOCつまりプラグ充電前のSOC[%]であり、「SOCf」は充電完了SOCつまりプラグ充電後のSOC[%]であり、「CP」はプラグ充電によって増加した充電電気量[Ah]である。また、「CB1」は単位SOC当たりの初期電池容量[Ah/SOC]であり、「CB2」は単位SOC当たりの現在電池容量[Ah/SOC]である。なお、初期電池容量CB1とは、設計開発時に設定される新品状態での電池容量であり、初期電池容量CB1の値はメモリ101に格納されている。
ここで、図7に示すように、高電圧バッテリ66のSOHを算出する際には、プラグ充電前に、高電圧バッテリ66の端子電圧に基づき充電開始SOC(SOCs)が算出される(符号a1)。続いて、プラグ充電後に、高電圧バッテリ66の端子電圧に基づき充電完了SOC(SOCf)が算出される(符号a2)。次いで、プラグ充電による高電圧バッテリ66の充電電気量CPが、SOCの増加量(SOCf-SOCs)によって除算され、高電圧バッテリ66の現在電池容量CB2が算出される。この現在電池容量CB2の大きさは、破線Lcb2の傾きであり、初期電池容量CB1の大きさは、実線Lcb1の傾きである。つまり、図7に示した実線Lcb1の傾きに対し、破線Lcb2の傾きが近づくほどに、SOHが高く算出されることになる。
[高電圧バッテリの分極]
高電圧バッテリ66の充放電に伴う分極について説明する。図8Aは高電圧バッテリ66を放電させたときの分極状態を示す図であり、図8Bは高電圧バッテリ66を充電したときの分極状態を示す図である。図8Aに示すように、高電圧バッテリ66を放電させた場合には、開放電圧OCVに先行して端子電圧Vが低下する。そして、時刻t1で示すように、高電圧バッテリ66の放電を停止させると、時間経過と共に高電圧バッテリ66が電気化学的な平衡状態に近づくことから、開放電圧OCVに対して端子電圧Vが近づくことになる。また、図8Bに示すように、高電圧バッテリ66を充電した場合には、開放電圧OCVに先行して端子電圧Vが上昇する。そして、時刻t2で示すように、高電圧バッテリ66の充電を停止させると、時間経過と共に高電圧バッテリ66が電気化学的な平衡状態に近づくことから、開放電圧OCVに対して端子電圧Vが近づくことになる。この高電圧バッテリ66の分極は、電極近傍の電解液濃度に偏りが生じることで発生すると考えられる。
前述したように、高電圧バッテリ66の放電直後や充電直後においては、高電圧バッテリ66の端子電圧Vが開放電圧OCVから大きく離れている。このため、高電圧バッテリ66の充放電直後においては、高電圧バッテリ66の端子電圧Vに基づきSOCを算出することが困難となっていた。つまり、前述の図5に示したように、SOH算出処理においては、高電圧バッテリ66の端子電圧Vに基づきSOCsを算出することが必要である。ここで、高電圧バッテリ66のSOCsを算出するタイミング、つまりプラグ充電が開始されるタイミングとしては、直前まで高電圧バッテリ66が充放電を行っている車両11停止直後であることが想定される。この場合において、高電圧バッテリ66のSOH算出精度を高めるためには、端子電圧Vが開放電圧OCVに近づくまでSOCsの算出を遅らせることが必要であった。
しかしながら、高電圧バッテリ66のSOCsの算出を遅らせることは、プラグ充電の開始を遅らせてしまう要因であり、プラグ充電の長期化を招いてしまう要因であった。このため、制御システム90は、後述するように、車両走行中に高電圧バッテリ66の分極を解消する分極解消モードを有している。これにより、車両走行中に高電圧バッテリ66の分極を解消することができるため、車両11停止直後であっても高電圧バッテリ66の端子電圧Vを開放電圧OCVに近づけることができる。つまり、車両11停止直後であってもSOCsを高精度に算出することができ、プラグ充電を早期に開始することができる。
[分極解消モードAの実施判定]
以下、分極解消モードAを実施するか否かを判定する実施判定について説明した後に、分極を解消するための分極解消モードAについて説明する。図9Aおよび図9Bは、分極解消モードAの実施判定の実行手順の一例を示すフローチャートである。また、図10Aおよび図10Bは、分極解消モードAの実施判定の実行状況を示す図である。なお、分極解消モードAとは、高電圧バッテリ66を充電または放電させることにより、高電圧バッテリ66の分極を解消する制御モードである。
図9Aおよび図9Bのフローチャートにおいては、符号Aの箇所で互いに接続されている。図9Aおよび図9Bのフローチャートに示される各ステップには、制御システム90を構成する1つまたは複数のプロセッサ100によって実行される処理が示されている。また、図9Aおよび図9Bに示される実施判定は、運転者によってスタートスイッチ96が操作され、車両制御ユニットCU8等からなる制御システム90が起動された後に、制御システム90によって所定周期毎に実行される制御である。つまり、図9Aおよび図9Bに示される実施判定は、制御システム90によって車両走行中に実行される制御である。
図9Aに示すように、ステップS20において、制御システム90は、ナビゲーションシステム40で目的地が設定されているか否かを判定する。ステップS20において、目的地が設定されていると判定された場合には、ステップS21に進み、制御システム90は、ナビゲーションシステム40より目的地までの走行予定距離D1を取得する。続いて、ステップS22に進み、制御システム90は、電力および燃料の残存エネルギー量に基づき、車両11の走行可能距離D2を算出する。制御システム90は、所定周期毎に、高電圧バッテリ66のSOCに基づいて電力の残存エネルギー量を算出し、燃料レベルセンサ95の検出信号に基づいて燃料の残存エネルギー量を算出する。また、制御システム90は、所定周期毎に、単位距離当たりの消費エネルギー量を算出する。そして、ステップS22において、制御システム90は、電力および燃料の残存エネルギー量と単位距離当たりの消費エネルギー量とに基づき、車両11の走行可能距離D2を算出する。
続いて、ステップS23に進み、制御システム90は、走行可能距離D2から走行予定距離D1を減算した値が、所定の閾値Da1を上回るか否かを判定する。ステップS23において、走行可能距離D2から走行予定距離D1を減算した値が閾値Da1を上回る状況とは、図10Aにケース1として示した状況である。つまり、設定された目的地までの走行予定距離D1を走行し、かつ分極解消モードAを実施した場合であっても、残存エネルギー量が残されている状況である。このため、残存エネルギー量の観点から分極解消モードAを実施することが可能であると判定され、図9BのステップS24に進み、制御システム90によって分極解消モードAの実施判定が継続される。
一方、ステップS23において、走行可能距離D2から走行予定距離D1を減算した値が閾値Da1以下である状況とは、図10Aにケース2として示した状況である。つまり、設定された目的地までの走行予定距離D1を走行し、かつ分極解消モードAを実施するためには、残存エネルギー量が不足すると予測される状況である。このため、残存エネルギー量の観点から分極解消モードAを実施することが困難であると判定され、分極解消モードAの実施を許可することなくルーチンを抜ける。
図9Aに示すように、ステップS24においては、制御システム90が、高電圧バッテリ66の端子電圧V、充放電電流I、セル温度TbおよびSOCを取得する。続いて、制御システム90は、ステップS25に進み、高電圧バッテリ66の等価回路モデルにおける電圧成分Vrrを算出する。ステップS25において、制御システム90は、以下の式(3)を用いることにより、充放電電流Iに基づいて電圧成分Vrrを算出する。続いて、制御システム90は、分極状態を示す電圧成分Vrrに基づいて、分極解消時間(第1所要時間)Txを設定する。例えば、電圧成分Vrrの絶対値が大きくなるにつれて、分極解消時間Txが大きく設定される。
Figure 2022160875000002
図11は高電圧バッテリ66の等価回路モデルを示す図である。図11に示すように、高電圧バッテリ66の等価回路モデルには、バッテリ内の電気化学反応によって変動する成分として、電圧成分Vrd,Vrr、抵抗成分Rd,Rrおよびコンデンサ成分Crがある。また、「V」はバッテリセンサ69によって実測される端子電圧であり、「OCVx」は推定される開放電圧である。
高電圧バッテリ66に分極が発生している場合には、充電方向または放電方向に電圧成分Vrrが変化することになる。つまり、図8Aに示すように、高電圧バッテリ66を放電させる際には、電圧成分Vrrが負側に発生する。そして、高電圧バッテリ66の放電電流が大きくなるにつれて、電圧成分Vrrは負側に大きく発生することになる。一方、図8Bに示すように、高電圧バッテリ66を充電する際には、電圧成分Vrrが正側に発生する。そして、高電圧バッテリ66の放電電流が大きくなるにつれて、電圧成分Vrrは正側に大きく発生することになる。
また、高電圧バッテリ66の分極が解消される平衡状態においては、電圧成分Vrrがゼロ近傍に変化することになる。このため、制御システム90は、前述した式(3)を用いて電圧成分Vrrを算出し、この電圧成分Vrrを解消するために必要な分極解消時間Txが設定される。電圧成分Vrrが大きいほどに長い時間をかけて平衡状態になることから、電圧成分Vrrの絶対値が大きくなるにつれて、分極解消時間Txが長く設定される。つまり、電圧成分Vrrが負側に大きくなるにつれて分極解消時間Txが長く設定され、電圧成分Vrrが正側に大きくなるにつれて分極解消時間Txが長く設定されることになる。
図9Bに示すように、ステップS26において分極解消時間Txが設定されると、制御システム90は、ステップS27に進み、目的地に到達するまでの走行予定時間(第2所要時間)Ttをナビゲーションシステム40から取得する。続いて、制御システム90は、ステップS28に進み、走行予定時間Ttから分極解消時間Txを減算した値が、ゼロ以上でありかつ所定の閾値Ta1を下回るか否かを判定する。ステップS28において、走行予定時間Ttから分極解消時間Txを減算した値が、ゼロ以上でありかつ所定の閾値Ta1を下回る状況とは、図10Bにケース3として示した状況である。つまり、分極解消時間Txの終了時刻が、目的地への到着時刻以前の所定時間Ta2内に含まれる状況である。
この場合には、分極解消モードAが終了してから、長い時間を空けることなく目的地に到着することが想定される。つまり、分極解消モードAが終了してから、高電圧バッテリ66を大きく充放電させることなく、目的地に到着してプラグ充電を開始することが想定される。このため、制御システム90は、ステップS29に進み、車両走行中に分極解消モードAを実行する。これにより、車両走行中であっても分極解消モードAを適切なタイミングで実行することができる。
一方、ステップS28において、走行予定時間Ttから分極解消時間Txを減算した値が、閾値Ta1以上になる状況とは、図10Bにケース4として示した状況である。つまり、分極解消時間Txの終了時刻が、目的地への到着時刻以前の所定時間Ta2内から外れる状況である。この場合には、分極解消モードAが終了した後においても車両走行が継続され、再び高電圧バッテリ66に分極を発生させてしまう虞がある。このため、分極解消モードAの実施を許可することなく、再びステップS24に戻り、分極解消モードAの実施を許可するか否かが判定される。
また、ステップS28において、走行予定時間Ttから分極解消時間Txを減算した値が、ゼロを下回る状況とは、図10Bにケース5として示した状況である。つまり、分極解消時間Txの終了時刻が、目的地への到着時刻以前の所定時間Ta2内から外れる状況である。この場合には、車両11が目的地に到着するまでに、分極解消モードAを終了させることが困難である。このため、分極解消モードAの実施を許可することなく、再びステップS24に戻り、分極解消モードAの実施を許可するか否かが判定される。
前述の説明では、ステップS28に示したように、走行予定時間Ttから分極解消時間Txを減算した値が、ゼロ以上でありかつ閾値Ta1を下回る場合に、車両走行中における分極解消モードAの実行を許可しているが、これに限られることはない。例えば、走行予定時間Ttから分極解消時間Txを減算した値がゼロ以上である場合に、車両走行中における分極解消モードAの実行を許可しても良い。換言すれば、分極解消時間Txが走行予定時間Ttを下回る場合に、車両走行中における分極解消モードAの実行が許可されていれば良い。このように、制御システム90は、分極解消時間Txが走行予定時間Ttを下回る場合に、車両走行中における分極解消モードAの実行を許可する一方、分極解消時間Txが走行予定時間Ttを上回る場合に、車両走行中における分極解消モードAの実行を許可していない。これにより、車両走行中であっても分極解消モードAを適切なタイミングで実行することができる。
[分極解消モードA]
高電圧バッテリ66の分極を解消する分極解消モードAの実行手順について説明する。図12は分極解消モードAの実行手順の一例を示すフローチャートである。図12のフローチャートに示される各ステップには、制御システム90を構成する1つまたは複数のプロセッサ100によって実行される処理が示されている。また、図12に示される分極解消モードAは、前述した図9BのステップS29において実行される分極解消モードであり、車両走行中に実行される分極解消モードである。
図12に示すように、ステップS30において、制御システム90は、高電圧バッテリ66の端子電圧V、充放電電流I、セル温度TbおよびSOCを取得する。続いて、制御システム90は、ステップS31に進み、前述した式(3)を用いることにより、充放電電流Iに基づいて電圧成分Vrrを算出する。次いで、制御システム90は、ステップS32に進み、電圧成分Vrrに基づいて、分極解消電圧Vx、分極解消電流Ix、分極解消時間Txを設定する。
前述したように、高電圧バッテリ66に分極が発生している場合には、充電方向または放電方向に電圧成分Vrrが変化することになる。つまり、図8Aに示すように、高電圧バッテリ66を放電させる際には、電圧成分Vrrが負側に発生する。そして、高電圧バッテリ66の放電電流が大きくなるにつれて、電圧成分Vrrは負側に大きく発生することになる。一方、図8Bに示すように、高電圧バッテリ66を充電する際には、電圧成分Vrrが正側に発生する。そして、高電圧バッテリ66の放電電流が大きくなるにつれて、電圧成分Vrrは正側に大きく発生することになる。
このため、電圧成分Vrrが負側に発生していた場合には、高電圧バッテリ66を充電する側に、分極解消電圧Vxや分極解消電流Ixが設定される。また、電圧成分Vrrが負側に大きくなるにつれて分極解消電圧Vxは高く設定され、電圧成分Vrrが負側に大きくなるにつれて分極解消電流Ixは充電側に大きく設定される。また、電圧成分Vrrが負側に大きくなるにつれて分極解消時間Txが長く設定される。一方、電圧成分Vrrが正側に発生していた場合には、高電圧バッテリ66を放電させる側に、分極解消電圧Vxや分極解消電流Ixが設定される。また、電圧成分Vrrが正側に大きくなるにつれて分極解消電圧Vxは低く設定され、電圧成分Vrrが正側に大きくなるにつれて分極解消電流Ixは放電側に大きく設定される。また、電圧成分Vrrが正側に大きくなるにつれて分極解消時間Txが長く設定される。
図12に示すように、ステップS32において、分極解消電圧Vx、分極解消電流Ixおよび分極解消時間Txが設定されると、制御システム90は、ステップS33に進み、高電圧バッテリ66を分極解消電圧Vxおよび分極解消電流Ixに従って充電または放電させる分極解消処理を実行する。続いて、制御システム90は、ステップS34に進み、分極解消時間Txが経過したか否かを判定する。ステップS34において、分極解消時間Txを経過したと判定された場合、つまり分極解消時間Txに渡って高電圧バッテリ66を充電または放電させたと判定された場合に、制御システム90は、ステップS35に進み、高電圧バッテリ66の充電または放電を停止させる。次いで、制御システム90は、ステップS36に進み、所定の分極緩和時間Tzを設定し、ステップS37に進み、分極緩和時間Tzが経過した後に、高電圧バッテリ66の端子電圧Vに基づくSOCsの算出を許可する。なお、分極緩和時間Tzは、所定の固定値であっても良く、電圧成分Vrr等に基づき変化する変動値であっても良い。
ここで、図13Aおよび図13Bは、分極解消モードAの実行状況の一例を示す図である。図13Aに示すように、分極解消モードAの実行前に高電圧バッテリ66が放電していた場合には、時刻t11において、車両走行中における高電圧バッテリ66の放電が停止される。そして、時刻t12において、分極解消電圧Vxおよび分極解消電流Ixに基づく高電圧バッテリ66の充電が開始され、分極解消時間Txが経過する時刻t13に到達するまで高電圧バッテリ66の充電が継続される。その後、分極緩和時間Tzが経過する時刻t14に到達すると、端子電圧Vが開放電圧OCVに近づいた状態であることから、前述したプラグ充電時のSOH算出処理に伴うSOCsの算出が許可される。
なお、分極解消モードAにおいて、高電圧バッテリ66を充電する際には、図3に矢印X1で示すように、モータジェネレータ15からインバータ61を経て高電圧バッテリ66に電力を供給しても良く、図3に矢印X2で示すように、スタータジェネレータ31からコンバータ71を経て高電圧バッテリ66に電力を供給しても良い。また、スタータジェネレータ31からコンバータ71を経て高電圧バッテリ66に電力を供給する際には、モータクラッチ26を解放して車両走行中にモータジェネレータ15の回転を停止させても良い。
また、図13Bに示すように、分極解消モードAの実行前に高電圧バッテリ66が充電されていた場合には、時刻t21において、車両走行中における高電圧バッテリ66の充電が停止される。そして、時刻t22において、分極解消電圧Vxおよび分極解消電流Ixに基づく高電圧バッテリ66の放電が開始され、分極解消時間Txが経過する時刻t23に到達するまで高電圧バッテリ66の放電が継続される。その後、分極緩和時間Tzが経過する時刻t24に到達すると、端子電圧Vが開放電圧OCVに近づいた状態であることから、前述したプラグ充電時のSOH算出処理に伴うSOCsの算出が許可される。
なお、分極解消モードAにおいて、高電圧バッテリ66を放電させる際には、図3に矢印X1で示すように、高電圧バッテリ66からインバータ61を経てモータジェネレータ15に電力を供給しても良く、図3に矢印X2で示すように、高電圧バッテリ66からコンバータ71を経てスタータジェネレータ31に電力を供給しても良い。また、高電圧バッテリ66からコンバータ71を経てスタータジェネレータ31に電力を供給する際には、モータクラッチ26を解放して車両走行中にモータジェネレータ15の回転を停止させても良い。
続いて、分極解消モードAにおける分極解消電圧Vxの設定方法の他の例について説明する。高電圧バッテリ66の分極が解消された状態とは、端子電圧Vが開放電圧OCVに近づいた状態であることから、図11に示した等価回路モデルから開放電圧OCVを推定し、この推定された開放電圧OCV(以下、開放電圧OCVxと記載する。)に合わせて分極解消電圧Vxを設定することが考えられる。
図11に示すように、高電圧バッテリ66の等価回路モデルにおいては、高電圧バッテリ66の充放電電流Iを計測することにより、前述した式(3)を用いて電圧成分Vrrを算出することができ、以下の式(4)を用いて電圧成分Vrdを算出することができる。そして、高電圧バッテリ66の端子電圧Vを計測することにより、以下の式(5)を用いて開放電圧OCVxを算出することができる。ここで、分極解消電圧Vxとして開放電圧OCVxを用いることにより、分極解消モードAを実行することで高電圧バッテリ66の分極を適切に解消させることができる。
Figure 2022160875000003
Figure 2022160875000004
ここで、図14はSOC-OCV曲線の一例を示す図である。図14には高電圧バッテリ66の開発段階における実際の計測点が白丸で示されている。図14に白丸で示すように、SOC-OCV曲線上には複数の計測点が設定されている。これらの計測点においては、開発段階において実際に開放電圧OCVとSOCとの関係が計測されることから、高精度にSOCを算出することが可能である。
そこで、図14の拡大部分に示すように、前述の式(5)を用いて推定される開放電圧OCVxが、計測点b1,b2間の電圧値であった場合には、分極解消電圧Vxとして、開放電圧OCVxではなく、計測点b1の電圧である「Vx1」や計測点b2の電圧である「Vx2」が設定される。これにより、分極解消モードAが実行された後には、SOH算出処理において計測される端子電圧Vを、計測点に対応するVx1やVx2に近づけることができるため、高精度にSOCsを算出することができる。
[分極解消モードBの実施判定]
以下、分極解消モードBを実施するか否かを判定する実施判定について説明した後に、分極を解消するための分極解消モードBについて説明する。図15Aおよび図15Bは、分極解消モードBの実施判定の実行手順の一例を示すフローチャートである。また、図16Aおよび図16Bは、分極解消モードBの実施判定の実行状況を示す図である。なお、分極解消モードBとは、高電圧バッテリ66の充放電を停止させることにより、高電圧バッテリ66の分極を解消する制御モードである。
図15Aおよび図15Bのフローチャートにおいては、符号Bの箇所で互いに接続されている。図15Aおよび図15Bのフローチャートに示される各ステップには、制御システム90を構成する1つまたは複数のプロセッサ100によって実行される処理が示されている。また、図15Aおよび図15Bに示される実施判定は、運転者によってスタートスイッチ96が操作され、車両制御ユニットCU8等からなる制御システム90が起動された後に、制御システム90によって所定周期毎に実行される制御である。つまり、図15Aおよび図15Bに示される実施判定は、制御システム90によって車両走行中に実行される制御である。
図15Aに示すように、ステップS40において、制御システム90は、ナビゲーションシステム40で目的地が設定されているか否かを判定する。ステップS40において、目的地が設定されていると判定された場合には、ステップS41に進み、制御システム90は、ナビゲーションシステム40より目的地までの走行予定距離D1を取得する。続いて、ステップS42に進み、制御システム90は、燃料の残存エネルギー量に基づき、車両11の走行可能距離D3を算出する。制御システム90は、所定周期毎に、燃料レベルセンサ95の検出信号に基づいて燃料の残存エネルギー量を算出する。また、制御システム90は、所定周期毎に、単位距離当たりの消費エネルギー量を算出する。そして、ステップS42において、制御システム90は、燃料の残存エネルギー量と単位距離当たりの消費エネルギー量とに基づき、車両11の走行可能距離D3を算出する。
続いて、ステップS43に進み、制御システム90は、走行可能距離D3から走行予定距離D1を減算した値が、所定の閾値Da2を上回るか否かを判定する。ステップS43において、走行可能距離D3から走行予定距離D1を減算した値が閾値Da2を上回る状況とは、図16Aにケース11として示した状況である。つまり、設定された目的地までの走行予定距離D1を走行し、かつ分極解消モードBを実施した場合であっても、残存エネルギー量が残されている状況である。このため、残存エネルギー量の観点から分極解消モードBを実施することが可能であると判定され、図15BのステップS44に進み、制御システム90によって分極解消モードBの実施判定が継続される。
一方、ステップS43において、走行可能距離D3から走行予定距離D1を減算した値が閾値Da2以下である状況とは、図16Aにケース12として示した状況である。つまり、設定された目的地までの走行予定距離D1を走行し、かつ分極解消モードBを実施するためには、残存エネルギー量が不足すると予測される状況である。このため、残存エネルギー量の観点から分極解消モードBを実施することが困難であると判定され、分極解消モードBの実施を許可することなくルーチンを抜ける。
図15Aに示すように、ステップS44においては、制御システム90が、高電圧バッテリ66のコンデンサ成分Crおよび抵抗成分Rrに基づいて、高電圧バッテリ66の時定数τを設定する。続いて、制御システム90は、ステップS45に進み、時定数τに所定係数kを乗算し、分極解消モードBに必要な分極解消時間(第1所要時間)Tx2を設定する。なお、分極解消時間Tx2とは、高電圧バッテリ66の充放電を停止させることにより、高電圧バッテリ66の分極を解消するために必要な時間である。
図15Bに示すように、ステップS45において分極解消時間Tx2が設定されると、制御システム90は、ステップS46に進み、目的地に到達するまでの走行予定時間(第2所要時間)Ttをナビゲーションシステム40から取得する。続いて、制御システム90は、ステップS47に進み、走行予定時間Ttから分極解消時間Tx2を減算した値が、ゼロ以上でありかつ所定の閾値Ta2を下回るか否かを判定する。ステップS48において、走行予定時間Ttから分極解消時間Tx2を減算した値が、ゼロ以上でありかつ所定の閾値Ta2を下回る状況とは、図16Bにケース13として示した状況である。つまり、分極解消時間Tx2の終了時刻が、目的地への到着時刻以前の所定時間Ta2内に含まれる状況である。
この場合には、分極解消モードBが終了してから、長い時間を空けることなく目的地に到着することが想定される。つまり、分極解消モードBが終了してから、高電圧バッテリ66を大きく充放電させることなく、目的地に到着してプラグ充電を開始することが想定される。このため、制御システム90は、ステップS48に進み、車両走行中に分極解消モードBを実行する。これにより、車両走行中であっても分極解消モードBを適切なタイミングで実行することができる。
一方、ステップS47において、走行予定時間Ttから分極解消時間Tx2を減算した値が、閾値Ta2以上になる状況とは、図16Bにケース14として示した状況である。つまり、分極解消時間Tx2の終了時刻が、目的地への到着時刻以前の所定時間Ta2内から外れる状況である。この場合には、分極解消モードBが終了した後においても車両走行が継続され、再び高電圧バッテリ66に分極を発生させてしまう虞がある。このため、分極解消モードBの実施を許可することなく、再びステップS44に戻り、分極解消モードBの実施を許可するか否かが判定される。
また、ステップS47において、走行予定時間Ttから分極解消時間Tx2を減算した値が、ゼロを下回る状況とは、図16Bにケース15として示した状況である。つまり、分極解消時間Tx2の終了時刻が、目的地への到着時刻以前の所定時間Ta2内から外れる状況である。この場合には、車両11が目的地に到着するまでに、分極解消モードBを終了させることが困難である。このため、分極解消モードBの実施を許可することなく、再びステップS44に戻り、分極解消モードBの実施を許可するか否かが判定される。
前述の説明では、ステップS47に示したように、走行予定時間Ttから分極解消時間Tx2を減算した値が、ゼロ以上でありかつ閾値Ta2を下回る場合に、車両走行中における分極解消モードBの実行を許可しているが、これに限られることはない。例えば、走行予定時間Ttから分極解消時間Tx2を減算した値がゼロ以上である場合に、車両走行中における分極解消モードBの実行を許可しても良い。換言すれば、分極解消時間Tx2が走行予定時間Ttを下回る場合に、車両走行中における分極解消モードBの実行が許可されていれば良い。このように、制御システム90は、分極解消時間Tx2が走行予定時間Ttを下回る場合に、車両走行中における分極解消モードBの実行を許可する一方、分極解消時間Tx2が走行予定時間Ttを上回る場合に、車両走行中における分極解消モードBの実行を許可していない。これにより、車両走行中であっても分極解消モードBを適切なタイミングで実行することができる。
[分極解消モードB]
高電圧バッテリ66の分極を解消する分極解消モードBの実行手順について説明する。図17は分極解消モードBの実行手順の一例を示すフローチャートである。図17のフローチャートに示される各ステップには、制御システム90を構成する1つまたは複数のプロセッサ100によって実行される処理が示されている。また、図17に示される分極解消モードBは、前述した図15BのステップS48において実行される分極解消モードであり、車両走行中に実行される分極解消モードである。
図17に示すように、ステップS50において、制御システム90は、高電圧バッテリ66の充放電を停止させる。続いて、制御システム90は、ステップS51に進み、高電圧バッテリ66の端子電圧Vnを取得する。次いで、制御システム90は、ステップS52に進み、今回取得した端子電圧Vnと前回取得した端子電圧Vn-1との差の絶対値が、所定の閾値Va1を下回るかを判定する。ステップS52において、端子電圧Vnと端子電圧Vn-1との差の絶対値が閾値Va1を下回る状況とは、高電圧バッテリ66の分極が解消されて端子電圧の変化量が小さくなる状況である。
そして、ステップS52において、端子電圧Vnと端子電圧Vn-1との差の絶対値が閾値Va1を下回ると判定されると、制御システム90は、高電圧バッテリ66の分極が解消されたと判断し、ステップS53に進む。ステップS53においては、端子電圧Vが開放電圧OCVに近づいた状態であることから、前述したプラグ充電時のSOH算出処理に伴うSOCsの算出が許可される。なお、分極解消モードBにおいて、高電圧バッテリ66の通電を停止させる際には、例えば、バッテリモジュール62のメインリレー68が遮断される。また、高電圧バッテリ66の充放電を停止させる際には、モータクラッチ26を解放して車両走行中にモータジェネレータ15の回転を停止させても良い。
図17に示したフローチャートでは、端子電圧の推移に基づき高電圧バッテリ66の分極状態を判定しているが、これに限られることはない。ここで、図18Aおよび図18Bは、分極解消モードBの実行状況の他の例を示す図である。図18Aに示すように、分極解消モードBの実行前に高電圧バッテリ66が放電していた場合には、時刻t31において、車両走行中における高電圧バッテリ66の放電が停止される。そして、分極解消時間Tx2が経過する時刻t32に到達するまで高電圧バッテリ66の通電停止が継続される。このように、分極解消時間Tx2に渡って高電圧バッテリ66の通電を停止させると、端子電圧Vが開放電圧OCVに近づいた状態になることから、前述したプラグ充電時のSOH算出処理に伴うSOCsの算出が許可される。
また、図18Bに示すように、分極解消モードBの実行前に高電圧バッテリ66が充電されていた場合には、時刻t41において、車両走行中における高電圧バッテリ66の充電が停止される。そして、分極解消時間Tx2が経過する時刻t42に到達するまで高電圧バッテリ66の通電停止が継続される。このように、分極解消時間Tx2に渡って高電圧バッテリ66の通電を停止させると、端子電圧Vが開放電圧OCVに近づいた状態になることから、前述したプラグ充電時のSOH算出処理に伴うSOCsの算出が許可される。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。前述の説明では、複数の制御ユニットCU1~CU8によって制御システム90を構成しているが、これに限られることはない。例えば、1つの制御ユニットによって制御システム90を構成しても良い。また、前述の説明では、無段変速機構23やトルクコンバータ25を備えたパワートレイン14を用いているが、これに限られることはなく、他の構造を備えたパワートレインを用いても良いことはいうまでもない。また、前述の説明では、蓄電デバイスとして高電圧バッテリ66を用いているが、高電圧バッテリ66の端子電圧としては特定の電圧に限られるものではない。例えば、端子電圧が数十[V]のバッテリを蓄電デバイスとして用いても良く、端子電圧が数百[V]のバッテリを蓄電デバイスとして用いても良い。なお、高電圧バッテリ66とは、図示しない鉛バッテリ等の補機用バッテリよりも端子電圧の高いバッテリを意味している。補機用バッテリの端子電圧は、例えば12[V]である。
10 車両用制御装置
11 車両
66 高電圧バッテリ(蓄電デバイス)
80 外部充電システム
81 外部電源
82 車載充電器
85 インレット
90 制御システム
100 プロセッサ
101 メモリ
Tx 分極解消時間(第1所要時間)
Tx2 分極解消時間(第1所要時間)
Tt 走行予定時間(第2所要時間)
SOCs 充電開始SOC(第1SOC)
SOCf 充電完了SOC(第2SOC)
CP 充電電気量
SOH 容量維持率

Claims (5)

  1. 車両走行中に蓄電デバイスの分極を解消する車両用制御装置であって、
    互いに通信可能に接続されるプロセッサおよびメモリからなり、前記蓄電デバイスの通電状態を制御して分極を解消する分極解消モードを備える制御システム、を有し、
    前記制御システムは、
    前記蓄電デバイスの分極状態に基づいて分極解消までの第1所要時間を設定し、かつ車両が目的地に到着するまでの第2所要時間を取得し、
    前記第1所要時間が前記第2所要時間を下回る場合に、車両走行中における前記分極解消モードの実行を許可し、
    前記第1所要時間が前記第2所要時間を上回る場合に、車両走行中における前記分極解消モードの実行を許可しない、
    車両用制御装置。
  2. 請求項1に記載の車両用制御装置において、
    前記分極解消モードは、前記蓄電デバイスを充電または放電させる制御モードである、
    車両用制御装置。
  3. 請求項1に記載の車両用制御装置において、
    前記分極解消モードは、前記蓄電デバイスの充放電を停止させる制御モードである、
    車両用制御装置。
  4. 請求項1~3の何れか1項に記載の車両用制御装置において、
    前記制御システムは、
    前記第1所要時間の終了時刻が、前記目的地への到着時刻以前の所定時間内に含まれる場合に、車両走行中における前記分極解消モードの実行を許可し、
    前記第1所要時間の終了時刻が、前記目的地への到着時刻以前の前記所定時間内から外れる場合に、車両走行中における前記分極解消モードの実行を許可しない、
    車両用制御装置。
  5. 請求項1~4の何れか1項に記載の車両用制御装置において、
    外部電源が着脱可能に接続されるインレット、および前記蓄電デバイスに接続される車載充電器を備える外部充電システム、を有し、
    前記制御システムは、
    前記車載充電器を用いて前記蓄電デバイスを充電する前に、前記蓄電デバイスの第1SOCを算出し、
    前記車載充電器を用いて前記蓄電デバイスを充電した後に、前記蓄電デバイスの第2SOCを算出し、
    前記車載充電器を用いて前記蓄電デバイスを充電する際に、前記車載充電器から前記蓄電デバイスに供給される充電電気量を算出し、
    前記第1SOC、前記第2SOCおよび前記充電電気量に基づいて、前記蓄電デバイスの容量維持率であるSOHを算出する、
    車両用制御装置。
JP2021065362A 2021-04-07 2021-04-07 車両用制御装置 Pending JP2022160875A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021065362A JP2022160875A (ja) 2021-04-07 2021-04-07 車両用制御装置
US17/707,549 US20220324431A1 (en) 2021-04-07 2022-03-29 Vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021065362A JP2022160875A (ja) 2021-04-07 2021-04-07 車両用制御装置

Publications (1)

Publication Number Publication Date
JP2022160875A true JP2022160875A (ja) 2022-10-20

Family

ID=83510516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021065362A Pending JP2022160875A (ja) 2021-04-07 2021-04-07 車両用制御装置

Country Status (2)

Country Link
US (1) US20220324431A1 (ja)
JP (1) JP2022160875A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020108B2 (ja) * 2017-12-25 2022-02-16 トヨタ自動車株式会社 二次電池システムおよび組電池の異常診断方法
JP7151367B2 (ja) * 2018-10-19 2022-10-12 トヨタ自動車株式会社 車両およびその制御方法
JP7380440B2 (ja) * 2020-06-18 2023-11-15 トヨタ自動車株式会社 車両診断システムおよび車両
JP2022150523A (ja) * 2021-03-26 2022-10-07 トヨタ自動車株式会社 電池システムおよび二次電池の分極電圧の推定方法

Also Published As

Publication number Publication date
US20220324431A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
US8912761B2 (en) Upper-limit of state-of-charge estimating device and upper-limit of state-of-charge estimating method
US9855854B2 (en) Charge control device and charge control method
EP3245096B1 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
CN110549876B (zh) 一种能量输出控制方法、装置和氢燃料混合动力汽车
CN107533109B (zh) 电池控制装置以及电动车辆系统
US9236745B2 (en) Vehicle control device and vehicle control method
JP6317031B2 (ja) 電池制御装置、および、車両システム
JP5741389B2 (ja) 蓄電装置の満充電容量推定方法及び蓄電システム。
US9425647B2 (en) Charging-control apparatus and charging-control method
US20140132214A1 (en) Electrically powered vehicle and method for controlling electrically powered vehicle
JP4288958B2 (ja) 劣化度推定方法
JP2007323999A (ja) 自動車のバッテリ制御装置
EP2940780A2 (en) Battery management apparatus
WO2008082010A1 (ja) 蓄電装置の制御装置および車両
US20160161566A1 (en) Method and system for online estimating internal resistance of battery
JP5544499B2 (ja) バッテリ充電システム及びバッテリ充電方法
EP4194251A1 (en) Method and arrangement for balancing an energy storage system
JP2006304574A (ja) 電源装置およびその制御方法
JP2018038248A (ja) 車両の充電システム
EP3640083B1 (en) Vehicle and control method thereof
US11180051B2 (en) Display apparatus and vehicle including the same
JP5413592B2 (ja) 二次電池の充電状態推定制御装置
JP2022160875A (ja) 車両用制御装置
JP2019074501A (ja) 電池状態推定方法及び電池状態推定装置
JP2015052461A (ja) 蓄電システムおよび充電率推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240305