JP2022158980A - Glass substrate manufacturing apparatus and pipe member - Google Patents

Glass substrate manufacturing apparatus and pipe member Download PDF

Info

Publication number
JP2022158980A
JP2022158980A JP2022035521A JP2022035521A JP2022158980A JP 2022158980 A JP2022158980 A JP 2022158980A JP 2022035521 A JP2022035521 A JP 2022035521A JP 2022035521 A JP2022035521 A JP 2022035521A JP 2022158980 A JP2022158980 A JP 2022158980A
Authority
JP
Japan
Prior art keywords
convex
axial direction
corrugated
glass substrate
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022035521A
Other languages
Japanese (ja)
Other versions
JP7320097B2 (en
Inventor
智陽 林
Zhi Yang Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Avanstrate Asia Pte Ltd
Avanstrate Taiwan Inc
Original Assignee
Avanstrate Inc
Avanstrate Asia Pte Ltd
Avanstrate Taiwan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc, Avanstrate Asia Pte Ltd, Avanstrate Taiwan Inc filed Critical Avanstrate Inc
Publication of JP2022158980A publication Critical patent/JP2022158980A/en
Application granted granted Critical
Publication of JP7320097B2 publication Critical patent/JP7320097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Catalysts (AREA)
  • Exhaust Silencers (AREA)

Abstract

To provide a glass substrate manufacturing apparatus capable of suppressing a local stress concentration in a wave shaped part having an irregularity in a radial direction of a formed pipe member.SOLUTION: A glass substrate manufacturing apparatus includes a pipe member that is composed of a material including a platinum group metal and has a peripheral shape wall part extending in an axial direction. The wall part includes at least one wave shaped part having an irregularity in a radial direction of the wall part, the irregularity being formed so as to alternatively align in the axial direction and continue in a peripheral direction. A protrusion part that has a protrusion in the radial direction of the wave shaped part has a first protrusion part with a highest protrusion height and a pair of second protrusion parts that is arranged in both sides in the radial direction of the first protrusion part and has a protrusion height lower than that of the first protrusion part. A recess part that has a recess in the radial direction of the wave shaped part has a pair of first recess parts located between the first protrusion part and the second protrusion part. In a cross-sectional plane along a plane extending in the axial direction and the radial direction, each length of the first recess parts is longer than that of the first protrusion part.SELECTED DRAWING: Figure 3

Description

本発明は、熔融ガラスを処理する管部材、及び管部材を備えるガラス基板製造装置に関する。 TECHNICAL FIELD The present invention relates to a tube member for processing molten glass and a glass substrate manufacturing apparatus provided with the tube member.

液晶ディスプレイ、有機ELディスプレイ等のディスプレイに用いられるガラス基板は、ガラス原料を熔解してつくった熔融ガラスに、移送、清澄、均質化等の処理を行った後、板状に成形する工程を経て製造される。 Glass substrates used in displays such as liquid crystal displays and organic EL displays are manufactured by melting glass raw materials and then transferring, clarifying, and homogenizing the molten glass, and then forming it into a plate. manufactured.

熔融ガラスを処理するために、管部材が用いられている。管部材は、軸方向に延びる周状の壁部を有しており、熔融ガラスを流しながら処理する。このような管部材として、例えば、熔融ガラスの清澄を行う清澄管では、壁部に間隔をあけて設けられた一対の電極の間に電流を流し、清澄管を加熱し、これにより、熔融ガラスを清澄に適した温度にすることを行う。このような清澄管の加熱を行う際に、電極が過度に高温になることを抑えるため、電極は、外周側に突状に延びるフランジ状に形成され、放熱できるようになっている。また、清澄管には、清澄中に熔融ガラスから放出される酸素等のガスを外部に排出するために、外周側に突状に延びる通気管が設けられている場合がある。 Tubing is used to process molten glass. The tubular member has an axially extending peripheral wall portion and is treated while the molten glass flows. As such a tube member, for example, in a fining tube for fining glass melt, an electric current is passed between a pair of electrodes provided on the wall portion with a gap therebetween to heat the fining tube, thereby heating the glass melt. to a temperature suitable for fining. In order to prevent the electrode from becoming excessively hot when the fining tube is heated in this manner, the electrode is formed in a flange shape extending protrudingly toward the outer periphery so as to dissipate heat. Further, in some cases, the clarification pipe is provided with a vent pipe that protrudes outwardly to discharge gases such as oxygen released from the molten glass during clarification.

一方、管部材の周りには、管部材の壁部を囲むように耐火レンガ等の支持体が配置されている。清澄管に設けられた上記のフランジや通気管等の部材は、耐火レンガの間を延びるように配置されている。このため、操業のために清澄管を昇温したときに、フランジや通気管が耐火レンガにより拘束されることで、清澄管の軸方向の膨張が制限されて内部応力が発生し、フランジや通気管と清澄管との接続部分には応力が集中しやすい。その結果、破断応力より高い応力がかかることで、上記接続部分に亀裂が生じ、そこから熔融ガラスが外部に漏れ出すという問題がある。また、応力が破断応力に達していなくても、清澄管の疲労が進行し、清澄管の寿命が短くなるリスクがある。 On the other hand, a support such as firebrick is arranged around the tubular member so as to surround the wall of the tubular member. Members such as the above-mentioned flanges and ventilation pipes provided in the clarification pipe are arranged so as to extend between the refractory bricks. For this reason, when the temperature of the clarifier is raised for operation, the refractory bricks restrict the expansion of the clarifier in the axial direction and generate internal stress. Stress tends to concentrate on the connecting portion between the trachea and the clarification tube. As a result, there is a problem that a stress higher than the breaking stress is applied, cracks occur in the connection portion, and the molten glass leaks out from the crack. Moreover, even if the stress does not reach the breaking stress, there is a risk that fatigue of the fining tube will progress and the life of the fining tube will be shortened.

従来、熔融ガラスを移送する管部材が熱によって軸方向の圧縮応力を受け、座屈するおそれがあることから、熔融ガラス用導管に、周方向に連続する凸部が軸方向に少なくとも一つ以上設けることが知られている(特許文献1)。また、高い運転温度に晒される肉薄の薄板構造体の形状剛性が低いことを補償するために、構造体の薄板に波形付与等することが知られている(特許文献2)。 Conventionally, since there is a risk of buckling due to the compressive stress in the axial direction due to heat, the tube member that conveys the glass melt is provided with at least one or more projections that are continuous in the circumferential direction in the axial direction. It is known (Patent Document 1). Further, in order to compensate for the low shape rigidity of a thin thin plate structure exposed to high operating temperatures, it is known to corrugate the thin plate of the structure (Patent Document 2).

国際公開第2004/070251号WO2004/070251 特開2002-205123号公報Japanese Patent Application Laid-Open No. 2002-205123

特許文献1及び2に記載の管部材では、管部材の熱膨脹が制限されて管部材に内部応力が発生した場合に、上記の凸部や波形の部分に発生した応力が、凸部や波形の部分の一部の領域に集中しやすいことがわかった。このような局部的な応力集中は、上記凸部や波形の部分の破断のリスクを高め、そこから熔融ガラスが外部に漏れ出すリスクを高める。 In the pipe members described in Patent Documents 1 and 2, when the thermal expansion of the pipe member is restricted and internal stress is generated in the pipe member, the stress generated in the convex portion and the corrugated portion is transferred to the convex portion and the corrugated portion. It was found that it was easy to concentrate on some areas of the part. Such local stress concentration increases the risk of breakage of the protrusions and corrugated portions, which increases the risk of molten glass leaking out from there.

そこで、本発明は、管部材に形成された径方向の凹凸を有する波形状部における局部的な応力集中を抑制できるガラス基板製造装置を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a glass substrate manufacturing apparatus capable of suppressing local stress concentration in a corrugated portion having radial unevenness formed in a tubular member.

本発明の一態様は、ガラス基板製造装置である。
ガラス基板製造装置は、白金族金属を含む材料からなる管部材であって、軸方向に延びる周状の壁部を有する管部材を備え、
前記壁部は、前記軸方向の一部の領域に、前記軸方向に交互に並び周方向に連続するよう形成された前記壁部の径方向の凹凸を有する少なくとも1つの波形状部を含み、
前記波形状部のうち径方向に凸となる凸部は、凸高さが最も高い第1凸部と、前記第1凸部に対し前記軸方向の両側に配置され、前記第1凸部より凸高さが低い一対の第2凸部と、を有し、
前記波形状部のうち径方向に凹となる凹部は、前記第1凸部と前記第2凸部の間に位置する一対の第1凹部を有し、
前記軸方向及び前記径方向に延在する平面に沿った前記壁部の断面において、前記第1凹部それぞれの長さは前記第1凸部の長さより長い、ことを特徴とする。
One aspect of the present invention is a glass substrate manufacturing apparatus.
The glass substrate manufacturing apparatus includes a tubular member made of a material containing a platinum group metal and having a peripheral wall extending in the axial direction,
the wall portion includes at least one corrugated portion having undulations in the radial direction of the wall portion formed alternately in the axial direction and continuous in the circumferential direction in a partial region in the axial direction;
Among the wave-shaped portions, the convex portions that are convex in the radial direction are arranged on both sides of the first convex portion in the axial direction with respect to the first convex portion having the highest convex height, and are arranged from the first convex portion. a pair of second protrusions with a low protrusion height,
The concave portion that is concave in the radial direction of the wave-shaped portion has a pair of first concave portions positioned between the first convex portion and the second convex portion,
A length of each of the first concave portions is longer than a length of the first convex portion in a cross section of the wall portion along planes extending in the axial direction and the radial direction.

前記凸部及び前記凹部それぞれは、前記断面において曲率半径を有するよう湾曲した湾曲部を有している、ことが好ましい。 It is preferable that each of the convex portion and the concave portion has a curved portion that is curved to have a radius of curvature in the cross section.

前記断面において、前記第1凹部の前記湾曲部の長さは、前記第1凸部の前記湾曲部の長さより長い、ことが好ましい。 In the cross section, it is preferable that the length of the curved portion of the first concave portion is longer than the length of the curved portion of the first convex portion.

前記湾曲部を第1湾曲部というとき、前記第1凹部は、前記断面において、
前記軸方向と平行な方向に直線状に延びる平坦部と、
前記第1湾曲部との間に前記平坦部を挟むよう位置する第2湾曲部と、を有し、
前記断面において、前記湾曲部及び前記平坦部の合計の長さは、前記第1凸部の前記湾曲部の長さより長い、ことが好ましい。
When the curved portion is referred to as the first curved portion, the first concave portion has, in the cross section,
a flat portion linearly extending in a direction parallel to the axial direction;
a second curved portion positioned to sandwich the flat portion between the first curved portion;
In the cross section, it is preferable that the total length of the curved portion and the flat portion is longer than the length of the curved portion of the first convex portion.

前記第1凸部の前記湾曲部の曲率半径R1は、前記第1凹部の前記湾曲部の曲率半径R2と等しい、あるいは、当該曲率半径R2より小さい、ことが好ましい。 Preferably, the curvature radius R1 of the curved portion of the first convex portion is equal to or smaller than the curvature radius R2 of the curved portion of the first concave portion.

前記第1凸部の前記湾曲部の曲率半径R1は、前記第2凸部の前記湾曲部の曲率半径R3と等しい、あるいは、当該曲率半径R3より小さい、ことが好ましい。 Preferably, the curvature radius R1 of the curved portion of the first convex portion is equal to or smaller than the curvature radius R3 of the curved portion of the second convex portion.

前記第2凸部の凸高さH2は、前記第1凸部の凸高さH1の1.2~1.6倍である、ことが好ましい。 It is preferable that the height H2 of the second protrusion is 1.2 to 1.6 times the height H1 of the first protrusion.

前記管部材は、前記壁部の内側において熔融ガラスを処理し、
前記壁部から外周側に延びるよう前記壁部に接続され、前記処理の際に機能する少なくとも1つの突状部材と、
前記壁部を支持し、前記突状部材を前記軸方向の両側から挟むよう前記管部材の周りに配置された支持体と、をさらに備える場合に好適である。
The tube member processes molten glass inside the wall,
at least one projecting member connected to the wall so as to extend outwardly from the wall and functioning during the treatment;
It is preferable to further include supports arranged around the pipe member so as to support the wall portion and sandwich the protruding member from both sides in the axial direction.

前記突状部材は複数、備えられ、
前記波形状部と、前記突状部材のうち当該波形状部の最も近くに位置する突状部材との前記軸方向の間隔は、前記隣り合う2つの突状部材の間隔の10%未満である、ことが好ましい。
A plurality of the projecting members are provided,
The axial distance between the corrugated portion and the projecting member positioned closest to the corrugated portion among the projecting members is less than 10% of the distance between the two adjacent projecting members. , is preferred.

前記壁部は、前記軸方向の異なる領域に形成された複数の前記波形状部を含む、ことが好ましい。 It is preferable that the wall portion includes a plurality of the corrugated portions formed in different regions in the axial direction.

前記管部材は、軸方向に分割された複数の単位管が接続されてなり、
前記単位管それぞれに、前記突状部材のうちの1つ、あるいは、前記波形状部のうちの1つ又は2つが形成されている、ことが好ましい。
The pipe member is formed by connecting a plurality of axially divided unit pipes,
It is preferable that one of the projecting members or one or two of the corrugated portions be formed in each of the unit tubes.

前記単位管のうち、前記波形状部が形成された単位管に関して、前記波形状部の前記軸方向の長さは、当該単位管の前記軸方向の長さの20%以上である、ことが好ましい。 Among the unit pipes, regarding the unit pipe in which the corrugated portion is formed, the length of the corrugated portion in the axial direction is 20% or more of the length of the unit pipe in the axial direction. preferable.

本発明の別の一態様は、管部材であり、
白金族金属を含む材料からなり、軸方向に延びる周状の壁部を有する管部材であって、
前記壁部は、前記軸方向の一部の領域に、前記軸方向に交互に並び周方向に連続するよう形成された前記壁部の径方向の凹凸を有する少なくとも1つの波形状部を含み、
前記波形状部のうち径方向に凸となる凸部は、凸高さが最も高い第1凸部と、前記第1凸部に対し前記軸方向の両側に配置され、前記第1凸部より凸高さが低い一対の第2凸部と、を有し、
前記波形状部のうち径方向に凹となる凹部は、前記第1凸部と前記第2凸部の間に位置する一対の第1凹部を有し、
前記軸方向及び前記径方向に延在する平面に沿った前記壁部の断面において、前記第1凹部それぞれの長さは前記第1凸部の長さより長い、ことを特徴とする管部材。
Another aspect of the present invention is a tubular member,
A tubular member made of a material containing a platinum group metal and having an axially extending circumferential wall,
the wall portion includes at least one corrugated portion having undulations in the radial direction of the wall portion formed alternately in the axial direction and continuous in the circumferential direction in a partial region in the axial direction;
Among the wave-shaped portions, the convex portions that are convex in the radial direction are arranged on both sides of the first convex portion in the axial direction with respect to the first convex portion having the highest convex height, and are arranged from the first convex portion. a pair of second protrusions with a low protrusion height,
The concave portion that is concave in the radial direction of the wave-shaped portion has a pair of first concave portions positioned between the first convex portion and the second convex portion,
A tubular member, wherein the length of each of the first recesses is longer than the length of the first protrusions in a cross-section of the wall along planes extending in the axial direction and the radial direction.

上述の態様のガラス基板製造装置及び管部材によれば、管部材に形成された径方向の凹凸を有する波形状部における局部的な応力集中を抑制できる。 According to the glass substrate manufacturing apparatus and pipe member of the above-described aspects, it is possible to suppress local stress concentration in the corrugated portion having radial unevenness formed in the pipe member.

ガラス基板製造装置の概略構成を示す図である。It is a figure which shows schematic structure of a glass substrate manufacturing apparatus. 清澄管に作用する力を説明する図である。It is a figure explaining the force which acts on a clarification tube. 波形状部の一例の一部を示す断面図である。FIG. 4 is a cross-sectional view showing part of an example of a corrugated portion; 波形状部の他の一例の一部を示す断面を示す図である。It is a figure which shows the cross section which shows a part of other example of a corrugated part. 清澄管を構成する単位管を示す図である。It is a figure which shows the unit tube which comprises a clarification tube. 波形状部の他の一例の一部を示す断面を示す図である。It is a figure which shows the cross section which shows a part of other example of a corrugated part. (a)は従来の波形状部における応力分布のシミュレーション結果をカラースケールで示す図であり、(b)は本実施形態の波形状部における応力分布のシミュレーション結果をカラースケールで示す図である。(a) is a diagram showing the simulation result of the stress distribution in the conventional corrugated portion in a color scale, and (b) is a diagram showing the simulation result of the stress distribution in the corrugated portion of the present embodiment in a color scale. (a)は、図7(a)のシミュレーション結果をグレースケールで示す図であり、(b)は、図7(b)のシミュレーション結果をグレースケールで示す図である。(a) is a diagram showing the simulation result of FIG. 7(a) in grayscale, and (b) is a diagram showing the simulation result of FIG. 7(b) in grayscale.

以下、本実施形態のガラス基板製造装置について説明する。 The glass substrate manufacturing apparatus of this embodiment will be described below.

(ガラス基板製造装置の全体概要)
図1は、本実施形態のガラス基板製造装置の概略図である。ガラス基板製造装置は、図1に示すように、主に熔解装置100と、成形装置200と、切断装置300と、を有する。熔解装置100は、熔解槽101と、清澄管102と、撹拌槽103と、移送管104、105と、ガラス供給管106と、を有する。
図1に示す熔解槽101には、図示されないバーナー等の加熱手段が設けられている。熔解槽101には清澄剤が添加されたガラス原料が投入され、熔融ガラスを作る熔解工程が行われる。熔解槽101で熔融した熔融ガラスは、移送管104を介して清澄管102に供給される。
清澄管102では、熔融ガラスMGを流しながら、熔融ガラスMGの温度を調整して、清澄剤の酸化還元反応を利用して熔融ガラスの清澄が行われる(清澄工程)。具体的には、清澄管102内の熔融ガラスが昇温されることにより、熔融ガラス中に含まれる酸素、COあるいはSOを含んだ泡が、清澄剤の還元反応により生じた酸素を吸収して成長し、熔融ガラスの液面に浮上して気相空間に放出される。その後、熔融ガラスの温度を低下させることにより、清澄剤の還元反応により生成した還元物質が酸化反応を行う。これにより、熔融ガラスに残存する泡中の酸素等のガス成分が熔融ガラス中に再吸収されて、泡が消滅する。清澄後の熔融ガラスは、移送管105を介して撹拌槽103に供給される。
撹拌槽103では、スターラ103aによって熔融ガラスが撹拌されて均質化工程が行われる。撹拌槽103で均質化された熔融ガラスは、ガラス供給管106を介して成形装置200に供給される。
成形装置200では、例えばオーバーフローダウンドロー法により、熔融ガラスからシートガラスSGが成形され、徐冷される。
切断装置300では、シートガラスSGから切り出された板状のガラス基板が形成される。
(Overview of glass substrate manufacturing equipment)
FIG. 1 is a schematic diagram of the glass substrate manufacturing apparatus of this embodiment. The glass substrate manufacturing apparatus mainly includes a melting device 100, a forming device 200, and a cutting device 300, as shown in FIG. The melting apparatus 100 has a melting vessel 101 , a clarification tube 102 , a stirring vessel 103 , transfer tubes 104 and 105 and a glass supply tube 106 .
The melting tank 101 shown in FIG. 1 is provided with heating means such as a burner (not shown). A glass raw material to which a fining agent is added is put into the melting tank 101, and a melting process for making molten glass is performed. The molten glass melted in the melting tank 101 is supplied to the clarification tube 102 through the transfer tube 104 .
In the clarification tube 102, while flowing the glass melt MG, the temperature of the glass melt MG is adjusted, and the glass melt is clarified using the oxidation-reduction reaction of the clarifier (clarification step). Specifically, as the temperature of the glass melt in the clarification tube 102 is raised, bubbles containing oxygen, CO 2 or SO 2 contained in the glass melt absorb oxygen generated by the reductive reaction of the clarifier. and grow, float on the liquid surface of the molten glass, and are released into the gas phase space. After that, by lowering the temperature of the molten glass, the reducing substances produced by the reductive reaction of the refining agent undergo an oxidation reaction. As a result, gas components such as oxygen in the bubbles remaining in the glass melt are reabsorbed into the glass melt, and the bubbles disappear. The molten glass after fining is supplied to the stirring tank 103 through the transfer pipe 105 .
In the stirring tank 103, the molten glass is stirred by the stirrer 103a to perform a homogenization process. The molten glass homogenized in the stirring tank 103 is supplied to the molding device 200 through the glass supply pipe 106 .
In the forming apparatus 200, the sheet glass SG is formed from the molten glass by, for example, the overflow downdraw method, and then slowly cooled.
The cutting device 300 forms a plate-shaped glass substrate cut out from the sheet glass SG.

本実施形態において、ガラス基板製造装置の上記構成要素のうち、清澄管102、移送管104,105、ガラス供給管106の少なくとも1つが、後述する管部材である。管部材は、熔融ガラスの処理を行う。清澄管102は、上述したように、熔融ガラスを流しながら清澄を行う。移送管104,105及びガラス供給管106は、熔融ガラスの移送を行う。以下、管部材として清澄管102を例に説明する。 In this embodiment, at least one of the clarification tube 102, the transfer tubes 104 and 105, and the glass supply tube 106 among the above components of the glass substrate manufacturing apparatus is a tube member to be described later. The tube member carries out the processing of the molten glass. The fining tube 102 performs fining while the molten glass flows, as described above. The transfer pipes 104, 105 and the glass supply pipe 106 transfer the molten glass. Hereinafter, the clarification tube 102 will be described as an example of the tube member.

(清澄管)
図2は、清澄管102の構成を示す概略図である。
清澄管102は、白金族金属を含む材料で構成された管状の部材である。白金族金属とは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)の6元素を指す。白金族金属を含む材料の例として、白金族金属のうちの単一の金属または2種以上の金属の合金からなる材料が挙げられる。例えば、白金または白金合金が用いられる。
(clarification tube)
FIG. 2 is a schematic diagram showing the configuration of the clarification tube 102. As shown in FIG.
The clarification tube 102 is a tubular member made of a material containing a platinum group metal. Platinum group metals refer to six elements: platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), and iridium (Ir). Examples of materials containing platinum group metals include materials composed of a single platinum group metal or an alloy of two or more metals. For example, platinum or platinum alloys are used.

清澄管102は、白金族金属から構成される部材であって、清澄管102の軸方向に延びる周状(筒状)の壁部102aを有している。清澄管102には、熔融ガラスの液面の上方に気相空間が形成されるよう、熔融ガラスが供給される。熔融ガラスは、壁部102aの内側において清澄される。清澄管102は、軸方向と直交する断面において円形状の外周を有している。清澄管102の軸方向は、この断面における清澄管102の中心(円形状の中心)を通る清澄管102の中心軸と平行な方向(図において左右方向)を意味する。 The clarification tube 102 is a member made of a platinum group metal, and has a circumferential (cylindrical) wall portion 102a extending in the axial direction of the clarification tube 102 . Glass melt is supplied to the fining tube 102 such that a gas phase space is formed above the liquid surface of the glass melt. The molten glass is refined on the inside of wall 102a. The clarification tube 102 has a circular outer circumference in a cross section perpendicular to the axial direction. The axial direction of the clarification tube 102 means a direction parallel to the central axis of the clarification tube 102 passing through the center (circular center) of the clarification tube 102 in this cross section (horizontal direction in the figure).

清澄管102には、少なくとも1つの突状部材が設けられている。突状部材は、壁部102aから外周側に延びるよう壁部102aに接続され、清澄の際に機能する部材である。このような突状部材として、清澄管102には、図2に示すように、一対のフランジ102b、102cと、通気管102dと、が設けられている。 The clarification tube 102 is provided with at least one projecting member. The projecting member is a member that is connected to the wall portion 102a so as to extend from the wall portion 102a to the outer peripheral side and that functions during fining. As such projecting members, the clarification pipe 102 is provided with a pair of flanges 102b and 102c and a vent pipe 102d, as shown in FIG.

フランジ102b,102cは、清澄管102の軸方向の両端に設けられた円板状の部材である。フランジ102b,102cは、壁部102aに溶接により接続されている。フランジ102b,102cは、図示されない電源装置と接続されており、電源装置20によりフランジ102b,102cの間に電圧が印加されることにより、フランジ102b,102cの間の壁部102aの部分に電流が流れ、清澄管102が加熱される。このように、フランジ102b,102cは、一対の電極として機能する。この通電加熱により、清澄管102は例えば、1650℃~1700℃程度に加熱され、移送管104から供給された熔融ガラスMGは、脱泡に適した温度、例えば、1600℃~1700℃程度に加熱される。 The flanges 102b and 102c are disk-shaped members provided at both ends of the clarification tube 102 in the axial direction. Flanges 102b and 102c are welded to wall 102a. The flanges 102b and 102c are connected to a power supply (not shown), and when a voltage is applied between the flanges 102b and 102c by the power supply 20, a current flows through the wall portion 102a between the flanges 102b and 102c. Flow, clarification tube 102 is heated. Thus, the flanges 102b, 102c function as a pair of electrodes. By this electric heating, the clarification tube 102 is heated to, for example, about 1650° C. to 1700° C., and the molten glass MG supplied from the transfer tube 104 is heated to a temperature suitable for defoaming, for example, about 1600° C. to 1700° C. be done.

一方、フランジ102b,102cには、冷媒が流れる冷却管(図示せず)がフランジの外周に沿って設けられており、冷却管内に冷媒が供給されることで、フランジ102b,102cは冷却され、通電加熱により発熱したフランジ102b,102cは冷却される。 On the other hand, the flanges 102b and 102c are provided along the outer periphery of the flanges with cooling pipes (not shown) through which a coolant flows. The flanges 102b and 102c, which are heated by electric heating, are cooled.

通気管102dは、気相空間と清澄管102の外部空間とを連通する管である。通気管102dは、壁部102aに溶接により接続されている。通気管102dは、熔融ガラスMGから気相空間に放出された、酸素、CO2、SO2等の気体を外部空間に排出する機能を有している。 102 d of vent pipes are pipe|tube which connects the gas phase space and the external space of the clarification pipe|tube 102 for free passage. The vent pipe 102d is welded to the wall portion 102a. The vent pipe 102d has a function of discharging gases such as oxygen, CO 2 and SO 2 released from the molten glass MG into the gas phase space to the external space.

ガラス基板製造装置は、さらに、支持体110を備えている。
支持体110は、清澄管102の壁部102aを支持する構造物である。支持体110は、耐火レンガから構成される。耐火レンガは、フランジ102b,102cや通気管102dが耐火レンガの間を延びるように、清澄管102の周りに配置されている。このため、フランジ102b,102c及び通気管102dは、軸方向の両側から耐火レンガによって挟まれている。
The glass substrate manufacturing apparatus further includes a support 110 .
The support 110 is a structure that supports the wall portion 102 a of the clarification tube 102 . The support 110 is constructed from refractory bricks. The refractory bricks are arranged around the fining tube 102 such that the flanges 102b, 102c and vent pipe 102d extend between the refractory bricks. For this reason, the flanges 102b, 102c and the vent pipe 102d are sandwiched between refractory bricks from both sides in the axial direction.

(波形状部)
図3は、清澄管102の波形状部の一例の一部を示す断面図である。図3中の破線は、従来の波形状部の第2凸部と対応する部分を示す。この部分を除いて、従来の波形状部は、本実施形態の波形状部と同様に構成されている。
清澄管102の壁部102aは、軸方向の一部の領域(図2に、領域の例を破線で囲んで示す)に、少なくとも1つの波形状部10を含む。波形状部10は、軸方向に交互に並び周方向に連続して延びる(周方向に一周する)よう形成された、壁部102aの径方向の凹凸を有する部分である。
(wavy portion)
FIG. 3 is a cross-sectional view showing part of an example corrugated portion of the clarification tube 102 . A dashed line in FIG. 3 indicates a portion corresponding to the second convex portion of the conventional corrugated portion. Except for this portion, the conventional corrugated portion is configured in the same manner as the corrugated portion of the present embodiment.
The wall 102a of the fining tube 102 includes at least one corrugation 10 in an axial partial region (an example of the region is shown in FIG. 2 by a dashed line). The corrugated portions 10 are portions of the wall portion 102a having radial unevenness formed so as to alternately line up in the axial direction and extend continuously in the circumferential direction (periphery in the circumferential direction).

波形状部10は、少なくとも、ガラス基板の製造(操業)のために上記清澄温度に昇温される前において(例えば常温、すなわち25℃において)、下記説明する形態を備えるが、操業中も下記の形態を備えている場合がある。 The corrugations 10 have the form described below at least before being heated to the fining temperature (for example, at room temperature, i.e., 25° C.) for the production (operation) of the glass substrate, but also during operation. may have the form of

波形状部10のうち径方向外周側に凸となる凸部は、第1凸部11と、一対の第2凸部12,12と、を有している。
第1凸部11は、凸高さが最も高い凸部である。本明細書において、凸高さとは、波形状部10以外の壁部102aの部分において清澄管102の軸方向と平行な方向に延びる平坦部(基部)に対する径方向の高さを意味する。平坦部の例として、後で参照する図6において符号102eで示した部分が挙げられる。
第2凸部12は、第1凸部11に対し軸方向の両側に配置される凸部である。第2凸部12は、第1凸部11より凸高さが低い。
A convex portion of the corrugated portion 10 that protrudes radially outward has a first convex portion 11 and a pair of second convex portions 12 , 12 .
The first convex portion 11 is a convex portion having the highest convex height. In this specification, the convex height means the radial height with respect to the flat portion (base portion) extending in the direction parallel to the axial direction of the fining tube 102 in the portion of the wall portion 102a other than the corrugated portion 10. An example of a flat portion is the portion indicated by reference numeral 102e in FIG. 6, to which reference will be made later.
The second protrusions 12 are protrusions arranged on both sides of the first protrusion 11 in the axial direction. The second convex portion 12 has a lower convex height than the first convex portion 11 .

波形状部10のうち径方向内周側に凹となる凹部は、第1凸部11と第2凸部12の間の2か所に位置する一対の第1凹部13,13を有している。 The concave portion of the corrugated portion 10 that is concave on the inner peripheral side in the radial direction has a pair of first concave portions 13, 13 positioned at two locations between the first convex portion 11 and the second convex portion 12. there is

清澄管102の軸方向及び径方向に延在する平面における壁部102aの断面(以降、単に断面ともいう)において、第1凹部13それぞれの長さは第1凸部11の長さより長い。本明細書において、波形状部の各部に関する、断面における長さは、特に断った場合を除いて、断面における波形状部の延在方向の長さを意味し、具体的には、断面に表れる壁部の形状(清澄管の輪郭)に沿った長さを意味する。当該長さの少なくとも一部の区間の長さとして、例えば、後述する湾曲部の弧長や、後述する平坦部の軸方向と平行な方向の長さが含まれる。 In a cross section of the wall portion 102 a (hereinafter also simply referred to as a cross section) on a plane extending in the axial direction and the radial direction of the fining tube 102 , the length of each first concave portion 13 is longer than the length of the first convex portion 11 . In this specification, the length in the cross section of each part of the corrugated part means the length in the direction in which the corrugated part extends in the cross section, unless otherwise specified. It means the length along the shape of the wall (the contour of the clarifier tube). The length of at least a portion of the length includes, for example, the arc length of the curved portion described later and the length of the flat portion described later in the direction parallel to the axial direction.

操業のために清澄管102を加熱(昇温)すると、図2に示すように、清澄管102は軸方向に熱膨張しようとするが、フランジ102b,102c及び通気管102dが支持体110により拘束されているので、清澄管102の熱膨張は制限され、清澄管102には内部応力が発生する。このとき、フランジや通気管と、清澄管との接続部分には、応力が集中しやすく、歪が生じやすい。本実施形態では、清澄管102の壁部102aに、軸方向に交互に並び周方向に連続するよう形成された凹凸を含む波形状部10が形成されているため、清澄管102に発生する内部応力の一部を波形状部10において発生させることで吸収でき、これにより、清澄管102の他の部分に発生する応力を低減し、上記接続部分等に応力が集中することを抑制できる。一方、波形状部に発生した応力は、波形状部の一部の領域に応力が集中しやすく、応力の大きさによっては波形状部が破断するリスクを高め、熔融ガラスが外部に漏れ出すリスクを高める。 When the clarification tube 102 is heated (heated) for operation, as shown in FIG. As a result, the thermal expansion of the fining tube 102 is limited and internal stresses are generated in the fining tube 102 . At this time, stress is likely to concentrate on the connecting portion between the flange or vent pipe and the clarification pipe, and distortion is likely to occur. In this embodiment, since the wall portion 102a of the clarification tube 102 is formed with the corrugated portion 10 including unevenness formed so as to be alternately arranged in the axial direction and continuous in the circumferential direction, the inside of the clarification tube 102 is formed. Part of the stress can be absorbed by being generated in the corrugated portion 10, thereby reducing the stress generated in other portions of the fining tube 102 and suppressing stress concentration at the connecting portions and the like. On the other hand, the stress generated in the corrugated part tends to concentrate in some areas of the corrugated part, and depending on the magnitude of the stress, the risk of the corrugated part breaking increases, and the risk of molten glass leaking out. increase

本発明者の検討によれば、波形状部10において、
(1)第1凹部13の長さが第1凸部11の長さより長く、
(2)第1凸部11の凸高さが第2凸部12の凸高さより高い、
場合に、波形状部10が吸収した応力が、波形状部10内に分散して発生しやすく、波形状部10における局部的な応力集中を抑制できることがわかった。
According to the study of the present inventor, in the corrugated portion 10,
(1) the length of the first concave portion 13 is longer than the length of the first convex portion 11;
(2) the height of the first protrusion 11 is higher than the height of the second protrusion 12;
In this case, the stress absorbed by the corrugated portion 10 tends to be dispersed in the corrugated portion 10, and local stress concentration in the corrugated portion 10 can be suppressed.

具体的に、下記のことが確認された。
波形状部10が上記(1)の形態を備えていると、波形状部10に歪が発生しやすい領域が増え、波形状部10に発生する応力が分散されやすくなる。その結果、波形状部10内で発生する最大応力の大きさを低減でき、波形状部10の破断のリスクを低減できる。
波形状部10が上記(2)の形態を備えていると、第2凸部12から第1凹部13に向かって力が伝達されやすくなり、波形状部10に発生する応力が第1凹部13によって分散される効果が増す。
Specifically, the following was confirmed.
When the corrugated portion 10 has the form (1) above, the area where the corrugated portion 10 is likely to be distorted increases, and the stress generated in the corrugated portion 10 is easily dispersed. As a result, the magnitude of the maximum stress generated in the corrugated portion 10 can be reduced, and the risk of breakage of the corrugated portion 10 can be reduced.
When the corrugated portion 10 has the form (2) above, force is easily transmitted from the second convex portion 12 toward the first concave portion 13 , and the stress generated in the corrugated portion 10 is transferred to the first concave portion 13 . increases the effect distributed by

本実施形態において、第1凸部11、第1凹部13,第2凸部12は互いに接続している。凸部と凹部との接続位置(境界)は、例えば、壁部102aの断面において波形状部10を凹部から凸部に向かって進むときに、波形状部10の曲率半径の中心が、清澄管102の内側から外側に移る位置、あるいは、波形状部10の曲率半径を特定できない部分(直線形状の平坦部)の両端の中心位置、として特定される。 In this embodiment, the first protrusion 11, the first recess 13, and the second protrusion 12 are connected to each other. The connection position (boundary) between the convex portion and the concave portion is, for example, the center of the curvature radius of the corrugated portion 10 when proceeding from the concave portion to the convex portion in the cross section of the wall portion 102a. It is specified as a position moving from the inside to the outside of the corrugated portion 102 or as the center position of both ends of the portion (linear flat portion) where the radius of curvature of the corrugated portion 10 cannot be specified.

第1凹部13の長さは、第1凸部11の長さの150~250%の長さであることが好ましい。 The length of the first concave portion 13 is preferably 150 to 250% of the length of the first convex portion 11 .

第1凸部11、第2凸部12及び第1凹部13のそれぞれは、壁部102aの断面において、応力を波形状部10内で分散して発生させる効果(応力分散効果)が大きい点で、曲線形状の湾曲部を有していることが好ましいが、一方で、第1凹部13の長さを確保する観点から、直線形状の平坦部を有していることも好ましい。
第1凸部11、第2凸部12及び第1凹部13のそれぞれは、湾曲部及び平坦部の両方を有していてもよい。
第1凸部11、第2凸部12及び第1凹部13のそれぞれは、湾曲部及び平坦部をそれぞれ複数、有していてもよい。湾曲部を複数有している場合に、それらの湾曲部の曲線形状は同一であってもよく、異なっていてもよい。
Each of the first protrusions 11, the second protrusions 12, and the first recesses 13 has a large effect (stress dispersion effect) of dispersing and generating stress within the corrugated portion 10 in the cross section of the wall portion 102a. Although it is preferable to have a curvilinear curved portion, it is also preferable to have a linear flat portion from the viewpoint of securing the length of the first recess 13 .
Each of the first convex portion 11, the second convex portion 12 and the first concave portion 13 may have both a curved portion and a flat portion.
Each of the first convex portion 11, the second convex portion 12, and the first concave portion 13 may have a plurality of curved portions and flat portions. When a plurality of curved portions are provided, the curved portions may have the same or different curved shapes.

第2凸部12の凸高さH2は、第1凸部11の凸高さH1の1.2~1.6倍である、ことが好ましい。 The protrusion height H2 of the second protrusion 12 is preferably 1.2 to 1.6 times the protrusion height H1 of the first protrusion 11 .

一実施形態によれば、壁部102aの断面において曲率半径R1,R3,R2を有するよう湾曲した湾曲部11a,12a,13aを有していることが好ましい。このような形態によって、応力分散効果が大きくなる。特に、第1凹部13が湾曲部13aを備えることで、この効果を効果的に高められる。 According to one embodiment, the walls 102a preferably have bends 11a, 12a, 13a curved with radii of curvature R1, R3, R2 in cross-section. Such a configuration enhances the stress distribution effect. In particular, this effect can be effectively enhanced by providing the first concave portion 13 with the curved portion 13a.

湾曲部11aの曲率半径R1は、例えば、壁部102aの断面において、湾曲部11aの両端の間の中点を中心とし、湾曲部11aの長さの所定割合(例えば25%)の長さの半径の仮想円を設定し、この仮想円と湾曲部11aとの2つの交点、及び湾曲部11aの上記中点、の3点を通る円弧の曲率半径として特定できる。曲率半径R2,R3も同じ要領で特定できる。 The radius of curvature R1 of the curved portion 11a is, for example, about the midpoint between both ends of the curved portion 11a in the cross section of the wall portion 102a and the length of a predetermined proportion (eg, 25%) of the length of the curved portion 11a. A virtual circle with a radius is set, and the radius of curvature of an arc passing through three points, ie, the two intersections of this virtual circle and the curved portion 11a and the midpoint of the curved portion 11a, can be specified. Curvature radii R2 and R3 can also be specified in the same way.

これ代えて、湾曲部11aの曲率半径R1は、壁部102aの断面において、湾曲部11aの両端の間の所定位置(例えば、基部から、第1凸部の凸高さの70%の高さ位置)を中心とし、所定長さ(例えば4mm)の半径の仮想円を設定し、この仮想円と湾曲部11aとの2つの交点、及び湾曲部11aの上記中点、の3点を通る円弧の曲率半径として、特定できる。
この場合、曲率半径R2に関しては、仮想円の中心を、例えば、基部から、第1凸部の凸高さの60%の高さ位置とし、曲率半径R3に関しては、例えば、基部から、第2凸部の凸高さの90%の高さ位置として、同じ要領で特定できる。
Instead, the radius of curvature R1 of the curved portion 11a is set at a predetermined position between both ends of the curved portion 11a (for example, from the base to a height of 70% of the height of the first protrusion) in the cross section of the wall portion 102a. A virtual circle with a radius of a predetermined length (for example, 4 mm) is set with the center at the position), and an arc passing through three points: the two intersections of this virtual circle and the curved portion 11a, and the above-mentioned midpoint of the curved portion 11a. can be specified as the radius of curvature of
In this case, regarding the radius of curvature R2, the center of the virtual circle is, for example, a height position that is 60% of the height of the first protrusion from the base. The height position of 90% of the convex height of the convex portion can be specified in the same manner.

第1凹部13が湾曲部11aから構成される場合、第1凹部13の軸方向と平行な方向の長さ(谷幅)は、湾曲部13aの曲率半径R2を半径とする円の周長2π・R2の0.35~0.6倍の長さであることが好ましい。 When the first recessed portion 13 is composed of the curved portion 11a, the length (valley width) of the first recessed portion 13 in the direction parallel to the axial direction is 2π・The length is preferably 0.35 to 0.6 times as long as R2.

壁部102aの断面において、第1凹部13の湾曲部13aの長さは、図3に示すように、第1凸部11の湾曲部11aの長さより長いことが好ましい。これにより、応力分散効果を効果的に大きくすることができる。図3に示す例において、湾曲部13aは、湾曲部11aに対し、追加円弧部13a1の分だけ長くなっている。この形態は、波形状部10が形成される壁部102aの部分の幅(清澄管102の軸方向と平行な方向の長さ)が制限されている場合に、有効である。 In the cross section of the wall portion 102a, the length of the curved portion 13a of the first concave portion 13 is preferably longer than the length of the curved portion 11a of the first convex portion 11, as shown in FIG. Thereby, the stress dispersion effect can be effectively increased. In the example shown in FIG. 3, the curved portion 13a is longer than the curved portion 11a by the additional arc portion 13a1. This form is effective when the width of the portion of the wall portion 102a where the corrugated portion 10 is formed (the length in the direction parallel to the axial direction of the clarification tube 102) is limited.

図4は、波形状部10の別の一例の一部を示す断面図である。図4中の破線は、従来の波形状部の一例を示す。
第1凹部13の湾曲部13aを第1湾曲部13aというとき、一実施形態によれば、第1凹部13は、図4に示すように、壁部102aの断面において、第1湾曲部13aに加え、平坦部13bと、第2湾曲部13cと、をさらに有していることも好ましい。
平坦部13bは、清澄管102の軸方向と平行な方向に直線状に延びる部分である。
第2湾曲部13cは、第1湾曲部13aとの間に平坦部13bを挟むよう位置する部分である。
FIG. 4 is a cross-sectional view showing part of another example of the corrugated portion 10. As shown in FIG. A dashed line in FIG. 4 indicates an example of a conventional corrugated portion.
When the curved portion 13a of the first recessed portion 13 is referred to as the first curved portion 13a, according to one embodiment, the first recessed portion 13, as shown in FIG. In addition, it is preferable to further have a flat portion 13b and a second curved portion 13c.
The flat portion 13 b is a portion that extends linearly in a direction parallel to the axial direction of the clarification tube 102 .
The second curved portion 13c is a portion positioned so as to sandwich the flat portion 13b between itself and the first curved portion 13a.

平坦部13bの軸方向と平行な方向の長さD2は、好ましくは、第1凹部13の長さの20~80%の長さであり、より好ましくは25~50%の長さである。この割合が80%を超えると、3つの凸部11,12が独立してしまい、応力分散効果が大きく低下する場合がある。また、この割合が20%未満であると、第1凹部13の長さを十分に確保し難くなる。D2は、例えば2~6mmである。 The length D2 of the flat portion 13b in the direction parallel to the axial direction is preferably 20 to 80% of the length of the first recess 13, more preferably 25 to 50%. If this ratio exceeds 80%, the three protrusions 11 and 12 may become independent and the stress dispersion effect may be greatly reduced. Moreover, when this ratio is less than 20%, it becomes difficult to sufficiently ensure the length of the first recess 13 . D2 is, for example, 2 to 6 mm.

第1凸部11の湾曲部11aの曲率半径R1は、第1凹部13の湾曲部13aの曲率半径R2と等しい、あるいは、図3及び図4に示すように、当該曲率半径R2より小さい、ことが好ましい。すなわち、R1≦R2であることが好ましい。これにより、応力分散効果が大きくなり、波形状部10内に発生する最大応力の大きさを低減できる。また、壁部102aの幅に関して上述した制限がある場合に、第1凸部11の曲率半径R1をR2より小さくすることで、第1凹部13の長さを確保しやすくなる。 The curvature radius R1 of the curved portion 11a of the first convex portion 11 is equal to the curvature radius R2 of the curved portion 13a of the first concave portion 13, or, as shown in FIGS. 3 and 4, smaller than the curvature radius R2. is preferred. That is, it is preferable that R1≦R2. As a result, the stress dispersing effect is increased, and the magnitude of the maximum stress generated in the corrugated portion 10 can be reduced. Further, when the width of the wall portion 102a is restricted as described above, making the radius of curvature R1 of the first convex portion 11 smaller than R2 makes it easier to secure the length of the first concave portion 13. FIG.

第1凸部11の湾曲部11aの曲率半径R1は、第2凸部12の湾曲部12aの曲率半径R3と等しい、あるいは、当該曲率半径R3より小さい、ことが好ましい。すなわち、R1≦R3であることが好ましい。壁部102aの幅に関して上述した制限がある場合に、第1凹部13の長さを確保するために、R3≧R1を満たすようにすることが有効である。R1は、R3の0.4~1倍の長さであることが好ましい。
壁部102aの幅に関して上述した制限がある場合において、第1凹部13が平坦部13bを備えている場合は、第2凸部12のR3も小さいことが好ましい。
The curvature radius R1 of the curved portion 11a of the first convex portion 11 is preferably equal to or smaller than the curvature radius R3 of the curved portion 12a of the second convex portion 12 . That is, it is preferable that R1≦R3. When the width of the wall portion 102a is restricted as described above, it is effective to satisfy R3≧R1 in order to secure the length of the first concave portion 13. FIG. R1 is preferably 0.4 to 1 times as long as R3.
In the case where the width of the wall portion 102a is restricted as described above, if the first concave portion 13 has the flat portion 13b, it is preferable that the R3 of the second convex portion 12 is also small.

一実施形態によれば、第1凸部11の凸高さH1は、第1凸部11の湾曲部11aの曲率半径R1と、第1凹部13の湾曲部13aの曲率半径R2との合計R1+R2の0.8~1.2倍の高さであることが好ましく、H1=R1+R2であることが特に好ましい。このような関係を満たしていると、応力分散効果が大きくなるように、凸高さH2に対する凸高さH1の大きさを調整しやすくなる。 According to one embodiment, the height H1 of the first protrusion 11 is the sum of the radius of curvature R1 of the curved portion 11a of the first protrusion 11 and the radius of curvature R2 of the curved portion 13a of the first recess 13, R1+R2. is preferably 0.8 to 1.2 times as high, and particularly preferably H1=R1+R2. When such a relationship is satisfied, it becomes easier to adjust the size of the height H1 of the protrusion with respect to the height H2 of the protrusion so as to increase the stress dispersion effect.

上述したように、突状部材として、フランジ102b,102c及び通気管102dが備えられている場合に、波形状部10と、突状部材102b,102c,102dのうち当該波形状部10の最も近くに位置する突状部材102b,102c,102dとの軸方向の間隔は、隣り合う2つの突状部材102b,102c,102dの間隔の10%未満であることが好ましい。波形状部10が、清澄管102に発生した応力が集中しやすい接続部分に近い位置に設けられているほど、接続部分への応力集中を抑制することができ、接続部分における亀裂の発生や疲労の進行を抑えることができる。 As described above, when the flanges 102b, 102c and the vent pipe 102d are provided as projecting members, the corrugated portion 10 and the corrugated portion 10 closest to the projecting members 102b, 102c, 102d is preferably less than 10% of the distance between two adjacent projecting members 102b, 102c, 102d. The corrugated portion 10 is provided at a position closer to the connection portion where the stress generated in the clarification tube 102 tends to concentrate, the more the stress concentration on the connection portion can be suppressed, and the occurrence of cracks and fatigue at the connection portion. progress can be suppressed.

壁部102aは、軸方向の異なる領域に形成された複数の波形状部10を含む、ことが好ましい。清澄管102に発生した応力を吸収する部分が増えるので、接続部分等への応力集中を低減する効果が向上する。 The wall portion 102a preferably includes a plurality of corrugated portions 10 formed in different regions in the axial direction. Since the portion that absorbs the stress generated in the clarification tube 102 increases, the effect of reducing the stress concentration on the connection portion and the like is improved.

図5は、清澄管102を構成する複数の単位管112を示す図である。
清澄管102は、例えば、図5に示すように、軸方向に分割された複数の単位管112が直線状に接続して構成される。この場合、単位管112それぞれに、通気管102d、あるいは、波形状部10のうちの1つ又は2つ、が形成されていることが好ましい。図5では、波形状部10が形成された単位管112を、凹凸の図示を省略している。隣り合う単位管112は溶接により接続される。単位管112同士の接続部分も、清澄管102に内部応力が発生した際に、応力集中が起きやすい。本実施形態の清澄管102では、波形状部10によって清澄管102に発生した応力の一部が吸収されることで、単位管112同士の接続部分での応力集中も抑制される。
FIG. 5 is a diagram showing a plurality of unit tubes 112 that make up the clarification tube 102. As shown in FIG.
For example, as shown in FIG. 5, the clarification tube 102 is configured by linearly connecting a plurality of axially divided unit tubes 112 . In this case, it is preferable that each of the unit pipes 112 is formed with the vent pipe 102d or one or two of the corrugated portions 10 . In FIG. 5 , illustration of unevenness of the unit tube 112 having the corrugated portion 10 is omitted. Adjacent unit pipes 112 are connected by welding. When internal stress is generated in the clarification tube 102, stress concentration is likely to occur at the connecting portion between the unit tubes 112 as well. In the clarification tube 102 of the present embodiment, part of the stress generated in the clarification tube 102 is absorbed by the corrugated portion 10 , thereby suppressing stress concentration at the connecting portion between the unit tubes 112 .

図6は、波形状部の他の一例の一部を示す断面を示す図である。
単位管112のうち、波形状部10が形成された単位管に関して、波形状部10の軸方向の長さは、当該単位管112の軸方向の長さの20%以上であることが好ましい。20%未満であると、波形状部10の単位長さ当たりの応力が大きくなり、波形状部10が破断するリスクが高くなる。この点で、上述の平坦部13bを第2の平坦部というとき、第1平坦部15の長さD1の合計は、図6に示すように、単位管112の軸方向の長さの80%未満であることが好ましい。第1平坦部15は、波形状部10に加えて、波形状部10の両側に位置し、軸方向と平行な方向に延びる部分である。
FIG. 6 is a cross-sectional view showing a part of another example of the corrugated portion.
Of the unit pipes 112 , the axial length of the corrugated portion 10 is preferably 20% or more of the axial length of the unit pipe 112 with respect to the unit pipe formed with the corrugated portion 10 . If it is less than 20%, the stress per unit length of the corrugated portion 10 increases, and the risk of breaking the corrugated portion 10 increases. In this regard, when the flat portion 13b is referred to as the second flat portion, the total length D1 of the first flat portion 15 is 80% of the axial length of the unit tube 112 as shown in FIG. It is preferably less than The first flat portions 15 are portions located on both sides of the corrugated portion 10 in addition to the corrugated portion 10 and extending in a direction parallel to the axial direction.

好ましくは、波形状部10の軸方向の長さは、当該単位管112の軸方向の長さの70%以上である。 Preferably, the axial length of the corrugated portion 10 is 70% or more of the axial length of the unit tube 112 .

図6に示す例において、第1平坦部15の長さD1は、第2凸部12の直径2・R3の0.3~1.2倍であることが好ましい。 In the example shown in FIG. 6, the length D1 of the first flat portion 15 is preferably 0.3 to 1.2 times the diameter 2·R3 of the second convex portion 12 .

波形状部10は、図6に示すように、波形状部10の両端に位置し、第2凸部12と接続したスロープ部14を有していることが好ましい。スロープ部14は、曲率半径R4を有するよう湾曲した湾曲部14aを有していることが好ましい。この場合、湾曲部14aの直径2・R4は、単位管112同士の接続部分の軸方向の長さの0.4~2倍であることが好ましい。スロープ部14は、清澄管102に内部応力が発生するときに波形状部10に最初に力が伝わる部分であるため、湾曲部14aの曲率半径R4が大きいと、入力された力がスロープ部14に集中しやすくなる。 As shown in FIG. 6, the corrugated portion 10 preferably has slope portions 14 positioned at both ends of the corrugated portion 10 and connected to the second convex portions 12 . The slope portion 14 preferably has a curved portion 14a curved to have a radius of curvature R4. In this case, the diameter 2·R4 of the curved portion 14a is preferably 0.4 to 2 times the axial length of the connecting portion between the unit tubes 112 . Since the slope portion 14 is a portion where force is first transmitted to the corrugated portion 10 when internal stress is generated in the clarification tube 102, if the curvature radius R4 of the curved portion 14a is large, the input force will easier to concentrate on.

第2凸部12の曲率半径R3、スロープ部14の曲率半径R4、及び第2凸部12の凸高さH2に関して、R3+R4>n・H2の関係を満たしていることが好ましい。nは、1~3の実数である。さらに、R3とR4の大きさは近いことが好ましく、例えば、R3/R4は、0.9~1.1である。これにより、第2凸部12から第1凸部11に向かって力が伝達される上述した効果が増す。 The curvature radius R3 of the second convex portion 12, the curvature radius R4 of the slope portion 14, and the convex height H2 of the second convex portion 12 preferably satisfy the relationship R3+R4>n·H2. n is a real number of 1-3. Furthermore, it is preferable that the magnitudes of R3 and R4 are close, for example, R3/R4 is between 0.9 and 1.1. As a result, the above-described effect of transmitting force from the second convex portion 12 toward the first convex portion 11 is enhanced.

波形状部10の上述した構成要素の好ましい寸法例を示す。
H1は、9~15mmである。
R1は、4~8mmである。
R2は、5~8mmである。
R3,R4,H2はそれぞれ、4~8mmである。
D1は、15~25mmである。
D2は、2~8mmである。
波形状部10の軸方向の長さは、50~70mmである。
単位管112の軸方向の長さは、90~120mmである。
Examples of preferred dimensions of the above-described components of corrugation 10 are shown.
H1 is 9 to 15 mm.
R1 is 4 to 8 mm.
R2 is 5-8 mm.
R3, R4 and H2 are each 4 to 8 mm.
D1 is between 15 and 25 mm.
D2 is between 2 and 8 mm.
The axial length of the corrugated portion 10 is 50-70 mm.
The axial length of the unit tube 112 is 90-120 mm.

波形状部10を備える単位管112あるいは清澄管102は、例えば、壁部102aに波形状部10が形成されるよう加工されたプレス面を内部に有する液圧成形用金型内に管を配置し、管の内側から液圧を負荷して壁部を変形させるバルジ加工(ハイドロフォーミング)により、あるいは、壁部102aに波形状部10が形成されるよう加工された圧縮成形用型を用いて、圧縮成形により作製される。 The unit tube 112 or clarification tube 102 with corrugations 10 is placed in a hydroforming mold having, for example, a press surface machined therein to form the corrugations 10 on the wall 102a. Then, bulge processing (hydroforming) in which the wall portion is deformed by applying hydraulic pressure from the inside of the pipe, or by using a compression molding die processed so that the corrugated portion 10 is formed in the wall portion 102a. , made by compression molding.

(実験例)
波形状部を種々異ならせた単位管のモデルを用いて、波形状部内の応力分布を算出するためのシミュレーションを行った。シミュレーションでは、軸方向に熱膨張できない条件の下で単位管を清澄温度まで昇温したときに波形状部内に発生する応力の大きさを解析した。解析時に設定した各種パラメータは下記のとおりとした。
・単位管の材質:白金
・単位管の軸方向の長さ(幅):120mm
・単位管の厚さ:1mm
・昇温温度幅:30℃から1650℃まで
以上のパラメータの下、次の5種類のモデルについて、波形状部10内の応力分布を算出した。
(Experimental example)
A simulation was performed to calculate the stress distribution in the corrugated portion using a unit pipe model with various corrugated portions. In the simulation, the magnitude of the stress generated in the corrugated portion was analyzed when the temperature of the unit tube was raised to the fining temperature under the condition that thermal expansion in the axial direction was not possible. Various parameters set at the time of analysis were as follows.
・Material of unit tube: Platinum ・Axial length (width) of unit tube: 120 mm
・Thickness of unit tube: 1 mm
Temperature rise range: from 30° C. to 1650° C. Under the above parameters, the stress distribution in the corrugated portion 10 was calculated for the following five types of models.

(モデル1)図3に示される波形状部10であって、上述した好ましい寸法例を満たす波形状部10を有する単位管112を使用した。D1=20mmに設定した。
(モデル2)モデル1において、第1凸部と対応する部分が図3の破線で示される形態の波形状部(従来例)を有する単位管を使用した。
(モデル3)モデル1において、第1凹部と対応する部分の長さを第1凸部の長さと等しくした波形状部(比較例1)を有する単位管を使用した。
(モデル4)モデル1において、第1凸部と対応する部分の凸高さを第2凸部の凸高さと等しくした波形状部(比較例2)を有する単位管を使用した。
(モデル5)図4に示される波形状部10であって、上述した好ましい寸法例を満たす波形状部10を有する単位管112を使用した。
(Model 1) A unit tube 112 having the corrugated portion 10 shown in FIG. 3 and having the corrugated portion 10 satisfying the preferred example of dimensions described above was used. D1 was set to 20 mm.
(Model 2) In model 1, a unit tube was used in which a corrugated portion (conventional example) of the form indicated by the broken line in FIG. 3 was used in the portion corresponding to the first convex portion.
(Model 3) In Model 1, a unit tube was used that had a corrugated portion (Comparative Example 1) in which the length of the portion corresponding to the first concave portion was equal to the length of the first convex portion.
(Model 4) In Model 1, a unit tube was used that had a corrugated portion (Comparative Example 2) in which the height of the portion corresponding to the first convex portion was equal to the height of the second convex portion.
(Model 5) A unit tube 112 having the corrugated portion 10 shown in FIG. 4 and having the corrugated portion 10 satisfying the above-described preferred example of dimensions was used.

算出された応力分布から、単位管の軸方向の両端、第2凸部、第1凹部、第1凸部の計7箇所それぞれにおける平均応力値の中で最大値となる平均応力値(最大応力値)を、モデル間で比較し、応力分散効果の大きさを評価した。 From the calculated stress distribution, the maximum average stress value (maximum stress values) were compared between the models to assess the magnitude of the stress dispersion effect.

比較の結果、モデル1の最大応力値は、図7及び図8に示したように、モデル2(従来例)の最大応力値より小さく、モデル1はモデル2と比べ応力分散効果が大きいことがわかった。図7(a)及び図8(a)は、モデル2の波形状部における応力分布のシミュレーション結果を示す図であり、図7(b)及び図8(b)は、モデル1の波形状部における応力分布のシミュレーション結果を示す図である。図7及び図8は、同じシミュレーション結果を示す図であり、図8は、図7においてカラースケールで示した(図面においてモノクロで表れる)応力分布をグレースケールに変換して示した図である。図7及び図8の左端にある、応力値を上下方向に段階的に示したバーは、上側であるほど応力値が高いことを示す。図7のバーが示す色は、下端の濃い青色から、水色、緑色、黄色を順に経て、上端の赤色までの間で変化している。図7において、波形状部のうち、凹部以外の部分の応力値は、モデル1,2共に濃い青色から緑色の間の色を示しているが、凹部では、モデル2では赤色を示す部分があるのに対し、モデル1では赤色を示す部分はない。
また、モデル5の最大応力値は、モデル2(従来例)の最大応力値より小さく、モデル5はモデル2と比べ応力分散効果が大きいことがわかった。
As a result of the comparison, the maximum stress value of model 1 is smaller than the maximum stress value of model 2 (conventional example), as shown in FIGS. all right. 7(a) and 8(a) are diagrams showing simulation results of the stress distribution in the corrugated portion of model 2, and FIGS. 7(b) and 8(b) are diagrams showing the corrugated portion of model 1 It is a figure which shows the simulation result of the stress distribution in. 7 and 8 are diagrams showing the same simulation results, and FIG. 8 is a diagram showing the stress distribution shown in color scale in FIG. 7 (shown in monochrome in the drawing) converted to gray scale. The bars at the left ends of FIGS. 7 and 8 showing the stress values stepwise in the vertical direction indicate that the higher the bar, the higher the stress value. The colors indicated by the bars in FIG. 7 change from dark blue at the bottom, through light blue, green, and yellow in order, to red at the top. In FIG. 7, the stress values of the corrugated portions other than the recesses show a color between dark blue and green in both Models 1 and 2, but in the recesses, Model 2 has a portion showing red. In contrast, model 1 does not have a red portion.
Moreover, it was found that the maximum stress value of model 5 is smaller than the maximum stress value of model 2 (conventional example), and that model 5 has a greater stress dispersion effect than model 2.

モデル3(比較例1)の最大応力値に対して、モデル1,5の最大応力値は小さく、第1凹部の長さが第1凸部の長さより長いことで、応力分散効果が向上することがわかった。
モデル4(比較例2)の最大応力値に対して、モデル1,5の最大応力値は小さく、第1凸部の凸高さが第2凸部の凸高さより高いことで、応力分散効果が向上することがわかった。
なお、モデル3及びモデル4の最大応力値は、モデル2の最大応力値より小さかった。
The maximum stress values of Models 1 and 5 are smaller than the maximum stress value of Model 3 (Comparative Example 1), and the length of the first concave portion is longer than the length of the first convex portion, thereby improving the stress dispersion effect. I understood it.
Compared to the maximum stress value of model 4 (comparative example 2), the maximum stress values of models 1 and 5 are smaller, and the height of the first convex portion is higher than the height of the second convex portion, so that the stress dispersion effect was found to improve.
Note that the maximum stress values of model 3 and model 4 were smaller than the maximum stress value of model 2.

以上、本発明のガラス基板製造装置及び管部材について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 Although the glass substrate manufacturing apparatus and tube member of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.

上記実施形態では、波形状部の凸部は径方向外周側に凸となり、凹部は径方向内周側に凹となる場合について説明したが、波形状部は、これとは反対に、凸部は径方向内周側に凸となり、凹部は径方向外周側に凹となる形態を有していてもよい。この形態では、凸部は、壁部102aの基部に対して、清澄管102の内側に向かって凸となり、凹部の最大深さ位置は、例えば、壁部102aの基部と同じ高さ位置に位置する。このような形態の波形状部10によっても、応力分散効果が向上することが確認されている。 In the above embodiment, the convex portion of the corrugated portion is convex radially outward, and the concave portion is concave radially inward. may be convex radially inward, and the recessed portion may be concave radially outward. In this form, the convex portion is convex toward the inside of the clarification tube 102 with respect to the base of the wall portion 102a, and the maximum depth position of the concave portion is, for example, located at the same height as the base of the wall portion 102a. do. It has been confirmed that the corrugated portion 10 having such a configuration also improves the stress dispersion effect.

10 波形状部
11 第1凸部
11a 湾曲部
12 第2凸部
12a 湾曲部
13 第1凹部
13a,13c 湾曲部
13a1 追加円弧部
13b,15 平坦部
100 熔解装置
101 熔解槽
102 清澄管
102a 壁部
102b,102c フランジ(突状部材)
102d 通気管(突状部材)
102e 平坦部(基部)
103 撹拌槽
103a スターラ
104、105 移送管
106 ガラス供給管
110 支持体
112 単位管
200 成形装置
300 切断装置
MG 熔融ガラス
SG シートガラス
10 Corrugated portion 11 First convex portion 11a Curved portion 12 Second convex portion 12a Curved portion 13 First concave portions 13a, 13c Curved portion 13a1 Additional arc portions 13b, 15 Flat portion 100 Melting device 101 Melting tank 102 Clarifying tube 102a Wall portion 102b, 102c flange (protruding member)
102d Vent pipe (projecting member)
102e Flat part (base part)
103 Agitation tank 103a Stirrers 104, 105 Transfer pipe 106 Glass supply pipe 110 Support 112 Unit pipe 200 Forming device 300 Cutting device MG Glass melt SG Sheet glass

Claims (13)

白金族金属を含む材料からなる管部材であって、軸方向に延びる周状の壁部を有する管部材を備え、
前記壁部は、前記軸方向の一部の領域に、前記軸方向に交互に並び周方向に連続するよう形成された前記壁部の径方向の凹凸を有する少なくとも1つの波形状部を含み、
前記波形状部のうち径方向に凸となる凸部は、凸高さが最も高い第1凸部と、前記第1凸部に対し前記軸方向の両側に配置された一対の第2凸部と、を有し、
前記波形状部のうち径方向に凹となる凹部は、前記第1凸部と前記第2凸部の間に位置する一対の第1凹部を有し、
前記軸方向及び前記径方向に延在する平面に沿った前記壁部の断面において、前記第1凹部それぞれの長さは前記第1凸部の長さより長い、ことを特徴とするガラス基板製造装置。
A tubular member made of a material containing a platinum group metal, the tubular member having an axially extending circumferential wall,
the wall portion includes at least one corrugated portion having undulations in the radial direction of the wall portion formed alternately in the axial direction and continuous in the circumferential direction in a partial region in the axial direction;
Among the wave-shaped portions, the convex portions protruding in the radial direction include a first convex portion having the highest convex height and a pair of second convex portions arranged on both sides of the first convex portion in the axial direction. and
The concave portion that is concave in the radial direction of the wave-shaped portion has a pair of first concave portions positioned between the first convex portion and the second convex portion,
A glass substrate manufacturing apparatus, wherein the length of each of the first concave portions is longer than the length of the first convex portions in a cross section of the wall portion along a plane extending in the axial direction and the radial direction. .
前記凸部及び前記凹部それぞれは、前記断面において曲率半径を有するよう湾曲した湾曲部を有している、請求項1に記載のガラス基板製造装置。 2. The glass substrate manufacturing apparatus according to claim 1, wherein each of said convex portion and said concave portion has a curved portion having a radius of curvature in said cross section. 前記断面において、前記第1凹部の前記湾曲部の長さは、前記第1凸部の前記湾曲部の長さより長い、請求項2に記載のガラス基板製造装置。 3. The glass substrate manufacturing apparatus according to claim 2, wherein in the cross section, the length of the curved portion of the first concave portion is longer than the length of the curved portion of the first convex portion. 前記湾曲部を第1湾曲部というとき、前記第1凹部は、前記断面において、
前記軸方向と平行な方向に直線状に延びる平坦部と、
前記第1湾曲部との間に前記平坦部を挟むよう位置する第2湾曲部と、を有し、
前記断面において、前記湾曲部及び前記平坦部の合計の長さは、前記第1凸部の前記湾曲部の長さより長い、請求項2または3に記載のガラス基板製造装置。
When the curved portion is referred to as the first curved portion, the first concave portion has, in the cross section,
a flat portion linearly extending in a direction parallel to the axial direction;
a second curved portion positioned to sandwich the flat portion between the first curved portion;
4. The glass substrate manufacturing apparatus according to claim 2, wherein the total length of said curved portion and said flat portion in said cross section is longer than the length of said curved portion of said first convex portion.
前記第1凸部の前記湾曲部の曲率半径R1は、前記第1凹部の前記湾曲部の曲率半径R2と等しい、あるいは、当該曲率半径R2より小さい、請求項2から4のいずれか1項に記載のガラス基板製造装置。 5. Any one of claims 2 to 4, wherein the curvature radius R1 of the curved portion of the first convex portion is equal to or smaller than the curvature radius R2 of the curved portion of the first concave portion. The glass substrate manufacturing apparatus described. 前記第1凸部の前記湾曲部の曲率半径R1は、前記第2凸部の前記湾曲部の曲率半径R3と等しい、あるいは、当該曲率半径R3より小さい、請求項2から5のいずれか1項に記載のガラス基板製造装置。 6. Any one of claims 2 to 5, wherein the curvature radius R1 of the curved portion of the first convex portion is equal to or smaller than the curvature radius R3 of the curved portion of the second convex portion. The glass substrate manufacturing apparatus according to 1. 前記第2凸部の凸高さH2は、前記第1凸部の凸高さH1の1.2~1.6倍である、請求項1から6のいずれか1項に記載のガラス基板製造装置。 The glass substrate manufacturing method according to any one of claims 1 to 6, wherein the protrusion height H2 of the second protrusion is 1.2 to 1.6 times the protrusion height H1 of the first protrusion. Device. 前記管部材は、前記壁部の内側において熔融ガラスを処理し、
前記壁部から外周側に延びるよう前記壁部に接続され、前記処理の際に機能する少なくとも1つの突状部材と、
前記壁部を支持し、前記突状部材を前記軸方向の両側から挟むよう前記管部材の周りに配置された支持体と、をさらに備える、請求項1から7のいずれか1項に記載のガラス基板製造装置。
The tube member processes molten glass inside the wall,
at least one projecting member connected to the wall so as to extend outwardly from the wall and functioning during the treatment;
8. The support according to any one of claims 1 to 7, further comprising a support that supports the wall and is arranged around the tubular member so as to sandwich the projecting member from both sides in the axial direction. Glass substrate manufacturing equipment.
前記突状部材は複数、備えられ、
前記波形状部と、前記突状部材のうち当該波形状部の最も近くに位置する突状部材との前記軸方向の間隔は、前記隣り合う2つの突状部材の間隔の10%未満である、請求項8に記載のガラス基板製造装置。
A plurality of the projecting members are provided,
The axial distance between the corrugated portion and the projecting member positioned closest to the corrugated portion among the projecting members is less than 10% of the distance between the two adjacent projecting members. 9. The apparatus for manufacturing a glass substrate according to claim 8.
前記壁部は、前記軸方向の異なる領域に形成された複数の前記波形状部を含む、請求項1から9のいずれか1項に記載のガラス基板製造装置。 The glass substrate manufacturing apparatus according to any one of claims 1 to 9, wherein the wall portion includes a plurality of the corrugated portions formed in different regions in the axial direction. 前記管部材は、軸方向に分割された複数の単位管が接続されてなり、
前記単位管それぞれに、前記突状部材のうちの1つ、あるいは、前記波形状部のうちの1つ又は2つが形成されている、請求項8又は9に記載のガラス基板製造装置。
The pipe member is formed by connecting a plurality of axially divided unit pipes,
10. The glass substrate manufacturing apparatus according to claim 8, wherein one of said protruding members or one or two of said corrugated portions is formed in each of said unit tubes.
前記単位管のうち、前記波形状部が形成された単位管に関して、前記波形状部の前記軸方向の長さは、当該単位管の前記軸方向の長さの20%以上である、請求項11に記載のガラス基板製造装置。 3. With respect to a unit tube in which the corrugated portion is formed, the length of the corrugated portion in the axial direction is 20% or more of the length of the unit pipe in the axial direction. 12. The glass substrate manufacturing apparatus according to 11. 白金族金属を含む材料からなり、軸方向に延びる周状の壁部を有する管部材であって、
前記壁部は、前記軸方向の一部の領域に、前記軸方向に交互に並び周方向に連続するよう形成された前記壁部の径方向の凹凸を有する少なくとも1つの波形状部を含み、
前記波形状部のうち径方向に凸となる凸部は、凸高さが最も高い第1凸部と、前記第1凸部に対し前記軸方向の両側に配置され、前記第1凸部より凸高さが低い一対の第2凸部と、を有し、
前記波形状部のうち径方向に凹となる凹部は、前記第1凸部と前記第2凸部の間に位置する一対の第1凹部を有し、
前記軸方向及び前記径方向に延在する平面に沿った前記壁部の断面において、前記第1凹部それぞれの長さは前記第1凸部の長さより長い、ことを特徴とする管部材。
A tubular member made of a material containing a platinum group metal and having an axially extending circumferential wall,
the wall portion includes at least one corrugated portion having undulations in the radial direction of the wall portion formed alternately in the axial direction and continuous in the circumferential direction in a partial region in the axial direction;
Among the wave-shaped portions, the convex portions that are convex in the radial direction are arranged on both sides of the first convex portion in the axial direction with respect to the first convex portion having the highest convex height, and are arranged from the first convex portion. a pair of second protrusions with a low protrusion height,
The concave portion that is concave in the radial direction of the wave-shaped portion has a pair of first concave portions positioned between the first convex portion and the second convex portion,
A tubular member, wherein the length of each of the first recesses is longer than the length of the first protrusions in a cross-section of the wall along planes extending in the axial direction and the radial direction.
JP2022035521A 2021-03-31 2022-03-08 Glass substrate manufacturing equipment and tube members Active JP7320097B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021059455 2021-03-31
JP2021059455 2021-03-31

Publications (2)

Publication Number Publication Date
JP2022158980A true JP2022158980A (en) 2022-10-17
JP7320097B2 JP7320097B2 (en) 2023-08-02

Family

ID=83595797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022035521A Active JP7320097B2 (en) 2021-03-31 2022-03-08 Glass substrate manufacturing equipment and tube members

Country Status (3)

Country Link
JP (1) JP7320097B2 (en)
KR (1) KR20220136218A (en)
TW (1) TWI806522B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087826A (en) * 2000-06-29 2002-03-27 Corning Inc Tube apparatus for vacuum clarification
JP2002205123A (en) * 2000-10-19 2002-07-23 Omg Ag & Co Kg Method for manufacturing tubular structural part manufactured of pgm material and having radially undulating annular curved portion
WO2004070251A1 (en) * 2003-02-04 2004-08-19 Asahi Glass Company, Limited Conduit for molten glass, connection conduit for molten glass, and degassing device with reduced pressure
JP2006206439A (en) * 2003-02-04 2006-08-10 Asahi Glass Co Ltd Conduit for molten glass, connecting conduit for molten glass and vacuum degassing apparatus
JP2006315894A (en) * 2005-05-11 2006-11-24 Asahi Glass Co Ltd Glass production apparatus and components of the same
JP2009120430A (en) * 2007-11-13 2009-06-04 Furuya Kinzoku:Kk Expansive pipe
WO2013011927A1 (en) * 2011-07-21 2013-01-24 旭硝子株式会社 Molten glass conveying equipment element, method for producing molten glass conveying equipment element, and glass manufacturing apparatus
WO2014073594A1 (en) * 2012-11-12 2014-05-15 旭硝子株式会社 Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100467409C (en) * 2002-12-27 2009-03-11 旭硝子株式会社 Conduit for molten glass, molten glass degassing method and molten glass degassing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087826A (en) * 2000-06-29 2002-03-27 Corning Inc Tube apparatus for vacuum clarification
JP2002205123A (en) * 2000-10-19 2002-07-23 Omg Ag & Co Kg Method for manufacturing tubular structural part manufactured of pgm material and having radially undulating annular curved portion
WO2004070251A1 (en) * 2003-02-04 2004-08-19 Asahi Glass Company, Limited Conduit for molten glass, connection conduit for molten glass, and degassing device with reduced pressure
JP2006206439A (en) * 2003-02-04 2006-08-10 Asahi Glass Co Ltd Conduit for molten glass, connecting conduit for molten glass and vacuum degassing apparatus
JP2006315894A (en) * 2005-05-11 2006-11-24 Asahi Glass Co Ltd Glass production apparatus and components of the same
JP2009120430A (en) * 2007-11-13 2009-06-04 Furuya Kinzoku:Kk Expansive pipe
WO2013011927A1 (en) * 2011-07-21 2013-01-24 旭硝子株式会社 Molten glass conveying equipment element, method for producing molten glass conveying equipment element, and glass manufacturing apparatus
WO2014073594A1 (en) * 2012-11-12 2014-05-15 旭硝子株式会社 Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product

Also Published As

Publication number Publication date
TWI806522B (en) 2023-06-21
JP7320097B2 (en) 2023-08-02
TW202244019A (en) 2022-11-16
KR20220136218A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
TWI718154B (en) Apparatus and method for conditioning molten glass
US10633274B2 (en) Apparatus and method for heating a metallic vessel
WO2012132368A1 (en) Production method for glass sheet and glass sheet production device
US20130279532A1 (en) Energy efficient high-temperature refining
JP2019163205A (en) Glass manufacturing apparatus and method
US20200095151A1 (en) Apparatus and method for heating a metallic vessel
CN110291048B (en) Glass manufacturing method and method for preheating glass supply pipe
CN113727949A (en) Glass transfer device
WO2004060820A1 (en) Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
JP5730259B2 (en) Glass manufacturing apparatus and glass manufacturing method
JP7320097B2 (en) Glass substrate manufacturing equipment and tube members
WO2020129528A1 (en) Method for manufacturing glass article
CN113677634B (en) Glass transfer device
CN219342012U (en) Apparatus for manufacturing glass plate
JP2017065961A (en) Glass conduit and manufacturing method of glass substrate
JP7505174B2 (en) Apparatus and method for manufacturing glass articles
JP2017014059A (en) Molten glass supply apparatus, production apparatus of glass sheet, and production methods of glass sheet
JP2019099418A (en) Method of manufacturing glass article
JP7375454B2 (en) Glass article manufacturing equipment and manufacturing method
WO2023234083A1 (en) Glass article manufacturing apparatus and glass article manufacturing method
WO2023100688A1 (en) Glass article manufacturing method
JP2016033099A (en) Method for manufacturing glass plate, and agitator
JP7255337B2 (en) Glass plate manufacturing equipment
WO2023042610A1 (en) Glass article manufacturing device and glass article manufacturing method
JP4455844B2 (en) Glass manufacturing apparatus, glass melting container protective member, and glass manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230721

R150 Certificate of patent or registration of utility model

Ref document number: 7320097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150