JP2022158136A - 排ガス浄化フィルタ - Google Patents

排ガス浄化フィルタ Download PDF

Info

Publication number
JP2022158136A
JP2022158136A JP2021062835A JP2021062835A JP2022158136A JP 2022158136 A JP2022158136 A JP 2022158136A JP 2021062835 A JP2021062835 A JP 2021062835A JP 2021062835 A JP2021062835 A JP 2021062835A JP 2022158136 A JP2022158136 A JP 2022158136A
Authority
JP
Japan
Prior art keywords
cell
inflow
outflow
exhaust gas
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021062835A
Other languages
English (en)
Inventor
幹男 石原
Mikio Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2021062835A priority Critical patent/JP2022158136A/ja
Publication of JP2022158136A publication Critical patent/JP2022158136A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

【課題】初期およびモード走行時のPN捕集率を高めることができ、PMおよび灰分の堆積後における圧損上昇を抑制することができ、強度低下を抑制することができる排ガス浄化フィルタを提供する。【解決手段】排ガス浄化フィルタ1は、第1セル21と第2セル22とが交互に配列され、かつ、第1セル21の流路断面積<第2セル22の流路断面積の関係を満たすセル構造20を有するハニカム構造体2と、流入側栓部31と、流出側栓部32とを有する。排ガス浄化フィルタ1は、中央部11と、外周部12と、境界部13とを有する。中央部11は、第1セル21を用いた複数の第1流入セル21inと、第2セル22を用いた複数の第2流出セル22outとを有する。外周部12は、第2セル22を用いた複数の第2流入セル22inと、第1セル21を用いた複数の第1流出セル21outとを有する。【選択図】図1

Description

本発明は、排ガス浄化フィルタに関する。
ガソリンエンジン、ディーゼルエンジン等の内燃機関等から排出される排ガス中には、パティキュレートと呼ばれる粒子状物質(以下、適宜「PM」ということがある。)が含まれる。この排ガス中のPMを捕集して排ガスの浄化を行うため、内燃機関等の排気通路には排ガス浄化フィルタが配置される。排ガス浄化フィルタは、一般に、断面四角形状の複数のセルが多孔質のセル壁を挟んで格子状に配列された一様なセル構造を有するハニカム構造体と、ハニカム構造体における排ガスを流入させる側の流入端面および排ガスを流出させる側の流出端面においてセル端部を交互に閉塞する栓部と、を有している。
他にも、流路断面積が異なる複数のセルがセル壁を挟んで配列されたセル構造を有するハニカム構造体を用いた排ガス浄化フィルタも提案されている。この種の排ガス浄化フィルタとしては、例えば、特許文献1に記載される排ガス浄化フィルタが知られている。この排ガス浄化フィルタは、中心軸を含む中心側領域と、中心側領域の外周側に配された外周側領域とを有している。この排ガス浄化フィルタでは、中心側領域および外周側領域のそれぞれにおいて、流入セル孔の流路断面積よりも流出セル孔の流路断面積の方が大きい。また、中心側領域における流入セル孔の流路断面積は、外周側領域における流入セル孔の流路断面積よりも小さい。また、中心側領域におけるセル壁は、外周側領域におけるセル壁よりも厚い。
特開2016-187804号公報
従来、PMの規制は、PM重量による規制がなされてきた。しかしながら、近年では、さらなる環境負荷低減等の観点から、PM粒子数による規制が導入されている。このPM粒子数規制は、将来的に強化されることが予想される。そのため、排ガス浄化フィルタには、PM粒子数で見たPM捕集率(以下、これを「PN捕集率」という)を向上させることが求められている。
ガソリンエンジンを有する車両(以下、「ガソリン車両」)等において、PN捕集率を向上させるためには、走行0kmの初期においてPN捕集率が高いことが重要である。さらに、モード走行時のPN捕集率は、少量のPMが排ガス浄化フィルタに堆積された後に計測されるため、走行0kmから短距離走行したことによるPM堆積後のPN捕集率を向上させることも重要となる。しかしながら、PN捕集率と圧力損失(以下、適宜「圧損」という。)とは、トレードオフの関係にあるため、PN捕集率を高めようとすると圧損が大きくなる。さらに、PM中には、固体状炭素(スート)の他、エンジンオイル由来等の灰分(Ash)が含まれる。この灰分は、PMの再生処理後も残る。そのため、特に、PM堆積後や灰分の堆積後における圧損上昇を抑制する必要がある。
ところで、上述した特許文献1の技術によれば、中心側領域における流入セルに流入する排ガスの圧力が高まり、排ガスを流出させる流出端面側のセル壁に排ガスが集中して流れることが抑制されるため、初期およびモード走行時のPN捕集率の向上が期待される。また、特許文献1では、外周側領域によって初期の圧損が低減するとされている。しかしながら、特許文献1には、PMの堆積後や灰分の堆積後における圧損上昇を抑制しようとする技術思想は全く記載されていない。また、特許文献1の技術では、外周側領域におけるセル壁を中心側領域におけるセル壁よりも薄くする必要がある。そのため、特許文献1の技術では、排ガス浄化フィルタの強度が低下する。
本発明は、かかる課題に鑑みてなされたものであり、初期およびモード走行時のPN捕集率を高めることができ、PMおよび灰分の堆積後における圧損上昇を抑制することができ、強度低下を抑制することができる排ガス浄化フィルタを提供しようとするものである。
本発明の一態様は、第1セル(21)と第2セル(22)とが多孔質のセル壁(23)を挟んで交互に配列されており、かつ、上記第1セルの流路断面積<上記第2セルの流路断面積の関係を満たすセル構造(20)を有するハニカム構造体(2)と、
上記ハニカム構造体における排ガス(G)を流入させる側の流入端面(201)において、上記第1セルの一部および上記第2セルの一部のセル端部を閉塞する流入側栓部(31)と、
上記ハニカム構造体における上記排ガスを流出させる側の流出端面(202)において、上記第1セルの一部および上記第2セルの一部のセル端部を閉塞する流出側栓部(32)と、
を有する排ガス浄化フィルタ(1)であって、
中心軸(O)を含む中央部(11)と、上記中央部の外周側に配された外周部(12)と、上記中央部と上記外周部との間に挟まれた境界部(13)とを有しており、
上記中央部は、
上記流路断面積が小さい上記第1セルにおける上記流入端面側のセル端部が開放されるとともに、上記流出端面側のセル端部が上記流出側栓部により閉塞された複数の第1流入セル(21in)と、
上記流路断面積が大きい上記第2セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに、上記流出端面側のセル端部が開放された複数の第2流出セル(22out)と、を有しており、
上記外周部は、
上記流路断面積が大きい上記第2セルにおける上記流入端面側のセル端部が開放されるとともに、上記流出端面側のセル端部が上記流出側栓部により閉塞された複数の第2流入セル(22in)と、
上記流路断面積が小さい上記第1セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに、上記流出端面側のセル端部が開放された複数の第1流出セル(21out)と、を有している、
排ガス浄化フィルタ(1)にある。
上記排ガス浄化フィルタは、上記構成を有している。そのため、上記排ガス浄化フィルタは、初期およびモード走行時のPN捕集率を高めることができ、PMおよび灰分の堆積後における圧損上昇を抑制することができ、強度低下を抑制することができる。
なお、特許請求の範囲および課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
図1は、実施形態1の排ガス浄化フィルタを流入端面側から見た説明図である。 図2は、図1に示される境界部の周辺を拡大して示した説明図である。 図3は、図2に示したIII-III線断面を拡大して模式的に示した説明図である。 図4は、変形例の境界部を有する実施形態1の排ガス浄化フィルタを流入端面側から見た説明図である。 図5は、図4に示される境界部の周辺を拡大して示した説明図である。 図6は、他の変形例の境界部を有する実施形態1の排ガス浄化フィルタを流入端面側から見た説明図である。 図7は、図6に示される境界部の周辺を拡大して示した説明図である。 図8は、セル壁の厚みおよびセルピッチの測定位置について説明するための説明図であり、(a)は中央部におけるセル壁、セルピッチの測定位置を、(b)は外周部におけるセル壁、セルピッチの測定位置を模式的に示した説明図である。 図9は、実施形態2の排ガス浄化フィルタを流入端面側から見た場合における、境界部の周辺を拡大して示した説明図である。 図10は、図9に示したX-X線断面を拡大して模式的に示した説明図である。 図11は、実施形態3の排ガス浄化フィルタを流入端面側から見た場合における、境界部の周辺を拡大して示した説明図である。 図12は、変形例の境界部を有する実施形態3の排ガス浄化フィルタを流入端面側から見た場合における、境界部の周辺を拡大して示した説明図である。 図13は、他の変形例の境界部を有する実施形態3の排ガス浄化フィルタを流入端面側から見た場合における、境界部の周辺を拡大して示した説明図である。 図14は、実施形態4の排ガス浄化フィルタにおける図3に対応させた断面を拡大して模式的に示した説明図である。
本実施形態の排ガス浄化フィルタは、第1セルと第2セルとが多孔質のセル壁を挟んで交互に配列されており、かつ、上記第1セルの流路断面積<上記第2セルの流路断面積の関係を満たすセル構造を有するハニカム構造体と、
上記ハニカム構造体における排ガスを流入させる側の流入端面において、上記第1セルの一部および上記第2セルの一部のセル端部を閉塞する流入側栓部と、
上記ハニカム構造体における上記排ガスを流出させる側の流出端面において、上記第1セルの一部および上記第2セルの一部のセル端部を閉塞する流出側栓部と、
を有している。
本実施形態の排ガス浄化フィルタは、
中心軸を含む中央部と、上記中央部の外周側に配された外周部と、上記中央部と上記外周部との間に挟まれた境界部とを有している。
本実施形態の排ガス浄化フィルタにおいて、
上記中央部は、
上記流路断面積が小さい上記第1セルにおける上記流入端面側のセル端部が開放されるとともに、上記流出端面側のセル端部が上記流出側栓部により閉塞された複数の第1流入セルと、
上記流路断面積が大きい上記第2セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに、上記流出端面側のセル端部が開放された複数の第2流出セルと、を有しており、
上記外周部は、
上記流路断面積が大きい上記第2セルにおける上記流入端面側のセル端部が開放されるとともに、上記流出端面側のセル端部が上記流出側栓部により閉塞された複数の第2流入セルと、
上記流路断面積が小さい上記第1セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに、上記流出端面側のセル端部が開放された複数の第1流出セルと、を有している。
本実施形態の排ガス浄化フィルタは、上記構成を有している。本実施形態の排ガス浄化フィルタでは、排ガスの流速が外周部に比べて大きくなる中央部において、第1流入セルが、第2セルに比べて流路断面積が小さい第1セルを用いて構成されている。そのため、第1流入セル内において排ガスの圧力が高まり、流出端面側のセル壁に排ガスが集中して流れ難くなり、流入端面側のセル壁にも排ガスが流れる。それ故、本実施形態の排ガス浄化フィルタは、一様なセル構造を有する場合に比べ、流出端面側のセル壁に流入する排ガスの流速を遅くすることができ、初期およびモード走行時のPN捕集率を高めることができる。
また、本実施形態の排ガス浄化フィルタにおいて、外周部の第2流入セルは、第1セルに比べて流路断面積が大きい第2セルを用いて構成されている。つまり、上述した中央部では、第1セルに比べて流路断面積が大きい第2セルを用いて第2流出セルが構成されているが、外周部では、その流路断面積が大きい第2セルを用いて第2流入セルが構成されている。そのため、本実施形態の排ガス浄化フィルタは、一様なセル構造を有する場合や、外周側領域において第1セルを用いて流入セルを構成した場合や、外周側領域においてセル壁を薄くし、流路断面積を僅かに大きく形成した第1セルを用いて流入セルを構成した場合に比べ、外周部における第2流入セルの流路断面積を大幅に大きくすることができる。それ故、本実施形態の排ガス浄化フィルタは、初期のみならず、中央部の第1流入セルにPMや灰分が堆積した後であっても、外周部の第2流入セルに排ガスが流れることにより、圧損上昇を抑制することができる。また、本実施形態の排ガス浄化フィルタは、中央部の第1流入セルにPMや灰分が堆積した後は、第1流入セルに比べてセル壁面積が大きい外周部の第2流入セルにてPMを捕集することができる。そのため、本実施形態の排ガス浄化フィルタは、一様なセル構造を有する場合や、外周側領域において第1セルを用いて流入セルを構成した場合や、外周側領域においてセル壁を薄くして流路断面積を僅かに大きくした第1セルを用いて流入セルを構成した場合に比べ、PM濾過面積を向上させることができる。
また、本実施形態の排ガス浄化フィルタは、高PN捕集率、圧損低減の効果を得るために外周部におけるセル壁を中心部におけるセル壁よりも薄くする必要がない。そのため、本実施形態の排ガス浄化フィルタは、外周側領域のセル壁を薄くする場合に比べ、強度(アイソスタティック強度)の低下を抑制することができる。
以下、本実施形態の排ガス浄化フィルタについて、図面を用いて詳細に説明する。なお、本実施形態の排ガス浄化フィルタは、以下の例示によって限定されるものではない。
(実施形態1)
実施形態1の排ガス浄化フィルタについて、図1~図8を用いて説明する。実施形態1の排ガス浄化フィルタ1は、図3に例示されるように、排ガスG中の粒子状物質(PM)を捕集するためのフィルタである。具体的には、排ガス浄化フィルタ1は、ガソリンエンジンから排出されるPMを捕集可能なガソリンパティキュレートフィルタ(GPF)とすることができる。
排ガス浄化フィルタ1は、図1~図3に示されるように、ハニカム構造体2と、ハニカム構造体2における排ガスGを流入させる側の流入端面201に設けられた流入側栓部31と、ハニカム構造体2における排ガスGを流出させる側の流出端面202に設けられた流出側栓部32と、を有している。図3中に示されるZ軸方向を排ガス浄化フィルタ1、ハニカム構造体2の軸方向とする。なお、ハニカム構造体2の中心軸Oは、排ガス浄化フィルタ1の中心軸Oと一致している。また、図1~図3に示されるZ軸方向に垂直な方向をX軸方向、Z軸方向およびX軸方向に垂直な方向をY軸方向とする。なお、図3におけるハニカム構造体2の外径および軸方向の長さは、実際の大きさの比を正確に表したものではない(以下同様である。)。
ハニカム構造体2は、第1セル21と第2セル22とがセル壁23を挟んで交互に配列されたセル構造20を有している。図1に例示されるセル構造20では、排ガス浄化フィルタ1の軸方向であるZ軸方向から見て、複数の第1セル21と複数の第2セル22とが、互いに直交する二つの方向であるX軸方向とY軸方向とに配列されている。そして、第1セル21と第2セル22とは、X軸方向においてもY軸方向においても、セル壁23を挟んで交互に配列されている。セル壁23は、多孔質に形成されており、セル壁23の内部には、隣り合う第1セル21と第2セル22とを連通させる細孔(不図示)が形成されている。
第1セル21および第2セル22は、図3に例示されるように、流入端面201から流出端面202までにわたってZ軸方向に沿って延びている。第1セル21および第2セル22は、周囲がセル壁23により囲まれてガス流路を形成している。第1セル21および第2セル22は、ハニカム構造体2のZ軸方向に垂直な断面で見て、流路断面積が一定となるように形成されている。第1セル21の流路断面積と第2セル22の流路断面積とは、第1セル21の流路断面積<第2セル22の流路断面積の関係を満たしている。第1セル21の流路断面積および第2セル22の流路断面積の大小関係は、厳密には、ハニカム構造体2のZ軸方向に垂直な断面を観察することにより把握することができる。第1セル21および第2セル22において流路断面積が一定とされている場合には、上記流路断面積の大小関係は、ハニカム構造体2の流入端面201または流出端面202を観察することにより簡易に把握することもできる。なお、上記の観察から直ちに上記流路断面積の大小関係を把握することができない場合には、第1セル21の流路断面積、第2セル22の流路断面積を測定して比較すればよい。第1セル21の流路断面積は、後述する図8(a)、(b)に示されるように、流入端面201または中心軸Oに垂直な断面にて、中央部11の9か所の測定位置M1および外周部12の周方向8か所の測定位置M2における第1セル21の流路断面積測定値の算術平均値である。第2セル22の流路断面積は、後述する図8(a)、(b)に示されるように、流入端面201または中心軸Oに垂直な断面にて、中央部11の9か所の測定位置M1および外周部12の周方向8か所の測定位置M2における第2セル22の流路断面積測定値の算術平均値である。
第1セル21および第2セル22は、第1セル21の流路断面積<第2セル22の流路断面積の関係を満たしておれば、Z軸方向に垂直な断面で見た断面形状は特に限定されない。図1では、第1セル21の断面形状が、四角形状(具体的には正方形状)とされており、第2セル22の断面形状が八角形状(具体的には1/4回転対称の八角形状)とされている例が示されている。この構成によれば、セル構造20内のセル壁23の厚みを一定としやすく、排ガス浄化フィルタ1の強度を確保しやすくなる利点がある。第1セル21および第2セル22の断面形状は、四角形状、八角形状以外の多角形状であってもよいし、円形状などであってもよい。また、第1セル21および第2セル22の断面形状は、同じであってもよいし、異なっていてもよい。なお、第1セル21および第2セル22の断面形状が多角形状である場合、角部において多少の曲線やテーパ等が形成されていてもよい。
ハニカム構造体2は、図1に例示されるように、セル構造20の外周が接続するスキン部203を有している。図1では、スキン部203が円筒状に形成され、ハニカム構造体2が全体として円柱形状の外形を呈する例が示されている。ハニカム構造体2は、例えば、コーディエライト等のセラミック材料より形成されることができる。なお、スキン部203に接するセルは、スキン部203とセル壁23とによって周囲が囲まれている。したがって、スキン部203に接するセルは、スキン部203に接していない第1セル21および第2セル22に比べて、不完全な断面形状とされている。そのため、本明細書においては、特に言及しない限り、第1セル21および第2セル22は、スキン部203に接するセル以外のセルを意味する。
流入側栓部31は、図1および図3に例示されるように、流入端面201において、第1セル21の一部および第2セル22の一部のセル端部を閉塞している。一方、流出側栓部32は、図3に例示されるように、流出端面202において、第1セル21の一部および第2セル22の一部のセル端部を閉塞している。つまり、流入端面201において流入側栓部31により栓詰めされたセルは、流出端面202において流出側栓部32により栓詰めされておらず、流入端面201において流入側栓部31により栓詰めされていないセルは、流出端面202において流出側栓部32により栓詰めされている。流入側栓部31および流出側栓部32は、例えば、コーディエライト等のセラミック材料より形成されることができるが、その他の材質であってもよい。
流入端面201側のセル端部が開放されるとともに流出端面202側のセル端部が流出側栓部32により閉塞されたセルは、流入セルとされる。また、流入端面201側のセル端部が流入側栓部31により閉塞されるとともに流出端面202側のセル端部が開放されたセルは、流出セルとされる。図3に示されるように、流入端面201から流入セル内に流入した排ガスGは、流入セル内を流れるとともに多孔質のセル壁23内を流れて流出セルに至る。流出セルに至った排ガスGは、流出セル内を流れ、流出端面202から排出される。なお、図3では、排ガスGの一部のみを模式的に描いている。流入セルおよび流出セルの詳細構成については、後述する。
排ガス浄化フィルタ1は、図1~図3に例示されるように、中心軸Oを含む中央部11と、中央部11の外周側に配された外周部12と、中央部11と外周部12との間に挟まれた境界部13とを有している。つまり、排ガス浄化フィルタ1では、境界部13によって囲まれた内側の領域が中央部11とされ、境界部13の外側の領域が外周部12とされている。
中央部11、外周部12、および、境界部13は、具体的には、いずれも、ハニカム構造体2における第1セル21および第2セル22を含んでいる。外周部12は、断面形状が完全な第1セル21および第2セル22以外にも、断面形状が不完全なセルも含んでいる。なお、断面形状が不完全なセルは、具体的には、第1セル21がスキン部203により切り取られて断面形状が不完全とされている第1不完全セル211と、第2セル22がスキン部203により切り取られて断面形状が不完全とされている第2不完全セル222とを含んでいる。境界部13は、具体的には、中央部11と外周部12との間に挟まれた第1セル21および第2セル22を含んでいる。境界部13は、X軸方向(Y軸方向)で見て少なくとも1セル分以上の領域から構成することができ、また、多くとも3セル分以下の領域から構成することができる。境界部13が、X軸方向(Y軸方向)で見て1セル分の領域から構成されている場合には、排ガスGが通過し難いセル壁23を少なくすることができ、より圧損を低減することができる。
排ガス浄化フィルタ1において、中央部11は、図1、図3に例示されるように、複数の第1流入セル21inと複数の第2流出セル22outとを有している。なお、図1、図3では、中央部11が、複数の第1流入セル21inと複数の第2流出セル22outとから構成されている例が示されている。第1流入セル21inは、上述のように流路断面積が小さい第1セル21における流入端面201側のセル端部が開放されるとともに、流出端面202側のセル端部が流出側栓部32により閉塞されている。第2流出セル22outは、上述のように流路断面積が大きい第2セル22における流入端面201側のセル端部が流入側栓部31により閉塞されるとともに、流出端面202側のセル端部が開放されている。
排ガス浄化フィルタ1において、外周部12は、図1、図3に例示されるように、複数の第2流入セル22inと複数の第1流出セル21outとを有している。なお、図1、図3では、外周部12が、複数の第2流入セル22inと複数の第1流出セル21outとから構成されている例が示されている。第2流入セル22inは、上述のように流路断面積が大きい第2セル22における流入端面201側のセル端部が開放されるとともに、流出端面202側のセル端部が流出側栓部32により閉塞されている。第1流出セル21outは、上述のように流路断面積が小さい第1セル21における流入端面201側のセル端部が流入側栓部31により閉塞されるとともに、流出端面202側のセル端部が開放されている。
排ガス浄化フィルタ1において、境界部13は、流入セル、流出セル、両端が閉塞されたセル、これらの組み合わせ等から構成されることができる。実施形態1は、境界部13が、第1流出セル21outと第2流出セル22outとを有している例である。したがって、実施形態1では、流入端面201から境界部13に排ガスGは流入しない。境界部13は、流入端面201側から見て、多角形状を呈するように形成されることができる。以下、これについて説明する。
図1、図2では、具体的には、境界部13が、第1流出セル21outと第2流出セル22outとから構成されている例が示されている。なお、図1、図2では、境界部13が、X軸方向(Y軸方向)で見て1セル分の領域から構成されている例が示されている。図1、図2に例示される境界部13は、流入端面201側から見て、第1流出セル21outと第2流出セル22outとがセル壁23を挟んで交互にX軸方向に直線状に配列された一対のX方向境界線部131と、第1流出セル21outと第2流出セル22outとがセル壁23を挟んで交互にY軸方向に直線状に配列された一対のY方向境界線部132とを有している。X方向境界線部131とY方向境界線部132とを1セル分延長して重なる部分(図2中、丸印で囲った部分)に位置する第1セル21または第2セル22は、流入側栓部31により閉塞されており、第1流出セル21outまたは第2流出セル22outを構成している。そのため、上記重なる部分にある第1流出セル21outまたは第2流出セル22outは、境界部13の一部を構成している。したがって、図1、図2に例示される境界部13を示す仮想境界線VBは、X方向境界線部131上に描かれた仮想線X1とY方向境界線部132上に描かれた仮想線Y1とを延長して結んで形成される。その結果、図1、図2に例示される境界部13では、仮想境界線VBが四角形状を呈している。このように、図1、図2に例示される境界部13は、流入端面201側から見て、四角形状を呈するように形成されている。
図4および図5に変形例の境界部13を有する排ガス浄化フィルタ1を示す。上記と同様に、図4、図5も、境界部13が、第1流出セル21outと第2流出セル22outとから構成されている例である。図4、図5に例示される境界部13では、X方向境界線部131とY方向境界線部132とを1セル分延長して重なる部分(図5中、丸印で囲った部分)に位置する第1セル21は、流入側栓部31により閉塞されており、第1流出セル21outを構成している。一方、X方向境界線部131とY方向境界線部132とを1セル分延長して重なる部分(図5中、丸印で囲った部分)に位置する第2セル22は、流入側栓部31により閉塞されておらず、第2流出セル22outを構成していない。そのため、上記重なる部分にある第1流出セル21outは境界部13の一部を構成するが、上記重なる部分にある第2流入セル22inは境界部13の一部を構成しない。したがって、図4、図5に例示される境界部13を示す仮想境界線VBを決定するにあたっては、上記重なり部分に第1流出セル21outがある箇所では、仮想線X1とY1とを延長して結ぶ。一方、上記重なり部分に第2流出セル22outがない箇所では、仮想線X1と仮想線Y1とを延長せずに斜め線(対角線)Z1で結ぶ。その結果、図4、図5に例示される境界部13では、仮想境界線VBが六角形状を呈している。このように、図4、図5に例示される境界部13は、流入端面201側から見て、六角形状を呈するように形成されている。
図6、図7に他の変形例の境界部13を有する排ガス浄化フィルタ1を示す。上記と同様に、図6、図7も、境界部13が、第1流出セル21outと第2流出セル22outとから構成されている例である。図6に例示される境界部13では、X方向境界線部131とY方向境界線部132とを1セル分延長した部分に位置する第2セル22は、流入側栓部31により閉塞されておらず、第2流出セル22outを構成していない。そのため、上記部分にある第2流入セル22inは境界部13の一部を構成しない。したがって、図6、図7に例示される境界部13の仮想境界線VBを決定するにあたっては、上記部分に第2流出セル22outがない箇所では、仮想線X1と仮想線Y1とを延長せずに斜め線(対角線)Z1で結ぶ。その結果、図6、図7に例示される境界部13では、仮想境界線VBが、八角形状を呈している。このように、図6、図7に例示される境界部13は、流入端面201側から見て、八角形状を呈するように形成されている。なお、上記と同様の考え方により、他の多角形状を呈する仮想境界線VB、境界部13を決定することができる。
次に、実施形態1の排ガス浄化フィルタ1の作用効果について説明する。
図3に例示されるように、排ガス浄化フィルタ1の中央部11においては、流入端面201から第1流入セル21in内に流入した排ガスGは、第1流入セル21in内を流れるとともに多孔質のセル壁23内を流れ、第1流入セル21inに隣接する第2流出セル22outに至る。第2流出セル22outに至った排ガスGは、第2流出セル22out内を流れ、流出端面202から排出される。排ガス浄化フィルタ1の外周部12においては、流入端面201から第2流入セル22in内に流入した排ガスGは、第2流入セル22in内を流れるとともに多孔質のセル壁23内を流れ、第2流入セル22inに隣接する第1流出セル21outに至る。第1流出セル21outに至った排ガスGは、第1流出セル21out内を流れ、流出端面202から排出される。
排ガス浄化フィルタ1では、排ガスGの流速が外周部12に比べて大きくなる中央部11において、第1流入セル21inが、第2セル22に比べて流路断面積が小さい第1セル21を用いて構成されている。換言すれば、中央部11では、第1流入セル21inにおける流入端面201側のセル入口開口面積<第2流出セル22outにおける流出端面202側のセル出口開口面積の関係を満たしている。そのため、第1流入セル21in内において排ガスGの圧力が高まり、流出端面202側のセル壁23に排ガスGが集中して流れ難くなり、流入端面201側のセル壁23にも排ガスGが流れる。それ故、排ガス浄化フィルタ1は、一様なセル構造を有する場合に比べ、第1流入セル21in内においてPMが堆積できる容量、すなわち、PM濾過面積を増やすことができ、初期およびモード走行時のPN捕集率を高めることができる。
また、排ガス浄化フィルタ1において、外周部12の第2流入セル22inは、第1セル21に比べて流路断面積が大きい第2セル22を用いて構成されている。つまり、上述した中央部11では、第1セル21に比べて流路断面積が大きい第2セル22を用いて第2流出セル22outが構成されているが、外周部12では、その流路断面積が大きい第2セル22を用いて第2流入セル22inが構成されている。換言すれば、外周部12では、第2流入セル22inにおける流入端面201側のセル入口開口面積>第1流出セル21outにおける流出端面202側のセル出口開口面積の関係を満たしている。そのため、排ガス浄化フィルタ1は、一様なセル構造を有する場合や、外周側領域において第1セルを用いて流入セルを構成した場合や、外周側領域においてセル壁を薄くし、流路断面積を僅かに大きく形成した第1セルを用いて流入セルを構成した場合に比べ、外周部12における第2流入セル22inの流路断面積を大幅に大きくすることができる。それ故、排ガス浄化フィルタ1は、初期のみならず、中央部11の第1流入セル21inにPMや灰分が堆積した後であっても、外周部12の第2流入セル22inに排ガスGが流れることにより、圧損上昇を抑制することができる。また、排ガス浄化フィルタ1は、中央部11の第1流入セル21inにPMや灰分が堆積した後は、第1流入セル21inに比べてセル壁23の面積が大きい外周部12の第2流入セル22inにてPMを捕集することができる。そのため、排ガス浄化フィルタ1は、一様なセル構造を有する場合や、外周側領域において第1セルを用いて流入セルを構成した場合や、外周側領域においてセル壁を薄くして流路断面積を僅かに大きくした第1セルを用いて流入セルを構成した場合に比べ、PM濾過面積を向上させることができる。なお、実施形態1の排ガス浄化フィルタ1は、中央部11の第1流入セル21inにおける流入端面201側のセル入口開口面積<外周部12の第2流入セル22inにおける流入端面201側のセル入口開口面積の関係を満たしており、また、中央部11の第2流出セル22outにおける流出端面202側のセル出口開口面積>外周部12の第1流出セル21outにおける流出端面202側のセル出口開口面積の関係を満たしている。
また、排ガス浄化フィルタ1は、高PN捕集率、圧損低減の効果を得るために外周部12におけるセル壁23を中央部11におけるセル壁23よりも薄くする必要がない。そのため、排ガス浄化フィルタ1は、外周側領域のセル壁を薄くする場合に比べ、強度の低下を抑制することができる。
排ガス浄化フィルタ1において、流出端面202側から見た境界部13の位置は、PN捕集率と、PMおよび灰分の堆積後における圧損とを考慮して決定することができる。境界部13の位置は、基本的には、例えば、排ガス浄化フィルタ1の排気通路の外形に合わせることができる。また、例えば、境界部13の位置を径方向外側にずらすと、中央部11の容積を増加させることができるので、PN捕集率を向上させやすくなる。また、境界部13の位置を径方向内側にずらすと、外周部12の容積を増加させることができるので、PMおよび灰分の堆積後における圧損上昇を抑制しやすくなり、耐久性を向上させることができる。このように、排ガス浄化フィルタ1は、境界部13の位置をずらして、PN捕集率に重点を置いたり、灰分の堆積後における圧損低減に重点を置いたりすることができるので、フィルタ仕様、フィルタ設計の自由度を高めることができる。
排ガス浄化フィルタ1において、中央部11におけるセル壁23の厚みと外周部12におけるセル壁23の厚みとは、同等とすることができる。この構成によれば、強度(アイソスタティック強度)の低下を抑制することができ、また、複雑な金型の加工が不要となり押出成形によるモノ作りが容易になるなどの利点がある。
中央部11におけるセル壁23の厚みは、流入端面201または中心軸Oに垂直な断面にて、図8(a)に示されるように、中央部11の9か所の測定位置M1におけるセル壁23の厚み測定値の算術平均値である。また、外周部12におけるセル壁23の厚みは、流入端面201または中心軸Oに垂直な断面にて、図8(b)に示されるように、外周部12の周方向8か所の測定位置M2におけるセル壁23の厚み測定値の算術平均値である。また、上記同等とは、中央部11におけるセル壁23の厚みが外周部12におけるセル壁23の厚みと同一である場合以外にも、外周部12におけるセル壁23の厚みが、中央部11におけるセル壁23の厚みの±20%以内、好ましくは、15%以内、より好ましくは、10%以内の範囲にある場合を含む。
排ガス浄化フィルタ1において、中央部11におけるセルピッチと外周部12におけるセルピッチとは、同等とすることができる。この構成によれば、複雑な金型の加工が不要となり押出成形によるモノ作りが容易になるなどの利点がある。
中央部11におけるセルピッチは、流入端面201または中心軸Oに垂直な断面にて、図8(a)に示されるように、中央部11の9か所の測定位置M1におけるセルピッチ測定値の算術平均値である。また、外周部12におけるセルピッチの厚みは、流入端面201または中心軸Oに垂直な断面にて、図8(b)に示されるように、外周部12の周方向8か所の測定位置M2におけるセルピッチ測定値の算術平均値である。また、セルピッチとは、第1セル21の中心とこの第1セル21に隣接する第2セル22の中心との距離をいう。また、上記同等とは、中央部11におけるセルピッチが外周部12におけるセルピッチと同一である場合以外にも、外周部12におけるセルピッチが、中央部11におけるセルピッチの±20%以内、好ましくは、15%以内、より好ましくは、10%以内の範囲にある場合を含む。なお、上述した図8は、測定位置M1、M2を模式的に示したものであり、セル、セル壁などは省略されている。
(実施形態2)
実施形態2の排ガス浄化フィルタについて、図9、図10を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
実施形態2の排ガス浄化フィルタ1は、図9、図10に例示されるように、境界部13が、第1流入セル21inと第2流入セル22inとを有している。この構成によれば、境界部13を構成する第1流入セル21inおよび第2流入セル22inにも、PMや灰分を堆積させることができる。そのため、この構成によれば、実施形態1の排ガス浄化フィルタ1に比べ、境界部13を構成する第1流入セル21inおよび第2流入セル22inの分、PM濾過面積を増やすことができ、PMおよび灰分の堆積後における圧損をより低くすることができる。
図9、図10では、具体的には、境界部13が、第1流入セル21inと第2流入セル22inとから構成されている例が示されている。なお、図9、図10では、境界部13が、X軸方向(Y軸方向)で見て1セル分の領域から構成されている例が示されている。図9、図10に例示される境界部13は、流入端面201側から見て、第1流入セル21inと第2流入セル22inとがセル壁23を挟んで交互にX軸方向に直線状に配列された一対のX方向境界線部133と、第1流入セル21inと第2流入セル22inとがセル壁23を挟んで交互にY軸方向に直線状に配列された一対のY方向境界線部134とを有している。X方向境界線部133とY方向境界線部134とを1セル分延長して重なる部分に位置する第1セル21または第2セル22は、流出側栓部32により閉塞されており、第1流入セル21inまたは第2流入セル22inを構成している。そのため、上記重なる部分にある第1流入セル21inまたは第2流入セル22inは、境界部13の一部を構成している。したがって、図9、図10に例示される境界部13を示す仮想境界線VBは、X方向境界線部133上に描かれた仮想線X2とY方向境界線部134上に描かれた仮想線Y2とを延長して結んで形成される。その結果、図9、図10に例示される境界部13では、仮想境界線VBが四角形状を呈している。このように、図9、図10に例示される境界部13は、流入端面201側から見て、四角形状を呈するように形成されている。
その他の構成および作用効果は、実施形態1と同様である。
(実施形態3)
実施形態3の排ガス浄化フィルタについて、図11~図13を用いて説明する。実施形態2の排ガス浄化フィルタ1は、図11に例示されるように、境界部13が、第1流出セル21outと第2流入セル22inとを有している、あるいは、図12に例示されるように、第1流入セル21inと第2流出セル22outとを有している、あるいは、図13に例示されるように、第1流入セル21in、第2流入セル22in、第1流出セル21out、および、第2流出セル22outを有している。これらの構成によれば、境界部13に含まれる第1流入セル21inおよび/または第2流入セル22inにも、PMや灰分を堆積させることができる。そのため、これらの構成によれば、実施形態1の排ガス浄化フィルタ1に比べ、境界部13に含まれる第1流入セル21inおよび/または第2流入セル22inの分、PM濾過面積を増やすことができ、PMおよび灰分の堆積後における圧損をより低くすることができる。
図11では、具体的には、境界部13が、第1流出セル21outと第2流入セル22inとから構成されている例が示されている。なお、図11では、境界部13が、X軸方向(Y軸方向)で見て1セル分の領域から構成されている例が示されている。図11に例示される境界部13は、流入端面201側から見て、第1流出セル21outと第2流入セル22inとがセル壁23を挟んで交互にX軸方向に直線状に配列された一対のX方向境界線部135と、第1流出セル21outと第2流入セル22inとがセル壁23を挟んで交互にY軸方向に直線状に配列された一対のY方向境界線部136とを有している。X方向境界線部135とY方向境界線部136とを1セル分延長して重なる部分に位置する第1セル21は、流入側栓部31により閉塞されており、第1流出セル21outを構成している。一方、X方向境界線部135とY方向境界線部136とを1セル分延長して重なる部分に位置する第2セル22は、流出側栓部32により閉塞されており、第2流入セル22inを構成している。そのため、上記重なる部分にある第1流出セル21outおよび第2流入セル22inは、境界部13の一部を構成している。したがって、図11に例示される境界部13を示す仮想境界線VBは、X方向境界線部135上に描かれた仮想線X31とY方向境界線部136上に描かれた仮想線Y32とを延長して結んで形成される。その結果、図11に例示される境界部13では、仮想境界線VBが四角形状を呈している。このように、図11に例示される境界部13は、流入端面201側から見て、四角形状を呈するように形成されている。
図12では、具体的には、境界部13が、第1流入セル21inと第2流出セル22outとから構成されている例が示されている。なお、図12では、境界部13が、X軸方向(Y軸方向)で見て1セル分の領域から構成されている例が示されている。図12に例示される境界部13は、流入端面201側から見て、第1流入セル21inと第2流出セル22outとがセル壁23を挟んで交互にX軸方向に直線状に配列された一対のX方向境界線部137と、第1流入セル21inと第2流出セル22outとがセル壁23を挟んで交互にY軸方向に直線状に配列された一対のY方向境界線部138とを有している。X方向境界線部137とY方向境界線部138とを1セル分延長して重なる部分に位置する第1セル21は、流出側栓部32により閉塞されており、第1流入セル21inを構成している。一方、X方向境界線部137とY方向境界線部138とを1セル分延長して重なる部分に位置する第2セル22は、流入側栓部31により閉塞されており、第2流出セル22outを構成している。そのため、上記重なる部分にある第1流入セル21inおよび第2流出セル22outは、境界部13の一部を構成している。したがって、図12に例示される境界部13を示す仮想境界線VBは、X方向境界線部137上に描かれた仮想線X33とY方向境界線部138上に描かれた仮想線Y34とを延長して結んで形成される。その結果、図12に例示される境界部13では、仮想境界線VBが四角形状を呈している。このように、図12に例示される境界部13は、流入端面201側から見て、四角形状を呈するように形成されている。
図13では、具体的には、境界部13が、第1流入セル21in、第2流入セル22in、第1流出セル21out、および、第2流出セル22outから構成されている例が示されている。なお、図13では、境界部13が、X軸方向(Y軸方向)で見て1セル分の領域から構成されている例が示されている。図13に例示される境界部13は、流入端面201側から見て、第1流出セル21outと第2流出セル22outとがセル壁23を挟んで交互にX軸方向に直線状に配列された一対のX方向境界線部131と、第1流入セル21inと第2流入セル22inとがセル壁23を挟んで交互にY軸方向に直線状に配列された一対のY方向境界線部134とを有している。X方向境界線部131とY方向境界線部134とを1セル分延長して重なる部分に位置する第1セル21は、流出側栓部32により閉塞されており、第1流入セル21inを構成している。一方、X方向境界線部131とY方向境界線部134とを1セル分延長して重なる部分に位置する第2セル22は、流出側栓部32により閉塞されており、第2流入セル22inを構成している。そのため、上記重なる部分にある第1流入セル21inおよび第2流入セル22inは、境界部13の一部を構成している。したがって、図13に例示される境界部13を示す仮想境界線VBは、X方向境界線部131上に描かれた仮想線X1とY方向境界線部134上に描かれた仮想線Y2とを延長して結んで形成される。その結果、図13に例示される境界部13では、仮想境界線VBが四角形状を呈している。このように、図13に例示される境界部13は、流入端面201側から見て、四角形状を呈するように形成されている。
その他の構成および作用効果は、実施形態1と同様である。
(実施形態4)
実施形態4の排ガス浄化フィルタについて、図14を用いて説明する。実施形態4の排ガス浄化フィルタ1は、図14に例示されるように、境界部13が、第1両端栓詰めセル210と第2両端栓詰めセル220とを有している。第1両端栓詰めセル210は、第1セル21における流入端面201側のセル端部が流入側栓部31により閉塞されるとともに、流出端面202側のセル端部が流出側栓部32により閉塞されている。一方、第2両端栓詰めセル220は、第2セル22における流入端面201側のセル端部が流入側栓部31により閉塞されるとともに流出端面202側のセル端部が流出側栓部32により閉塞されている。この構成によれば、急冷時における排ガス浄化フィルタ1内の温度低下を部分的に抑制することによりクラックの発生を抑制することができるなどの利点がある。
図14では、具体的には、境界部13が、第1両端栓詰めセル210と第2両端栓詰めセル220とから構成されている例が示されている。なお、図14では、境界部13が、X軸方向(Y軸方向)で見て1セル分の領域から構成されている例が示されている。図14に例示される境界部13は、図示はしないが、流入端面201側から見て、第1両端栓詰めセル210と第2両端栓詰めセル220とがセル壁23を挟んで交互にX軸方向に直線状に配列された一対のX方向境界線部と、第1両端栓詰めセル210と第2両端栓詰めセル220とがセル壁23を挟んで交互にY軸方向に直線状に配列された一対のY方向境界線部とを有している。X方向境界線部とY方向境界線部とを1セル分延長して重なる部分に位置する第1セル21または第2セル22は、流入側栓部31および流出側栓部32により閉塞されており、第1両端栓詰めセル210または第2両端栓詰めセル220を構成している。そのため、上記重なる部分にある第1両端栓詰めセル210または第2両端栓詰めセル220は、境界部13の一部を構成している。したがって、実施形態4において境界部13を示す仮想境界線は、X方向境界線部上に描かれた仮想線とY方向境界線部上に描かれた仮想線とを延長して結んで形成される。その結果、実施形態4における境界部13では、仮想境界線が四角形状を呈している。このように、図14に例示される境界部13は、流入端面201側から見て、四角形状を呈するように形成されている。
その他の構成および作用効果は、実施形態1と同様である。
<実験例>
実施例および比較例の各排ガス浄化フィルタについて説明する。本実験例では、各排ガス浄化フィルタは、SiO:45質量%以上55質量%以下、Al:33質量%以上42質量%以下、MgO:12質量%以上18質量%以下を含む化学組成を有するコーディエライトを主成分とする。なお、コーディエライトを主成分とするとは、50質量%以上がコーディエライトであることを意味する。したがって、本実験例における各排ガス浄化フィルタの作製にあたっては、焼成によってコーディエライトが生成するようにSi源、Al源およびMg源を含むコーディエライト形成原料が用いられる。
-排ガス浄化フィルタの作製-
(実施例1)
実施例1の排ガス浄化フィルタの作製にあたり、多孔質シリカ(Si源):20.8質量%、タルク(Mg源):35.2質量%、水酸化アルミニウム(Al源):44.0質量%を配合することにより、コーディエライト形成原料を調製した。
なお、使用した多孔質シリカの嵩密度は、0.18g/cmである。嵩密度の測定には、タップ密度法流動性付着力測定器であるセイシン企業製のタップデンサを用いた。具体的には、測定器のシリンダにシリカを充填後、シリカをタッピングにより圧縮させ、圧縮状態のシリカの質量とシリンダの体積とから嵩密度を算出した。また、多孔質シリカには平均粒子径が15μmのものを、タルクには平均粒子径が14μmのものを、水酸化アルミニウムには平均粒子径が8μmのものを使用した。「平均粒子径」は、レーザ回折・散乱法によって求められた粒度分布における体積積算値が50%のときの粒径をいう。
コーディエライト形成原料に、水(溶媒):58質量%、メチルセルロース(バインダ):9質量%、分散剤:8質量%を加え、混練機により混合することにより、コーディエライト形成原料を含む坏土を作製した。上記分散剤は、主に粒子同士の凝集を抑制し、解こう性を向上させるものであり、具体的には、平均分子量が4550であるポリオキシエチレンポリオキシプロピレングリセリルエーテルを使用した。
次いで、上記のように調整した坏土を、図1に示されるセル構造が得られるようにハニカム状に押出成形した。成形体は、乾燥後に所定の長さに切断した。
次いで、得られた乾燥体における一方端面および他方端面にフィルムを貼付し、図1に示される栓部パターンとなるようにレーザ穴あけ装置にて、フィルムに穴あけを実施した。
次いで、上記乾燥体におけるフィルムの穴あけした位置に、スクリーン法を用いて、栓部形成用のセラミック含有スラリーを埋めた。セラミック含有スラリーを埋める方法としては、スクリーン法以外にも、ディップ法などを用いることができる。
次いで、セラミック含有スラリーを埋めた乾燥体を1430℃にて16時間焼成した。これにより、図1に示される栓部パターンを備える実施例1の排ガス浄化フィルタを得た。なお、排ガス浄化フィルタの直径は118.4mm、フィルタ長は100mm、セル壁の平均気孔径は15μm、セル壁の気孔率は63%、中央部の大きさは50mm角である。
実施例1の排ガス浄化フィルタの作製において、図11に示される栓部パターンとなるようにレーザ穴あけ装置にて、フィルムに穴あけを実施した点以外は同様にして、実施例2の排ガス浄化フィルタを作製した。また、実施例1の排ガス浄化フィルタの作製において、図9に示される栓部パターンとなるようにレーザ穴あけ装置にて、フィルムに穴あけを実施した点以外は同様にして、実施例3の排ガス浄化フィルタを作製した。
特開2016-187804号公報の図4に示される、外周側領域におけるセル壁を中心側領域におけるセル壁よりも薄くして流路断面積を僅かに大きく形成した第1セルを用いて流入セルを構成した排ガス浄化フィルタを、比較例1の排ガス浄化フィルタとした。なお、比較例1の排ガス浄化フィルタの作製時には、外周側領域のセルの大きさが異なる金型を使用し、他は、実施例1の排ガス浄化フィルタと同様とした。
-評価-
各排ガス浄化フィルタについて、初期およびモード走行時のPN捕集率、PMおよび灰分の堆積後における圧損、強度を測定した。なお、本実験例では、触媒がコートされていない排ガス浄化フィルタを用いた。
(初期PN捕集率)
初期PN捕集率は、次のようにして測定した。作製した排ガス浄化フィルタをガソリン直噴エンジンの排気管内に取り付け、排ガス浄化フィルタにPMを含む排ガスを流した。このとき、排ガス浄化フィルタに流入する前の排ガス中のPM数であるNin、排ガス浄化フィルタから流出する排ガス中のPM数であるNoutを測定し、100×(Nin-Nout)/Ninの式より、初期PN捕集率を算出した。
この際、測定条件は、温度450℃、排ガス流量2.76m/分とした。上記PM数の測定には、AVL社製のPM粒子数カウンタ「AVL-489」を用いた。また、測定条件の排ガスの温度が450℃に達するまでは、排ガス浄化フィルタに排ガスを通過させないように別の排気管に排ガスが流れるようにし、450℃に達した際に切り替え弁にて排ガス浄化フィルタに排ガスが流れるようにした。また、PM数はバラつきを生じるため、PM数の測定間隔を1秒とし、3分間の測定結果の平均値を初期PN捕集率とした。
(モード走行時のPN捕集率)
モード走行のPN捕集率は、車両を用いて各規制で定められたモード走行でPN捕集率を測定するのが好ましいが、上記の初期PN捕集率と別々の評価方法となり手間がかかるため、同じエンジンを用いた試験によりモード走行のPN捕集率を測定した。尚、モード走行のPN捕集率は、ある程度のPMが排ガス浄化フィルタに堆積された際のPN捕集率である。また、このPM堆積量は車両や規制のモード走行ごとに異なるため、エンジンを用いた試験では明確な基準を設定することが困難であるが、将来規制では少量のPM堆積量となることを想定し、本実験例では10mgのPM堆積量でPN捕集率を測定することにした。この10mgPM堆積後のPN捕集率の測定では、予め排ガス浄化フィルタに堆積されたPM量と時間との関係を測定し、PM量が10mgに到達する時間を設定する。この時点での排ガス浄化フィルタは、ある程度PMが堆積された状態となるため、PMを電気炉などにて焼成した後で測定する。上記の初期PN捕集率を測定する際の切替弁を入れた時間をゼロとし、PM量が10mgに到達した時間における上記Nin、上記Noutより、モード走行時のPN捕集率を算出した。
(PM堆積後の圧損)
PM堆積後の圧損は、次のようにして測定した。モード走行のPN捕集率の測定と同時に、圧力センサにより排ガス浄化フィルタ前(上流)の圧力と排ガス浄化フィルタ後(下流)の圧力とを測定し、所定のPMが堆積された際の圧力の差分をPM堆積後の圧損とした。この際、測定条件は、温度450℃、排ガス流量2.76m/分、PM堆積量は3gとした。なお、PMと灰分は密度が異なるのみであり、同じ固形物であるため、排ガス浄化フィルタに堆積した際の圧損は、それぞれ絶対値が異なるのみであり、1g以上の堆積量であれば圧損の大小傾向は変わらないため、本実験例では、PM堆積後の圧損のみを測定し、PM堆積量は安定的に測定結果が得られる3gとした。
(強度)
排ガス浄化フィルタの強度としてアイソスタティック強度を測定した。アイソスタティック強度試験は、社団法人自動車技術会発行の自動車規格(つまり、JASO)M505-87に基づいて測定した。具体的には、排ガス浄化フィルタの軸方向であるZ軸方向の両端面に厚さ20mmのアルミニウム板を当接して両端面を密閉し、スキン部の外表面に厚さ2mmのゴムを密着させた。この排ガス浄化フィルタを圧力容器に入れ、圧力容器内に水を導入し、スキン部の表面から静水圧を加えた。そして、排ガス浄化フィルタが破壊した時の圧力をアイソスタティック強度とした。
各排ガス浄化フィルタの詳細構成および上記評価結果をまとめて表1および表2に示す。
Figure 2022158136000002
Figure 2022158136000003
表1および表2によれば、以下のことがわかる。比較例1の排ガス浄化フィルタは、外周側領域においてセル壁を薄くし、流路断面積を僅かに大きく形成して流入セルを構成しているものの、初期およびモード走行時のPN捕集率は、実施例1~3の排ガス浄化フィルタに比べて小さい。また、比較例1の排ガス浄化フィルタは、実施例1~3の排ガス浄化フィルタに比べてPM濾過面積が小さいため、PMが3g堆積した際の圧損が高い。また、比較例1の排ガス浄化フィルタは、外周側領域のセル壁の厚みが薄いため、実施例1~3の排ガス浄化フィルタに比べ、アイソスタティック強度が小さくなっている。
これに対し、実施例1~3の排ガス浄化フィルタは、初期およびモード走行時のPN捕集率を高めることができ、PM3g堆積後における圧損上昇を抑制することができ、強度低下を抑制することができている。また、実施例1~3の排ガス浄化フィルタ同士を比較すると次のことがわかる。実施例1~3は、実施例1、実施例2、実施例3の順にPM濾過面積が大きくなるため、PM濾過面積に寄与するPM堆積後の圧損がPM濾過面積に応じて小さくなっている。
本発明は、上記各実施形態、実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、実験例に示される各構成は、それぞれ任意に組み合わせることができる。
1 排ガス浄化フィルタ
11 中央部
12 外周部
13 境界部
2 ハニカム構造体
20 セル構造
21 第1セル
21in 第1流入セル
21out 第1流出セル
22 第2セル
22in 第2流入セル
22out 第2流出セル
23 セル壁
201 流入端面
202 流出端面
31 流入側栓部
32 流出側栓部
O 中心軸

Claims (7)

  1. 第1セル(21)と第2セル(22)とが多孔質のセル壁(23)を挟んで交互に配列されており、かつ、上記第1セルの流路断面積<上記第2セルの流路断面積の関係を満たすセル構造(20)を有するハニカム構造体(2)と、
    上記ハニカム構造体における排ガス(G)を流入させる側の流入端面(201)において、上記第1セルの一部および上記第2セルの一部のセル端部を閉塞する流入側栓部(31)と、
    上記ハニカム構造体における上記排ガスを流出させる側の流出端面(202)において、上記第1セルの一部および上記第2セルの一部のセル端部を閉塞する流出側栓部(32)と、
    を有する排ガス浄化フィルタ(1)であって、
    中心軸(O)を含む中央部(11)と、上記中央部の外周側に配された外周部(12)と、上記中央部と上記外周部との間に挟まれた境界部(13)とを有しており、
    上記中央部は、
    上記流路断面積が小さい上記第1セルにおける上記流入端面側のセル端部が開放されるとともに、上記流出端面側のセル端部が上記流出側栓部により閉塞された複数の第1流入セル(21in)と、
    上記流路断面積が大きい上記第2セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに、上記流出端面側のセル端部が開放された複数の第2流出セル(22out)と、を有しており、
    上記外周部は、
    上記流路断面積が大きい上記第2セルにおける上記流入端面側のセル端部が開放されるとともに、上記流出端面側のセル端部が上記流出側栓部により閉塞された複数の第2流入セル(22in)と、
    上記流路断面積が小さい上記第1セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに、上記流出端面側のセル端部が開放された複数の第1流出セル(21out)と、を有している、
    排ガス浄化フィルタ(1)。
  2. 上記中央部における上記セル壁の厚みと上記外周部における上記セル壁の厚みとが同等とされている、
    請求項1に記載の排ガス浄化フィルタ。
  3. 上記中央部におけるセルピッチと上記外周部におけるセルピッチとが同等とされている、
    請求項1または請求項2に記載の排ガス浄化フィルタ。
  4. 上記境界部は、
    上記第1流出セルと上記第2流出セルとを有している、
    請求項1から請求項3のいずれか1項に記載の排ガス浄化フィルタ。
  5. 上記境界部は、
    上記第1流入セルと上記第2流入セルとを有している、
    請求項1から請求項3のいずれか1項に記載の排ガス浄化フィルタ。
  6. 上記境界部は、
    上記第1流出セルと上記第2流入セルとを有している、あるいは、
    上記第1流入セルと上記第2流出セルとを有している、あるいは、
    上記第1流入セル、上記第2流入セル、上記第1流出セル、および、上記第2流出セルを有している、
    請求項1から請求項3のいずれか1項に記載の排ガス浄化フィルタ。
  7. 上記境界部は、
    上記第1セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに上記流出端面側のセル端部が上記流出側栓部により閉塞された第1両端栓詰めセル(210)と、
    上記第2セルにおける上記流入端面側のセル端部が上記流入側栓部により閉塞されるとともに上記流出端面側のセル端部が上記流出側栓部により閉塞された第2両端栓詰めセル(220)とを有している、
    請求項1から請求項3のいずれか1項に記載の排ガス浄化フィルタ。
JP2021062835A 2021-04-01 2021-04-01 排ガス浄化フィルタ Pending JP2022158136A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021062835A JP2022158136A (ja) 2021-04-01 2021-04-01 排ガス浄化フィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021062835A JP2022158136A (ja) 2021-04-01 2021-04-01 排ガス浄化フィルタ

Publications (1)

Publication Number Publication Date
JP2022158136A true JP2022158136A (ja) 2022-10-17

Family

ID=83638452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021062835A Pending JP2022158136A (ja) 2021-04-01 2021-04-01 排ガス浄化フィルタ

Country Status (1)

Country Link
JP (1) JP2022158136A (ja)

Similar Documents

Publication Publication Date Title
US9080484B2 (en) Wall flow type exhaust gas purification filter
CN109973176B (zh) 排气净化过滤器
US10118121B2 (en) Plugged honeycomb structure and plugged honeycomb segment
JP6838641B2 (ja) 排ガス浄化装置
JP5997025B2 (ja) ハニカム触媒体
JP5997026B2 (ja) ハニカム触媒体
KR20070098495A (ko) 허니컴 구조체
JP2011189241A (ja) ハニカムフィルタ
JP2012184660A (ja) ハニカム構造体及び排ガス浄化装置
US11878263B2 (en) Exhaust gas purification filter
JP2016168561A (ja) ハニカム構造体
JP5749940B2 (ja) 排ガス浄化装置
JP7094193B2 (ja) ハニカムフィルタ
JP2021137681A (ja) ハニカムフィルタ
JP2022158136A (ja) 排ガス浄化フィルタ
US11878258B2 (en) Exhaust gas purification filter
US20220042436A1 (en) Exhaust gas purification filter
JP2023148833A (ja) ハニカムフィルタ
CN113507974B (zh) 废气净化过滤器
US11619154B2 (en) Exhaust gas purification filter
JP7127606B2 (ja) 排ガス浄化フィルタ
JP2023148837A (ja) ハニカムフィルタ
JP6285247B2 (ja) ハニカム構造体
JP6726594B2 (ja) 目封止ハニカム構造体
JP2023147536A (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240806