JP2022155726A - Novel sophorolipid derivative - Google Patents

Novel sophorolipid derivative Download PDF

Info

Publication number
JP2022155726A
JP2022155726A JP2021059097A JP2021059097A JP2022155726A JP 2022155726 A JP2022155726 A JP 2022155726A JP 2021059097 A JP2021059097 A JP 2021059097A JP 2021059097 A JP2021059097 A JP 2021059097A JP 2022155726 A JP2022155726 A JP 2022155726A
Authority
JP
Japan
Prior art keywords
formula
sophorolipid
group
compound
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021059097A
Other languages
Japanese (ja)
Other versions
JP6954548B1 (en
Inventor
徳馬 福岡
Tokuma Fukuoka
友岳 森田
Tomotake Morita
洋介 小林
Yosuke Kobayashi
真 廣田
Makoto Hirota
洵 八代
Jun Yashiro
修治 平山
Shuji Hirayama
俊士 司馬
Shunji Shiba
洋介 山縣
Yosuke Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALLIED CARBON SOLUTIONS CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
ALLIED CARBON SOLUTIONS CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALLIED CARBON SOLUTIONS CO Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical ALLIED CARBON SOLUTIONS CO Ltd
Priority to JP2021059097A priority Critical patent/JP6954548B1/en
Application granted granted Critical
Publication of JP6954548B1 publication Critical patent/JP6954548B1/en
Priority to CN202280006101.2A priority patent/CN116261400A/en
Priority to AU2022249520A priority patent/AU2022249520A1/en
Priority to KR1020237001198A priority patent/KR20230022444A/en
Priority to EP22777578.0A priority patent/EP4317448A1/en
Priority to BR112023003599A priority patent/BR112023003599A2/en
Priority to PCT/JP2022/012536 priority patent/WO2022210011A1/en
Priority to US18/016,898 priority patent/US20230348515A1/en
Priority to TW111112461A priority patent/TW202304945A/en
Publication of JP2022155726A publication Critical patent/JP2022155726A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
  • Fodder In General (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

To provide a novel sophorolipid derivative that has high water-solubility and is surface active.SOLUTION: Multiple sophorolipid derivatives having novel structures isolated and purified from a cultured product of sophorolipid-producing microorganism Starmerella bombicola are represented by a general formula in the figure. (In the formula, R1 to R3 are each independently hydrogen, a fatty acid ester having 2 to 22 carbon atoms, or the depicted SL group, provided that at least one of R1 to R3 is the SL group; the R groups in the SL group are the same or different and each represent hydrogen or an acetyl group; and n represents an integer from 11 to 19.)SELECTED DRAWING: None

Description

本発明は、新規ソホロリピッド誘導体および該誘導体を含む組成物に関する。 The present invention relates to novel sophorolipid derivatives and compositions containing said derivatives.

親水基が糖で構成される糖型界面活性剤のうち、微生物由来の天然界面活性剤であり安全性の高い糖型バイオ界面活性剤は、優れた界面活性剤として知られている。これらのうちソホロリピッドは、糖脂質であり両親媒性構造を有するため強い界面活性作用を有し、生分解性と安全性が高いことから、バイオサーファクタントの主役として用途開発が進められている。 Among sugar-type surfactants in which the hydrophilic group is composed of sugar, sugar-type biosurfactants that are natural surfactants derived from microorganisms and have high safety are known as excellent surfactants. Among these, sophorolipids are glycolipids and have amphiphilic structures, so they have a strong surface-active action, and are highly biodegradable and safe. Therefore, their applications are being developed as main biosurfactants.

ソホロリピッドを生産する酵母としては、担子菌酵母であるスタルメレラ・ボンビコラ(Starmerella bombicola)が代表的であり、そのバイオサーファクタントの生産力は培養液1L当たり400g以上にも達するため、商業ベースの生産に使用されている。
ソホロリピッドは、グルコースが2→1位でエーテル結合してできた二糖であるソホロースの1位に、ヒドロキシ脂肪酸がエーテル結合してできた下記式(3)で表されるラクトン型(LSL)と、下記式(4)で表される酸型(ASL)の分子構造を有する糖脂質である。微生物生産物中にはこれらが一種または複数種含まれる混合物として存在する。
Starmerella bombicola, which is a basidiomycete yeast, is a typical yeast that produces sophorolipids, and its biosurfactant productivity reaches 400 g or more per 1 L of culture solution, so it is used for commercial production. It is
Sophorolipid is a lactone type (LSL) represented by the following formula (3), which is formed by ether-bonding a hydroxy fatty acid to the 1-position of sophorose, a disaccharide formed by ether-bonding glucose at the 2 → 1-position. , is a glycolipid having an acid-type (ASL) molecular structure represented by the following formula (4). They are present as a mixture containing one or more of these in microbial products.

ソホロリピッドのラクトン型(非イオン型)と酸型(アニオン型)とでは、界面活性剤としての性質が大きく異なり、これらの組成の異なる混合物やこれらを作り分ける方法など、ソホロリピッド製品の構造や機能のバラエティを拡充する技術開発が行われている。
例えば、上記のスタルメレラ・ボンビコラ(Starmerella bombicola)が生産するソホロリピッドは、一般的にラクトン型と酸型がおおよそ6~8:2~4の混合物として得られ、主成分であるラクトン型は酸型と比べて低濃度で優れた表面張力低下能を示す(非特許文献1)ほか、高い抗菌活性を示すことが報告されている(非特許文献2)。
The lactone type (non-ionic type) and acid type (anion type) of sophorolipid have greatly different properties as surfactants. Technological development is underway to expand the variety.
For example, the sophorolipid produced by the above-mentioned Starmerella bombicola is generally obtained as a mixture of the lactone type and the acid type at a ratio of approximately 6-8:2-4, and the lactone type, which is the main component, is mixed with the acid type. It has been reported that it exhibits excellent surface tension-lowering ability at a low concentration (Non-Patent Document 1) and high antibacterial activity (Non-Patent Document 2).

一方、加水分解によってラクトン環を開環して化学的に安定な高純度の酸型ソホロリピッドを得て、これを配合した洗浄剤が報告されている(特許文献1)。また、キャンディダ・フロリコラ(Candida floricola)を生産菌として培養することで、酸型ソホロリピッドのみを選択的に製造する方法が報告されている(特許文献2)。
さらに、複数存在する官能基が修飾されたソホロリピッド誘導体のほか、ソホロリピッド重合体などのラクトン型、酸型とは分類の異なる新規構造の誘導体も報告されている(特許文献3、非特許文献3)。
On the other hand, a chemically stable high-purity acid-type sophorolipid is obtained by hydrolysis to open the lactone ring, and a cleaning agent containing this is reported (Patent Document 1). Also, a method for selectively producing only acid-type sophorolipid by culturing Candida floricola as a producing strain has been reported (Patent Document 2).
Furthermore, in addition to sophorolipid derivatives in which a plurality of existing functional groups are modified, derivatives with novel structures different from lactone-type and acid-type derivatives, such as sophorolipid polymers, have been reported (Patent Document 3, Non-Patent Document 3). .

式(3)

Figure 2022155726000001
(LSL)
式(4)
Figure 2022155726000002
(ASL) Formula (3)
Figure 2022155726000001
(LSL)
Formula (4)
Figure 2022155726000002
(ASL)

特開2006-70231号公報Japanese Patent Application Laid-Open No. 2006-70231 特開2008-247845号公報JP 2008-247845 A 国際公開第2015/20114号WO2015/20114

Journal of Oleo Science (2013) Vol.62, p.857-864Journal of Oleo Science (2013) Vol.62, p.857-864 Journal of Microbiology and Biotechnology (2002) Vol.12, p.235-241Journal of Microbiology and Biotechnology (2002) Vol.12, p.235-241 Carbohydrate Research (2012) Vol.348, p.33-41Carbohydrate Research (2012) Vol.348, p.33-41

従来知られているソホロリピッドの構造は、おおよそ上記のラクトン型と酸型の二つのパターンしかなく、物性・機能の拡充のためには、構造のバラエティの拡張が求められている。
本発明は、飼料、肥料、飲食品、農薬、医薬品、医薬部外品、または化粧品などの広範囲の分野に適用することができる、新規なソホロリピッド誘導体を提供することを課題とする。
また、本発明は、新規ソホロリピッドを含む組成物、特に界面活性剤、洗浄剤、または乳化剤を提供することをその課題とする。
Conventionally known sophorolipids have only two patterns, the lactone type and the acid type, as described above, and there is a need to expand the variety of structures in order to expand their physical properties and functions.
An object of the present invention is to provide a novel sophorolipid derivative that can be applied to a wide range of fields such as feeds, fertilizers, food and drink, agricultural chemicals, pharmaceuticals, quasi-drugs, and cosmetics.
Another object of the present invention is to provide compositions containing novel sophorolipids, particularly surfactants, detergents or emulsifiers.

本発明者らはソホロリピッド生産菌として広く研究されているStarmerella bombicolaの培養生産物中に、従来知られているソホロリピッドとは分子構造が異なる未知の成分が存在することを各種機器分析によって確認し、これらを単離・精製して構造解析を行い、新規構造のソホロリピッド誘導体であることを解明した。
物性解析によれば、これら新規ソホロリピッド誘導体は、従来のソホロリピッドとは異なる界面活性、自己組織化特性を示し、優れた洗浄成分として機能することを確認して、本発明の完成に至った。
The inventors of the present invention confirmed by various instrumental analyses, that the cultured products of Starmerella bombicola, which has been extensively studied as a sophorolipid-producing bacterium, contain an unknown component having a molecular structure different from that of conventionally known sophorolipids. After isolating and purifying these compounds, structural analysis was carried out, revealing that they are sophorolipid derivatives with novel structures.
According to physical property analysis, it was confirmed that these novel sophorolipid derivatives exhibit surface activity and self-organizing properties different from those of conventional sophorolipids and function as excellent cleansing ingredients, leading to the completion of the present invention.

本発明は、下記(1)、(2)に記載のソホロリピッド誘導体に関する。
(1)下記式(1)の一般式で示される、ソホロリピッド誘導体。
式(1)

Figure 2022155726000003
(式中、R~Rはそれぞれ独立して、水素、炭素数2~22の脂肪酸エステル、または上記SL基であるが、R~Rの少なくとも1つはSL基である。SL基中のRは、同一または異なって、水素またはアセチル基を表し、nは11~19の整数を表す。)
(2)下記式(2)の化学式で表されるいずれかの化合物である、ソホロリピッド誘導体。
式(2)
Figure 2022155726000004
(式中のSL基は、上記式(1)での定義と同一であり、R’は炭素数2~22の脂肪酸エステルを表す。) The present invention relates to sophorolipid derivatives described in (1) and (2) below.
(1) A sophorolipid derivative represented by the following general formula (1).
formula (1)
Figure 2022155726000003
(In the formula, R 1 to R 3 are each independently hydrogen, a fatty acid ester having 2 to 22 carbon atoms, or the above SL group, but at least one of R 1 to R 3 is SL group. SL R in the group is the same or different and represents hydrogen or an acetyl group, and n represents an integer of 11 to 19.)
(2) A sophorolipid derivative which is any compound represented by the following chemical formula (2).
formula (2)
Figure 2022155726000004
(The SL group in the formula is the same as defined in formula (1) above, and R' represents a fatty acid ester having 2 to 22 carbon atoms.)

また、本発明は、下記(3)~(5)に記載の組成物に関する。
(3)上記(1)または(2)に記載のソホロリピッド誘導体を含む組成物。
(4)界面活性剤、洗浄剤、または乳化剤である、上記(3)に記載の組成物。
(5)飼料、肥料、飲食品、農薬、医薬品、医薬部外品、または化粧品、若しくはこれらの添加物である、上記(3)に記載の組成物。
The present invention also relates to compositions described in (3) to (5) below.
(3) A composition comprising the sophorolipid derivative according to (1) or (2) above.
(4) The composition according to (3) above, which is a surfactant, detergent, or emulsifier.
(5) The composition according to (3) above, which is feed, fertilizer, food and drink, agricultural chemicals, pharmaceuticals, quasi-drugs, cosmetics, or additives thereof.

本発明の新規ソホロリピッド誘導体は、従来のソホロリピッドとは異なる界面活性や自己集合特性を示し、優れた洗浄成分として機能するので、ソホロリピッド製品の構造・機能バラエティを拡充できる。従来のソホロリピッドと比較して、水溶性が高い非イオン型界面活性剤として機能する。
また、安全性の高い天然物由来のソホロリピッド誘導体であるから、各製品の安全性を高めることもでき、飼料、肥料、飲食品、農薬、医薬品、医薬部外品または化粧品などの広範囲の分野に適用できる。
The novel sophorolipid derivative of the present invention exhibits surface activity and self-assembly properties different from those of conventional sophorolipids, and functions as an excellent cleansing ingredient, so that the variety of structures and functions of sophorolipid products can be expanded. It functions as a nonionic surfactant with higher water solubility than conventional sophorolipids.
In addition, since it is a sophorolipid derivative derived from a highly safe natural product, it can improve the safety of each product, and can be used in a wide range of fields such as feeds, fertilizers, food and drink, agricultural chemicals, pharmaceuticals, quasi-drugs and cosmetics. Applicable.

実施例1で取得したSL混合物固体の順相TLC分析の結果を示す。2 shows the results of normal phase TLC analysis of the SL mixture solid obtained in Example 1. FIG. 実施例1で取得したSL混合物固体の逆相TLC分析の結果を示す。2 shows the results of reverse phase TLC analysis of the SL mixture solid obtained in Example 1. FIG. 実施例1で取得したSL混合物固体を逆相カラムクロマトグラフィーに供したクロマトグラムを示す。1 shows a chromatogram obtained by subjecting the SL mixture solid obtained in Example 1 to reversed-phase column chromatography. 実施例4で分離した化合物AのLC/MS解析の結果を示す。4 shows the results of LC/MS analysis of compound A separated in Example 4. FIG. 実施例4で分離した化合物BのLC/MS解析の結果を示す。4 shows the results of LC/MS analysis of compound B separated in Example 4. FIG. 実施例4で分離した化合物CのLC/MS解析の結果を示す。4 shows the results of LC/MS analysis of compound C separated in Example 4. FIG. 化合物BのH-NMRの結果を示す。 1 H-NMR results of compound B are shown. 化合物BのH-NMRの結果(拡大)を示す。 1 H-NMR results of compound B (magnified) are shown. 化合物AのH-NMRの結果を示す。 1 H-NMR results of Compound A are shown. 化合物CのH-NMRの結果を示す。 1 H-NMR results of compound C are shown. 化合物A、B、Cそれぞれに蒸留水を加えた、0.1wt%水溶液の写真。Photographs of 0.1 wt % aqueous solutions in which distilled water is added to each of compounds A, B, and C. 化合物A、B、Cのそれぞれの表面張力低下能を示す。Aは薄い●、Bは○、Cは●。The surface tension reducing ability of each of compounds A, B and C is shown. A is thin ●, B is ○, and C is ●. 実施例1で取得したSL混合物固体のMALDI-TOF/MS解析の結果を示す。4 shows the results of MALDI-TOF/MS analysis of the SL mixture solid obtained in Example 1. FIG.

本発明は、新規ソホロリピッド誘導体と、該誘導体を含む組成物に係るものである。
本発明のソホロリピッド誘導体(以下、「SL誘導体」ということがある。)は、下記の一般式(1)で示される。
式(1)

Figure 2022155726000005
ここで、式中のR~Rはそれぞれ独立して、水素、炭素数2~22のいずれかの脂肪酸エステル、または上記SL基のいずれかである。ただし、R~Rの少なくとも1つはSL基である。
炭素数2~22のいずれかの脂肪酸エステルは、-(O)C-炭化水素基で表され、この炭化水素基の炭素数は1~21である。
また、SL基中のRは、同一または異なってもよく、水素またはアセチル基を表し、nは11~19の整数を表す。 The present invention relates to novel sophorolipid derivatives and compositions containing said derivatives.
The sophorolipid derivative (hereinafter sometimes referred to as "SL derivative") of the present invention is represented by the following general formula (1).
formula (1)
Figure 2022155726000005
Here, each of R 1 to R 3 in the formula is independently hydrogen, a fatty acid ester having 2 to 22 carbon atoms, or the above SL group. However, at least one of R 1 to R 3 is an SL group.
Any fatty acid ester having 2 to 22 carbon atoms is represented by -(O)C-hydrocarbon group, and the hydrocarbon group has 1 to 21 carbon atoms.
In addition, R in the SL group may be the same or different, represents hydrogen or an acetyl group, and n represents an integer of 11-19.

本発明のSL誘導体は、下記の化学式(2)で表される化合物のいずれか一つであってよい。
式(2)

Figure 2022155726000006
ここで、式中のSL基は、上記式(1)での定義と同一である。R’は炭素数2~22の脂肪酸エステルであり、-(O)C-炭化水素基で表され、この炭化水素基の炭素数は1~21である。 The SL derivative of the present invention may be any one of compounds represented by the following chemical formula (2).
formula (2)
Figure 2022155726000006
Here, the SL group in the formula is the same as defined in formula (1) above. R' is a fatty acid ester having 2 to 22 carbon atoms and is represented by -(O)C-hydrocarbon group, and the hydrocarbon group has 1 to 21 carbon atoms.

本発明のSL誘導体は、SL生産菌の培養物中から得られるが、SLのグリセリドであるため化学的に合成することができる。
たとえば、SLとグリセリンを非アルコール系の有機溶媒(クロロホルム、トルエン、アセトン等)中または無溶媒下で、リパーゼなどの固定化酵素を触媒としてエステル化(エステル交換または加水分解の逆反応)を行うことにより、または、グリセリンの代わりに植物油(トリグリセリド)を用いて、同様にエステル交換反応を行うことにより製造することができる。特に、反応性に優れたラクトン型(LSL)を用いれば、グリセリン等と混合して加熱撹拌することで、本発明のSL誘導体を製造することができる。
The SL derivative of the present invention can be obtained from cultures of SL-producing bacteria, and can be chemically synthesized since it is a glyceride of SL.
For example, SL and glycerin are esterified (reverse reaction of transesterification or hydrolysis) in a non-alcoholic organic solvent (chloroform, toluene, acetone, etc.) or in the absence of solvent using an immobilized enzyme such as lipase as a catalyst. or by using a vegetable oil (triglyceride) instead of glycerin and performing a transesterification reaction in the same manner. In particular, if a lactone type (LSL) with excellent reactivity is used, the SL derivative of the present invention can be produced by mixing with glycerin or the like and heating and stirring.

本発明の組成物は、本発明のSL誘導体の有する界面活性に依る界面活性剤として、または乳化剤、分散剤として、飼料、肥料、飲食品、農薬、医薬品、医薬部外品または化粧品、及びこれらの添加物に適用することができる。
本発明の組成物に含まれるSL誘導体の量は、特に限定されないが、0.01~100wt%、好ましくは0.1~50wt%、より好ましくは1~30wt%である。組成物におけるSL誘導体の量が1wt%以下のように少ない場合、水溶性が小さくなり、一方、50wt%以上のように多い場合、経済性が低下する。
[実施例]
The composition of the present invention can be used as a surfactant or as an emulsifier or dispersant depending on the surface activity of the SL derivative of the present invention, and can be used as feed, fertilizer, food and drink, agricultural chemicals, pharmaceuticals, quasi-drugs or cosmetics. can be applied to the additive of
The amount of SL derivative contained in the composition of the present invention is not particularly limited, but is 0.01 to 100 wt%, preferably 0.1 to 50 wt%, more preferably 1 to 30 wt%. If the amount of SL derivative in the composition is as low as 1 wt% or less, the water-solubility will be poor, while if it is as high as 50 wt% or more, economic efficiency will decrease.
[Example]

以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に制限されるものではない。実施例では、「%」は、「wt%」を意味する。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples. In the examples, "%" means "wt%".

ソホロリピッドの生産・回収
スタルメレラ・ボンビコラ(Starmerella bombicola)ATCC22214株の培養
(1)種培養
保存培地(酵母エキス10g/L、ペプトン20g/L、グルコース20g/L、寒天20g/L)に保存しておいた上記のスタルメレラ・ボンビコラ(Starmerella bombicola)ATCC22214株を、酵母エキス10g/L、ペプトン20g/L、グルコース20g/Lの組成の液体培地4mLが入った試験管に1白金耳接種し、28℃で振とう培養を1日間行った。
(2)本培養
(1)で得られた菌体培養液を、10g/Lの酵母エキス、20g/Lのペプトン、100g/Lのグルコースおよび100g/Lのなたね油の組成の液体培地30mLが入った三角フラスコに接種し、振とう培養を28℃にて7日間行った。
(3)ソホロリピッドの回収
(2)で得られた培養液を1時間静置することで下層にSL相が生じる。このSL相を回収し、水酸化ナトリウム水溶液で中和、水で洗浄することでSL混合物を水溶液の状態で回収した。また、得られたSL混合物水溶液について以降の実験を行うために、ヘキサンを添加して撹拌、遠心分離することでヘキサン相に残存油脂や脂肪酸を抽出・除去し、水相を凍結乾燥してSL混合物固体を回収した。
(4)ラクトン型ソホロリピッド、酸型ソホロリピッド標品の精製
以降の実験で標品として利用するために既知の精製手法によって、ラクトン型SL(LSL)および酸型SL(ASL)を分離した。すなわち、上記SL混合物固体をアセトンに溶解してシリカゲル(ワコーゲルC-200)をガラスカラム管に充填したシリカゲルカラムに供し、クロロホルムとアセトンの混合液を展開溶媒とするカラムクロマトグラフィー法によって精製した。クロロホルムとアセトンの割合は、8:2でLSLを、続いて2:8で酸型SLをそれぞれ分離回収し、それぞれの回収した画分が目的のLSL標品、ASL標品であることを、後述する薄層クロマトグラフィー解析によって確認した。
Production and recovery of sophorolipid Culture of Starmerella bombicola ATCC22214 strain (1) Seed culture Preserved in a storage medium (yeast extract 10 g/L, peptone 20 g/L, glucose 20 g/L, agar 20 g/L). One platinum loop of the above Starmerella bombicola ATCC22214 strain was inoculated into a test tube containing 4 mL of a liquid medium containing 10 g/L of yeast extract, 20 g/L of peptone and 20 g/L of glucose, and incubated at 28°C. Shaking culture was performed for 1 day.
(2) Main culture The cell culture solution obtained in (1) was added to 30 mL of a liquid medium having a composition of 10 g/L yeast extract, 20 g/L peptone, 100 g/L glucose and 100 g/L rapeseed oil. The strain was inoculated into an Erlenmeyer flask and cultured with shaking at 28°C for 7 days.
(3) Recovery of Sophorolipid The culture medium obtained in (2) is allowed to stand for 1 hour to form an SL phase in the lower layer. This SL phase was recovered, neutralized with an aqueous sodium hydroxide solution, and washed with water to recover an SL mixture in the form of an aqueous solution. In addition, in order to conduct subsequent experiments on the obtained SL mixture aqueous solution, hexane was added, stirred, and centrifuged to extract and remove residual fats and fatty acids in the hexane phase, and the aqueous phase was freeze-dried to obtain SL. A mixture solid was collected.
(4) Purification of lactone-type sophorolipid and acid-type sophorolipid preparations Lactone-type SL (LSL) and acid-type SL (ASL) were separated by a known purification method for use as preparations in subsequent experiments. That is, the above SL mixture solid was dissolved in acetone, applied to a silica gel column filled with silica gel (Wakogel C-200) in a glass column tube, and purified by column chromatography using a mixture of chloroform and acetone as a developing solvent. The ratio of chloroform and acetone was 8:2 to separate and recover LSL, followed by 2:8 to separate and recover acid-form SL. It was confirmed by the thin layer chromatography analysis described below.

ソホロリピッドの薄層クロマトグラフィー解析
実施例1で得られたSL混合物固体について、メタノールに溶解して薄層クロマトグラフィー(TLC)解析を行った。
まず、シリカゲルTLCガラスプレート(Merck社製TLCシリカゲル60F254ガラスプレート)を用いて、展開溶媒にクロロホルム/メタノール/アンモニア水=80/20/2混合溶媒を用いた、従来の順相系でのTLC分析を行った。アンスロン硫酸指示薬で成分の検出を行うと、糖骨格を含む化合物は青緑色で検出される。その結果、非極性のLSLが上部に、高極性のASLが下部に展開される結果となった(図1)。
次に、逆相修飾シリカゲルTLCプレート(Merck社製TLCシリカゲル60RP-18F254Sガラスプレート)を用いて、展開溶媒にメタノール/水=95/5混合溶媒を用いた逆相系での分析を行ったところ、予想通り順相時とは逆に高極性のASLが上部に、非極性のLSLが中部に展開されるとともに、さらに下部に従来法では検出されなかった構造未知の糖脂質と思われるスポットが検出された(図2)。
この結果から、実施例1で得られたSL混合物には、従来知られているLSL、ASLとは異なる糖脂質が含まれていることが明らかとなった。
Analysis of Sophorolipid by Thin Layer Chromatography The SL mixture solid obtained in Example 1 was dissolved in methanol and analyzed by thin layer chromatography (TLC).
First, using a silica gel TLC glass plate (TLC silica gel 60F254 glass plate manufactured by Merck), using a mixed solvent of chloroform/methanol/ammonia water = 80/20/2 as a developing solvent, TLC analysis in a conventional normal phase system. did When components are detected with an anthrone sulfate indicator, compounds containing a sugar skeleton are detected in a blue-green color. The result was that the non-polar LSL was deployed on top and the highly polar ASL on the bottom (Fig. 1).
Next, using a reverse-phase modified silica gel TLC plate (TLC silica gel 60RP-18F254S glass plate manufactured by Merck), analysis was performed in a reverse-phase system using methanol/water = 95/5 mixed solvent as a developing solvent. As expected, highly polar ASL was developed in the upper part and non-polar LSL was developed in the middle part, contrary to normal phase. detected (Fig. 2).
These results revealed that the SL mixture obtained in Example 1 contained glycolipids different from conventionally known LSL and ASL.

ソホロリピッドの高速液体クロマトグラフィー解析
実施例1で得られたSL混合物固体について、メタノールで溶解し高速液体クロマトグラフィー(HPLC)解析を行った。コロナ荷電化粒子検出器(CAD)(Thermo社製CoronaTMVeoTM)を搭載したHPLC(Thermo社製Thermo Scientific Ultimate 3000 HPLC)を用い、分析カラムは逆相系ODSカラム(GLサイエンス社製InertSustainTM VC18)を用いて、カラム温度は40℃、溶離液は5mMギ酸アンモニウムメタノール/5mMギ酸アンモニウム水混合溶媒系で、グラジエントプログラムをメタノール70%(ステップ0分→3分)、70%→100%(グラジエント3分→18分)、100%(ステップ18分→25分)、70%(ステップ25分→35分)とし、流速0.3mL/mで成分分析を行った。得られたクロマトグラムを図3に示す。
分析の結果、保持時間3分~10分にASL、12分~16分LSLが検出された後、18分前後、20分前後、22分前後にそれぞれ未知成分ピークが3つ(A、B、C)検出された。これらの結果は、実施例2の逆相TLC解析でASL、LSLの後から未知糖脂質が検出される結果と一致するものであった。
High Performance Liquid Chromatography Analysis of Sophorolipid The SL mixture solid obtained in Example 1 was dissolved in methanol and subjected to high performance liquid chromatography (HPLC) analysis. HPLC (Thermo Scientific Ultimate 3000 HPLC) equipped with a corona charged particle detector (CAD) (Thermo Corona TM Veo TM ) was used, and the analysis column was a reversed-phase ODS column (GL Sciences InertSustain TM VC18), the column temperature is 40 ° C., the eluent is a mixed solvent system of 5 mM ammonium formate methanol / 5 mM ammonium formate water, and the gradient program is 70% methanol (step 0 minutes → 3 minutes), 70% → 100% ( Gradient 3 min→18 min), 100% (step 18 min→25 min), 70% (step 25 min→35 min), and component analysis was performed at a flow rate of 0.3 mL/m. The chromatogram obtained is shown in FIG.
As a result of the analysis, after ASL was detected at a retention time of 3 to 10 minutes and LSL at 12 to 16 minutes, there were three unknown component peaks (A, B, C) detected. These results were consistent with the results of the reverse-phase TLC analysis in Example 2, in which unknown glycolipids were detected after ASL and LSL.

構造未知糖脂質の分離・精製
実施例3で新たに検出された3つのピーク成分を単離するために、シリカゲルカラムクロマトグラフィー法による成分分離を行った。まず実施例1(4)と同様のクロロホルム/アセトン混合溶媒を用いた順相カラム法により、クロロホルム/アセトン=50/50溶媒でLSL画分をほぼ全量溶出させ、その後アセトン100%やメタノール100%溶媒でASLや目的の未知糖脂質が混在する残りの成分を回収した。次にオクタデシル基で修飾されたシリカゲル(ワコーゲル100C18)を充填したカラムを用いて、メタノール/水混合溶媒を展開溶媒とする逆相カラムクロマトグラフィー法により、ASLと未知糖脂質を分離する2段階のカラム精製法によって未知糖脂質を分離・回収した。分離した各成分は逆相TLC解析および逆相HPLC解析によってほぼ単一スポット、単一ピークの成分であることを確認した。
以降は逆相カラムから溶出された順に化合物A、B、Cとする。化合物Aは透明粘稠な固体、BはAよりも硬質な透明固体、Cは蝋状の白色固体であった。
Separation and Purification of Structure-Unknown Glycolipid In order to isolate the three peak components newly detected in Example 3, component separation was performed by silica gel column chromatography. First, by the normal phase column method using the same chloroform/acetone mixed solvent as in Example 1 (4), almost the entire amount of the LSL fraction was eluted with chloroform/acetone = 50/50 solvent, and then acetone 100% or methanol 100%. The remaining components mixed with ASL and the target unknown glycolipid were recovered with a solvent. Next, using a column packed with silica gel (Wakogel 100C18) modified with octadecyl groups, ASL and unknown glycolipids are separated by reversed-phase column chromatography using a methanol/water mixed solvent as a developing solvent. Unknown glycolipids were separated and recovered by a column purification method. It was confirmed by reversed-phase TLC analysis and reversed-phase HPLC analysis that each separated component had a single spot and a single peak.
Hereinafter, compounds A, B, and C are eluted from the reversed-phase column. Compound A was a transparent viscous solid, B was a transparent solid harder than A, and C was a waxy white solid.

構造未知糖脂質のマススペクトル解析
実施例4で分離した化合物A、B、Cについて、液体クロマトグラフィー/マススペクトル(LC/MS)解析を行った。電子スプレーイオン化マススペクトロメトリー(ESI-MS)(Thermo社製Exactive Plus)を連結した実施例3に記載のHPLCを用い、分離条件は実施例3と同様の条件でLC/MS解析を行った結果を、それぞれ図4~6に示す。
化合物Aの主成分はm/z=1468、Bはm/z=2157、Cはm/z=1731(全て検出はネガティブモード)であり、その他各主成分から-42の成分(1426、2115、1689)が混在していた。これは糖脂質型バイオ界面活性剤によくみられるパターンで、アセチル基が1個外れた化合物であるものと予想された。さらに、各成分から+114の成分(1582、2271、1845)やそこから-42の成分も混在しており、これらは全て主成分の官能基が一部修飾されたものと予想された。化合物A~C中には、基本骨格は同じで脂肪酸組成の異なるものが混在していることが予想される。
Mass Spectral Analysis of Structure-Unknown Glycolipid Compounds A, B, and C separated in Example 4 were subjected to liquid chromatography/mass spectral (LC/MS) analysis. Electrospray ionization mass spectrometry (ESI-MS) (Exactive Plus manufactured by Thermo) was used, and the HPLC described in Example 3 was used, and the separation conditions were the same as in Example 3. Results of LC/MS analysis. are shown in FIGS. 4-6, respectively.
The main component of compound A is m / z = 1468, B is m / z = 2157, C is m / z = 1731 (all detection is negative mode), and -42 components (1426, 2115 , 1689) were mixed. This is a pattern often seen in glycolipid-type biosurfactants, and was expected to be a compound with one acetyl group removed. Furthermore, +114 components (1582, 2271, 1845) from each component and -42 components from them were mixed, and it was expected that all of these were partially modified functional groups of the main components. Compounds A to C are expected to contain a mixture of compounds having the same basic skeleton but different fatty acid compositions.

構造未知糖脂質の構造解析
実施例4で分離した化合物A、B、Cについて、核磁気共鳴スペクトル(NMR)解析により化学構造の同定を行った。Bruker社製NMR(AV-400)を用いて、まず最も含有量の多い化合物BについてH-NMR解析を行ったところ、構造既知のASLとほぼ同じパターンのスペクトルであることが確認された(図7)。
一方、糖骨格部分のスペクトルを拡大して比較したところ、5.3ppm付近にASLとは異なる新しいピークが現れたとともに、4.1~4.4ppm付近のピーク面積比が基準ピークとなるソホロース1位のピークと比較して明らか大きいことが確認された。これらのピークをさらに詳細に解析するためにH-HCOSY解析を行ったところ、元々4.1~4.4ppm付近に現れるソホロース6位由来のピークとは別の新しいピークがこの位置で重なっており、これらが5.3ppm付近の新しいピークと相関していることが分かった(図8)。
Structural Analysis of Structure-Unknown Glycolipid The chemical structures of compounds A, B, and C separated in Example 4 were identified by nuclear magnetic resonance spectroscopy (NMR) analysis. Using Bruker NMR (AV-400), 1 H-NMR analysis was first performed on compound B, which has the highest content, and it was confirmed that the spectrum had almost the same pattern as ASL with a known structure ( Figure 7).
On the other hand, when the spectra of the sugar skeleton portion were enlarged and compared, a new peak different from ASL appeared at around 5.3 ppm, and the peak area ratio around 4.1 to 4.4 ppm was the reference peak for sophorose 1. It was confirmed that it is clearly larger than the peak of the order. When 1 H- 1 HCOSY analysis was performed to analyze these peaks in more detail, a new peak different from the peak derived from sophorose 6-position originally appearing around 4.1 to 4.4 ppm overlapped at this position. It was found that these were correlated with a new peak around 5.3 ppm (Fig. 8).

化合物BのNMRデータを表1に示す。

Figure 2022155726000007
NMR data for Compound B are shown in Table 1.
Figure 2022155726000007

以上の結果より、化合物BはASLの構造に加えて、これら2種類のピークを示す化学構造を持つSL誘導体であることが分かった。これら5.3ppm付近と4.1~4.4ppm付近にピークが現れる典型的な化合物の例として、油脂(脂肪酸トリグリセリド)のグリセリン骨格が挙げられる。以上を踏まえて、化合物Bはグリセリンの3つの水酸基にASLがエステル結合した化学式(6)の化合物であると推定された。
実施例5で確認された化合物Bの主成分は、m/z=2157であり、これは脂肪酸部位がC18:1のASLが2個、C18:2のASLが1個グリセリンにエステル結合したトリグリセリド構造の化合物の分子量と完全に一致した。以上を総合して、化合物Bは化学式(6)の化合物であると同定した。
式(6)

Figure 2022155726000008
From the above results, compound B was found to be an SL derivative having a chemical structure exhibiting these two types of peaks in addition to the structure of ASL. A typical example of a compound having peaks around 5.3 ppm and around 4.1 to 4.4 ppm is the glycerin skeleton of fats and oils (fatty acid triglycerides). Based on the above, compound B was presumed to be a compound of chemical formula (6) in which ASL was ester-bonded to three hydroxyl groups of glycerin.
The main component of compound B confirmed in Example 5 has m/z = 2157, and is a triglyceride in which two ASLs with C18:1 fatty acid moieties and one C18:2 ASL is ester-bonded to glycerin. The molecular weights of the structural compounds were completely consistent. Based on the above, compound B was identified as the compound of chemical formula (6).
Formula (6)
Figure 2022155726000008

同様の解析を化合物AとCについて行った。化合物AとCのH-NMR解析の結果を、図9と10に示す。また、化合物AまたはCのNMRデータを、表2または表3に示す。

Figure 2022155726000009
A similar analysis was performed for compounds A and C. Results of 1 H-NMR analysis of compounds A and C are shown in FIGS. NMR data of compound A or C are shown in Table 2 or Table 3.
Figure 2022155726000009

Figure 2022155726000010
Figure 2022155726000010

NMR測定結果から推定される最も可能性の高い代表的な構造の化合物として、化合物AはグリセリンにASLが2個結合した化学式(5)の化合物、化合物CはグリセリンにASLが2個と長鎖脂肪酸が1個エステル結合した化学式(7)の化合物であると推定された。いずれも実施例5で確認された各化合物主成分の分子量と一致しており、この構造解析の結果を支持するものであった。
ただし、生産菌培養物中に含まれる誘導体はこれらに限られるものではない。
式(5)

Figure 2022155726000011
式(7)
Figure 2022155726000012
Compound A is a compound of chemical formula (5) in which two ASLs are bound to glycerin, and compound C is a long-chain compound having two ASLs bound to glycerin. It was presumed to be a compound of chemical formula (7) in which one fatty acid is ester-bonded. All of them agreed with the molecular weight of the main component of each compound confirmed in Example 5, and supported the result of this structural analysis.
However, the derivatives contained in the producing strain culture are not limited to these.
Formula (5)
Figure 2022155726000011
Formula (7)
Figure 2022155726000012

新規ソホロリピッド誘導体A~Cの水溶液
実施例4で分離した化合物A、B、Cについて、それぞれ10mgをメスフラスコ中に秤取し、蒸留水を加えてメスアップすることで、1mg/mL(0.1wt%)水溶液を調製した(図11)。
化合物A、Bは完全に溶解して透明の水溶液が得られたが、Cは白濁した。さらA、Bについては同様の方法で、10mg/mL(1wt%)水溶液を調製したところ、Aは白濁し、Bは完全に溶解した。さらに、白濁した化合物A、Cの水溶液を冷蔵庫中に静置したところ、どちらも完全に溶解して透明な水溶液となった。
この温度に応じた水溶液の状態変化は可逆的な現象であり、これは室温(25℃以下)以下に曇点を有することを示すものであった。すなわち化合物AとCが実施例6で構造決定された通り、非イオン性界面活性剤であることを支持するものであった。また以上の結果から、長鎖脂肪酸が結合している化合物Cと比べてそれが無い化合物Aの方が高い水溶性を示し、さらに化合物Bはこれらと比べて高分子量でありながら極めて水溶性の高い非イオン性界面活性剤であることが確認された。
Aqueous Solution of Novel Sophorolipid Derivatives A to C 10 mg of each of the compounds A, B, and C separated in Example 4 was weighed into a volumetric flask, and distilled water was added to make up the volume, resulting in a volume of 1 mg/mL (0. 1 wt %) aqueous solution was prepared (FIG. 11).
Compounds A and B were completely dissolved to obtain a transparent aqueous solution, but C became cloudy. A 10 mg/mL (1 wt %) aqueous solution was prepared for A and B in the same manner, and A became cloudy and B dissolved completely. Furthermore, when the aqueous solutions of the cloudy compounds A and C were allowed to stand in a refrigerator, both dissolved completely to form transparent aqueous solutions.
This change in the state of the aqueous solution according to temperature is a reversible phenomenon, which indicates that it has a cloud point below room temperature (25° C. or lower). That is, it supported that compounds A and C, as determined in Example 6, are nonionic surfactants. In addition, from the above results, compared to compound C to which a long-chain fatty acid is attached, compound A without it exhibits higher water solubility, and compound B has a higher molecular weight than these, but is extremely water-soluble. It was confirmed to be a highly nonionic surfactant.

新規SL誘導体A~Cの表面張力低下能
実施例4で分離した化合物A、B、Cについて、各濃度の水溶液を調製し、接触角計(協和界面科学社製DMo-500)を使用してペンダントドロップ法(Young Laplhas法)により水溶液の表面張力測定を行った。水溶液濃度-表面張力を対数プロットしたグラフを図12に示す。
化合物Cは濃度によらず水溶液の表面張力値にほとんど変化が無かったが、A、Bでは濃度の増加に伴って表面張力が大きく低下した。また、どちらも濃度の増加に伴いプロットの中で2段階の変曲点があることが確認され、表面張力値が一定になる後半の変曲点から臨界ミセル濃度(CMC)を算出すると、化合物AはCMC=1.91g/L(約1.3×10-3M)、その時の表面張力値(γCMC)は40.4mN/m、化合物BはCMC=2.99g/L(約1.4×10-3M)、γCMCは41.4mN/mであった。LSL、ASLのこれらの値は文献よりそれぞれLSL:CMC=1.4×10-5M、γCMC=32.3mN/m、ASL:CMC=1.2×10-4M、γCMC=37.1mN/mであり、今回見出された新規SL誘導体はこれらと比較して非イオン性界面活性剤でありながら極めて水溶性が高く、穏やかな表面張力低下能を示すこと、すなわち水系での使用に非常に適した界面活性剤であることが示された。
Ability to Reduce Surface Tension of Novel SL Derivatives A to C For the compounds A, B, and C separated in Example 4, aqueous solutions of each concentration were prepared and measured using a contact angle meter (DMo-500 manufactured by Kyowa Interface Science Co., Ltd.). The surface tension of the aqueous solution was measured by the pendant drop method (Young Laplhas method). FIG. 12 shows a logarithmic plot of aqueous solution concentration versus surface tension.
The surface tension of the aqueous solution of Compound C did not change significantly regardless of the concentration, but the surface tension of A and B decreased significantly as the concentration increased. In both cases, it was confirmed that there are two inflection points in the plot as the concentration increases. A has a CMC of 1.91 g/L (about 1.3×10 −3 M), and the surface tension value (γCMC) at that time is 40.4 mN/m. 4×10 −3 M) and γCMC was 41.4 mN/m. These values of LSL and ASL are LSL: CMC = 1.4 × 10 -5 M, γCMC = 32.3 mN/m, ASL: CMC = 1.2 × 10 -4 M, γCMC = 37.1 mN from the literature. /m, and the novel SL derivative discovered this time is a nonionic surfactant, but has extremely high water solubility compared to these, and exhibits a mild ability to reduce surface tension. It has been shown to be a very suitable surfactant.

ソホロリピッドのマトリックス支援レーザーイオン化飛行時間マススペクトル(MALDI-TOF/MS)解析
実施例1で得られたSL混合物固体について、日本分光社製JMS-3000 SpiralTOF-MSを用い、マトリックスに2',4',6'-トリヒドロキシアセトフェノン(THAP)を用いてMALDI-TOF/MS解析を行った(図10)。
従来のLSL、ASLとは異なるm/z=803.4の構造未同定化合物のピークが検出された。これはSLがグリセリンにエステル結合した化合物A~Cの構造を参考にして、分子量から算出すると、化学式(8)のようなグリセリンに脂肪酸部位がC18:1のASLが1個エステル結合した化合物(Na付加体)であることが推定された。
式(8)

Figure 2022155726000013
Matrix-assisted laser ionization time-of-flight mass spectrum (MALDI-TOF/MS) analysis of sophorolipid For the SL mixture solid obtained in Example 1, JASCO Corporation JMS-3000 SpiralTOF-MS was used, and 2', 4' MALDI-TOF/MS analysis was performed using ,6'-trihydroxyacetophenone (THAP) (Fig. 10).
A peak of m/z=803.4 of an unidentified compound, which is different from conventional LSL and ASL, was detected. This is calculated from the molecular weight with reference to the structures of compounds A to C in which SL is ester-bonded to glycerin, and a compound ( Na adduct).
Formula (8)
Figure 2022155726000013

本発明の新規SL誘導体は、水溶性、表面張力低下能、自己組織化特性に優れており、安全性の高い天然物由来のソホロリピッド誘導体であるから、飼料、肥料、飲食品、農薬、医薬品、医薬部外品および化粧品などの幅広い分野に適用できる。 The novel SL derivative of the present invention is a sophorolipid derivative derived from a natural product, which is excellent in water solubility, surface tension lowering ability, and self-organizing property, and is highly safe. It can be applied to a wide range of fields such as quasi-drugs and cosmetics.

また、本発明は、下記(3))に記載の界面活性剤、洗浄剤、分散剤、または乳化剤に関する。
(3)上記(1)または(2)に記載のソホロリピッド誘導体からなる界面活性剤、洗浄剤、分散剤、または乳化剤
(4)飼料、肥料、飲食品、農薬、医薬品、医薬部外品、または化粧品用の、上記(3)に記載の界面活性剤、洗浄剤、分散剤、または乳化剤
The present invention also relates to surfactants, detergents, dispersants, or emulsifiers described in (3) and ( 4 ) below.
(3) A surfactant, detergent, dispersant or emulsifier comprising the sophorolipid derivative according to (1) or (2) above.
(4) The surfactant, detergent, dispersant, or emulsifier according to (3) above for feeds, fertilizers, food and drink, agricultural chemicals, pharmaceuticals, quasi-drugs, or cosmetics.

Claims (5)

下記式(1)の一般式で示される、ソホロリピッド誘導体。
式(1)
Figure 2022155726000014

(式中、R~Rはそれぞれ独立して、水素、炭素数2~22の脂肪酸エステル、または上記SL基であるが、R~Rの少なくとも1つはSL基である。SL基中のRは、同一または異なって、水素またはアセチル基を表し、nは11~19の整数を表す。)
A sophorolipid derivative represented by the following general formula (1).
formula (1)
Figure 2022155726000014

(In the formula, R 1 to R 3 are each independently hydrogen, a fatty acid ester having 2 to 22 carbon atoms, or the above SL group, but at least one of R 1 to R 3 is SL group. SL R in the group is the same or different and represents hydrogen or an acetyl group, and n represents an integer of 11 to 19.)
下記式(2)の化学式で表されるいずれかの化合物である、ソホロリピッド誘導体。
式(2)
Figure 2022155726000015
(式中のSL基は、上記式(1)での定義と同一であり、R’は炭素数2~22の脂肪酸エステルを表す。)
A sophorolipid derivative, which is any compound represented by the following chemical formula (2).
formula (2)
Figure 2022155726000015
(The SL group in the formula is the same as defined in formula (1) above, and R' represents a fatty acid ester having 2 to 22 carbon atoms.)
請求項1または2に記載のソホロリピッド誘導体を含む組成物。 A composition comprising the sophorolipid derivative according to claim 1 or 2. 界面活性剤、洗浄剤、または乳化剤である、請求項3に記載の組成物。 4. The composition of claim 3, which is a surfactant, detergent, or emulsifier. 飼料、肥料、飲食品、農薬、医薬品、医薬部外品、または化粧品、若しくはこれらの添加物である、請求項3に記載の組成物。 4. The composition according to claim 3, which is feed, fertilizer, food and drink, agricultural chemicals, pharmaceuticals, quasi-drugs, cosmetics, or additives thereof.
JP2021059097A 2021-03-31 2021-03-31 New sophorolipid derivative Active JP6954548B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2021059097A JP6954548B1 (en) 2021-03-31 2021-03-31 New sophorolipid derivative
US18/016,898 US20230348515A1 (en) 2021-03-31 2022-03-18 Novel sophorolipid derivative
KR1020237001198A KR20230022444A (en) 2021-03-31 2022-03-18 Novel sophorolipid derivatives
AU2022249520A AU2022249520A1 (en) 2021-03-31 2022-03-18 Novel sophorolipid derivative
CN202280006101.2A CN116261400A (en) 2021-03-31 2022-03-18 Novel sophorolipid derivative
EP22777578.0A EP4317448A1 (en) 2021-03-31 2022-03-18 Novel sophorolipid derivative
BR112023003599A BR112023003599A2 (en) 2021-03-31 2022-03-18 NEW COMPOUND DERIVED FROM SOPHOROLIPID
PCT/JP2022/012536 WO2022210011A1 (en) 2021-03-31 2022-03-18 Novel sophorolipid derivative
TW111112461A TW202304945A (en) 2021-03-31 2022-03-31 Novel sophorolipid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021059097A JP6954548B1 (en) 2021-03-31 2021-03-31 New sophorolipid derivative

Publications (2)

Publication Number Publication Date
JP6954548B1 JP6954548B1 (en) 2021-10-27
JP2022155726A true JP2022155726A (en) 2022-10-14

Family

ID=78119224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021059097A Active JP6954548B1 (en) 2021-03-31 2021-03-31 New sophorolipid derivative

Country Status (1)

Country Link
JP (1) JP6954548B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275145A (en) * 2008-05-15 2009-11-26 Saraya Kk Adsorption suppressing composition containing sophorolipid
JP2014185106A (en) * 2013-03-22 2014-10-02 Saraya Kk Sophorolipid powder in which degradation of lactone type sophorolipid is inhibited
JP2015507626A (en) * 2011-12-28 2015-03-12 エヴォニク インダストリーズ アーゲー Aqueous composition for cleaning hair and skin comprising a biosurfactant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275145A (en) * 2008-05-15 2009-11-26 Saraya Kk Adsorption suppressing composition containing sophorolipid
JP2015507626A (en) * 2011-12-28 2015-03-12 エヴォニク インダストリーズ アーゲー Aqueous composition for cleaning hair and skin comprising a biosurfactant
JP2014185106A (en) * 2013-03-22 2014-10-02 Saraya Kk Sophorolipid powder in which degradation of lactone type sophorolipid is inhibited

Also Published As

Publication number Publication date
JP6954548B1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
Jadhav et al. Evaluation of sunflower oil refinery waste as feedstock for production of sophorolipid
Cavalero et al. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214
Sim et al. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1
EP0611152B1 (en) Novel chromanol glycoside and method for production thereof
FI96967C (en) Mono-esters of glycosides and process for enzymatic preparation thereof
Goossens et al. Enhanced separation and analysis procedure reveals production of tri-acylated mannosylerythritol lipids by Pseudozyma aphidis
JP2008247845A (en) Method for producing acid-type sophorose lipid
Morita et al. Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids
Vollbrecht et al. Microbial conversion of vegetable oils into surface‐active di‐, tri‐, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec.
Imura et al. Enzymatic conversion of diacetylated sophoroselipid into acetylated glucoselipid: surface-active properties of novel bolaform biosurfactants
JP5344274B2 (en) Novel mannosyl erythritol lipid and method for producing the same
US20210403969A1 (en) Enhanced production of rhamnolipids using at least two carbon sources
US5767255A (en) Glucose- and sophorose-lipids, a process for their preparation and their use
JP2007326801A (en) Water-soluble mannosyl erythritol lipid and method for producing the same
JP4924840B2 (en) Mannosyl erythritol lipid and method for producing the same
WO2022210011A1 (en) Novel sophorolipid derivative
JP2022155726A (en) Novel sophorolipid derivative
JP2023053549A (en) Novel sophorolipid derivative
Kobayashi et al. Isolation and characterization of novel naturally occurring sophorolipid glycerides
JP4803435B2 (en) Novel mannosyl erythritol lipid and method for producing the same
Parekh et al. Solid state fermentation (SSF) for the production of sophorolipids from Starmerella bombicola NRRL Y-17069 using glucose, wheat bran and oleic acid
Karsa Design and selection of performance surfactants
Lang Surfactants produced by microorganisms
KR20230080201A (en) Method of conversing biodiesel into sophorolipid using Starmerella bombicola
Al-Jasmin Synthesis and Characterisation of Novel Sophorolipids and Their Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6954548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150