JP4924840B2 - Mannosyl erythritol lipid and method for producing the same - Google Patents

Mannosyl erythritol lipid and method for producing the same Download PDF

Info

Publication number
JP4924840B2
JP4924840B2 JP2008003615A JP2008003615A JP4924840B2 JP 4924840 B2 JP4924840 B2 JP 4924840B2 JP 2008003615 A JP2008003615 A JP 2008003615A JP 2008003615 A JP2008003615 A JP 2008003615A JP 4924840 B2 JP4924840 B2 JP 4924840B2
Authority
JP
Japan
Prior art keywords
mel
pseudozyma
substituent
oil
erythritol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008003615A
Other languages
Japanese (ja)
Other versions
JP2009034090A (en
Inventor
優 北川
敦 曽我部
徳馬 福岡
友岳 森田
知弘 井村
大 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyobo Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toyobo Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008003615A priority Critical patent/JP4924840B2/en
Publication of JP2009034090A publication Critical patent/JP2009034090A/en
Application granted granted Critical
Publication of JP4924840B2 publication Critical patent/JP4924840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Description

本発明は、新規マンノシルエリスリトールリピッド(以下、単にMELと称する場合もある)及びその製造方法に関し、より詳細には微生物生産糖脂質の一種であるMELであって、分子構造中のマンノシルエリスリトール骨格が1−O−β−D−マンノピラノシル−meso−エリスリトールであるMEL及びその微生物生産法に関するものである。   The present invention relates to a novel mannosyl erythritol lipid (hereinafter sometimes simply referred to as MEL) and a method for producing the same, and more specifically, MEL which is a kind of microorganism-produced glycolipid, wherein the mannosyl erythritol skeleton in the molecular structure is The present invention relates to MEL which is 1-O-β-D-mannopyranosyl-meso-erythritol and a method for producing microorganisms thereof.

糖脂質は、脂質に1〜10数個の単糖が結合した物質であり、生体内において細胞間の情報伝達に関与し、神経系・免疫系の機能維持にも重要な役割を果たしていること等が明らかにされつつある。一方で、糖脂質は、糖の性質に由来する親水性と脂質の性質に由来する親油性の二つの性質を合わせ持つ両親媒性物質であり、このような性質を有する物質は界面活性物質と呼ばれている。   Glycolipids are substances in which 1 to 10 monosaccharides are bound to lipids, are involved in the transmission of information between cells in vivo, and play an important role in maintaining the functions of the nervous system and immune system. Etc. are being revealed. On the other hand, glycolipids are amphipathic substances that have both hydrophilic properties derived from the properties of sugars and lipophilic properties derived from the properties of lipids. being called.

石油化学工業が隆盛となるまでは、レシチン、サポニン等の生体成分由来の界面活性剤(バイオサーファクタント)が利用されてきたが、石油化学工業の発展により合成界面活性剤が開発され、界面活性剤の生産量は飛躍的に増加し、日常生活には無くてはならない物質となった。しかしながら、合成界面活性剤の使用量の拡大につれて環境汚染が広がってきた。そこで、安全性が高く、環境に対する負荷を低減するために、再度生分解性の高い界面活性物質であるバイオサーファクタントが見直されはじめており、それに伴い様々な種類のバイオサーファクタントの開発が望まれている。   Until the petrochemical industry flourished, surfactants derived from biological components such as lecithin and saponin (biosurfactants) have been used, but synthetic surfactants have been developed by the development of the petrochemical industry. The production volume of cereals has increased dramatically, making it an indispensable substance in daily life. However, environmental pollution has spread as the amount of synthetic surfactant used has increased. Therefore, biosurfactants, which are highly biodegradable surface active substances, are being reviewed again in order to reduce the burden on the environment with high safety and development of various types of biosurfactants is desired. .

バイオサーファクタントとしては、微生物が生産する界面活性物質が代表的なものとして挙げられる。現在、上述した微生物が生産する界面活性物質としては、糖脂質系、アシルペプタイド系、リン脂質系、脂肪酸系及び高分子化合物系の5つに分類されている。これらのうち、糖脂質系の界面活性剤は最もよく研究され、細菌及び酵母により生産された、多くの種類の物質が報告されている。   A typical example of a biosurfactant is a surfactant produced by a microorganism. Currently, the surfactants produced by the above-described microorganisms are classified into five groups: glycolipids, acyl peptides, phospholipids, fatty acids, and polymer compounds. Of these, glycolipid-based surfactants have been best studied, and many types of substances produced by bacteria and yeast have been reported.

糖脂質等のバイオサーファクタントは、生分解性が高く、低毒性で環境に優しく、新規な生理機能を持つといわれている。これらの諸性質から、食品工業、化粧品工業、医薬品工業、化学工業、環境分野等にバイオサーファクタントを幅広く適用することは、持続可能社会の実現と高機能製品の提供という、両面を兼ね備えており極めて有意義である。   Biosurfactants such as glycolipids are said to have high biodegradability, low toxicity, environmental friendliness, and novel physiological functions. Because of these properties, the wide application of biosurfactants to the food industry, cosmetic industry, pharmaceutical industry, chemical industry, environmental field, etc. has both the realization of a sustainable society and the provision of high-performance products. Meaningful.

代表的な糖脂質系バイオサーファクタントの一つにマンノシルエリスリトールリピッド(MEL)がある。MELは、Ustilago nuda(ウスチラゴ ヌーダ)とShizonella melanogramma(シゾネラ メラノグラマ)から発見された物質である(非特許文献1及び2参照)。その後、イタコン酸生産の変異株であるCandida属酵母(特許文献1及び非特許文献3参照)、Candida antarctica(キャンデダ アンタークチカ)(現在はPseudozyma antarctica(シュードザイマ アンタークチカ))(非特許文献4及び5参照)、Kurtzmanomyces(クルツマノマイセス)属(非特許文献6参照)等の酵母らによっても生産されることが報告されている。現在では、長時間の連続培養・生産を行うことで300g/L以上の生産が可能となっている。   One typical glycolipid biosurfactant is mannosylerythritol lipid (MEL). MEL is a substance discovered from Ustilago nuda and Shizonella melanogramma (see Non-Patent Documents 1 and 2). Subsequently, Candida genus yeast (see Patent Document 1 and Non-patent Document 3) and Candida antarctica (currently Pseudozyma antarctica) (refer to Non-Patent Documents 4 and 5) that are mutant strains of itaconic acid production It is also reported that it can be produced by yeasts of the genus Kurtzmanomyces (see Non-Patent Document 6). At present, production of 300 g / L or more is possible by continuous culture and production for a long time.

上記MELが有する糖骨格には複数の不斉炭素原子が存在し、その数をnとすると2個の光学異性体が存在する。しかし、これまで報告されてきたMELは全て、その糖骨格が以下の式(2)に示されるような4−O−β−D−マンノピラノシル−meso−エリスリトール構造であった。 The sugar skeleton possessed by the MEL has a plurality of asymmetric carbon atoms, and when the number is n, 2 n optical isomers exist. However, all the MELs reported so far have a 4-O-β-D-mannopyranosyl-meso-erythritol structure whose sugar skeleton is represented by the following formula (2).

β−D−マンノピラノシル−meso−エリスリトール構造には、もう一つ1−O−β−D−マンノピラノシル−meso−エリスリトール構造(下記式(3))の異性体が想定される。   As the β-D-mannopyranosyl-meso-erythritol structure, another isomer of 1-O-β-D-mannopyranosyl-meso-erythritol structure (the following formula (3)) is assumed.

この1−O−β−D−マンノピラノシル−meso−エリスリトール構造を有するMELの1種を合成し、これとの比較によって従来のMELの糖骨格が上記式(2)の構造であることが証明されている(非特許文献7)。   By synthesizing one kind of MEL having this 1-O-β-D-mannopyranosyl-meso-erythritol structure, it was proved that the sugar skeleton of the conventional MEL has the structure of the above formula (2). (Non-patent Document 7).

生理活性を有する有機化合物にとって、その分子のキラリティーは極めて重要なポイントとなる。これまでMELは、抗菌性、抗腫瘍性、糖タンパク結合能をはじめ、様々な生理活性を有することが報告されている(非特許文献8)。さらに、MELは極めて特異な自己集合特性を示し、それを利用したリポソーム素材、液晶化技術への展開も試みられており、分子構造の僅かな違いが自己集合体の形成に大きな影響を与えることも報告されている(非特許文献8、9)。   For organic compounds having physiological activity, the chirality of the molecule is a very important point. So far, MEL has been reported to have various physiological activities including antibacterial properties, antitumor properties, and glycoprotein binding ability (Non-patent Document 8). In addition, MEL exhibits extremely unique self-assembly properties, and attempts have been made to develop liposome materials and liquid crystal technology using them, and the slight difference in molecular structure has a significant effect on the formation of self-assemblies. Have also been reported (Non-Patent Documents 8 and 9).

したがって、従来知られていたMELの光学異性体を大量に生産し、それらの物性比較、機能評価を行うことは、MELの用途開発に向けて大きく貢献できるものと期待される。
特公昭57−145896号公報 アール.エイチ.ハスキンス(R. H. Haskins),ジェイ.エー.トーン(J. A. Thorn),B. Boothroyd,「カナデアン ジャーナル オブ ケミストリー(Can. J. Microbiol.)」,1巻,p749−756(1955). ジー.デム(G. Deml),ティ.アンケ(T. Anke),エフ.オーバーウインカー(F. Oberwinkler),ビー.エム.ジアネッティー(B. M. Giannetti),ダブリュ.ステグリッチ(W. Steglich),「フィトケミストリー(Phytochemistry)」,19巻,p83−87(1980). ティ.ナカハラ(T. Nakahara),エイチ.カワサキ(H. Kawasaki),ティ.スギサワ(T. Sugisawa),ワイ.タカモリ(Y. Takamori),ティ.タブチ(T. Tabuchi),「ジャーナル オブ ファーメンテーション テクノロジー(J. Ferment.Technol.)」,(日本),日本発酵工学会,61巻,p19−23(1983). ディ.キタモト(D. Kitamoto),エス.アキバ(S. Akiba),シー.ヒオキ(C. Hioki),ティ.タブチ(T. Tabuchi)「アグリカリチュラル アンド バイオロジカル ケミストリー(Agric. Biol. Chem.)」,(日本),日本農芸化学会,54巻.p31−36(1990). エイチ.エス.キム(H.-S. Kim),ビー.ディ.ユーン(B.-D. Yoon),ディ.エイチ.チョン(D.-H. Choung),エイチ.エム.オー(H.-M. Oh),ティ.カツラギ(T. Katsuragi),ワイ.タニ(Y. Tani)「アプライド マイクロバイオロジー アンド バイオテクノロジー(Appl. Microbiol. Biotechnol.)」,(ドイツ),スプリンガー−バーラグ(Springer-Verlag),52巻,p713−721(1999). 角川(K. kakukawa),玉井(M. Tamai),今村(K. Imamura),宮本(K. Miyamoto),三好(S. Miyoshi),森永(Y. Morinaga),鈴木(O. Suzuki),宮川(T. Miyakawa)「バイオサイエンス,バイオテクノロジー アンド バイオケミストリー(Biosci. Biotechnol. Biochem.)」,(日本),日本農芸化学会,66巻,p188−191(2002). ディ.クリッチ(D. Crich),エム.エー.モーラ(M. A. Mora),アール.クルツ(R. Cruz)「テトラヘドロン(Tetrahedron)」,(オランダ),エルゼビア(Elsevier),58巻,p35−44(2002). 北本 大「オレオサイエンス」,(日本),日本油化学会,3巻,p663−672(2003). ティ.イムラ(T. Imura),エヌ.オオタ(N. Ohta),ケー.イノウエ(K. Inoue),エヌ.ヤギ(N. Yagi),エイチ.ネギシ(H. Negishi),エイチ.ヤナギシタ(H. Yanagishita),ディ.キタモト(D. Kitamoto)「ケミストリー ア ヨーロピアン ジャーナル(Chem. Eur. J)」,(米国),ワイリー(Wiley),12巻,p2434−2440(2006).
Therefore, it is expected that the production of MEL optical isomers which have been conventionally known in large quantities, and their physical property comparison and functional evaluation will greatly contribute to the development of MEL applications.
Japanese Patent Publication No.57-145896 R. H. RH Haskins, Jay. A. Tone (JA Thorn), B. Boothroyd, “Can. J. Microbiol.”, Volume 1, p 749-756 (1955). Gee. G. Deml, Tee. T. Anke, F. F. Oberwinkler, B. M. BM Giannetti, W. Steglich, “Phytochemistry”, Vol. 19, p83-87 (1980). Tee. Nakahara, H. Kawasaki, T. T. Sugisawa, Wy. Y. Takamori, Tee. T. Tabuchi, “Journal of Fermentation Technology” (Japan), Japan Fermentation Engineering Society, 61, p19-23 (1983). Di. Kitamoto, S. Akiba, See. C. Hioki, Tee. T. Tabuchi, “Agric. Biol. Chem.”, (Japan), Japan Society for Agricultural Chemistry, Volume 54. p31-36 (1990). H. S. Kim (H.-S. Kim), Bee. Di. Yoon (B.-D. Yoon), Di. H. D.-H. Choung, H. M. Oh (H.-M. Oh), Tee. T. Katsuragi, Wye. Y. Tani "Appl. Microbiol. Biotechnol.", (Germany), Springer-Verlag, 52, p713-721 (1999). K. kakukawa, M. Tamai, K. Imamura, K. Miyamoto, S. Miyoshi, Y. Morinaga, O. Suzuki, Miyagawa (T. Miyakawa) “Bioscience, Biotechnol. Biochem.” (Japan), Japan Society for Agricultural Chemistry, 66, p188-191 (2002). Di. D. Crich, M. A. MA Mora, Earl. R. Cruz “Tetrahedron” (Netherlands), Elsevier, 58, p35-44 (2002). Dai Kitamoto “Oreoscience” (Japan), Japan Oil Chemists' Society, Volume 3, p663-672 (2003). Tee. T. Imura, N. N. Ohta, K. Inoue, N. N. Yagi, H. H. Negishi, H. H. Yanagishita, Di. Kitamoto “Chemistry European Journal (Chem. Eur. J)” (USA), Wiley, Vol. 12, p 2434-2440 (2006).

上述したように、食品工業、化粧品工業、医薬品工業、化学工業、環境分野等に広く普及をはかるため、分解性が高く、低毒性で環境に優しく、新規な生理機能を持つ糖脂質等のバイオサーファクタントについて、生産効率の向上、構造・機能バラエティの拡充が重要である。特に、MELは、生産性、界面物性に優れるだけでなく、特異な自己集合特性と生理活性を利用した種々の用途開発が行われている。   As described above, it is widely used in the food industry, cosmetics industry, pharmaceutical industry, chemical industry, environmental fields, etc., so biodegradable, such as glycolipids with high degradability, low toxicity, environmental friendliness, and novel physiological functions. For surfactants, it is important to improve production efficiency and expand the variety of structures and functions. In particular, MEL is not only excellent in productivity and interface physical properties, but also has been developed for various uses utilizing unique self-assembly properties and physiological activity.

しかしながら、これまで報告されている微生物由来のMELは、糖骨格が全て4−O−β−D−マンノピラノシル−meso−エリスリトール構造であった。このため、構造・機能バラエティの拡充が強く求められていた。   However, the MELs derived from microorganisms reported so far all have sugar structures with a 4-O-β-D-mannopyranosyl-meso-erythritol structure. For this reason, there has been a strong demand for an expanded variety of structures and functions.

また、上記非特許文献7には、1−O−β−D−マンノピラノシル−meso−エリスリトール構造を有するMELを化学合成して得た旨が記載されているが、これは非常に複雑な工程を経て合成されたものであり、汎用性に欠け利用し難いものであった。   In addition, Non-Patent Document 7 describes that MEL having a 1-O-β-D-mannopyranosyl-meso-erythritol structure was obtained by chemical synthesis, but this is a very complicated process. It was synthesized after that and lacked versatility and was difficult to use.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、従来の4−O−β−D−マンノピラノシル−meso−エリスリトール構造を有するMELに対して、その光学異性体である1−O−β−D−マンノピラノシル−meso−エリスリトール構造を有するMEL及びその製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and its object is an optical isomer of MEL having a conventional 4-O-β-D-mannopyranosyl-meso-erythritol structure. An object of the present invention is to provide a MEL having a 1-O-β-D-mannopyranosyl-meso-erythritol structure and a method for producing the same.

本発明者らは上記の目的を達成すべく鋭意努力した結果、従来の4−O−β−D−マンノピラノシル−meso−エリスリトール構造を有するMEL(以下、「従来型MEL」又は「4−O−MEL」と称する場合もある。)に対して、その光学異性体である1−O−β−D−マンノピラノシル−meso−エリスリトール構造を有するMEL(以下、「本発明に係るMEL」又は「1−O−MEL」と称する場合もある。)を生産する微生物を見出し、本発明を完成するに至った。すなわち、本発明は、以下の発明を包含する。   As a result of diligent efforts to achieve the above object, the inventors of the present invention have developed a conventional MEL having a 4-O-β-D-mannopyranosyl-meso-erythritol structure (hereinafter referred to as “conventional MEL” or “4-O—”). MEL having a 1-O-β-D-mannopyranosyl-meso-erythritol structure (hereinafter referred to as “MEL according to the present invention” or “1- In some cases, the microorganisms producing "O-MEL" are found, and the present invention has been completed. That is, the present invention includes the following inventions.

(1)下記一般式(1)で表される構造を有するマンノシルエリスリトールリピッド。   (1) A mannosyl erythritol lipid having a structure represented by the following general formula (1).

(式(1)中、置換基Rは同一でも異なっていてもよく炭素数4〜24の脂肪族アシル基であり、置換基Rは同一でも異なっていてもよく水素又はアセチル基を表す。また、置換基Rは水素又は炭素数2〜24の脂肪族アシル基を表す。ただし、置換基Rがともに炭素数12の脂肪族アシル基であって、置換基Rがともにアセチル基であって、置換基Rが水素であるものを除く。)
(2)上記一般式(1)中、置換基Rのいずれか一方がアセチル基であり、他方が水素である(1)に記載のマンノシルエリスリトールリピッド。
(In the formula (1), the substituent R 1 may be the same or different and is an aliphatic acyl group having 4 to 24 carbon atoms, and the substituent R 2 may be the same or different and represents hydrogen or an acetyl group. The substituent R 3 represents hydrogen or an aliphatic acyl group having 2 to 24 carbon atoms, provided that both the substituent R 1 are aliphatic acyl groups having 12 carbon atoms and both the substituent R 2 are acetyl. Groups, wherein the substituent R 3 is hydrogen.)
(2) The mannosyl erythritol lipid according to (1), wherein in the general formula (1), any one of the substituents R 2 is an acetyl group and the other is hydrogen.

(3)上記一般式(1)中、置換基Rが炭素数2〜24の脂肪族アシル基である(1)又は(2)に記載のマンノシルエリスリトールリピッド。 (3) The mannosyl erythritol lipid according to (1) or (2), wherein in the general formula (1), the substituent R 3 is an aliphatic acyl group having 2 to 24 carbon atoms.

(4)微生物により生産されたものである(1)〜(3)のいずれかに記載のマンノシルエリスリトールリピッド。   (4) The mannosyl erythritol lipid according to any one of (1) to (3), which is produced by a microorganism.

(5)シュードザイマ(Pseudozyma)属に属し、かつマンノシルエリスリトールリピッドを生産する能力を有する微生物を培養し、下記一般式(1)で表される構造を有するマンノシルエリスリトールリピッドを製造するマンノシルエリスリトールリピッドの製造方法。   (5) Mannosyl erythritol lipid production that produces a mannosyl erythritol lipid having a structure represented by the following general formula (1) by culturing a microorganism belonging to the genus Pseudozyma and capable of producing a mannosyl erythritol lipid. Method.

(式(1)中、置換基Rは同一でも異なっていてもよく炭素数4〜24の脂肪族アシル基であり、置換基Rは同一でも異なっていてもよく水素又はアセチル基を表す。また、置換基Rは水素又は炭素数2〜24の脂肪族アシル基を表す。)
(6)上記微生物が、シュードザイマ・ツクバエンシス(Pseudozyma tsukubaensis)又はシュードザイマ・クラッサ(Pseudozyma crassa)である(5)に記載のマンノシルエリスリトールリピッドの製造方法。
(In the formula (1), the substituent R 1 may be the same or different and is an aliphatic acyl group having 4 to 24 carbon atoms, and the substituent R 2 may be the same or different and represents hydrogen or an acetyl group. The substituent R 3 represents hydrogen or an aliphatic acyl group having 2 to 24 carbon atoms.
(6) The method for producing mannosyl erythritol lipid according to (5), wherein the microorganism is Pseudozyma tsukubaensis or Pseudozyma crassa.

本発明に係るMELは、従来知られていたMELの光学異性体である。分子のキラリティーの違いは生理活性や自己集合体形成能に大きな影響を及ぼすことから、従来型MELとは界面活性に差が無いにもかかわらず、その他の諸性質において異なる挙動を示すようになる。それゆえ、本発明に係るMELを用いて従来のMELとの物性比較、機能評価を行うことにより、MELの用途開発に向けて大きく貢献できるという効果を奏する。特に、本発明に係るMELは、従来型MELと異なる液晶形成能を有するという効果を奏する。   The MEL according to the present invention is a conventionally known optical isomer of MEL. Differences in molecular chirality greatly affect physiological activity and ability to form self-assemblies, so that there is no difference in surface activity from conventional MEL, but it exhibits different behavior in other properties. Become. Therefore, by performing physical property comparison and function evaluation with the conventional MEL using the MEL according to the present invention, it is possible to greatly contribute to the development of MEL applications. In particular, the MEL according to the present invention has an effect of having a liquid crystal forming ability different from that of the conventional MEL.

また、本発明に係るMELの製造方法によれば、従来知られていたMELの光学異性体を大量かつ簡易に生産することができる。   In addition, according to the method for producing MEL according to the present invention, conventionally known optical isomers of MEL can be easily produced in large quantities.

本発明の一実施形態について説明すると以下の通りである。   An embodiment of the present invention will be described as follows.

<1.マンノシルエリスリトールリピッド(MEL)>
本発明に係るMELの理解の一助とすべく、まず従来型MELについて概説する。
<1. Mannosyl erythritol lipid (MEL)>
In order to help understanding of the MEL according to the present invention, the conventional MEL is first outlined.

従来型MELは、MEL生産菌の培養によって得られ、その化学構造の代表例は以下の一般式(4)に示すように、4−O−β−D−マンノピラノシル−meso−エリスリトールをその基本構造とするものである。   Conventional MEL is obtained by culturing MEL-producing bacteria. A typical example of the chemical structure thereof is 4-O-β-D-mannopyranosyl-meso-erythritol, as shown in the following general formula (4). It is what.

上記一般式(4)中、置換基Rは炭化水素基(アルキル基又はアルケニル基)である。上記従来型MELは、マンノースの4位及び6位のアセチル基の有無からMEL−A、MEL−B、MEL−C及びMEL−Dの4種類が知られている。   In the general formula (4), the substituent R is a hydrocarbon group (an alkyl group or an alkenyl group). As the conventional MEL, four types of MEL-A, MEL-B, MEL-C and MEL-D are known from the presence or absence of acetyl groups at the 4-position and 6-position of mannose.

まず、MEL−Aは、上記一般式(4)中、置換基R及びRがともにアセチル基である。MEL−Bは、上記一般式(4)中、置換基Rがアセチル基で置換基Rは水素である。MEL−Cは、上記一般式(4)中、置換基Rが水素で置換基Rはアセチル基である。MEL−Dは、上記一般式(4)中、置換基R及びRがともに水素である。 First, in MEL-A, in the general formula (4), the substituents R 1 and R 2 are both acetyl groups. In MEL-B, in the general formula (4), the substituent R 1 is an acetyl group and the substituent R 2 is hydrogen. In MEL-C, in the general formula (4), the substituent R 1 is hydrogen and the substituent R 2 is an acetyl group. In MEL-D, in the general formula (4), the substituents R 1 and R 2 are both hydrogen.

上記MEL−A〜MEL−Dにおける置換基Rの炭素数は、MEL生産培地に含有させる油脂類中のトリグリセリドを構成する脂肪酸の炭素数及び使用するMEL生産菌の脂肪酸の資化の程度により変化する。また、上記トリグリセリドが不飽和脂肪酸残基を有する場合、MEL生産菌が上記不飽和脂肪酸の二重結合部分まで資化しなければ、置換基Rとして不飽和脂肪酸残基を含ませることも可能である。以上の説明から明らかなように、得られる各MELは、通常、置換基Rの脂肪酸残基部分が異なる化合物の混合物の形態である。   The carbon number of the substituent R in the above MEL-A to MEL-D varies depending on the carbon number of the fatty acid constituting the triglyceride in the fats and oils contained in the MEL production medium and the degree of utilization of the fatty acid of the MEL-producing bacterium used. To do. In addition, when the triglyceride has an unsaturated fatty acid residue, an unsaturated fatty acid residue can be included as the substituent R if the MEL-producing bacterium does not assimilate up to the double bond portion of the unsaturated fatty acid. . As is clear from the above description, each obtained MEL is usually in the form of a mixture of compounds in which the fatty acid residue portion of the substituent R is different.

一方、本発明に係るMELは上記一般式(1)で表される構造を有し、MEL中のエリスリトールが従来型MELとは逆向きに導入された光学異性体であることが大きな特徴である。なお、上記一般式(1)中、置換基Rは同一でも異なっていてもよく炭素数4〜24の脂肪族アシル基であり、置換基Rは同一でも異なっていてもよく水素又はアセチル基を表す。また、置換基Rは水素又は炭素数2〜24の脂肪族アシル基を表す。ただし、置換基Rがともに炭素数12の脂肪族アシル基であって、置換基Rがともにアセチル基であって、置換基Rが水素であるものを除く。これは、上記非特許文献7に開示のMELを除く意図であり、それ以外の意図はなく、本発明の権利範囲を不当に制限する限定事項ではないことを念のため付言しておく。 On the other hand, the MEL according to the present invention has a structure represented by the above general formula (1), and is greatly characterized in that erythritol in the MEL is an optical isomer introduced in the opposite direction to the conventional MEL. . In the above general formula (1), the substituent R 1 may be the same or different and may be an aliphatic acyl group having 4 to 24 carbon atoms, and the substituent R 2 may be the same or different and is hydrogen or acetyl. Represents a group. The substituent R 3 represents hydrogen or an aliphatic acyl group having 2 to 24 carbon atoms. However, the substituent R 1 is both an aliphatic acyl group having 12 carbon atoms, the substituent R 2 is both an acetyl group, and the substituent R 3 is hydrogen. Note that this is intended to exclude the MEL disclosed in Non-Patent Document 7 described above, has no other intention, and is not a limitation that unduly limits the scope of rights of the present invention.

また、上記一般式(1)中の置換基Rは、飽和脂肪族アシル基であっても不飽和脂肪族アシル基であってもよく、限定されるものではない。不飽和結合を有している場合、複数の二重結合を有していてもよい。炭素鎖は直鎖状であってもよく分岐鎖状であってもよい。また、酸素原子含有炭化水素基の場合、含まれる酸素原子の数及び位置は限定されない。 Further, the substituent R 1 in the general formula (1) may be a saturated aliphatic acyl group or an unsaturated aliphatic acyl group, and is not limited. When it has an unsaturated bond, it may have a plurality of double bonds. The carbon chain may be linear or branched. In the case of an oxygen atom-containing hydrocarbon group, the number and position of oxygen atoms contained are not limited.

さらに、上記一般式(1)中、置換基Rのいずれか一方がアセチル基であり、他方が水素であることが好ましい。つまり、1−O−MELであって、MEL−B又はMEL−Cであることが好ましい。なかでも特に、4位が水素であって、6位がアセチル基である、すなわちMEL−Bであることがより好ましい。 Further, in the general formula (1), it is preferable that any one of the substituents R 2 is an acetyl group and the other is hydrogen. That is, it is 1-O-MEL and is preferably MEL-B or MEL-C. In particular, it is more preferable that the 4-position is hydrogen and the 6-position is an acetyl group, that is, MEL-B.

例えば、MEL−A(アセチル基が2個)に比べて、MEL−BまたはMEL−C(アセチル基が1個)は極性が高く、水中での自己組織化挙動が異なる。このため、形成される液晶の形態が異なり、MEL−Aでは幅広い濃度領域でスポンジ相(L相)等を作るのに対して、MEL−B又はMEL−Cではラメラ相(Lα)を作りやすい。ラメラ相は肌の角質層と非常に近い形態ですので、肌浸透性が良くなり、スキンケア素材として有用である。さらに、MEL−Bは2分子膜がカプセル化したベシクル(リポソーム)を形成しやすく、カプセル内に薬剤を内包できることから、リポソーム化粧品、医薬品への応用が容易になると期待される(上記非特許文献8,9参照)。 For example, compared with MEL-A (two acetyl groups), MEL-B or MEL-C (one acetyl group) has higher polarity and different self-organization behavior in water. Therefore, unlike the liquid crystal of the form to be formed, with respect to making the sponge phase in MEL-A in wide concentration region (L 3 phase), etc., MEL-B or MEL-C in lamellar phase (L alpha) Easy to make. The lamellar phase is very close to the stratum corneum of the skin, so it has good skin penetration and is useful as a skin care material. Furthermore, since MEL-B can easily form vesicles (liposomes) encapsulated in bilayer membranes and encapsulate drugs in capsules, it is expected to be easily applied to liposome cosmetics and pharmaceuticals (the above non-patent document). (See 8, 9).

なお、上記非特許文献7において合成されたMELはAタイプであり、かつ脂肪酸鎖が2本ともC12のものである。これに対して、本願発明では、MEL−BやMEL−Cを作製することができ、また脂肪酸鎖長も多様性を持たせることができる。その結果、より異なる液晶形成能を有するMELを提供することができる(後述する図7、図8参照)。   The MEL synthesized in Non-Patent Document 7 is of the A type and both of the fatty acid chains are C12. In contrast, in the present invention, MEL-B and MEL-C can be produced, and the fatty acid chain length can also be varied. As a result, it is possible to provide a MEL having a different liquid crystal forming ability (see FIGS. 7 and 8 to be described later).

なお、上記非特許文献7に記載の合成方法はあくまでMEL−Aの合成方法のみに限定されており、MEL−B,Cを合成するためには、異なる保護基の使用や異なるステップの反応を繰り返さなければならず、上記文献を参酌しても本願発明に係るMELを合成することはできないことを念のため付言しておく。   The synthesis method described in Non-Patent Document 7 is limited only to the synthesis method of MEL-A. In order to synthesize MEL-B and C, the use of different protecting groups and reactions of different steps are performed. It should be repeated, and it should be noted that the MEL according to the present invention cannot be synthesized even if the above literature is taken into consideration.

また、上記一般式(1)中、置換基Rが炭素数2〜24の脂肪族アシル基であることが好ましい。式(1)中、置換基R及びRがいずれも脂肪族アシル基であれば、トリアシルMELとなり、ジアシルMELとは異なった性質のMELを得ることができる。 In the general formula (1), the substituent R 3 is preferably an aliphatic acyl group having 2 to 24 carbon atoms. In the formula (1), if both of the substituents R 1 and R 3 are aliphatic acyl groups, they become triacyl MEL, and MEL having properties different from those of diacyl MEL can be obtained.

具体的には、トリアシル体は従来のジアシル体と比べてHLB(親水−疎水バランス)が低く、より親油性の高い界面活性剤である。このため、応用用途が異なってくる。例えば、W/Oエマルジョンや分散剤等への利用が考えられる。また上述と同様、上記非特許文献7に記載の合成方法はあくまでジアシル体のMEL−Aの合成方法のみに限定されており、トリアシル体の合成には根本的に異なる合成経路(異なる保護基や多段階反応)を経る必要がある。それゆえ、上記非特許文献7を参酌しても本願発明に係るMELを合成することはできない。   Specifically, the triacyl body has a lower HLB (hydrophilic-hydrophobic balance) than the conventional diacyl body and is a more lipophilic surfactant. For this reason, application uses differ. For example, utilization to a W / O emulsion, a dispersing agent, etc. can be considered. In addition, as described above, the synthesis method described in Non-Patent Document 7 is limited only to the synthesis method of diacyl MEL-A, and fundamentally different synthesis routes (different protecting groups and Multi-step reaction). Therefore, the MEL according to the present invention cannot be synthesized even in consideration of the non-patent document 7.

本発明に係るMELの分子構造は、基本的には上記一般式(1)における置換基Rの脂肪族アシル基の炭素数あるいは二重結合の有無等において異なる各化合物の混合物の形態で得られるが、これらはさらに分取HPLC等により精製すれば、単一のMEL化合物とすることもできる。 The molecular structure of the MEL according to the present invention is basically obtained in the form of a mixture of compounds different in the carbon number of the aliphatic acyl group of the substituent R 1 in the general formula (1) or the presence or absence of a double bond. However, these can be converted into a single MEL compound by further purification by preparative HPLC or the like.

本発明のMELは、従来型MELと同様、高い界面活性作用を有し、新たな生理活性や自己集合特性を有し、界面活性剤又はファインケミカルの種々の触媒として用いることができる。さらにMELは生分解性があり、高い安全性を有する点でも非常に意義ある物質である。つまり、生分解性が高く、低毒性で環境に優しいバイオサーファクタントである。   Like the conventional MEL, the MEL of the present invention has a high surface activity, has new physiological activity and self-assembly properties, and can be used as various catalysts for surfactants or fine chemicals. Furthermore, MEL is a very significant substance in that it is biodegradable and has high safety. In other words, it is a biosurfactant with high biodegradability, low toxicity and environmental friendliness.

さらに、従来型MELは様々な生理活性作用を有することが報告されている。例えば、ヒト急性前骨髄性白血病細胞性HL60株にMELを作用させると、顆粒系を分化させる白血病細胞細胞分化誘導作用があること。またラット副腎髄質褐色細胞腫由来のPC12細胞にMELを作用させると神経突起の伸長が生ずる神経系細胞分化誘導作用等の生理活性作用を有すること、さらに微生物産生の糖脂質として初めて、メラノーマ細胞のアポトーシスを誘導することが可能となり(X. Zhao et. al., Cancer Research,59, 482-486 (1999))、癌細胞増殖抑制作用があること、等が報告されている。これら従来型MELの生理作用からみて、本発明に係るMELにも種々の生理活性を有することが期待でき、例えば抗ガン剤等の医薬としての用途や新規化粧品材料用途が考えられる。   Furthermore, it has been reported that conventional MEL has various physiological activity. For example, when MEL is allowed to act on human acute promyelocytic leukemia cell line HL60, it has the effect of inducing differentiation of leukemia cells that differentiates the granule system. In addition, when MEL is allowed to act on PC12 cells derived from rat adrenal medullary pheochromocytoma, it has physiological activity such as neural cell differentiation inducing action that causes neurite outgrowth, and for the first time as a microbially produced glycolipid, It has been reported that apoptosis can be induced (X. Zhao et. Al., Cancer Research, 59, 482-486 (1999)) and that it has a cancer cell growth inhibitory effect. In view of the physiological action of these conventional MELs, the MEL according to the present invention can be expected to have various physiological activities. For example, it can be used as a medicine such as an anticancer agent or a novel cosmetic material.

また、本発明に係るMELは、後述する実施例に示すように、分子のキラリティーの違いによって、従来型MELと液晶形成能において顕著に異なる。具体的には、本発明に係るMELは従来型MELと比べて非常に広い濃度領域でラメラ相を形成する能力を有しており、液晶形成能に極めて優れたバイオサーファクタントといえる。   In addition, the MEL according to the present invention is remarkably different from the conventional MEL in the liquid crystal forming ability due to the difference in molecular chirality, as shown in Examples described later. Specifically, the MEL according to the present invention has the ability to form a lamellar phase in a very wide concentration region as compared with the conventional MEL, and can be said to be a biosurfactant with extremely excellent liquid crystal forming ability.

なお、上述した液晶形成能の評価方法としては、従来公知の方法で確認可能であるが、例えば、液晶形成能力の簡便な比較方法として水侵入法が挙げられる。スライドガラス上にMELを塗布し、その横に蒸留水を滴下して界面に形成される液晶相を顕微鏡観察することで、液晶形成の挙動を追跡することができる。上記方法を用いることで、従来型MELと本発明のMEL光学異性体の液晶形成能を簡便に比較することができる。   In addition, as a method for evaluating the liquid crystal forming ability described above, it can be confirmed by a conventionally known method. For example, a water intrusion method is given as a simple comparison method of the liquid crystal forming ability. The behavior of liquid crystal formation can be traced by applying MEL on a slide glass, dropping distilled water beside it and observing the liquid crystal phase formed at the interface under a microscope. By using the above method, the liquid crystal forming ability of the conventional MEL and the MEL optical isomer of the present invention can be easily compared.

<2.MELの製造方法>
本発明に係るMELの製造方法は、1−O−MELの生産能を有する微生物を用いることを特徴としている。具体的には、例えば、シュードザイマ(Pseudozyma)属に属し、かつマンノシルエリスリトールリピッドを生産する能力を有する微生物を培養し、上記一般式(1)で表される構造を有するマンノシルエリスリトールリピッドを製造するMELの製造方法である。なお、本MELの製造方法を説明する記載においては、上記一般式(1)中、置換基Rは同一でも異なっていてもよく炭素数4〜24の脂肪族アシル基であり、置換基Rは同一でも異なっていてもよく水素又はアセチル基を表す。また、置換基Rは水素又は炭素数2〜24の脂肪族アシル基を表す。
<2. Manufacturing method of MEL>
The method for producing MEL according to the present invention is characterized by using a microorganism having an ability to produce 1-O-MEL. Specifically, for example, a MEL that produces a mannosyl erythritol lipid having a structure represented by the above general formula (1) by culturing a microorganism that belongs to the genus Pseudozyma and has the ability to produce mannosyl erythritol lipid. It is a manufacturing method. In the description explaining the production method of the present MEL, in the general formula (1), the substituent R 1 may be the same or different and is an aliphatic acyl group having 4 to 24 carbon atoms. 2 may be the same or different and each represents hydrogen or an acetyl group. The substituent R 3 represents hydrogen or an aliphatic acyl group having 2 to 24 carbon atoms.

<2−1.使用微生物>
本発明に係るMELの製造方法に使用可能な微生物としては、上記シュードザイマ属に属し、MELを生産する能力を有するもののうち、上記式(1)で表されるMEL光学異性体を生産するものであれば特に限定されるものではない。
<2-1. Microorganisms used>
Among the microorganisms that belong to the genus Pseudozyma and have the ability to produce MEL, microorganisms that can be used in the MEL production method according to the present invention are those that produce the MEL optical isomer represented by the above formula (1). There is no particular limitation as long as it is present.

上記一般式(1)のMELを生産する微生物の例としては、例えばシュードザイマ・ツクバエンシス又はシュードザイマ・クラッサ等に属する微生物が挙げられ、このうち特に、シュードザイマ・ツクバエンシスに属する微生物が好ましい。シュードザイマ・ツクバエンシスに属する微生物は、例えば25〜30℃で培養した場合、MELの生産性向上効果が高く、特にシュードザイマ・ツクバエンシスJCM 10324株の場合、培養温度30℃の場合に最も良好な生産性が得られる。   Examples of microorganisms that produce MEL of the above general formula (1) include, for example, microorganisms belonging to Pseudozyma tsukubaensis or Pseudozyma crussa, among which microorganisms belonging to Pseudozyma tsukubaensis are preferred. For example, microorganisms belonging to Pseudozyma tsukubaensis are highly effective in improving the productivity of MEL when cultured at 25-30 ° C., for example, in the case of Pseudozyma tsukubaensis JCM 10324, the best production is obtained at a culture temperature of 30 ° C. Sex is obtained.

<2−2.使用培地及び培養方法>
培地は、例えば、一般的な微生物又は酵母に対して一般に用いられる培地を使用でき、特に限定されるものではなく、特に酵母に用いられる培地が好ましい。このような培地としては、例えば、YPD培地(イーストイクストラクト10g、ポリペプトン20g、及びグルコース100g)を挙げることができる。特に、シュードザイマ・ツクバエンシスJCM 10324株を用いる場合は、培養温度を27℃〜33℃に設定することが好ましいという知見を得ている。上述のとおり、MELの生産性が著しく向上するためである。
<2-2. Medium used and culture method>
As the medium, for example, a medium generally used for general microorganisms or yeast can be used, and the medium is not particularly limited, and a medium used for yeast is particularly preferable. Examples of such a medium include YPD medium (yeast extract 10 g, polypeptone 20 g, and glucose 100 g). In particular, when using Pseudozyma tsukubaensis JCM 10324 strain, it has been found that the culture temperature is preferably set to 27 ° C to 33 ° C. This is because the productivity of MEL is significantly improved as described above.

さらに、本発明のMEL製造方法に利用可能な微生物、特に前記シュードザイマ・ツクバエンシスJCM 10324株を用いてMELを生産する場合の好適な培地組成は、以下のとおりである。
・酵母エキス;0.1〜2g/Lが好ましく、1g/Lが特に好ましい
・硝酸ナトリウム;0.1〜1g/Lが好ましく、0.3g/Lが特に好ましい。
・リン酸2水素カリウム;0.1〜1g/Lが好ましく、0.3g/Lが特に好ましい。
・硫酸マグネシウム;0.1〜1g/Lが好ましく、0.3g/Lが特に好ましい。
・油脂類;40g/L以上が好ましく、80g/Lが特に好ましい。
Furthermore, a preferable medium composition when MEL is produced using a microorganism that can be used in the MEL production method of the present invention, in particular, Pseudozyma tsukubaensis JCM 10324 strain is as follows.
-Yeast extract; preferably 0.1-2 g / L, particularly preferably 1 g / L- Sodium nitrate; 0.1-1 g / L is preferred, and 0.3 g / L is particularly preferred.
-Potassium dihydrogen phosphate; 0.1-1 g / L is preferable and 0.3 g / L is particularly preferable.
Magnesium sulfate: 0.1 to 1 g / L is preferable, and 0.3 g / L is particularly preferable.
-Fats and oils; 40 g / L or more is preferable, and 80 g / L is particularly preferable.

また、上記微生物の培養においては、培地に炭素源を添加することが好ましい。炭素源としては油脂類、脂肪酸、脂肪酸誘導体(脂肪酸トリグリセリド等の脂肪酸エステル類)、あるいは合成エステルを少なくとも1種、さらには複数種混合して含有させればよく、その他の諸条件については、特に制限はなく、本発明の利用当時の技術水準に基づいて適宜選定することができる。   In the culture of the microorganism, it is preferable to add a carbon source to the medium. As the carbon source, fats and oils, fatty acids, fatty acid derivatives (fatty acid esters such as fatty acid triglycerides), or synthetic esters may be contained, and a mixture of plural kinds may be contained. There is no restriction and can be selected as appropriate based on the technical level at the time of use of the present invention.

「油脂類」としては、植物油、動物油、鉱物油及びその硬化油であればよい。具体的には、アボカド油、オリーブ油、ゴマ油、ツバキ油、月見草油、タートル油、マカデミアンナッツ油、トウモロコシ油(コーン油)、ミンク油、ナタネ油、卵黄油、パーシック油、ピーナッツ油、ベニバナ油、小麦胚芽油、サザンカ油、ヒマシ油、アマニ油、サフラワー油、綿実油、エノ油、大豆油、落花生油、茶実油、カヤ油、コメヌカ油、キリ油、ホホバ油、カカオ脂、ヤシ油、馬油、パーム油、パーム核油、牛脂、羊脂、豚脂、ラノリン、鯨ロウ、ミツロウ、カルナウバロウ、モクロウ、キャンデリラロウ、スクワラン等の動植物油及びその硬化油、流動パラフィン、ワセリン等の鉱物油、トリパルミチン酸グリセリン等の合成トリグリセリンが挙げられる。好ましくはアボカド油、オリーブ油、ゴマ油、ツバキ油、月見草油、タートル油、マカデミアンナッツ油、トウモロコシ油、ミンク油、ナタネ油、卵黄油、パーシック油、小麦胚芽油、サザンカ油、ヒマシ油、アマニ油、サフラワー油、綿実油、エノ油、大豆油、落花生油、茶実油、カヤ油、コメヌカ油、より好ましくはオリーブ油、大豆油である。   “Oils and fats” may be vegetable oils, animal oils, mineral oils and hardened oils thereof. Specifically, avocado oil, olive oil, sesame oil, camellia oil, evening primrose oil, turtle oil, macadamia nut oil, corn oil (corn oil), mink oil, rapeseed oil, egg yolk oil, persic oil, peanut oil, safflower oil , Wheat germ oil, sasanqua oil, castor oil, flaxseed oil, safflower oil, cottonseed oil, eno oil, soybean oil, peanut oil, teaseed oil, kaya oil, rice bran oil, kiri oil, jojoba oil, cacao butter, palm oil Such as horse oil, palm oil, palm kernel oil, beef tallow, sheep fat, lard, lanolin, whale wax, beeswax, carnauba wax, molasses, candelilla wax, squalane, etc. and its hardened oil, liquid paraffin, petrolatum, etc. Synthetic triglycerin such as mineral oil and glycerin tripalmitate. Preferably avocado oil, olive oil, sesame oil, camellia oil, evening primrose oil, turtle oil, macadamia nut oil, corn oil, mink oil, rapeseed oil, egg yolk oil, persic oil, wheat germ oil, southern oil, castor oil, flaxseed oil , Safflower oil, cottonseed oil, eno oil, soybean oil, peanut oil, tea seed oil, kaya oil, rice bran oil, and more preferably olive oil and soybean oil.

「脂肪酸」又は「脂肪酸誘導体」としては、高級脂肪酸由来が好ましく、例えばカプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、ベヘン酸、12−ヒドロキシステアリン酸、イソステアリン酸、ウンデシン酸、トール酸、エイコサペンタエン酸、ドコサヘキサエン酸などが挙げられる。好ましくはラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、ウンデシレン酸、より好ましくはオレイン酸、リノール酸、ウンデシレン酸である。   The “fatty acid” or “fatty acid derivative” is preferably derived from higher fatty acids, such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, behenic acid. , 12-hydroxystearic acid, isostearic acid, undecic acid, toluic acid, eicosapentaenoic acid, docosahexaenoic acid and the like. Preferred are lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid and undecylenic acid, and more preferred are oleic acid, linoleic acid and undecylenic acid.

「合成エステル」としては、例えば、カプロン酸メチル、カプリル酸メチル、カプリン酸メチル、ラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、オレイン酸メチル、リノール酸メチル、リノレン酸メチル、ステアリン酸メチル、ウンデシン酸メチル、カプロン酸エチル、カプリル酸エチル、カプリン酸エチル、ラウリン酸エチル、ミリスチン酸エチル、パルミチン酸エチル、オレイン酸エチル、リノール酸エチル、リノレン酸エチル、ステアリン酸エチル、ウンデシン酸エチル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、オレイン酸ビニル、リノール酸ビニル、リノレン酸ビニル、ステアリン酸ビニル、ウンデシン酸ビニル、オクタン酸セチル、ミリスチン酸オクチルドデシル、ミリスチン酸イソプロピル、ミリスチン酸ミリスチル、パルミチン酸イソプロピル、ステアリン酸ブチル、ラウリン酸ヘキシル、オレンイ酸デシル、ジメチルオクタン酸、乳酸セチル、乳酸ミリスチル等が挙げられる。好ましくはラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、オレイン酸メチル、リノール酸メチル、リノレン酸メチル、ステアリン酸メチル、ウンデシレン酸メチル、より好ましくはオレイン酸メチル、リノール酸メチル、ウンデシレン酸メチルである。   Examples of the “synthetic ester” include methyl caproate, methyl caprylate, methyl caprate, methyl laurate, methyl myristate, methyl palmitate, methyl oleate, methyl linoleate, methyl linolenate, methyl stearate, undecine. Methyl acid, ethyl caproate, ethyl caprylate, ethyl caprate, ethyl laurate, ethyl myristate, ethyl palmitate, ethyl oleate, ethyl linoleate, ethyl linolenate, ethyl stearate, ethyl undecinate, vinyl caproate , Vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl oleate, vinyl linoleate, vinyl linolenate, vinyl stearate, vinyl undecinate, cetyl octanoate , Octyldodecyl myristate, isopropyl myristate, myristyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, Oren'i acid decyl dimethyl octanoate, cetyl lactate, myristyl lactate, and the like. Preferred are methyl laurate, methyl myristate, methyl palmitate, methyl oleate, methyl linoleate, methyl linolenate, methyl stearate, methyl undecylate, more preferably methyl oleate, methyl linoleate, and methyl undecylate. .

これらは、1種を単独で又は2種以上を適宜混合して用いてもよい。   You may use these individually by 1 type or in mixture of 2 or more types as appropriate.

本発明に係るMELの製造方法の具体的な工程については、特に限定されるものではなく、目的に応じて適宜選定することができるが、例えば、種培養、本培養及びMEL生産培養の順にスケールアップしていくことが好ましい。これらの培養における、培地並びに培養条件を例示すると以下のとおりである。
a)種培養;グルコース40g/L、酵母エキス1g/L、硝酸ナトリウム0.3g/L、リン酸2水素カリウム 0.3g/L、及び硫酸マグネシウム0.3g/Lの組成の液体培地5mLが入った試験管に1白金耳接種し、30℃で1日間振とう培養を行う。
b)本培養;所定量の植物性油脂等の油脂類と、酵母エキス1g/L、硝酸ナトリウム0.3g/L、リン酸2水素カリウム0.3g/L、及び硫酸マグネシウム0.3g/Lの組成の液体培地100mLの入った坂口フラスコにa)の培養液を接種して、30℃で2日間培養を行う。
c)マンノシルエリスリトールリピッド生産培養;所定量の植物性油脂等の油脂類と酵母エキス1g/L、硝酸ナトリウム0.3g/L、リン酸2水素カリウム0.3g/L、及び硫酸マグネシウム0.3g/Lの組成の液体培地1.4Lが入ったジャーファメンターに接種して、30℃で800rpmの撹拌速度で培養を行う。この培養においては、培養途中から植物性油脂を培養容器中に流下させて、培地中の油脂類濃度を20〜200g/Lに保持することが好ましい。
The specific steps of the MEL production method according to the present invention are not particularly limited, and can be appropriately selected according to the purpose. For example, the scale is in the order of seed culture, main culture, and MEL production culture. It is preferable to keep up. Examples of culture media and culture conditions in these cultures are as follows.
a) Seed culture: 5 mL of liquid medium having a composition of glucose 40 g / L, yeast extract 1 g / L, sodium nitrate 0.3 g / L, potassium dihydrogen phosphate 0.3 g / L, and magnesium sulfate 0.3 g / L Inoculate one platinum loop into the test tube and shake culture at 30 ° C for 1 day.
b) Main culture; predetermined amount of fats and oils such as vegetable oil and fat, yeast extract 1 g / L, sodium nitrate 0.3 g / L, potassium dihydrogen phosphate 0.3 g / L, and magnesium sulfate 0.3 g / L A culture medium of a) is inoculated into a Sakaguchi flask containing 100 mL of the liquid medium having the composition of 2 and cultured at 30 ° C. for 2 days.
c) Mannosyl erythritol lipid production culture; predetermined amount of fats and oils such as vegetable oil and fat, yeast extract 1 g / L, sodium nitrate 0.3 g / L, potassium dihydrogen phosphate 0.3 g / L, and magnesium sulfate 0.3 g A jar fermenter containing 1.4 L of a liquid medium having a composition of / L is inoculated and cultured at 30 ° C. with a stirring speed of 800 rpm. In this culture, it is preferable that the vegetable fats and oils flow down into the culture vessel from the middle of the culture to maintain the fats and oils concentration in the medium at 20 to 200 g / L.

<2−3.MELの回収方法>
MELの回収についても従来公知の脂質の精製方法を用いることができ、特に限定されるものではない。例えば、培養終了後、当容積〜4容積倍の酢酸エチルで脂質成分を抽出し、酢酸エチルを、エバポレーターを用いて留去して脂質及び糖脂質成分を回収する工程を挙げることができる。その後、この脂質成分を等量のクロロホルムに溶解し、これをシリカゲルクロマトグラフィーにかけ、クロロホルム、クロロホルム:アセトン(80:20)、同(70:30)、同(60:40)、同(50:50)、同(30:70)、アセトンの順で溶出させる。各溶液を薄層クロマトグラフィー(TLC)プレートにチャージし、クロロホルム:メタノール:アンモニア水=65:15:2(容積比)で展開する。展開終了後、アンスロン硫酸試薬で糖脂質の存在を確認する。糖脂質の含まれる溶出液を集め、溶媒を留去して糖脂質成分を得ることができる。
<2-3. MEL recovery method>
For the recovery of MEL, a conventionally known lipid purification method can be used and is not particularly limited. For example, after completion of the culture, a step of extracting the lipid component with this volume to 4 times volume of ethyl acetate and distilling off the ethyl acetate using an evaporator to recover the lipid and glycolipid component can be mentioned. Thereafter, this lipid component was dissolved in an equal amount of chloroform, and this was subjected to silica gel chromatography, and chloroform, chloroform: acetone (80:20), (70:30), (60:40), and (50: 50), the same (30:70), and acetone. Each solution is charged on a thin layer chromatography (TLC) plate and developed with chloroform: methanol: aqueous ammonia = 65: 15: 2 (volume ratio). After completion of the development, the presence of glycolipid is confirmed with an anthrone sulfate reagent. The eluate containing the glycolipid can be collected and the solvent can be distilled off to obtain a glycolipid component.

<2−4.MELの構造決定>
上述したMELの製造方法により得られるMELの構造決定は、従来公知の方法で行うことができ、特に限定されるものではないが、例えば、シュードザイマ・ツクバエンシスJCM 10324株を用いて得られたMELの構造決定手法を例にして説明すると、以下の通りである。
<2-4. Determination of MEL structure>
The structure determination of MEL obtained by the MEL production method described above can be performed by a conventionally known method, and is not particularly limited. For example, MEL obtained using Pseudozyma Tsukubaensis JCM 10324 strain An example of the structure determination method is as follows.

まず単離した糖脂質成分は、TLCプレート上で、アンスロン硫酸試薬で青緑色に呈色することにより糖脂質成分であると判断できる。この糖脂質がMELであることは、H、13C、二次元NMR解析を行い、得られたスペクトルと、構造既知である従来型MEL(MEL−A〜D)(上記一般式(4))のスペクトルとを比較することで容易に確認することができる。 First, the isolated glycolipid component can be judged to be a glycolipid component by being colored blue-green with an anthrone sulfate reagent on a TLC plate. The fact that this glycolipid is MEL indicates that 1 H, 13 C, two-dimensional NMR analysis was performed, and the obtained spectrum and conventional MEL (MEL-AD) having a known structure (the above general formula (4) ) And the spectrum can be easily confirmed.

本発明に係るMELが、従来型MELの光学異性体であることは、次のように、1)糖骨格のNMR解析及び2)旋光度測定を行うことにより簡便に確認することができる。   Whether the MEL according to the present invention is an optical isomer of a conventional MEL can be easily confirmed by performing 1) NMR analysis of sugar skeleton and 2) optical rotation measurement as follows.

1)糖骨格のNMR解析
重クロロホルム中で測定したH−NMRスペクトルにおいて、MELの糖鎖部分のプロトンは3.3〜5.6ppm付近に検出される。特に、グリコシド結合に関与するマンノース1’位(還元末端)のプロトンと、エリスリトール4位のプロトンはそれぞれ4.7ppm付近と4.0ppm付近に検出される。しかし、エリスリトールの結合向きが異なる場合、上記プロトン由来のピークがそれぞれシフトすることがD. Crichらによって報告されている(上記非特許文献7参照)。そこで、従来型MELに対して本発明に係るMELが、上記のピークのみシフトしたスペクトルパターンを示すことを確認する。
1) NMR analysis of sugar skeleton In a 1 H-NMR spectrum measured in deuterated chloroform, protons in the sugar chain portion of MEL are detected in the vicinity of 3.3 to 5.6 ppm. In particular, the mannose 1′-position (reducing terminal) proton involved in the glycosidic bond and the erythritol 4-position proton are detected at around 4.7 ppm and around 4.0 ppm, respectively. However, when the binding directions of erythritol are different, the proton-derived peaks are shifted. Reported by Crich et al. (See Non-Patent Document 7 above). Therefore, it is confirmed that the MEL according to the present invention shows a spectrum pattern in which only the above peak is shifted with respect to the conventional MEL.

さらに、得られたMELをアルカリ(NaOCH)で加水分解して得られた糖鎖(マンノシルエリスリトール;以下MEと省略することがある)のNMR解析を行う。得られたMELの糖鎖と従来型MELの糖鎖のNMRスペクトルを比較することで、本発明に係るMELの糖鎖部分の構造が、従来型MEL(4−O−β−D−マンノピラノシル−meso−エリスリトール構造)と異なるスペクトルパターンとなることを確認できる。 Further, NMR analysis of a sugar chain (mannosylerythritol; sometimes abbreviated as ME) obtained by hydrolyzing the obtained MEL with an alkali (NaOCH 3 ) is performed. By comparing the NMR spectra of the obtained MEL sugar chain and the conventional MEL sugar chain, the structure of the sugar chain part of the MEL according to the present invention is the conventional MEL (4-O-β-D-mannopyranosyl- It can be confirmed that the spectrum pattern is different from the meso-erythritol structure.

2)旋光度測定
MEL又はMEの旋光度測定を行うことで、従来型MELと本発明に係るMELの分子のキラリティーを比較することができる(上記非特許文献7参照)。D. Crichらによって報告されている、本発明のMELと糖骨格が同じ1−O−(4’,6’−ジ−O−ドデシル−2’,3’−ジ−O−ドデシル−β−D−マンノピラノシル)−D−エリスリトールの比旋光度[α]=−25.9°(c=1.5)であるので、これを参考にして比較することで立体構造の違いがわかる。
2) Optical rotation measurement By measuring the optical rotation of MEL or ME, the chirality of the conventional MEL and the MEL molecule according to the present invention can be compared (see Non-Patent Document 7 above). D. 1-O- (4 ′, 6′-di-O-dodecyl-2 ′, 3′-di-O-dodecyl-β-D-, which has the same sugar skeleton as the MEL of the present invention reported by Crich et al. Since the specific rotation of [mannopyranosyl) -D-erythritol is [α] D = −25.9 ° (c = 1.5), the difference in the three-dimensional structure can be understood by comparing with reference to this.

以上の方法により、本発明で得られるMELが従来型MELとは糖骨格の立体構造が異なることが確認できる。   By the above method, it can confirm that MEL obtained by this invention differs in the three-dimensional structure of sugar skeleton from conventional MEL.

以上のように、本発明に係るMELの製造方法によれば、従来型MELとはキラリティーが異なり、これまで微生物による生産の報告例の無いMELを選択的に生産することができる。上述したように、分子のキラリティーの違いは生理活性や自己集合体形成能に大きな影響を及ぼすことから、本発明に係るMELは、従来型MELとは界面活性に差が無いにもかかわらず、その他の諸性質において異なる挙動を示すようになる。それゆえ、本発明に係るMELと従来型MELとの物性比較は、MELの機能評価に対する重要なファクターを示すこととなる。その結果、生理活性等の構造−物性相関に関するデータの蓄積は、医薬、食品、化粧品分野等、種々用途へのバイオサーファクタントの用途開拓の進展に大いに貢献するものである。   As described above, according to the MEL manufacturing method of the present invention, the MEL is different from the conventional MEL, and it is possible to selectively produce an MEL that has not been reported to date for production by microorganisms. As described above, since the difference in molecular chirality has a great influence on the physiological activity and the ability to form self-assemblies, the MEL according to the present invention has no difference in surface activity from the conventional MEL. , It will behave differently in other properties. Therefore, the physical property comparison between the MEL according to the present invention and the conventional MEL shows an important factor for the functional evaluation of the MEL. As a result, accumulation of data relating to structure-property relationships such as physiological activity greatly contributes to the development of biosurfactant applications in various fields such as pharmaceuticals, foods, and cosmetics.

さらにいえば、本発明に係るMELは、一見すると化学的な合成手法を用いても理論上では合成可能であるようにみえる。しかしながら、化学合成により合成する場合、極めて特殊な合成技術と多段階に渡る複雑な保護・脱保護反応が必要である。また、そもそもキラリティーを完全に制御することは著しく困難であるため、現実的には化学的に合成することは極めて困難であるといえる。これに対して、本発明が示すような微生物生産法では精巧な生合成経路を経由するため、位置・立体構造が完全に制御された特殊構造を維持し、かつ一段階のステップのみで製造する方法を提供できるため、極めて有効な手段と成り得る。   Furthermore, it seems that the MEL according to the present invention can be synthesized theoretically even if a chemical synthesis method is used. However, when synthesizing by chemical synthesis, very special synthesis techniques and multi-step complex protection / deprotection reactions are required. Moreover, since it is extremely difficult to completely control the chirality in the first place, it can be said that it is extremely difficult to chemically synthesize in reality. On the other hand, the microorganism production method as shown in the present invention goes through an elaborate biosynthetic pathway, so that a special structure in which the position and the three-dimensional structure are completely controlled is maintained, and it is manufactured in only one step. Since a method can be provided, it can be a very effective means.

<2−5.1−O−β−D−マンノピラノシル−meso−エリスリトールの同定>
上記一般式(2)に示される4−O−β−D−マンノピラノシル−meso−エリスリトール(以下、4−O−MEと省略することがある。)は、これまでに従来型MEL(4−O−MEL)のアルカリ加水分解によって合成され、その構造解析結果が報告されている公知のオリゴ糖アルコールである。また、キャンディダ属酵母を用いたグルコースを原料とする発酵生産方法も報告されており(特開昭63−63390、T. Kobayashiら, Argic. Biol. Chem. Vol.51, pp.1715-1716 (1987))、化粧品、医薬品の成分としての有効性が期待されている。
<Identification of 2-5.1-O-β-D-mannopyranosyl-meso-erythritol>
The 4-O-β-D-mannopyranosyl-meso-erythritol (hereinafter sometimes abbreviated as 4-O-ME) represented by the general formula (2) has heretofore been known as conventional MEL (4-O -MEL) is a known oligosaccharide alcohol synthesized by alkaline hydrolysis and reported as a result of structural analysis. A fermentation production method using glucose as a raw material using Candida yeast has also been reported (Japanese Patent Laid-Open No. 63-63390, T. Kobayashi et al., Argic. Biol. Chem. Vol. 51, pp.1715-1716). (1987)), it is expected to be effective as a component of cosmetics and pharmaceuticals.

しかし、上述のように、本発明に係るMELをアルカリ加水分解することで得られる糖鎖は、上記一般式(3)に示される1−O−β−D−マンノピラノシル−meso−エリスリトール(以下、1−O−MEと省略することがある。)であり、D. Crichらによってその構造は想定されている(上記非特許文献7参照)ものの、製造例及び単離・同定に関する報告例は皆無である。   However, as described above, the sugar chain obtained by alkaline hydrolysis of the MEL according to the present invention is a 1-O-β-D-mannopyranosyl-meso-erythritol (hereinafter referred to as the following general formula (3)). 1-O-ME, which may be abbreviated). Although the structure is assumed by Crich et al. (See Non-Patent Document 7 above), there are no production examples and no reports on isolation / identification.

単糖類、多糖類によらず、糖鎖には多数の不斉炭素原子が存在し、立体構造の違いによって多種多様に分類されており、それぞれ特定の機能を有する。特に糖鎖の立体構造の違いは特異な生体分子認識機構の中枢を担っていることから、分子のキラリティーの違いは生理活性に大きな影響を及ぼすものと考えられ、本明細書に記載の方法によって得られる1−O−MEには、従来の4−O−MEとは異なる生理機能の発現が期待される。特に、糖アルコールは低甘味、低エネルギー性、非う蝕性等の特徴を利用して食品分野に広く利用されるほか、保湿性等を利用して化粧品分野でも需要が高く、新たな構造、キラリティーを有する素材を提供できれば、その利用価値は極めて高い。 Regardless of whether they are monosaccharides or polysaccharides, there are a large number of asymmetric carbon atoms in the sugar chain, which are classified into a wide variety according to the difference in steric structure, and each has a specific function. In particular, since the difference in the three-dimensional structure of the sugar chain plays a central role in the unique biomolecular recognition mechanism, the difference in molecular chirality is considered to have a great influence on the physiological activity, and the method described in this specification. 1-O-ME obtained by 1 is expected to express physiological functions different from those of conventional 4-O-ME. In particular, sugar alcohols are widely used in the food field by utilizing characteristics such as low sweetness, low energy, and non-cariogenic properties, and are also in high demand in the cosmetics field by utilizing moisturizing properties. If a material having chirality can be provided, its utility value is extremely high.

上記発明を実施するための最良の形態の項においてなした具体的な実施態様及び以下の実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、当業者は、本発明の精神及び添付の特許請求の範囲内で変更して実施することができる。   The specific embodiments and the following examples made in the section of the best mode for carrying out the invention described above merely clarify the technical contents of the present invention, and only such specific examples. It is not to be construed as limiting in a narrow sense, and those skilled in the art can make modifications within the spirit of the present invention and the scope of the appended claims.

以下に実施例を示して本発明をより具体的に説明するが、これらは単なる例示であって、本発明の範囲を何ら限定するものではない。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, these are merely examples and do not limit the scope of the present invention.

〔実施例1:Pseudozyma tsukubaensis JCM 10324株の培養〕
a)保存培地(麦芽エキス3g/L、酵母エキス3g/L、ペプトン5g/Lグルコース10g/L、寒天30g/L)に保存しておいたPseudozyma tsukubaensis JCM 10324株を、 グルコース20g/L、酵母エキス1g/L、硝酸ナトリウムム0.3g/L、リン酸2水素カリウム0.3g/L、及び硫酸マグネシウム0.3g/Lの組成の液体培地2mLが入った試験管に1白金耳接種し30℃で振とう培養を行い、次いで、b)得られた菌体培養液1mLを所定量の大豆油と酵母エキス1g/L、硝酸ナトリウム0.3g/L、リン酸2水素カリウム0.3g/L、及び硫酸マグネシウム0.3g/Lの組成の液体培地20mLの入った坂口フラスコに接種して、30℃で振とう培養を行った。
上記a)とb)の各培養により得られた菌体培養液を使用して、以下の試験を行った。
[Example 1: Culture of Pseudozyma tsukubaensis JCM 10324 strain]
a) Pseudozyma tsukubaensis JCM 10324 strain stored in a storage medium (malt extract 3 g / L, yeast extract 3 g / L, peptone 5 g / L glucose 10 g / L, agar 30 g / L), glucose 20 g / L, yeast One platinum loop is inoculated into a test tube containing 1 mL of extract, sodium nitrate 0.3 g / L, potassium dihydrogen phosphate 0.3 g / L, and magnesium sulfate 0.3 g / L. Perform shaking culture at 30 ° C., and then b) 1 mL of the obtained bacterial cell culture solution with a predetermined amount of soybean oil and yeast extract 1 g / L, sodium nitrate 0.3 g / L, potassium dihydrogen phosphate 0.3 g / L, and inoculated into a Sakaguchi flask containing 20 mL of a liquid medium having a composition of magnesium sulfate 0.3 g / L, and cultured at 30 ° C. with shaking.
The following tests were performed using the bacterial cell culture solution obtained by each culture of a) and b).

〔実施例2:Pseudozyma tsukubaensis JCM 10324株の糖脂質生産能の確認〕
a)の培養を1日間行った後、b)の培養を7日間行って培養液を採取し、これを用いてPseudozyma tsukubaensis JCM 10324株のバイオサーファクタントの生産を薄層クロマトグラフィーで確認した。展開溶媒はクロロホルム:メタノール:7Nアンモニア水=65:15:2を用い、指示薬には糖脂質を青緑色に発色させるアンスロン硫酸試薬を用いた。MELの標準として、Pseudozyma antarctica KM-34(FERMP−20730)株を大豆油添加培地で培養し、原料油脂等の不純物を取り除いた精製標品を用いた。MEL標準における、MEL−A〜Dはそれぞれ上記一般式(4)に表される化合物を示す。
[Example 2: Confirmation of glycolipid production ability of Pseudozyma tsukubaensis JCM 10324 strain]
After culturing a) for 1 day, culturing b) was performed for 7 days, and the culture solution was collected. Using this, production of biosurfactant of Pseudozyma tsukubaensis JCM 10324 strain was confirmed by thin layer chromatography. As the developing solvent, chloroform: methanol: 7N aqueous ammonia = 65: 15: 2 was used, and as the indicator, an anthrone sulfate reagent that colored the glycolipid to blue-green was used. As a MEL standard, Pseudozyma antarctica KM-34 (FERMP-20730) strain was cultured in a soybean oil-added medium, and a purified preparation from which impurities such as raw oils and fats were removed was used. MEL-A to D in the MEL standard each represent a compound represented by the above general formula (4).

その結果を図1に示す。同図によれば、Pseudozyma tsukubaensis JCM 10324株は、MEL−Bと思われる糖脂質を生産していることがわかった。   The result is shown in FIG. According to the figure, it was found that the Pseudozyma tsukubaensis JCM 10324 strain produces a glycolipid that seems to be MEL-B.

〔実施例3:MEL生産用培地で同リピッドの生産〕
Pseudozyma tsukubaensis JCM 10324株を用い、a)の培養を1日間行った後、b)の培養を7日間行った。その後培養液を採取し、培養液中の酢酸エチル可溶成分を精製後、生産されたMELを高速液体クロマトグラフィーで検出した。また、比較例として大豆油を炭素源として培養したPseudozyma antarctica KM-34(FERMP−20730)株の培養液を、同様にして高速液体クロマトグラフィーで検出した。
[Example 3: Production of the same lipid in MEL production medium]
Using Pseudozyma tsukubaensis JCM 10324 strain, a) was cultured for 1 day, and then b) was cultured for 7 days. Thereafter, the culture broth was collected, the ethyl acetate-soluble component in the culture broth was purified, and the produced MEL was detected by high performance liquid chromatography. As a comparative example, a culture solution of Pseudozyma antarctica KM-34 (FERMP-20730) strain cultured using soybean oil as a carbon source was similarly detected by high performance liquid chromatography.

その結果を図2に示す。図2によれば、Pseudozyma tsukubaensis JCM 10324株を培養すると、MEL−Bと同じ保持時間にピークが確認できる糖脂質を得られることがわかる。   The result is shown in FIG. According to FIG. 2, it can be seen that when Pseudozyma tsukubaensis JCM 10324 strain is cultured, a glycolipid whose peak can be confirmed at the same retention time as MEL-B can be obtained.

〔実施例4:Pseudozyma crassa CBS 9959株の培養とMEL生産能の確認〕
実施例1に記載の方法に対し、Pseudozyma crassa CBS 9959株を用い、温度は25℃に設定して同様に培養を行った。a)の培養を1日間行った後、b)の培養を7日間行った後の培養液を採取し、これを用いて実施例2に記載の方法と同様に、Pseudozyma crassa CBS 9959株のバイオサーファクタントの生産を薄層クロマトグラフィーで確認した。
[Example 4: Cultivation of Pseudozyma crassa CBS 9959 strain and confirmation of MEL production ability]
In contrast to the method described in Example 1, Pseudozyma crassa CBS 9959 strain was used and the temperature was set to 25 ° C., and the culture was performed in the same manner. After the culture of a) was carried out for 1 day, the culture broth after the cultivation of b) was carried out for 7 days was collected and used in the same manner as described in Example 2 for the biosynthesis of Pseudozyma crassa CBS 9959 strain. Surfactant production was confirmed by thin layer chromatography.

その結果を図3に示す。これによれば、Pseudozyma crassa CBS 9959株は、既知のMEL(MEL−A〜C)よりも少しずつRf値の低い糖脂質を生産していることがわかった。   The result is shown in FIG. According to this, it was found that the Pseudozyma crassa CBS 9959 strain produced a glycolipid having a lower Rf value little by little than the known MEL (MEL-A to C).

〔実施例5:Pseudozyma tsukubaensis JCM 10324株が生産するMELの構造解析〕
まず、糖骨格のNMR解析を行った。実施例2で得られた糖脂質を、シリカゲルカラムクロマトグラフィーを用いた既知の分離方法で単離・精製し、重水素化クロロホルム(CDCl)を溶媒としてH−NMR解析を行った。比較対象として、Pseudozyma antarctica KM-34(FERMP−20730)株を培養して生産し、単離・精製した従来型MEL−Bについても同様に測定した。
[Example 5: Structural analysis of MEL produced by Pseudozyma tsukubaensis JCM 10324]
First, NMR analysis of the sugar skeleton was performed. The glycolipid obtained in Example 2 was isolated and purified by a known separation method using silica gel column chromatography, and 1 H-NMR analysis was performed using deuterated chloroform (CDCl 3 ) as a solvent. For comparison, Pseudozyma antarctica KM-34 (FERMP-20730) strain was cultivated, produced, isolated and purified, and the conventional MEL-B was measured in the same manner.

結果を図4に示す。同図に示すように、Pseudozyma tsukubaensis JCM 10324株が生産する糖脂質はMEL−Bであることがわかった。また、マンノース1’位(図中、H−1’)が4.73ppmから4.76ppmへと低磁場シフトし、さらに従来型MELでは大きく2つに分かれるエリスリトール4位プロトン(3.8ppm、4.0ppm)も、大きくシフトして1つにまとまる(3.9ppm)様子が確認された。これはD. Crichらによって報告されている非特許文献7の記述と全く一致しており、Pseudozyma tsukubaensis JCM 10324株が生産したMEL由来のエリスリトールが従来型MELとは逆向きに結合していることを証明するものである。   The results are shown in FIG. As shown in the figure, it was found that the glycolipid produced by Pseudozyma tsukubaensis JCM 10324 strain was MEL-B. In addition, the mannose 1 'position (H-1' in the figure) is shifted in a low magnetic field from 4.73 ppm to 4.76 ppm, and in the conventional MEL, the erythritol 4-position proton (3.8 ppm, 4 .0 ppm) was confirmed to be greatly shifted into one (3.9 ppm). This is due to It is in complete agreement with the description of Non-Patent Document 7 reported by Crich et al., And proves that erythritol derived from MEL produced by Pseudozyma tsukubaensis JCM 10324 is bound in the opposite direction to conventional MEL. It is.

<1−O−MEの合成と構造解析>
さらに、より詳細な糖骨格構造の比較を行うため、アルカリ加水分解によって側鎖脂肪酸を開裂することで、糖鎖(マンノシルエリスリトール;ME)の合成を行った。実施例6で得られたMEL(680mg)をメタノール(10mL)に溶解させ、ナトリウムメトキシド(20mg)を添加して、室温で1時間撹拌した。反応終了後、陽イオン交換樹脂(ダウエックスHフォーム;1g)を加えてさらに15分撹拌し、ろ過によって樹脂を除去後、エバポレーターによってメタノールを除去した。得られた残渣に少量の水(1 mL)と酢酸エチル(10 mL)を加え、反応によって開裂した脂肪酸及び酢酸を酢酸エチル相に抽出して除去した。糖鎖が含まれる水相について、90%エタノール水溶液中で再結晶操作を行うことにより糖鎖(マンノシルエリスリトール;ME)を回収した。上記操作によって、本反応では糖鎖の結晶は得られず、無色透明、油状の化合物が沈殿として得られた(257mg)。
<Synthesis and structural analysis of 1-O-ME>
Furthermore, in order to compare the sugar skeleton structures in more detail, sugar chains (mannosyl erythritol; ME) were synthesized by cleaving side chain fatty acids by alkaline hydrolysis. MEL (680 mg) obtained in Example 6 was dissolved in methanol (10 mL), sodium methoxide (20 mg) was added, and the mixture was stirred at room temperature for 1 hr. After completion of the reaction, a cation exchange resin (Dowex H foam; 1 g) was added, and the mixture was further stirred for 15 minutes. After removing the resin by filtration, methanol was removed by an evaporator. A small amount of water (1 mL) and ethyl acetate (10 mL) were added to the resulting residue, and the fatty acid and acetic acid cleaved by the reaction were extracted and removed into the ethyl acetate phase. About the aqueous phase containing a sugar chain, the sugar chain (mannosyl erythritol; ME) was collect | recovered by performing recrystallization operation in 90% ethanol aqueous solution. By the above operation, sugar chain crystals were not obtained in this reaction, and a colorless transparent oily compound was obtained as a precipitate (257 mg).

一方、実施例1においてMEL標品として用いたPseudozyma antarctica KM-34(FERMP−20730)株を培養することで得られる従来型MELについても、同様の操作で糖鎖を回収した。本操作によって従来型MELから合成した糖鎖(4−O−ME)は白色針状結晶として得られた(224mg)。   On the other hand, for conventional MEL obtained by culturing the Pseudozyma antarctica KM-34 (FERMP-20730) strain used as the MEL preparation in Example 1, sugar chains were recovered by the same operation. By this operation, a sugar chain (4-O-ME) synthesized from conventional MEL was obtained as white needle crystals (224 mg).

得られた各MEについて、重水(DO)を溶媒としてH、13C−、各種二次元NMR解析を行った。 Each obtained ME was subjected to 1 H, 13 C-, and various two-dimensional NMR analysis using heavy water (D 2 O) as a solvent.

その結果、図5に示すように、エリスリトール4位プロトンのみピークのシフトが見られた(H−4a:3.85ppm→3.89ppm、H−4b:4.12ppm→4.0ppm)。M. Kurzらは、従来型MELと同じ構造であるウスチリピッドから調製した4−O−β−マンノピラノシル−D−エリスリトール(文献中では1−O−βマンノピラノシル−L−エリスリトールと記載)の詳細な構造解析を行っており(J. Antibiot., 56, 91-101 (2003))、ここで従来型MEの4位プロトンの化学シフトが、H−4a:3.76ppm、H−4b:4.09ppmと記載している。このように公知の文献においても、従来型ME(及びMEL)は、エリスリトール4位プロトンが大きく2つに分かれることが提示されており、本発明のMELが、エリスリトールが逆向きに結合した1−O−β−マンノピラノシル−D−エリスリトールを糖骨格構造に有する従来型MELとは光学異性体の関係にある新規MELであることが示された。それぞれの化学シフトをまとめて表1に示す。   As a result, as shown in FIG. 5, only the erythritol 4-position proton showed a peak shift (H-4a: 3.85 ppm → 3.89 ppm, H-4b: 4.12 ppm → 4.0 ppm). M. Kurz et al. Describe the detailed structure of 4-O-β-mannopyranosyl-D-erythritol (described as 1-O-β mannopyranosyl-L-erythritol in the literature) prepared from ustipid, which has the same structure as conventional MEL. (J. Antibiot., 56, 91-101 (2003)), where the chemical shift of the 4-position proton of the conventional ME is H-4a: 3.76 ppm, H-4b: 4.09 ppm It is described. Thus, even in the known literature, it has been proposed that the conventional ME (and MEL) has a large erythritol 4-position proton divided into two, and the MEL of the present invention has 1-linked erythritol bound in the opposite direction. It was shown that the conventional MEL having O-β-mannopyranosyl-D-erythritol in the sugar skeleton structure is a novel MEL having an optical isomer relationship. Each chemical shift is summarized in Table 1.

<1−O−MEの旋光度測定>
次いで、上記MEについて、旋光度測定を行った。Pseudozyma antarctica KM-34(FERMP−20730)株、Pseudozyma tsukubaensis JCM 10324株それぞれを培養して得られたMELから、上記に従ってアルカリ加水分解によりMEを合成し、蒸留水に溶解して1%水溶液を作成した。各水溶液について、旋光計(日本分光デジタル旋光計DIP 370型)を用いて旋光度測定を行い、各MEの比旋光度を求めた。
<Measurement of optical rotation of 1-O-ME>
Subsequently, the optical rotation was measured about said ME. From the MEL obtained by culturing each of Pseudozyma antarctica KM-34 (FERMP-20730) strain and Pseudozyma tsukubaensis JCM 10324 strain, ME was synthesized by alkaline hydrolysis according to the above and dissolved in distilled water to make a 1% aqueous solution. did. About each aqueous solution, the optical rotation was measured using the polarimeter (JASCO digital digital polarimeter DIP370 type | mold), and the specific rotation of each ME was calculated | required.

その結果、Pseudozyma antarctica KM-34(FERMP−20730)由来のMEの比旋光度は[α]=−35.2°であり、一方Pseudozyma tsukubaensis JCM 10324株由来のMEの比旋光度は[α]=−39.6°となった。すなわち各菌株から生産されたMELの糖骨格(ME)のキラリティーが異なることが示され、Pseudozyma tsukubaensis JCM 10324株が生産するMELは従来型のMELとは糖骨格の立体構造が異なる光学異性体となっていることが証明された。 As a result, the specific rotation of ME derived from Pseudozyma antarctica KM-34 (FERMP-20730) is [α] D = −35.2 °, while the specific rotation of ME derived from Pseudozyma tsukubaensis JCM 10324 is [α ] D = −39.6 °. That is, it is shown that the chirality of the sugar skeleton (ME) of MEL produced from each strain is different. It was proved that.

<1−O−MEの状態観察>
Pseudozyma antarctica KM-34(FERMP−20730)由来の従来型MEは、上記の合成、回収操作(90%エタノール中での再結晶操作)によって白色針状結晶として得られた。融点測定の結果、融点は156.9℃であることが確認された。一方、本発明のPseudozyma tsukubaensis JCM 10324株由来のMEは、上述の再結晶操作によって結晶が得られず、無色透明、油状の化合物として得られた。得られた油状MEは、凍結乾燥や不溶溶媒(アルコール類、アセトンなど)中への再沈殿操作によっても粉末状の化合物として回収することができず、その結果、融点測定を行うことができなかった。
<State observation of 1-O-ME>
Conventional ME derived from Pseudozyma antarctica KM-34 (FERMP-20730) was obtained as white needle crystals by the above synthesis and recovery operation (recrystallization operation in 90% ethanol). As a result of the melting point measurement, it was confirmed that the melting point was 156.9 ° C. On the other hand, ME derived from the Pseudozyma tsukubaensis JCM 10324 strain of the present invention was obtained as a colorless, transparent, oily compound without crystals obtained by the recrystallization operation described above. The obtained oily ME cannot be recovered as a powdery compound even by freeze-drying or reprecipitation into an insoluble solvent (alcohols, acetone, etc.), and as a result, the melting point cannot be measured. It was.

以上のように、両者の間で分子の立体構造が異なり、結晶性が異なることが示された。本発明の1−O−MEは、上記のように従来型4−O−MEに比べ高い吸湿性を有することが推測され、これは保湿・湿潤剤としてスキンケア等の化粧品用途に利用する際非常に有利である。   As described above, it was shown that the three-dimensional structure of the molecules was different between the two, and the crystallinity was different. As described above, the 1-O-ME of the present invention is presumed to have a higher hygroscopicity than the conventional 4-O-ME, which is very useful when used for cosmetics such as skin care as a moisturizing / wetting agent. Is advantageous.

以上の結果から、実施例2で得られたPseudozyma tsukubaensis JCM 10324株が生産するMELはMEL−Bであり、さらに従来型MEL−Bとは光学異性体の関係にある1−(6’−アセチル−2’、3’−ジ−O−アルカ(ケ)ノイル−β−D−マンノピラノシル−)meso−エリスリトールであることが確認された。   From the above results, the MEL produced by the Pseudozyma tsukubaensis JCM 10324 strain obtained in Example 2 is MEL-B, and further, 1- (6′-acetyl) is in the optical isomer relationship with the conventional MEL-B. -2 ', 3'-di-O-alka (ke) noyl-β-D-mannopyranosyl-) meso-erythritol.

〔実施例6:Pseudozyma crassa CBS 9959株が生産するMELの構造解析〕
実施例4で得られたPseudozyma crassa CBS 9959株が生産する糖脂質についても、実施例5と同様にして単離・精製を行い、3種類の糖脂質について全てH−NMR解析を行い、従来型MEL−A〜Cと比較した。
[Example 6: Structural analysis of MEL produced by Pseudozyma crassa CBS 9959 strain]
The glycolipid produced by the Pseudozyma crassa CBS 9959 strain obtained in Example 4 was also isolated and purified in the same manner as in Example 5, and 1 H-NMR analysis was performed for all three types of glycolipids. Comparison with types MEL-A-C.

その結果、図6に示すように、Pseudozyma crassa CBS 9959株が生産する3種類の糖脂質は、MEL−A〜Cにそれぞれ対応し、さらに従来型MELでは大きく2つに分かれるエリスリトール4位プロトンピークが、シフトして1つにまとまっていることが確認された。したがってPseudozyma crassa CBS 9959株は、従来型MELとはエリスリトールが逆向きに結合したMEL−A〜Cそれぞれの光学異性体を生産することが証明された。   As a result, as shown in FIG. 6, the three types of glycolipids produced by the Pseudozyma crassa CBS 9959 strain correspond to MEL-A to C, respectively, and in the conventional MEL, the erythritol 4-position proton peak is roughly divided into two. However, it was confirmed that they were shifted together. Therefore, it was proved that the Pseudozyma crassa CBS 9959 strain produces optical isomers of MEL-A to C each having erythritol bound in the opposite direction to that of the conventional MEL.

〔実施例7:液晶形成能の比較〕
実施例2で得られたPseudozyma tsukubaensis JCM 10324株が生産するMELと、Pseudozyma antarctica KM-34(FERMP−20730)株が生産する従来型MELについて、水侵入法による液晶形成能の比較を行った。その結果、図7及び図8に示すように、Pseudozyma tsukubaensis JCM 10324株由来のMELは、従来型MELと比べて非常に広い濃度領域でラメラ相を形成する能力を有しており、液晶形成能に極めて優れたバイオサーファクタントであることが示された。
[Example 7: Comparison of liquid crystal forming ability]
The MEL produced by the Pseudozyma tsukubaensis JCM 10324 strain obtained in Example 2 and the conventional MEL produced by the Pseudozyma antarctica KM-34 (FERMP-20730) strain were compared for liquid crystal forming ability by the water intrusion method. As a result, as shown in FIG. 7 and FIG. 8, the MEL derived from Pseudozyma tsukubaensis JCM 10324 has the ability to form a lamellar phase in a very wide concentration range compared to the conventional MEL, and the liquid crystal forming ability. It was shown to be an extremely excellent biosurfactant.

〔実施例8:Pseudozyma tsukubaensis JCM 10324株の培養によるトリアシルMELの生産〕
0.2mlのP.tsukubaensisフローズンストックを20mlのYM種培地/500ml容坂口フラスコに植菌し、26℃、180rpm、1晩培養させ、種種菌とした。0.2mlの種種菌を再度、20mlのYM種培地/500ml容坂口フラスコに植菌し、26℃、180rpm、1晩培養させ、種菌とした。20mlの種菌を2LのYM培地/5L Jarに植菌し、26℃ 300rpm(1/4VVM、0.5L air/min)で8日間培養した。培養液を7,900rpm 60min 4℃で遠心し、菌体(MEL−Bを含む)と上清に分離した。菌体画分にそれぞれ80mlの酢酸エチルを加え、菌体が十分懸濁するように上下に攪拌した後、7,900rpm 30min 4℃で遠心した。得られた上清に等量の飽和食塩水を加え攪拌し酢酸エチル層を得た。酢酸エチル層に無水硫酸Naを適量加え、30分間精置させた後、エバポレートし糖脂質を得た。
[Example 8: Production of triacyl MEL by culture of Pseudozyma tsukubaensis JCM 10324 strain]
0.2 ml of P. tsukubaensis frozen stock was inoculated into a 20 ml YM seed medium / 500 ml Sakaguchi flask and cultured overnight at 26 ° C. and 180 rpm to obtain a seed seed. 0.2 ml of the inoculum was again inoculated into a 20 ml YM seed medium / 500 ml Sakaguchi flask and cultured overnight at 26 ° C., 180 rpm, and used as an inoculum. 20 ml of the inoculum was inoculated into 2 L of YM medium / 5 L Jar and cultured at 26 ° C. and 300 rpm (1/4 VVM, 0.5 L air / min) for 8 days. The culture solution was centrifuged at 7,900 rpm for 60 min at 4 ° C. to separate the cells (including MEL-B) and the supernatant. 80 ml of ethyl acetate was added to each of the bacterial cell fractions, stirred up and down so that the bacterial cells were sufficiently suspended, and then centrifuged at 7,900 rpm for 30 minutes at 4 ° C. An equal amount of saturated saline was added to the obtained supernatant and stirred to obtain an ethyl acetate layer. An appropriate amount of anhydrous sodium sulfate was added to the ethyl acetate layer and allowed to settle for 30 minutes, and then evaporated to obtain a glycolipid.

〔実施例9:Pseudozyma tsukubaensis JCM 10324株が生産するトリアシルMELのNMR解析〕
実施例8で得られた糖脂質を、シリカゲルカラムクロマトグラフィーを用いた既知の分離方法で単離・精製し、MEL−B 50gおよびトリアシルMEL−B 1.5gを得た。トリアシルMEL−B画分について重水素化ジメチルスルホキシド(DMSO−d)を溶媒としてH−NMR分析を行い実施例5と同様の方法で解析を行った。その結果を図9に示す。同図に示すように、P. tsukubaensis JCM 10324株が生産するトリアシルMEL−Bについてもエリスリトールが従来型MELとは逆向きに結合していることが確認された。
[Example 9: NMR analysis of triacyl MEL produced by Pseudozyma tsukubaensis JCM 10324 strain]
The glycolipid obtained in Example 8 was isolated and purified by a known separation method using silica gel column chromatography to obtain 50 g of MEL-B and 1.5 g of triacyl MEL-B. The triacyl MEL-B fraction was analyzed by 1 H-NMR analysis using deuterated dimethyl sulfoxide (DMSO-d 6 ) as a solvent in the same manner as in Example 5. The result is shown in FIG. As shown in the figure, it was confirmed that triacyl MEL-B produced by P. tsukubaensis JCM 10324 strain was bound in the opposite direction to conventional MEL.

比較対象として、Pseudozyma hubeiensisを培養して生産し、上記と同様にシリカゲルカラムクロマトグラフィーを用いて、MEL−C 45g、トリアシルMEL−C 1.3gを単離・精製した。このトリアシルMEL−Cについても同様に重水素化ジメチルスルホキシド(DMSO−d)を溶媒としてH−NMR分析を行った。その結果、図10に示すように、Pseudozyma hubeiensisが産生したMEL−Cは、エリスリトールが従来型MELと同じ向きで結合していることを確認した。 For comparison, Pseudozyma hubeiensis was cultured and produced, and 45 g of MEL-C and 1.3 g of triacyl MEL-C were isolated and purified using silica gel column chromatography in the same manner as described above. This triacyl MEL-C was similarly subjected to 1 H-NMR analysis using deuterated dimethyl sulfoxide (DMSO-d 6 ) as a solvent. As a result, as shown in FIG. 10, MEL-C produced by Pseudozyma hubeiensis confirmed that erythritol was bound in the same direction as conventional MEL.

〔実施例10:Pseudozyma tsukubaensis JCM 10324株が生産するMEL−Bの脂質ドメイン解析〕
Pseudozyma tsukubaensis JCM 10324株が生産するMEL−Bを、逆相カラムを用いた高速液体クロマトグラフィーで分離した後、マススペクトロメトリーにより質量分析を行い(LC−MS分析)、脂質ドメインの脂肪酸構造を確認した。その結果、図11に示すように、マンノースの一方の水酸基には炭素数8の脂肪酸が付加しており、もう一方には10から14の脂肪酸が付加していることが確認された。
[Example 10: Lipid domain analysis of MEL-B produced by Pseudozyma tsukubaensis JCM 10324 strain]
After separating MEL-B produced by Pseudozyma tsukubaensis JCM 10324 by high-performance liquid chromatography using a reversed-phase column, mass spectrometry is performed (LC-MS analysis) to confirm the fatty acid structure of the lipid domain. did. As a result, as shown in FIG. 11, it was confirmed that a fatty acid having 8 carbon atoms was added to one hydroxyl group of mannose and a fatty acid having 10 to 14 was added to the other hydroxyl group.

比較対象として、Pseudozyma hubeiensisを培養して生産し、単離・精製したトリアシルMEL−Cについても同様にLC−MS分析を行った。その結果、図12に示すように、マンノースの一方の水酸基には炭素数6の脂肪酸が主に付加しており、もう一方には8から16の脂肪酸が付加していることが確認された。   As a comparative object, LC-MS analysis was similarly performed for triacyl MEL-C produced by culturing Pseudozyma hubeiensis, isolated and purified. As a result, as shown in FIG. 12, it was confirmed that fatty acids having 6 carbon atoms were mainly added to one hydroxyl group of mannose and fatty acids having 8 to 16 were added to the other hydroxyl group.

なお、HPLCの分析条件は以下の通り。HPLC装置:Agilent100、カラム:Imtakt Cadenza CD−C18 2×150mm、移動相:A 0.1%ギ酸、B アセトニトリル、0分(50%B)−20分(98%B)−30分(98%B)、流速:0.2ml/min、カラム温度:40℃、注入量:3μl。MS条件は以下の通り。MS装置:BRUKER DALTONICS esquire 3000 Plus、イオン化法:ESI ポジティブ。   The HPLC analysis conditions are as follows. HPLC apparatus: Agilent 100, column: Imtakt Cadenza CD-C18 2 × 150 mm, mobile phase: A 0.1% formic acid, B acetonitrile, 0 min (50% B) -20 min (98% B) -30 min (98% B), flow rate: 0.2 ml / min, column temperature: 40 ° C., injection volume: 3 μl. MS conditions are as follows. MS equipment: BRUKER DALTONICS esquire 3000 Plus, ionization method: ESI positive.

〔実施例11:MELの構造解析〕
さらに、各種NMR(1H、13C、1H-1H COSY、HMQC、HMBC)測定を行い、MELの構造を詳細に解析した。構造解析を簡便にするため、炭素源として大豆油の代わりにオレイン酸とグルコースを40g/Lずつ添加し、残りの条件は実施例4と同様の方法で生産し、実施例5と同様にして単離・精製したP. crassaが生産するMEL−Aを用いた。1H-NMRスペクトル及び1H-1H COSYスペクトルを図13、図14にそれぞれ示す。
[Example 11: Structural analysis of MEL]
Furthermore, various NMR (1 H, 13 C, 1 H- 1 H COSY, HMQC, HMBC) was measured and analyzed the structure of the MEL detail. In order to simplify the structural analysis, 40 g / L of oleic acid and glucose were added in place of soybean oil as carbon sources, and the remaining conditions were produced in the same manner as in Example 4. MEL-A produced by isolated and purified P. crassa was used. 1 H-NMR spectrum and 1 H- 1 H COZY spectrum are shown in FIGS. 13 and 14, respectively.

図14のCOSYスペクトルにおいて、a−b−cの相関が明確に示された。cはHMBCスペクトル測定結果より2’−位に結合しているエステルであることが確認され、このことから2’−位の脂肪酸エステルがC4のブタノイル基であることが示された。また、2.1ppm付近に3本のピークが検出され、それぞれが2’、4’、6’−位に結合しているアセチル基由来のピークであることも確認された。   In the COZY spectrum of FIG. 14, the abc correlation was clearly shown. c was confirmed to be an ester bonded to the 2'-position from the results of HMBC spectrum measurement, and this showed that the fatty acid ester at the 2'-position was a C4 butanoyl group. In addition, three peaks were detected in the vicinity of 2.1 ppm, and it was also confirmed that each was a peak derived from an acetyl group bonded to the 2 ', 4', 6'-position.

上記をまとめると、P. crassaが生産するMEL−Aは図13中に示した構造式の通り、従来型MELとはエリスリトールが逆向きに結合し、2’−位にアセチル基、またはブタノイル基、3’−位に脂肪酸エステル基が結合した構造のMELであることが確認された。また、ピークの積分値より、2’−位にアセチル基を有するMELとブタノイル基を有するMELの比率は約60:40であることが示された。   To summarize the above, MEL-A produced by P. crassa is erythritol bonded in the opposite direction to conventional MEL as shown in the structural formula shown in FIG. 13, and is acetyl group or butanoyl group at the 2′-position. It was confirmed that the MEL had a structure in which a fatty acid ester group was bonded to the 3′-position. The integrated value of the peak showed that the ratio of MEL having an acetyl group at the 2'-position to MEL having a butanoyl group was about 60:40.

続いて、得られたMELの側鎖脂肪酸組成の分析を以下の手順で行った。MEL約10mgを蓋付試験管に秤取し、5%塩酸メタノール試薬1mLを加え、80℃で加熱することで脂肪酸部の加水分解を行った。2時間後、水1mLを加えて反応を停止させ、ヘキサン1mLを添加することで、反応によって生成した脂肪酸メチルエステルをヘキサン相に抽出した。このようにして得られた脂肪酸メチルエステルを含むヘキサン相をGC/MS分析に掛けることで、MELに結合している脂肪酸鎖の組成分析を行った。結果を表2に示す。なお、本分析では脂肪酸鎖がC6以上のものしか検出されない。   Subsequently, the side chain fatty acid composition of the obtained MEL was analyzed by the following procedure. About 10 mg of MEL was weighed in a test tube with a lid, 1 mL of 5% hydrochloric acid methanol reagent was added, and the fatty acid portion was hydrolyzed by heating at 80 ° C. Two hours later, 1 mL of water was added to stop the reaction, and 1 mL of hexane was added to extract the fatty acid methyl ester generated by the reaction into the hexane phase. The hexane phase containing the fatty acid methyl ester thus obtained was subjected to GC / MS analysis, whereby the composition analysis of the fatty acid chain bonded to MEL was performed. The results are shown in Table 2. In this analysis, only fatty acid chains with C6 or higher are detected.

分析の結果、上記で得られたMELは、C14の脂肪酸が主成分であり、全体の約65%、次いでC16の脂肪酸が約24%であった。2’−位には本測定で検出できないC2またはC4のエステルのみが結合していることから、上記の脂肪酸組成はそのまま3’−位に結合している脂肪酸組成比に一致すると考えられる。   As a result of analysis, the MEL obtained above was mainly composed of C14 fatty acid, about 65% of the total, and then C16 fatty acid about 24%. Since only the C2 or C4 ester that cannot be detected by this measurement is bonded to the 2'-position, the above fatty acid composition is considered to match the fatty acid composition ratio bonded to the 3'-position as it is.

さらに、MALDI−TOF/MS測定によって、上記MELの分子量測定を行った。MEL−AのMSスペクトルを図15に示す。MS分析の結果より、擬似分子イオン[M+Na]+ (z/m) 641.8または669.9が検出された。前者はC14:1脂肪酸とアセチル基、後者はC14:1脂肪酸とブタノイル基、またはC16:1脂肪酸とアセチル基が結合したMEL−Aであると推測される。 Furthermore, the molecular weight of the MEL was measured by MALDI-TOF / MS measurement. The MS spectrum of MEL-A is shown in FIG. As a result of MS analysis, pseudo-molecular ion [M + Na] + (z / m) 641.8 or 669.9 was detected. The former is presumed to be a C14: 1 fatty acid and an acetyl group, and the latter is a C14: 1 fatty acid and a butanoyl group, or MEL-A in which a C16: 1 fatty acid and an acetyl group are bonded.

以上のNMR測定、脂肪酸組成分析、分子量測定の結果をまとめると、P. crassaが生産するMEL−Aの主成分は、下記一般式(5)に示す1−(2’、4’、6’−トリアセチル−3’−O−アルカ(ケ)ノイル−β−D−マンノピラノシル−)meso−エリスリトール、または一般式(6)に示す1−(4’、6’−ジアセチル−2’−O−ブタノイル−3’−O−アルカ(ケ)ノイル−β−D−マンノピラノシル−)meso−エリスリトールに示される構造であり(3’−位のアルカノイル基は、上記脂肪酸組成分析結果の通り、C14、C16、またはC18の飽和または不飽和脂肪酸エステル)と考えられる。また同様に、MEL−B、MEL−Cはそれぞれ上記の構造から4’−位または6’−位のアセチル基が外れた構造であることが確認された。これらの構造のMELは全てこれまで報告例の無い化合物であり、一般的な化学合成法では極めて合成困難な化合物である。   Summarizing the above NMR measurement, fatty acid composition analysis, and molecular weight measurement results, the main component of MEL-A produced by P. crassa is 1- (2 ′, 4 ′, 6 ′ shown in the following general formula (5). -Triacetyl-3'-O-alka (ke) noyl-β-D-mannopyranosyl-) meso-erythritol, or 1- (4 ′, 6′-diacetyl-2′-O— represented by the general formula (6) Butanoyl-3′-O-alka (ke) noyl-β-D-mannopyranosyl-) meso-erythritol has a structure (the 3′-position alkanoyl group is C14, C16 as shown in the above fatty acid composition analysis results. Or a saturated or unsaturated fatty acid ester of C18). Similarly, it was confirmed that MEL-B and MEL-C were structures in which the acetyl group at the 4'-position or 6'-position was removed from the above structure. MELs having these structures are all compounds that have not been reported so far, and are extremely difficult to synthesize by general chemical synthesis methods.

〔実施例12:4−O−MEと1−O−MEの肌の保湿効果〕
4−O−ME及び1−O−MEの分子のキラリティーの違いによる肌の保湿効果を評価するために、上記糖質を含む水溶液を肌に塗布し、肌の導電性を測定することで保水力の比較を行った。実施例5の方法で合成した4−O−ME及び1−O−MEの1%水溶液及び純水を調製し、前腕内側皮膚に10μL/cm塗布した。SANWA Digital Multimeterを用いて塗布後すぐ、10分後、30分後、60分後の塗布部1cm間の導電性(電気抵抗)を測定することで比較を行った。評価は6サンプルの平均とした。電気抵抗の経時変化を図16に記す。
[Example 12: 4-O-ME and 1-O-ME skin moisturizing effect]
In order to evaluate the skin moisturizing effect due to the difference in molecular chirality between 4-O-ME and 1-O-ME, an aqueous solution containing the above saccharide is applied to the skin, and the conductivity of the skin is measured. Comparison of water holding capacity was performed. A 1% aqueous solution of 4-O-ME and 1-O-ME synthesized by the method of Example 5 and pure water were prepared and applied to the inner skin of the forearm at 10 μL / cm 2 . A comparison was made by measuring the conductivity (electric resistance) between 1 cm of the coated part immediately after application, 10 minutes, 30 minutes, and 60 minutes using SANWA Digital Multimeter. Evaluation was the average of 6 samples. FIG. 16 shows the change in electrical resistance with time.

図16に示すように、水、1%4−O−ME水溶液を塗布した場合、時間経過に伴って抵抗値が大きく上昇し、乾燥肌の状態に近づいた。一方、1%1−O−ME水溶液を塗布した場合は、初期の抵抗値の上昇は他のサンプルと大差なかったものの、時間経過によっても抵抗値は緩やかな上昇となり、30分後、60分後で抵抗値の差は拡がり、肌の保水量に差が出たことを示した。すなわち、1−O−MEは、4−O−MEと比較して保水能力に優れていることが示された。   As shown in FIG. 16, when water and a 1% 4-O-ME aqueous solution were applied, the resistance value greatly increased with the passage of time and approached the state of dry skin. On the other hand, when a 1% 1-O-ME aqueous solution was applied, the initial resistance value did not increase significantly from other samples, but the resistance value gradually increased over time. After 30 minutes, 60 minutes Later, the difference in resistance value widened, indicating that there was a difference in the amount of water retained in the skin. That is, it was shown that 1-O-ME is superior in water retention capacity compared to 4-O-ME.

エリスリトールの結合向きが異なることで、水酸基の配向が異なり、より水を分子内または分子間で保持する能力が高まっていることが推測される。実施例5でも述べたように、1−O−MEは結晶の吸水性が高く、水を保持しやすい状態にあることが裏付けられた。   It is presumed that the ability to retain water within a molecule or between molecules is increased due to the difference in the orientation of hydroxyl groups due to the different binding directions of erythritol. As described in Example 5, it was confirmed that 1-O-ME has high water absorption of crystals and is in a state where water can be easily retained.

本発明に係るMELは、従来型MELに対してエリスリトールがマンノースに逆向きにエーテル結合したキラリティーの全く異なる構造をしており、液晶形成挙動をはじめ、自己集合特性が従来のものとは大きく異なる。これらの物性の違いによって、従来型には見られない新たな生理活性の発現が期待されることから、従来型MELと同様に、洗浄剤用途、食品工業、化学工業、環境分野等への幅広い利用はもちろん、特に医薬、化粧品産業等での用途拡大に多大に貢献できると考えられるものと期待される。   The MEL according to the present invention has a completely different structure of chirality in which erythritol is ether-bonded to mannose in the opposite direction to the conventional MEL, and the self-assembly characteristics including the liquid crystal forming behavior are greatly different from those of the conventional MEL. Different. Because of these differences in physical properties, it is expected to develop new physiological activities that are not found in conventional types. Therefore, as in conventional MEL, it is widely used in detergent applications, food industry, chemical industry, environmental fields, etc. Of course, it is expected that it will contribute greatly to the expansion of applications, particularly in the pharmaceutical and cosmetic industries.

また、本明細書に記載のMEは従来型MEに対してエリスリトールがマンノースに逆向きにエーテル結合したキラリティーの全く異なる構造をしていることで、従来型MEと比べて生理機能が大きく異なる。それゆえ、結晶性の違い、保水力の違いを利用して、医薬、化粧品産業、食品工業、化学工業等で機能性の基幹物質としての利用が期待される。 In addition, the ME described in this specification has a completely different structure of chirality in which erythritol is ether-bonded to mannose in the opposite direction to the conventional ME, so that the physiological function is significantly different from that of the conventional ME. . Therefore, it is expected to be used as a functional basic substance in the pharmaceutical, cosmetic industry, food industry, chemical industry, etc. by utilizing the difference in crystallinity and water retention.

実施例2におけるPseudozyma tsukubaensis JCM 10324株の培養物についての薄層クロマトグラフィーの結果を示す図である。FIG. 4 is a view showing the results of thin layer chromatography on the culture of Pseudozyma tsukubaensis JCM 10324 strain in Example 2. 実施例3における、Pseudozyma tsukubaensis JCM 10324株の培養物についての高速液体クロマトグラフィーの分析結果を示す図である。FIG. 4 is a diagram showing the results of high-performance liquid chromatography analysis of a culture of Pseudozyma tsukubaensis JCM 10324 strain in Example 3. 実施例4における、Pseudozyma crassa CBS 9959株の培養物についての薄層クロマトグラフィーの結果を示す図である。FIG. 6 is a view showing the results of thin layer chromatography on a culture of Pseudozyma crassa CBS 9959 strain in Example 4. 実施例5で得られたPseudozyma tsukubaensis JCM 10324株及びPseudozyma antarctica KM-34(FERMP-20730)株が生産するMELのH−NMRスペクトルにおける、糖骨格部分の拡大図(3.4〜5.7ppm)である。Enlarged view of the sugar skeleton part (3.4 to 5.7 ppm) in the 1 H-NMR spectrum of MEL produced by Pseudozyma tsukubaensis JCM 10324 and Pseudozyma antarctica KM-34 (FERMP-20730) obtained in Example 5. ). 実施例5で得られたPseudozyma tsukubaensis JCM 10324株及びPseudozyma antarctica KM-34(FERMP-20730)株が生産するMELを出発物質として合成した、マンノシルエリスリトールのH−NMRスペクトルにおける、糖骨格部分の拡大図(3.3〜4.2ppm)である。Enlargement of the sugar skeleton in the 1 H-NMR spectrum of mannosylerythritol synthesized using MEL produced by Pseudozyma tsukubaensis JCM 10324 and Pseudozyma antarctica KM-34 (FERMP-20730) obtained in Example 5 as a starting material It is a figure (3.3-4.2 ppm). 実施例6で得られたPseudozyma crassa CBS 9959株が生産するMELのH−NMRスペクトルにおける、糖骨格部分の拡大図(3.4〜5.7ppm)である。It is an enlarged view (3.4-5.7 ppm) of the sugar skeleton part in the 1 H-NMR spectrum of MEL which Pseudozyma crassa CBS 9959 strain | stump | stock obtained in Example 6 produces. 実施例7において、Pseudozyma tsukubaensis JCM 10324株及びPseudozyma antarctica KM-34(FERMP-20730)株が生産するMELに関し、水侵入法によって液晶形成能について偏光顕微鏡観察を行った結果を示す図である。In Example 7, it is a figure which shows the result of having performed the polarizing microscope observation about the liquid crystal formation ability by the water penetration | invasion method regarding MEL which Pseudozyma tsukubaensis JCM10324 strain and Pseudozyma antarctica KM-34 (FERMP-20730) strain produce. 実施例7において、Pseudozyma tsukubaensis JCM 10324株、及びPseudozyma antarctica KM-34(FERMP-20730)株が生産するMELに関し、水侵入法によって液晶形成能について位相差顕微鏡観察を行った結果を示す図である。In Example 7, it is a figure which shows the result of having performed the phase-contrast microscope observation about the liquid crystal formation ability by the water penetration | invasion method regarding MEL which Pseudozyma tsukubaensis JCM 10324 strain and Pseudozyma antarctica KM-34 (FERMP-20730) strain produce. . 実施例8、実施例9で得られたPseudozyma tsukubaensis JCM 10324株が生産するトリアシルMELのH−NMRスペクトルと糖骨格部分の拡大図(3.4〜5.7ppm)である。It is a 1 H-NMR spectrum of the triacyl MEL which the Pseudozyma tsukubaensis JCM10324 strain | stump | stock obtained in Example 8 and Example 9 produces, and the enlarged view (3.4-5.7 ppm) of a sugar skeleton part. 実施例9で得られたPseudozyma hubeiensisが生産するトリアシルMELのH−NMRスペクトルと糖骨格部分の拡大図(3.0〜5.7ppm)である。FIG. 3 is a 1 H-NMR spectrum of a triacyl MEL produced by Pseudozyma hubeiensis obtained in Example 9 and an enlarged view (3.0 to 5.7 ppm) of a sugar skeleton. 実施例8、実施例9で得られたPseudozyma tsukubaensis JCM 10324株が生産するMELのHPLC(ODS)−MS分析による脂質ドメイン解析結果を示す図である。It is a figure which shows the lipid domain analysis result by HPLC (ODS) -MS analysis of MEL which Pseudozyma tsukubaensis JCM10324 strain | stump | stock obtained in Example 8 and Example 9 produces. 実施例9で得られたPseudozyma hubeiensisが生産するトリアシルMELのHPLC(ODS)−MS分析による脂質ドメイン解析結果である。It is a lipid domain analysis result by HPLC (ODS) -MS analysis of the triacyl MEL which Pseudozyma hubeiensis produced in Example 9 produces. 実施例6で得られたPseudozyma crassa CBS 9959株が生産するMEL−AのH−NMRスペクトルを示す図である。2 is a diagram showing a 1 H-NMR spectrum of MEL-A produced by Pseudozyma crassa CBS 9959 strain obtained in Example 6. FIG. 実施例6で得られたPseudozyma crassa CBS 9959株が生産するMEL−AのH−H COSYスペクトルにおける、脂質部分の拡大図(0.7〜2.5ppm)である。It is an enlarged view (0.7-2.5 ppm) of a lipid part in the 1 H- 1 H COZY spectrum of MEL-A which Pseudozyma crassa CBS 9959 strain | stump | stock obtained in Example 6 produces. 実施例6で得られたPseudozyma crassa CBS 9959株が生産するMEL−Aの分子量測定を行ったMALDI-TOF/MSスペクトルを示す図である。It is a figure which shows the MALDI-TOF / MS spectrum which measured the molecular weight of MEL-A which Pseudozyma crassa CBS 9959 strain | stump | stock obtained in Example 6 produced. 実施例12において、サンプル塗布後の肌の保水量を比較するために肌表面の電気抵抗の経時変化を追ったグラフを示す図である。In Example 12, it is a figure which shows the graph which followed the time-dependent change of the electrical resistance of the skin surface in order to compare the water retention amount of the skin after sample application.

Claims (5)

下記一般式(1)で表される構造を有することを特徴とするマンノシルエリスリトールリピッド。
(式(1)中、置換基Rは同一でも異なっていてもよく炭素数4〜24の脂肪族アシル基であり、置換基Rは同一でも異なっていてもよく水素又はアセチル基を表す(ただし、2つの置換基R はともにアセチル基ではない)。また、置換基Rは水素又は炭素数2〜24の脂肪族アシル基を表す。ただし、置換基Rがともに炭素数12の脂肪族アシル基であって、置換基Rがともにアセチル基であって、置換基Rが水素であるものを除く。)
A mannosyl erythritol lipid having a structure represented by the following general formula (1):
(In the formula (1), the substituent R 1 may be the same or different and is an aliphatic acyl group having 4 to 24 carbon atoms, and the substituent R 2 may be the same or different and represents hydrogen or an acetyl group. (However, the two substituents R 2 are not both acetyl groups . ) The substituent R 3 represents hydrogen or an aliphatic acyl group having 2 to 24 carbon atoms, provided that both substituents R 1 have 12 carbon atoms. Except that the substituent R 2 is both an acetyl group and the substituent R 3 is hydrogen.)
上記一般式(1)中、置換基Rのいずれか一方がアセチル基であり、他方が水素であることを特徴とする請求項1に記載のマンノシルエリスリトールリピッド。 In the general formula (1), one of the substituents R 2 is an acetyl group, mannosylerythritol lipid according to claim 1 and the other is characterized by a hydrogen. 上記一般式(1)中、置換基Rが炭素数2〜24の脂肪族アシル基であることを特徴とする請求項1又は2に記載のマンノシルエリスリトールリピッド。 3. The mannosyl erythritol lipid according to claim 1 or 2, wherein the substituent R3 in the general formula (1) is an aliphatic acyl group having 2 to 24 carbon atoms. 微生物により生産されたものであることを特徴とする請求項1〜3のいずれか1項に記載のマンノシルエリスリトールリピッド。   The mannosyl erythritol lipid according to any one of claims 1 to 3, wherein the mannosyl erythritol lipid is produced by a microorganism. シュードザイマ(Pseudozyma)属に属し、かつマンノシルエリスリトールリピッドを生産する能力を有する微生物を培養し、下記一般式(1)で表される構造を有するマンノシルエリスリトールリピッドを製造する工程を有し、
上記微生物が、シュードザイマ・ツクバエンシス(Pseudozyma tsukubaensis)又はシュードザイマ・クラッサ(Pseudozyma crassa)であることを特徴とするマンノシルエリスリトールリピッドの製造方法。
(式(1)中、置換基Rは同一でも異なっていてもよく炭素数4〜24の脂肪族アシル基であり、置換基Rは同一でも異なっていてもよく水素又はアセチル基を表す。また、置換基Rは水素又は炭素数2〜24の脂肪族アシル基を表す。)
Culturing a microorganism belonging to the genus Pseudozyma and having the ability to produce mannosyl erythritol lipid, and producing a mannosyl erythritol lipid having a structure represented by the following general formula (1) :
A method for producing mannosyl erythritol lipid, wherein the microorganism is Pseudozyma tsukubaensis or Pseudozyma crassa .
(In the formula (1), the substituent R 1 may be the same or different and is an aliphatic acyl group having 4 to 24 carbon atoms, and the substituent R 2 may be the same or different and represents hydrogen or an acetyl group. The substituent R 3 represents hydrogen or an aliphatic acyl group having 2 to 24 carbon atoms.
JP2008003615A 2007-07-09 2008-01-10 Mannosyl erythritol lipid and method for producing the same Active JP4924840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003615A JP4924840B2 (en) 2007-07-09 2008-01-10 Mannosyl erythritol lipid and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007179892 2007-07-09
JP2007179892 2007-07-09
JP2008003615A JP4924840B2 (en) 2007-07-09 2008-01-10 Mannosyl erythritol lipid and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008117873A Division JP5339335B2 (en) 2007-07-09 2008-04-28 Novel mannosyl erythritol and process for producing the same

Publications (2)

Publication Number Publication Date
JP2009034090A JP2009034090A (en) 2009-02-19
JP4924840B2 true JP4924840B2 (en) 2012-04-25

Family

ID=40436615

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008003615A Active JP4924840B2 (en) 2007-07-09 2008-01-10 Mannosyl erythritol lipid and method for producing the same
JP2008117873A Active JP5339335B2 (en) 2007-07-09 2008-04-28 Novel mannosyl erythritol and process for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008117873A Active JP5339335B2 (en) 2007-07-09 2008-04-28 Novel mannosyl erythritol and process for producing the same

Country Status (1)

Country Link
JP (2) JP4924840B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448036B2 (en) 2009-02-18 2014-03-19 トヨタ自動車株式会社 Method for producing carboxylic acid
JP2010215593A (en) * 2009-03-18 2010-09-30 Maruzen Pharmaceut Co Ltd Plant disease-controlling agent of yeast origin
CN110099689A (en) * 2016-12-27 2019-08-06 国立大学法人广岛大学 The purposes of biosurfactant
KR102652692B1 (en) * 2021-06-29 2024-04-01 주식회사 라비오 A cosmetic compositon comprising antarctic microorganism
CN114796523B (en) * 2022-05-25 2024-03-12 中国海洋大学 Acid-resistant glycolipid modified liposome and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772190B2 (en) * 2002-03-05 2006-05-10 一丸ファルコス株式会社 Hair nourishing agent
JP4675033B2 (en) * 2003-08-21 2011-04-20 広島県 Platelet aggregation inhibitor and histamine release inhibitor

Also Published As

Publication number Publication date
JP5339335B2 (en) 2013-11-13
JP2009034090A (en) 2009-02-19
JP2009035529A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
Cavalero et al. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214
Roelants et al. Production and applications of sophorolipids
Arutchelvi et al. Mannosylerythritol lipids: a review
Fukuoka et al. A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B
Fukuoka et al. Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior
JP4924840B2 (en) Mannosyl erythritol lipid and method for producing the same
WO2015020114A1 (en) Novel sophorolipid compound and composition comprising same
CA2115070C (en) Enzymatic method for synthesis of carbohydrates
JP2011168527A (en) Oil-in-water type emulsified composition
JP2016000017A (en) Method of producing sophorolipid
JP2011168548A (en) Oil-in-water type emulsified cosmetic
JP4803436B2 (en) Water-soluble mannosyl erythritol lipid and method for producing the same
JP6920684B2 (en) Manufacturing method of MEL-D
JP4722386B2 (en) Glycolipid and method for producing the same
JP4803434B2 (en) Highly efficient production method of mannosyl erythritol lipid
JP5246613B2 (en) Vesicle using mannosyl erythritol lipid, emulsion composition and use thereof
JP2009126820A (en) New mannosyl erythritol lipid and method for producing the same
JP2011182660A (en) New microorganism and method for producing sugar type biosurfactant using the same
BR112019004960B1 (en) Fatty 1,3-diol compounds and derivatives thereof
Langer et al. Production and modification of bioactive biosurfactants
JP4735971B2 (en) Mannosyl erythritol lipid production method
JP4803435B2 (en) Novel mannosyl erythritol lipid and method for producing the same
WO2022210011A1 (en) Novel sophorolipid derivative
JP2017516838A (en) Hexose derivatives, their formulation and use
JP2011148731A (en) Cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110817

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250