JP2022155534A - Method for manufacturing slag material, and slag material - Google Patents

Method for manufacturing slag material, and slag material Download PDF

Info

Publication number
JP2022155534A
JP2022155534A JP2022049826A JP2022049826A JP2022155534A JP 2022155534 A JP2022155534 A JP 2022155534A JP 2022049826 A JP2022049826 A JP 2022049826A JP 2022049826 A JP2022049826 A JP 2022049826A JP 2022155534 A JP2022155534 A JP 2022155534A
Authority
JP
Japan
Prior art keywords
cao
slag
temperature range
steelmaking slag
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022049826A
Other languages
Japanese (ja)
Other versions
JP7384232B2 (en
Inventor
泰武 矢埜
Yasutake Yano
裕介 加藤
Yusuke Kato
克則 ▲高▼橋
Katsunori Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022155534A publication Critical patent/JP2022155534A/en
Application granted granted Critical
Publication of JP7384232B2 publication Critical patent/JP7384232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide a method for manufacturing a slag material in which powdering by hydration expansion is suppressed without adding new facility or process and without increasing a slag amount, and a slag material.SOLUTION: A method for manufacturing a slag material in which steel-making slag in a molten state is cooled down such that a cooling rate in the temperature range from a molten state to 1200°C is 1000°C/h to 400°C/h, a cooling rate in the temperature range from 1000°C to 600°C becomes 300°C/h or less, and the steel-making slag is cooled down such that holding time T1 in the temperature range from 1200°C to 1000°C satisfies the following formula (1). T1≤-7.5×[f-CaO]+69.5 ...(1) In the formula (1) above, T1 denotes holding time (h), [f-CaO] denotes the content (mass%) of f-CaO in the steel-making slag.SELECTED DRAWING: Figure 1

Description

本発明は、溶融状態の製鋼スラグの温度を制御しながら冷却して水和膨張による粉化が抑制されたスラグ材を製造するスラグ材の製造方法およびスラグ材に関する。 TECHNICAL FIELD The present invention relates to a slag material manufacturing method and a slag material for manufacturing a slag material in which pulverization due to hydration expansion is suppressed by cooling molten steelmaking slag while controlling its temperature.

鉄鋼業では高炉、予備処理プロセス、転炉、電気炉等からスラグが副生される。これらスラグの内、予備処理プロセス、転炉、電気炉から副生されるものを製鋼スラグという。製鋼工程では溶銑中に含まれる燐や珪素などを除去するため、副原料として多量の石灰が使用される。このため、製鋼スラグ中には未溶解の石灰や冷却時に晶出した石灰が遊離CaO(以下、f-CaOと記載する。)として残留している。このf-CaOは水和反応によってCa(OH)となり、約2倍程度に体積膨張する。このため、f-CaOを多量に含む製鋼スラグが水と接触するとf-CaOの水和膨張によって粉化する。 In the steel industry, slag is by-produced from blast furnaces, pretreatment processes, converters, electric furnaces, and the like. Among these slags, slag produced by-products from pretreatment processes, converters, and electric furnaces is called steelmaking slag. In the steelmaking process, a large amount of lime is used as an auxiliary raw material to remove phosphorus and silicon contained in hot metal. Therefore, undissolved lime and lime crystallized during cooling remain in the steelmaking slag as free CaO (hereinafter referred to as f-CaO). This f-CaO becomes Ca(OH) 2 through a hydration reaction, and expands in volume by about two times. Therefore, when steelmaking slag containing a large amount of f-CaO comes into contact with water, it pulverizes due to hydration expansion of f-CaO.

製鋼スラグから製造されるスラグ材の用途として路盤材やコンクリート用細骨材があるが、これら用途においてf-CaOの水和膨張により路盤の隆起やコンクリートに亀裂が生じるという問題がある。そこで、従来、膨張崩壊の原因となるf-CaOを低減するための処理が行われており、その方法として下記(1)ないし(3)の方法が知られている。 Slag material produced from steelmaking slag is used as a roadbed material and as a fine aggregate for concrete, but in these uses, there is a problem that f-CaO causes swelling of the roadbed and cracks in the concrete due to hydration expansion. Therefore, conventionally, treatments for reducing f-CaO, which causes expansion and collapse, have been performed, and the following methods (1) to (3) are known as such methods.

(1)エージング処理
エージング処理とは、製鋼スラグに含まれるf-CaOを水和反応によりCa(OH)に変化させて安定化させる方法である。エージング処理には、製鋼スラグをヤードに野積みして行う大気エージングが知られている。また、特許文献1には水蒸気を用いてf-CaOの水和反応を促進させる蒸気エージングが開示されている。
(1) Aging Treatment Aging treatment is a method for stabilizing f-CaO contained in steelmaking slag by changing it to Ca(OH) 2 through a hydration reaction. Atmospheric aging is known as an aging treatment in which steelmaking slag is piled up in a yard. Further, Patent Document 1 discloses steam aging in which water vapor is used to promote the hydration reaction of f-CaO.

(2)風砕
風砕とは、溶融状態の製鋼スラグに高圧の空気を吹き付けて急冷することで製鋼スラグを粒状にする処理である。特許文献2には、溶融スラグを風砕して冷却固化させる際に、スラグ中のFeO等が空気で酸化されてFeとなり、これとf-CaOとが反応してダイカルシウムフェライト(2CaO・Fe)が形成され、これにより、f-CaOが低減することが開示されている。
(2) Air granulation Air granulation is a process of granulating steelmaking slag by blowing high-pressure air onto molten steelmaking slag to rapidly cool the molten steelmaking slag. In Patent Document 2, when the molten slag is air-crushed and solidified by cooling, FeO and the like in the slag are oxidized with air to form Fe 2 O 3 , which reacts with f-CaO to form dicalcium ferrite ( 2CaO.Fe 2 O 3 ) is formed, which reduces f-CaO.

(3)改質処理
改質処理とは、特許文献3に開示されているように、溶融状態のスラグにSiOやAlを含む改質剤を添加し、さらに酸素を吹き込むことによって製鋼スラグを改質する方法である。この方法により、f-CaOを水和膨張しない安定鉱物相に変化(改質)させることができる。また、非特許文献1には、スラグヤードでの製鋼スラグの冷却速度を速めることf-CaOの結晶サイズが微細化され、これにより製鋼スラグの粉化が抑制されることが開示されている。
(3) Modification Treatment As disclosed in Patent Document 3, modification treatment involves adding a modifier containing SiO 2 or Al 2 O 3 to molten slag and further blowing in oxygen. This is a method for reforming steelmaking slag. By this method, f-CaO can be changed (modified) into a stable mineral phase that does not expand by hydration. In addition, Non-Patent Document 1 discloses that increasing the cooling rate of steelmaking slag in a slag yard refines the crystal size of f-CaO, thereby suppressing pulverization of steelmaking slag.

特開2009-227490号公報JP 2009-227490 A 特開2015-189601号公報JP 2015-189601 A 特開2017-141148号公報JP 2017-141148 A

馬越幹男、外2名、「製鋼系スラグの凝固組織と風化崩壊性」、久留米工業高等学校紀要、第1第2号、p57-64Mikio Umakoshi, 2 others, "Solidification Structure and Weathering Disintegration of Steelmaking Slag", Bulletin of Kurume Technical High School, No. 1, No. 2, pp. 57-64 乾道春、他2名、「製鋼スラグ中のフリーCaO分析方法の標準化」、ふぇらむ、日本鉄鋼協会、Vol.19(2014) No.8Inudoharu, and two others, "Standardization of analysis method for free CaO in steelmaking slag", Ferrum, The Iron and Steel Institute of Japan, Vol. 19 (2014) No. 8

しかしながら、特許文献1に開示された蒸気エージング法は粉化を抑制する効果はあるもののエージング処理工程等が追加されることになるので、スラグ材を製造するための工程が増えるという課題があった。また、特許文献2に開示された風砕は、短時間でスラグ中のFeOを酸化し、f-CaOを低減させることができるが、風砕を行うための新たな設備を導入する必要があるという課題があった。特許文献3に開示された改質処理は、f-CaOを固定化できるものの、スラグ量が増加するという課題があった。さらに、非特許文献1で粉化を抑制できるとされる冷却速度200℃/minは、スラグヤード上では実現不可能な冷却速度である。本発明は、このような従来技術の課題を鑑みてなされたものであり、新たな設備を導入することなく、且つ、スラグ量を増加させることなく水和膨張による粉化が抑制されたスラグ材の製造方法およびスラグ材を提供することを目的とする。 However, although the steam aging method disclosed in Patent Document 1 has the effect of suppressing pulverization, an aging treatment process and the like are added, so there is a problem that the number of processes for producing slag material increases. . In addition, the air granulation disclosed in Patent Document 2 can oxidize FeO in slag in a short time and reduce f-CaO, but it is necessary to introduce new equipment for air granulation. There was a problem. The modification treatment disclosed in Patent Document 3 can immobilize f-CaO, but has the problem of increasing the amount of slag. Furthermore, the cooling rate of 200° C./min, which is said to be able to suppress pulverization in Non-Patent Document 1, is a cooling rate that cannot be realized on the slag yard. The present invention has been made in view of such problems of the prior art, and a slag material in which pulverization due to hydration expansion is suppressed without introducing new equipment and without increasing the amount of slag. The object is to provide a manufacturing method and slag material of.

上記課題を解決するための手段は、以下の通りである。
[1]溶融状態の製鋼スラグを、溶融状態から1200℃までの温度域における冷却速度が1000℃/h~400℃/hであり、1000℃から600℃までの温度域における冷却速度が300℃/h以下となるように前記製鋼スラグを冷却し、1200℃から1000℃までの温度域における保持時間T1が下記(1)式を満たすように前記製鋼スラグを冷却する、粒径5mm以上のスラグ材の製造方法。
T1≦-7.5×[f-CaO]+69.5・・・(1)
上記(1)式において、T1は保持時間(h)であり、[f-CaO]は、前記製鋼スラグにおけるf-CaOの含有量(質量%)である。
[2]溶融状態の製鋼スラグを、溶融状態から1200℃までの温度域における冷却速度が1000℃/h~400℃/hであり、1000℃から600℃までの温度域における冷却速度が300℃/h以下となるように前記製鋼スラグを冷却し、1200℃から1000℃までの温度域における保持時間T2が下記(2)式を満たすように前記製鋼スラグを冷却する、粒径5mm以上のスラグ材の製造方法。
T2≦-5.5×[f-CaO計算値]+71.0・・・(2)
上記(2)式において、T2は保持時間(h)であり、f-CaO計算値は、下記(3)式で算出される値と、X線回折で推定した含有f-CaO推定値と、X線回折とリートベルト解析で推定した含有f-CaO推定値とのうちのいずれか1つである。
f-CaO計算値=[T-CaO]-(1.87×[SiO]+0.70×[Fe]+1.10×[Al]+1.18×[P])・・・(3)
上記(3)式において、[]は各化合物の含有量(質量%)であり、T-CaOは、CaO、CaCO、Ca(OH)等のCaとOを有する全ての化合物中のCaをCaOに換算したものである。
[3]粒径が50μm以上の結晶粒の含有率が5質量%以下であり、蒸気処理後の粒径2.36mm未満の粉の発生率が5質量%以下である粒径5mm以上のスラグ材。
Means for solving the above problems are as follows.
[1] The cooling rate of molten steelmaking slag in the temperature range from the molten state to 1200 ° C. is 1000 ° C./h to 400 ° C./h, and the cooling rate in the temperature range from 1000 ° C. to 600 ° C. is 300 ° C. /h or less, and cooling the steelmaking slag so that the holding time T1 in the temperature range from 1200 ° C. to 1000 ° C. satisfies the following formula (1). Slag with a particle size of 5 mm or more How the material is made.
T1≦−7.5×[f−CaO]+69.5 (1)
In the above formula (1), T1 is the holding time (h), and [f-CaO] is the f-CaO content (% by mass) in the steelmaking slag.
[2] The cooling rate of molten steelmaking slag in the temperature range from the molten state to 1200 ° C. is 1000 ° C./h to 400 ° C./h, and the cooling rate in the temperature range from 1000 ° C. to 600 ° C. is 300 ° C. /h or less, and cooling the steelmaking slag so that the holding time T2 in the temperature range from 1200 ° C. to 1000 ° C. satisfies the following formula (2). Slag with a particle size of 5 mm or more How the material is made.
T2 ≤ -5.5 × [f-CaO calculated value] + 71.0 (2)
In the above formula (2), T2 is the retention time (h), and the f-CaO calculated value is the value calculated by the following formula (3), the estimated contained f-CaO value estimated by X-ray diffraction, Either one of X-ray diffraction and f-CaO content estimated by Rietveld analysis.
Calculated value of f-CaO=[T-CaO]-(1.87×[SiO 2 ]+0.70×[Fe 2 O 3 ]+1.10×[Al 2 O 3 ]+1.18×[P 2 O 5 ]) (3)
In the above formula (3), [] is the content (% by mass) of each compound, and T-CaO is Ca in all compounds having Ca and O such as CaO, CaCO 3 , Ca(OH) 2 is converted to CaO.
[3] Slag with a particle size of 5 mm or more in which the content of crystal grains with a particle size of 50 μm or more is 5% by mass or less, and the generation rate of powder with a particle size of less than 2.36 mm after steam treatment is 5% by mass or less. material.

本発明に係るスラグ材の製造方法では、溶融状態の製鋼スラグをf-CaOの含有量に応じた冷却速度で冷却することで水和膨張による粉化が抑制されたスラグ材を製造できる。このため、本発明に係るスラグ材の製造方法を実施することで、新たな設備や工程を追加することなく、且つ、スラグ量を増加させることなく粉化が抑制されたスラグ材の製造が実現できる。 In the method for producing a slag material according to the present invention, a slag material in which pulverization due to hydration expansion is suppressed can be produced by cooling steelmaking slag in a molten state at a cooling rate according to the content of f-CaO. Therefore, by implementing the slag material manufacturing method according to the present invention, it is possible to manufacture slag material in which pulverization is suppressed without adding new equipment or processes and without increasing the amount of slag. can.

表1におけるf-CaOの含有量と1200℃から1000℃までの保持時間との関係を示すグラフである。1 is a graph showing the relationship between f-CaO content and holding time from 1200° C. to 1000° C. in Table 1. FIG. 表1におけるf-CaO計算値と1000℃以上1200℃以下での保持時間との関係を示すグラフである。4 is a graph showing the relationship between the f-CaO calculated value in Table 1 and the retention time at 1000° C. or higher and 1200° C. or lower. スラグ材断面のSEM-EDX画像である。It is an SEM-EDX image of a cross section of the slag material.

本発明者らは、製鋼スラグの粉化現象に関わっていると考えられるスラグヤードでの製鋼スラグの温度履歴を調査した。例えば、溶銑の脱炭工程で副生される脱炭スラグは、転炉で処理後、スラグヤードに運ばれて約1650℃で放流され、冷却される。このように、現状のスラグヤードにおいて、製鋼スラグは1200℃から1000℃までの温度域で長時間保持されている。 The present inventors investigated the temperature history of steelmaking slag in a slag yard, which is thought to be related to the pulverization phenomenon of steelmaking slag. For example, decarburized slag by-produced in the decarburization process of hot metal is treated in a converter, transported to a slag yard, discharged at about 1650° C., and cooled. Thus, in the current slag yard, steelmaking slag is held in the temperature range from 1200°C to 1000°C for a long time.

本発明者らは、製鋼スラグの1200℃から1000℃までの温度域での保持時間が長くなると、f-CaO相の固溶度の変化に伴い生成するf-CaO結晶の結晶サイズが大きくなり、これにより、水和膨張によって製鋼スラグが粉化し易くなる現象を見出した。そこで、本実施形態に係る製鋼スラグの製造方法では、製鋼スラグの温度域を、溶融状態から凝固するまでの温度域(溶融状態から1200℃まで)と、凝固後のある程度高温の温度域(1200℃~1000℃)と、それ以下の温度域(1000℃~600℃)との3つに分け、溶融状態の製鋼スラグをf-CaOの含有量に応じた冷却速度で冷却することで、水和膨張による粉化が抑制されたスラグ材が製造できることを見出して本発明を完成させた。以下、本発明を発明の実施形態を通じて説明する。 The inventors of the present invention found that when the holding time of the steelmaking slag in the temperature range from 1200 ° C. to 1000 ° C. increases, the crystal size of the f-CaO crystals generated along with the change in the solid solubility of the f-CaO phase increases. As a result, the inventors have found a phenomenon that steelmaking slag is easily pulverized due to hydration expansion. Therefore, in the method for producing steelmaking slag according to the present embodiment, the temperature range of steelmaking slag is divided into a temperature range from the molten state to solidification (from the molten state to 1200 ° C.) and a temperature range of a relatively high temperature after solidification (1200 ° C to 1000 ° C) and a lower temperature range (1000 ° C to 600 ° C), and by cooling the molten steelmaking slag at a cooling rate according to the content of f-CaO, water The present invention was completed by discovering that a slag material in which pulverization due to sum expansion can be suppressed can be produced. Hereinafter, the present invention will be described through embodiments of the invention.

本実施形態に係るスラグ材の製造方法では、製鋼スラグのf-CaOの含有量に応じた冷却速度でスラグヤードの製鋼スラグを冷却する。製鋼スラグの冷却は、製鋼スラグの温度域を3つに分け、それぞれの温度域で製鋼スラグの冷却速度を制御する。3つの温度域は、溶融状態から凝固するまでの温度域(溶融状態から1200℃まで)、凝固後のある程度高温の温度域(1200℃~1000℃)およびそれ以下の温度域(1000℃~600℃)である。 In the method for producing a slag material according to the present embodiment, the steelmaking slag in the slag yard is cooled at a cooling rate corresponding to the f-CaO content of the steelmaking slag. The steelmaking slag is cooled by dividing the temperature range of the steelmaking slag into three, and controlling the cooling rate of the steelmaking slag in each temperature range. The three temperature ranges are the temperature range from the molten state to solidification (from the molten state to 1200 ° C.), the somewhat high temperature range after solidification (1200 ° C. to 1000 ° C.), and the lower temperature range (1000 ° C. to 600 ° C. °C).

3つの温度域のうち、溶融状態から1200℃までの温度域における冷却速度は1000℃/h~400℃/hであり、1000℃から600℃までの温度域における冷却速度が300℃/h以下となるように製鋼スラグを冷却する。溶融状態から凝固するまでの温度域(溶融状態から1200℃まで)において冷却速度を1000℃/h~400℃/hとすることで、水冷等により生じるスラグ表面のクラックを最小限にとどめる。また、1200℃~1000℃の温度域では、製鋼スラグのf-CaOの含有量に応じた冷却速度で製鋼スラグを冷却し、当該製鋼スラグの保持時間を制御する。具体的には、1200℃から1000℃までの温度域における保持時間T1が下記(1)式を満たすように製鋼スラグを冷却する。これにより、水和膨張による粉化が抑制された製鋼スラグが製造できる。 Of the three temperature ranges, the cooling rate in the temperature range from the molten state to 1200 ° C. is 1000 ° C./h to 400 ° C./h, and the cooling rate in the temperature range from 1000 ° C. to 600 ° C. is 300 ° C./h or less. The steelmaking slag is cooled so that By setting the cooling rate to 1000° C./h to 400° C./h in the temperature range from the molten state to solidification (from the molten state to 1200° C.), cracks on the slag surface caused by water cooling or the like are minimized. In the temperature range of 1200° C. to 1000° C., the steelmaking slag is cooled at a cooling rate corresponding to the f-CaO content of the steelmaking slag, and the holding time of the steelmaking slag is controlled. Specifically, the steelmaking slag is cooled so that the holding time T1 in the temperature range from 1200°C to 1000°C satisfies the following formula (1). As a result, steelmaking slag in which pulverization due to hydration expansion is suppressed can be produced.

T1≦-7.5×[f-CaO]+69.5・・・(1)
上記(1)式において、T1は保持時間(h)であり、[f-CaO]は、製鋼スラグにおけるf-CaOの含有量(質量%)である。
T1≦−7.5×[f−CaO]+69.5 (1)
In the above formula (1), T1 is the holding time (h), and [f-CaO] is the f-CaO content (% by mass) in the steelmaking slag.

一方、製鋼スラグのf-CaOの含有量は測定するのに時間がかかるので、製鋼スラグの成分が変動する場合にはf-CaOの含有量に替えてf-CaO計算値や、X線回折で推定したf-CaOの含有量の推定値や、X線回折とリートベルト解析によるf-CaOの含有量の推定値等を用いてもよい。f-CaO計算値は、トータルCaO(T-CaO)からSiO、Fe、Al、および、Pと化合物を生成すると予想される成分を差し引いた値であり、f-CaOの含有量と必ずしも一致しないもののf-CaOの含有量を示す指標として用いることができる。T-CaO、SiO、Fe、Al、Pの含有量は、蛍光X線分析器などを用いて短時間で測定できる。 On the other hand, it takes time to measure the f-CaO content of steelmaking slag. The estimated value of the f-CaO content estimated in , the estimated value of the f-CaO content by X-ray diffraction and Rietveld analysis, etc. may be used. The f-CaO calculated value is the total CaO (T-CaO) minus the components expected to form compounds with SiO 2 , Fe 2 O 3 , Al 2 O 3 and P 2 O 5 , Although it does not necessarily match the f-CaO content, it can be used as an indicator of the f-CaO content. The contents of T--CaO, SiO 2 , Fe 2 O 3 , Al 2 O 3 and P 2 O 5 can be measured in a short period of time using a fluorescent X-ray analyzer or the like.

製鋼スラグのf-CaOの含有量に代えてf-CaO計算値を用いる場合には、1200℃から1000℃までの温度域における保持時間T2が下記(2)式を満たすように製鋼スラグを冷却する。 When using the f-CaO calculated value instead of the f-CaO content of the steelmaking slag, the steelmaking slag is cooled so that the holding time T2 in the temperature range from 1200 ° C to 1000 ° C satisfies the following formula (2) do.

T2≦-5.5×[f-CaO計算値]+70.0・・・(2)
上記(2)式において、T2は保持時間(h)であり、f-CaO計算値は下記(3)式で算出される値(質量%)である。
T2 ≤ -5.5 × [f-CaO calculated value] + 70.0 (2)
In the above formula (2), T2 is the retention time (h), and the f-CaO calculated value is the value (% by mass) calculated by the following formula (3).

f-CaO計算値=[T-CaO]-(1.87×[SiO]+0.70×[Fe]+1.10×[Al]+1.18×[P])・・・(3)
上記(3)式において、[]は製鋼スラグの各化合物の含有量(質量%)であり、T-CaOは、CaO、CaCO、Ca(OH)等のCaとOを有する全ての化合物中のCaをCaOに換算したものである。
Calculated value of f-CaO=[T-CaO]-(1.87×[SiO 2 ]+0.70×[Fe 2 O 3 ]+1.10×[Al 2 O 3 ]+1.18×[P 2 O 5 ]) (3)
In the above formula (3), [] is the content (% by mass) of each compound in the steelmaking slag, and T-CaO is CaO, CaCO 3 , Ca(OH) 2 , etc. All compounds having Ca and O Ca inside is converted into CaO.

製鋼スラグのT-CaO、SiO、Fe、Al、および、Pの含有量は、蛍光X分析器を用いて測定できる。また、製鋼スラグのf-CaOの含有量は、非特許文献2に記載されたエチレングリコール法(EG法)等で測定できる。 The contents of T—CaO, SiO 2 , Fe 2 O 3 , Al 2 O 3 and P 2 O 5 in steelmaking slag can be measured using a fluorescence X-ray analyzer. In addition, the content of f-CaO in steelmaking slag can be measured by the ethylene glycol method (EG method) described in Non-Patent Document 2, or the like.

600℃から常温までの温度域は、f-CaO結晶の成長などの相が変化する速度が遅いので、製鋼スラグの冷却速度は50℃/h未満であってもよい。本実施形態に係るスラグ材の製造方法における製鋼スラグの温度は、スラグヤードに放流された製鋼スラグのスラグ厚み方向および水平方向の中央位置の温度である。製鋼スラグの温度は、熱電対を用いて測定できる。但し、必ずしも毎回測温しなくてもよく、スラグ厚、強制冷却の有無、スラグヤードの材質(スラグ質の土間か、鋼質のパンか、など)などの冷却速度に影響する諸条件が変化した際に、スラグ厚の中央位置の温度を熱電対により測温しながら冷却条件を定めればよく、これらの条件が同じと見做せる場合には同じ冷却条件で冷却してよい。 In the temperature range from 600° C. to room temperature, the rate of phase change such as the growth of f—CaO crystals is slow, so the steelmaking slag cooling rate may be less than 50° C./h. The temperature of the steelmaking slag in the method of manufacturing the slag material according to the present embodiment is the temperature at the central position in the slag thickness direction and the horizontal direction of the steelmaking slag discharged into the slag yard. The temperature of steelmaking slag can be measured using a thermocouple. However, it is not always necessary to measure the temperature every time, and various conditions that affect the cooling rate such as slag thickness, presence or absence of forced cooling, slag yard material (slag floor, steel pan, etc.) change. At this time, the cooling conditions may be determined while measuring the temperature at the central position of the slag thickness with a thermocouple, and if these conditions can be regarded as the same, cooling may be performed under the same cooling conditions.

製鋼スラグの冷却速度は、スラグ厚、強制冷却の有無およびスラグヤードの材質(スラグ質の土間、鋼質のパン等)に影響を受ける。例えば、製鋼スラグの冷却速度を速める場合には、スラグ厚が薄くなるようにスラグヤードに放流し、さらに散水による強制冷却を行えばよい。また、地面から隔離させた鋼質のパンをスラグヤードに設置し、このパン上に製鋼スラグを放流し、冷却することで製鋼スラグの冷却速度を速めることができる。さらに、気流中にスラグを流下させて液滴化しつつ強制冷却する風砕と呼ばれる冷却方法を用いることで、極めて高速に製鋼スラグを冷却できる。 The cooling rate of steelmaking slag is affected by the thickness of the slag, the presence or absence of forced cooling, and the material of the slag yard (slag floor, steel pan, etc.). For example, in order to increase the cooling rate of steelmaking slag, the slag may be discharged into a slag yard so as to reduce the thickness of the slag, and then forcibly cooled by spraying water. Also, a steel pan isolated from the ground is installed in the slag yard, and the steelmaking slag is discharged onto the pan and cooled, thereby increasing the cooling rate of the steelmaking slag. Furthermore, steelmaking slag can be cooled extremely rapidly by using a cooling method called wind crushing, in which slag is forced to cool down in an air stream while being dropletized.

次に、上記(1)式および(2)式を求めるために実施した粒径5mm以上のスラグ材の製造実験について説明する。スラグ材の製造実験は、下記1~3の手順で実施した。
1.成分組成が異なる11種の溶融状態の転炉脱炭スラグを準備した。
2.各転炉脱炭スラグの1200℃から1000℃までの温度域における保持時間を変えて冷却しスラグ材を製造した。なお、溶融状態から1200℃までの温度域は450℃/hの冷却速度で冷却した。また、1000℃から600℃までの温度域は55℃/hの冷却速度で冷却した。600℃から常温までの温度域は20℃/hの冷却測定で冷却した。
3.製造されたスラグ材の粉化度合いを確認した。
スラグ材の製造実験における1000℃以上1200℃以下の温度域での保持時間と、f-CaOの含有量、f-CaO計算値の値、粉化度合いの確認結果を下記表1に示す。
Next, an experiment for producing slag material having a particle size of 5 mm or more, which was carried out to obtain the above formulas (1) and (2), will be described. The slag material manufacturing experiment was carried out according to the following procedures 1 to 3.
1. Eleven types of molten converter decarburized slag with different chemical compositions were prepared.
2. The decarburized slag of each converter was cooled in a temperature range from 1200° C. to 1000° C. for different holding times to produce slag materials. The temperature range from the molten state to 1200°C was cooled at a cooling rate of 450°C/h. Also, the temperature range from 1000°C to 600°C was cooled at a cooling rate of 55°C/h. The temperature range from 600° C. to room temperature was cooled at a cooling rate of 20° C./h.
3. The pulverization degree of the manufactured slag material was confirmed.
Table 1 below shows the holding time in the temperature range of 1000° C. or higher and 1200° C. or lower, f-CaO content, f-CaO calculated value, and pulverization degree in the slag material production experiment.

Figure 2022155534000002
Figure 2022155534000002

製造されたスラグ材の粉化度合いは、製造されたスラグ材を蒸気処理(100℃、常圧、48時間)し、蒸気処理後のスラグ材を目開き2.36mmの篩を用いて篩分けることで確認した。スラグ材全体の質量と2.36mmの篩目を通過したものとの質量比が50質量%以上のスラグ材の粉化度合いを「高」とし、50質量%~5質量%のスラグ材の粉化度合いを「中」とし、5%未満のスラグ材の粉化度合いを「低」とした。なお、蒸気処理(100℃、常圧、48時間)は、スラグ材の粉化を加速して評価する手段であって、この条件は常温常圧の湿潤状態における2年間に相当する。 The degree of pulverization of the produced slag material is determined by steaming the produced slag material (100°C, normal pressure, 48 hours) and sieving the steamed slag material using a sieve with an opening of 2.36 mm. confirmed by The degree of pulverization of slag material with a mass ratio of 50% by mass or more between the mass of the entire slag material and the material that passed through the 2.36 mm sieve is defined as "high", and the powder of 50% by mass to 5% by mass of slag material The degree of pulverization was rated as "medium", and the degree of pulverization of less than 5% of the slag material was rated as "low". The steam treatment (100° C., normal pressure, 48 hours) is a means for accelerating pulverization of the slag material and evaluating it, and this condition corresponds to two years in a wet state at normal temperature and normal pressure.

図1は、表1におけるf-CaOの含有量と1200℃から1000℃までの保持時間との関係を示すグラフである。図1において横軸はf-CaOの含有量(質量%)であり、縦軸は1000℃以上1200℃以下の温度域での保持時間(h)である。 FIG. 1 is a graph showing the relationship between the f-CaO content in Table 1 and the holding time from 1200° C. to 1000° C. FIG. In FIG. 1, the horizontal axis is the f-CaO content (% by mass), and the vertical axis is the retention time (h) in the temperature range of 1000° C. or higher and 1200° C. or lower.

表1の製造例1と製造例11との比較、および、製造例4と製造例11との比較から、製鋼スラグのf-CaOの含有量が同じであれば、1200℃から1000℃までの保持時間を短くすることで水和膨張による粉化が抑制されたスラグ材が製造できることが確認された。また、図1から下記(1)式を満たすように製鋼スラグを冷却することで製造されるスラグ材の粉化度合いが「低」となることがわかる。これらの結果から、製鋼スラグのf-CaOの含有量に応じて1200℃から1000℃までの保持時間T1が下記(1)式を満たすように製鋼スラグを冷却すれば、水和膨張による粉化が抑制されたスラグ材の製造が実現できることがわかる。 From a comparison of Production Examples 1 and 11 in Table 1, and a comparison of Production Examples 4 and 11, if the f-CaO content of the steelmaking slag is the same, the It was confirmed that a slag material in which pulverization due to hydration expansion is suppressed can be produced by shortening the holding time. Further, from FIG. 1, it can be seen that the pulverization degree of the slag material produced by cooling the steelmaking slag so as to satisfy the following formula (1) becomes "low". From these results, if the steelmaking slag is cooled so that the holding time T1 from 1200 ° C. to 1000 ° C. satisfies the following formula (1) according to the f-CaO content of the steelmaking slag, pulverization due to hydration expansion It can be seen that the production of slag material in which the is suppressed can be realized.

T1≦-7.5×[f-CaO]+69.5・・・(1)
上記(1)式において、T1は保持時間(h)であり、[f-CaO]は、製鋼スラグのf-CaOの含有量(質量%)である。
T1≦−7.5×[f−CaO]+69.5 (1)
In the above formula (1), T1 is the holding time (h), and [f-CaO] is the f-CaO content (% by mass) of the steelmaking slag.

なお、図1からf-CaOの含有量に応じて1200℃から1000℃までの保持時間T1が下記(4)式および(5)式を満たすように製鋼スラグを冷却することがより好ましい。下記(4)式および(5)式を満たすように製鋼スラグを1200℃から1000℃まで冷却することで、製造されるスラグ材の粉化度合いを「低」にできる。 From FIG. 1, it is more preferable to cool the steelmaking slag so that the holding time T1 from 1200° C. to 1000° C. satisfies the following equations (4) and (5) depending on the f-CaO content. By cooling the steelmaking slag from 1200° C. to 1000° C. so as to satisfy the following expressions (4) and (5), the pulverization degree of the produced slag material can be made “low”.

T1≦-4.6×[f-CaO]+44.0・・・(4)
[f-CaO]≦8.5・・・(5)
上記(4)、(5)式において、T1は保持時間(h)であり、[f-CaO]は、製鋼スラグにおけるf-CaOの含有量(質量%)である。
T1≦−4.6×[f−CaO]+44.0 (4)
[f-CaO] ≤ 8.5 (5)
In the above formulas (4) and (5), T1 is the holding time (h), and [f-CaO] is the f-CaO content (mass%) in the steelmaking slag.

図2は、表1におけるf-CaO計算値と1000℃以上1200℃以下での保持時間との関係を示すグラフである。図2において横軸はf-CaO計算値(質量%)であり、縦軸は1000℃以上1200℃以下の温度域での保持時間(h)である。 FIG. 2 is a graph showing the relationship between the f-CaO calculated value in Table 1 and the retention time at 1000° C. or higher and 1200° C. or lower. In FIG. 2, the horizontal axis is the f-CaO calculated value (mass %), and the vertical axis is the holding time (h) in the temperature range of 1000° C. or higher and 1200° C. or lower.

図2に示すようにf-CaO計算値が同じであれば、1200℃から1000℃までの保持時間を短くすることで水和膨張による粉化が抑制されたスラグ材が製造でき、下記(2)式を満たすように製鋼スラグを冷却することで製造されるスラグ材の粉化度合いが「低」となることがわかる。この結果から、製鋼スラグのf-CaO計算値に応じて、1200℃から1000℃までの保持時間T2が下記(2)式を満たすように製鋼スラグを冷却すれば、水和膨張による粉化が抑制されたスラグ材の製造が実現できることがわかる。 As shown in FIG. 2, if the calculated value of f-CaO is the same, a slag material in which pulverization due to hydration expansion is suppressed can be produced by shortening the holding time from 1200 ° C. to 1000 ° C. ), the pulverization degree of the slag material produced by cooling the steelmaking slag so as to satisfy the formula becomes “low”. From this result, if the steelmaking slag is cooled so that the holding time T2 from 1200°C to 1000°C satisfies the following formula (2) according to the f-CaO calculated value of the steelmaking slag, pulverization due to hydration expansion will occur. It can be seen that production of suppressed slag material can be realized.

T2≦-5.5×[f-CaO計算値]+70.0・・・(2)
上記(2)式において、T2は保持時間(h)であり、f-CaO計算値は下記(3)式で算出される値(質量%)である。
T2 ≤ -5.5 × [f-CaO calculated value] + 70.0 (2)
In the above formula (2), T2 is the retention time (h), and the f-CaO calculated value is the value (% by mass) calculated by the following formula (3).

f-CaO計算値=[T-CaO]-(1.87×[SiO]+0.70×[Fe]+1.10×[Al]+1.18×[P])・・・(3)
上記(3)式において、[]は製鋼スラグの各化合物の含有量(質量%)であり、T-CaOは、CaO、CaCO、Ca(OH)等のCaとOを有する全ての化合物中のCaをCaOに換算したものである。
Calculated value of f-CaO=[T-CaO]-(1.87×[SiO 2 ]+0.70×[Fe 2 O 3 ]+1.10×[Al 2 O 3 ]+1.18×[P 2 O 5 ]) (3)
In the above formula (3), [] is the content (% by mass) of each compound in the steelmaking slag, and T-CaO is CaO, CaCO 3 , Ca(OH) 2 , etc. All compounds having Ca and O Ca inside is converted into CaO.

なお、図2からf-CaOの含有量に応じて1200℃から1000℃までの保持時間T2が下記(6)式および(7)式を満たすように製鋼スラグを冷却することがより好ましい。下記(6)式および(7)式を満たすように製鋼スラグを1200℃から1000℃まで冷却することで、製造されるスラグ材の粉化度合いを「低」にできる。 From FIG. 2, it is more preferable to cool the steelmaking slag so that the holding time T2 from 1200° C. to 1000° C. satisfies the following equations (6) and (7) depending on the f-CaO content. By cooling the steelmaking slag from 1200° C. to 1000° C. so as to satisfy the following expressions (6) and (7), the pulverization degree of the produced slag material can be made “low”.

T2≦-3.4×[f-CaO計算値]+43.0・・・(6)
f-CaO計算値≦11.0・・・(7)
上記(6)、(7)式において、T2は保持時間(h)であり、f-CaO計算値は上記(3)式で算出される値(質量%)である。
T2 ≤ -3.4 × [f-CaO calculated value] + 43.0 (6)
f-CaO calculated value ≤ 11.0 (7)
In the above formulas (6) and (7), T2 is the retention time (h), and the f-CaO calculated value is the value (mass%) calculated by the above formula (3).

このように、本実施形態に係るスラグ材の製造方法では、各温度域での製鋼スラグの冷却速度を調整するだけで、新たな設備や工程を必要としない。さらに、製鋼スラグに改質剤等を添加することもないので、本実施形態に係るスラグ材の製造方法を実施することで、新たな設備や工程を追加することなく、且つ、スラグ量を増加させることなく粉化が抑制されたスラグ材の製造が実現できることがわかる。 As described above, in the method for producing slag material according to the present embodiment, the cooling rate of steelmaking slag in each temperature range is adjusted, and no new equipment or process is required. Furthermore, since no modifier or the like is added to the steelmaking slag, the amount of slag can be increased without adding new equipment or processes by implementing the method for producing a slag material according to the present embodiment. It can be seen that the production of slag material in which pulverization is suppressed can be realized.

図3は、スラグ材断面のSEM-EDX画像である。図3(a)は、上記(1)式を満足しないT1=-7.5×[f-CaO]+80の冷却条件で製鋼スラグを1200℃から1000℃まで冷却して製造したスラグ材の断面画像である。図3(a)のスラグ材は、上記(1)式を満足しないように冷却されたので、蒸気処理(100℃、常圧、48時間)後のスラグ材全体の質量と2.36mmの篩目を通過したものとの質量比が50質量%以上となった。 FIG. 3 is an SEM-EDX image of a cross section of the slag material. Fig. 3(a) shows a cross section of a slag material produced by cooling steelmaking slag from 1200°C to 1000°C under the cooling condition of T1 = -7.5 x [f-CaO] + 80, which does not satisfy the above equation (1). It is an image. Since the slag material in FIG. 3(a) was cooled so as not to satisfy the above formula (1), the mass of the entire slag material after steam treatment (100° C., normal pressure, 48 hours) and the 2.36 mm sieve The mass ratio of the material passing through the eyes was 50% by mass or more.

図3(b)は、上記(1)式を満足するT1=-7.5×[f-CaO]+58の冷却条件で製鋼スラグを1200℃から1000℃まで冷却して製造したスラグ材の断面画像である。図3(b)のスラグ材は、上記(1)式を満足するように冷却されたので、蒸気処理(100℃、常圧、48時間)後のスラグ材全体の質量と2.36mmの篩目を通過したものとの質量比、あるいは、粒径が2.36mm未満の粉の発生率が5質量%以下となった。図3(a)、(b)に示したSEM-EDX画像おいて、白い部分は主相である2CaO・SiOを示し、灰色の部分はその他のスラグ相を示す。また、図3(a)のみに存在する黒い部分は亀裂によって生じた空隙を示す。 FIG. 3(b) is a cross section of a slag material produced by cooling steelmaking slag from 1200° C. to 1000° C. under the cooling condition of T1=−7.5×[f-CaO]+58, which satisfies the above formula (1). It is an image. Since the slag material in FIG. 3(b) was cooled so as to satisfy the above formula (1), the mass of the entire slag material after steam treatment (100° C., normal pressure, 48 hours) and the sieve of 2.36 mm The mass ratio to the powder that passed through the eye, or the generation rate of powder with a particle size of less than 2.36 mm was 5% by mass or less. In the SEM-EDX images shown in FIGS. 3(a) and 3(b), white portions indicate the main phase 2CaO.SiO 2 and gray portions indicate other slag phases. In addition, black portions that exist only in FIG. 3(a) indicate voids caused by cracks.

図3(a)では、粒径が50μm以上である結晶粒の面積が全体に対して5%以上観察されたことから、粒径が50μm以上の結晶粒の含有割合は5質量%以上であると考えられる。一方、図3(b)では、観察された粒径が50μm以上である結晶粒の面積が全体の5%以下であったことから、粒径が50μm以上の結晶粒の含有割合は5質量%以下であると考えられる。これらの結果から、上記(1)式を満足する冷却条件で冷却され、水和膨張が抑制されるスラグ材は、粒径が50μm以上の結晶粒の含有割合が5質量%以下のスラグ材であることがわかる。一方、上記(1)式を満足しない冷却条件で冷却され、水和膨張が抑制されないスラグ材は、粒径が50μm以上の結晶粒の含有割合が5質量%以上のスラグ材であることがわかる。 In FIG. 3( a ), the area of crystal grains with a grain size of 50 μm or more was observed to be 5% or more of the whole, so the content ratio of crystal grains with a grain size of 50 μm or more is 5% by mass or more. it is conceivable that. On the other hand, in FIG. 3(b), the area of crystal grains with a grain size of 50 μm or more was 5% or less of the total, so the content of crystal grains with a grain size of 50 μm or more was 5% by mass. It is considered that: From these results, the slag material that is cooled under the cooling condition that satisfies the above formula (1) and whose hydration expansion is suppressed is the slag material that contains 5% by mass or less of crystal grains with a grain size of 50 μm or more. I know there is. On the other hand, it can be seen that the slag material that is cooled under cooling conditions that do not satisfy the above formula (1) and whose hydration expansion is not suppressed is a slag material that contains 5% by mass or more of crystal grains with a grain size of 50 μm or more. .

Claims (3)

溶融状態の製鋼スラグを、溶融状態から1200℃までの温度域における冷却速度が1000℃/h~400℃/hであり、1000℃から600℃までの温度域における冷却速度が300℃/h以下となるように前記製鋼スラグを冷却し、
1200℃から1000℃までの温度域における保持時間T1が下記(1)式を満たすように前記製鋼スラグを冷却する、粒径5mm以上のスラグ材の製造方法。
T1≦-7.5×[f-CaO]+69.5・・・(1)
上記(1)式において、T1は保持時間(h)であり、[f-CaO]は、前記製鋼スラグにおけるf-CaOの含有量(質量%)である。
The cooling rate of molten steelmaking slag in the temperature range from the molten state to 1200°C is 1000°C/h to 400°C/h, and the cooling rate in the temperature range from 1000°C to 600°C is 300°C/h or less. Cool the steelmaking slag so that
A method for producing a slag material having a particle size of 5 mm or more, wherein the steelmaking slag is cooled so that the holding time T1 in the temperature range from 1200° C. to 1000° C. satisfies the following formula (1).
T1≦−7.5×[f−CaO]+69.5 (1)
In the above formula (1), T1 is the holding time (h), and [f-CaO] is the f-CaO content (% by mass) in the steelmaking slag.
溶融状態の製鋼スラグを、溶融状態から1200℃までの温度域における冷却速度が1000℃/h~400℃/hであり、1000℃から600℃までの温度域における冷却速度が300℃/h以下となるように前記製鋼スラグを冷却し、
1200℃から1000℃までの温度域における保持時間T2が下記(2)式を満たすように前記製鋼スラグを冷却する、粒径5mm以上のスラグ材の製造方法。
T2≦-5.5×[f-CaO計算値]+71.0・・・(2)
上記(2)式において、T2は保持時間(h)であり、f-CaO計算値は、下記(3)式で算出される値と、X線回折で推定した含有f-CaO推定値と、X線回折とリートベルト解析で推定した含有f-CaO推定値とのうちのいずれか1つである。
f-CaO計算値=[T-CaO]-(1.87×[SiO]+0.70×[Fe]+1.10×[Al]+1.18×[P])・・・(3)
上記(3)式において、[]は各化合物の含有量(質量%)であり、T-CaOは、CaO、CaCO、Ca(OH)等のCaとOを有する全ての化合物中のCaをCaOに換算したものである。
The cooling rate of molten steelmaking slag in the temperature range from the molten state to 1200°C is 1000°C/h to 400°C/h, and the cooling rate in the temperature range from 1000°C to 600°C is 300°C/h or less. Cool the steelmaking slag so that
A method for producing a slag material having a particle size of 5 mm or more, wherein the steelmaking slag is cooled so that the holding time T2 in the temperature range from 1200° C. to 1000° C. satisfies the following formula (2).
T2 ≤ -5.5 × [f-CaO calculated value] + 71.0 (2)
In the above formula (2), T2 is the retention time (h), and the f-CaO calculated value is the value calculated by the following formula (3), the estimated contained f-CaO value estimated by X-ray diffraction, Either one of X-ray diffraction and f-CaO content estimated by Rietveld analysis.
Calculated value of f-CaO=[T-CaO]-(1.87×[SiO 2 ]+0.70×[Fe 2 O 3 ]+1.10×[Al 2 O 3 ]+1.18×[P 2 O 5 ]) (3)
In the above formula (3), [] is the content (% by mass) of each compound, and T-CaO is Ca in all compounds having Ca and O such as CaO, CaCO 3 , Ca(OH) 2 is converted to CaO.
粒径が50μm以上の結晶粒の含有率が5質量%以下であり、蒸気処理後の粒径2.36mm未満の粉の発生率が5質量%以下である粒径5mm以上のスラグ材。 A slag material having a particle size of 5 mm or more, wherein the content of crystal grains having a particle size of 50 μm or more is 5% by mass or less, and the generation rate of powder having a particle size of less than 2.36 mm after steam treatment is 5% by mass or less.
JP2022049826A 2021-03-30 2022-03-25 Slag material manufacturing method and slag material Active JP7384232B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058064 2021-03-30
JP2021058064 2021-03-30

Publications (2)

Publication Number Publication Date
JP2022155534A true JP2022155534A (en) 2022-10-13
JP7384232B2 JP7384232B2 (en) 2023-11-21

Family

ID=83556839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022049826A Active JP7384232B2 (en) 2021-03-30 2022-03-25 Slag material manufacturing method and slag material

Country Status (1)

Country Link
JP (1) JP7384232B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277176A (en) * 2001-03-15 2002-09-25 Mitsui Eng & Shipbuild Co Ltd Slag cooling method and slag cooling device
JP2004315296A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Prevention method of pulverization of cr containing alloy steel refining slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277176A (en) * 2001-03-15 2002-09-25 Mitsui Eng & Shipbuild Co Ltd Slag cooling method and slag cooling device
JP2004315296A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Prevention method of pulverization of cr containing alloy steel refining slag

Also Published As

Publication number Publication date
JP7384232B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6631265B2 (en) Method for producing derinsed slag
JP4102668B2 (en) Oxidation process of steel industry slag to obtain cement material
JP2014196218A (en) Method for producing roadbed material
JP4865976B2 (en) Method for oxidizing steel slag and LD slag obtained thereby
TW201514317A (en) Method for processing steel slag and hydraulic mineral binder
JP2022155534A (en) Method for manufacturing slag material, and slag material
JP2020132485A (en) Slug, production method of slug, and civil engineering material
JP4808655B2 (en) Method of stabilizing powdered steel slag
JP2011105519A (en) Rapid aging method for steel slag
JPH07106930B2 (en) Method for producing slag containing calcium aluminate
JP2016033103A (en) Method for modifying steel slag
JP2835467B2 (en) Method for producing alumina cement from electric furnace slag
JPH0483744A (en) Production of portland cement using electric furnace slag as raw material
JP3338851B2 (en) Method for producing clinker from electric furnace slag
JP6956502B2 (en) Cement admixtures and cement compositions and hydraulic compositions
TWI817604B (en) Refractory material refining basic-oxygen-furnace slag and method of making the same
JPH01148735A (en) Production of binder by slag modification
JP7405263B2 (en) Method for carbonating CaO-containing substances and method for producing carbonated substances
WO2024090580A1 (en) Method for producing hydraulic cement composition using blast furnace slag and converter furnace slag
JP6011556B2 (en) Method for producing phosphate fertilizer raw material
KR101439079B1 (en) Cement admixture having magnesium smelting slag, method of manufacturing the same, and cement having the same
JP2023111613A (en) Manufacturing method of reduction slag treated material, reduction slag treated material, and reduction slag treated material-containing concrete
WO2024090581A1 (en) Method for producing hydraulic cement composition using electric furnace slag
KR20120111249A (en) Binder for manufacturing fe-containing briquettes using electric furnace reduction slag and manufacturing method thereof
JP2003003206A (en) Dephosphorizing agent, dephosphorization method and method for using slag produced by dephosphorization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7384232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150