JP2022152124A - Aqueous chromium-free surface treatment agent, surface treatment metal, and surface treatment method - Google Patents

Aqueous chromium-free surface treatment agent, surface treatment metal, and surface treatment method Download PDF

Info

Publication number
JP2022152124A
JP2022152124A JP2021054776A JP2021054776A JP2022152124A JP 2022152124 A JP2022152124 A JP 2022152124A JP 2021054776 A JP2021054776 A JP 2021054776A JP 2021054776 A JP2021054776 A JP 2021054776A JP 2022152124 A JP2022152124 A JP 2022152124A
Authority
JP
Japan
Prior art keywords
surface treatment
water
treatment agent
chromium
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021054776A
Other languages
Japanese (ja)
Other versions
JP7194768B2 (en
Inventor
俊明 島倉
Toshiaki Shimakura
慎太郎 中村
Shintaro Nakamura
葵 長野
Aoi NAGANO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Surf Chemicals Co Ltd
Original Assignee
Nippon Paint Surf Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Surf Chemicals Co Ltd filed Critical Nippon Paint Surf Chemicals Co Ltd
Priority to JP2021054776A priority Critical patent/JP7194768B2/en
Priority to KR1020237035248A priority patent/KR20230162638A/en
Priority to CN202280024767.0A priority patent/CN117178078A/en
Priority to AU2022252372A priority patent/AU2022252372A1/en
Priority to PCT/JP2022/007523 priority patent/WO2022209453A1/en
Publication of JP2022152124A publication Critical patent/JP2022152124A/en
Application granted granted Critical
Publication of JP7194768B2 publication Critical patent/JP7194768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/122Alcohols; Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

To provide an aqueous chromium-free metal surface treatment agent capable of forming a coating bearable to high-strength workability to a metal base.SOLUTION: An aqueous chromium-free metal surface treatment agent includes a bifunctional silane compound (A), a monofunctional silane compound (B) and an acetylene glycol-based surfactant (C). Preferably, the concentration of the bifunctional silane compound (A) is in the range of 1-100 g/L, and the concentration of the monofunctional silane compound (B) is in the range of 1-100 g/L, and the concentration ratio (A/B) between the bifunctional silane compound (A) and the monofunctional silane compound (B) is in the range of 0.1-5.SELECTED DRAWING: None

Description

本発明は、水性クロムフリー表面処理剤、表面処理金属、及び表面処理方法に関する。 The present invention relates to an aqueous chromium-free surface treatment agent, a surface treated metal, and a surface treatment method.

従来、金属基材に耐食性を付与するための表面処理剤としては、クロメート処理剤、リン酸クロメート処理剤等のクロム系金属表面処理剤が知られており、現在でも広く使用されている。しかし、近年の環境規制の動向からすると、クロムの有する毒性、特に発ガン性のために将来的にクロム系金属表面処理剤の使用が制限される可能性がある。 Chromium-based metal surface treatment agents such as chromate treatment agents and phosphoric acid chromate treatment agents have been known as surface treatment agents for imparting corrosion resistance to metal substrates, and are still widely used today. However, in view of recent trends in environmental regulations, there is a possibility that the use of chromium-based metal surface treatment agents will be restricted in the future due to the toxicity, especially carcinogenicity, of chromium.

そこで、クロム系金属表面処理剤と同等の耐食性を示すクロムフリー金属表面処理剤が種々開発されている。例えば、特許文献1には、チタン化合物及び/又はジルコニウム化合物、アミノシラン及び多シリル官能シランの縮合反応物を含有する金属表面処理用組成物が開示されている。 Therefore, various chromium-free metal surface treatment agents have been developed which exhibit corrosion resistance equivalent to that of chromium-based metal surface treatment agents. For example, Patent Document 1 discloses a metal surface treatment composition containing a condensation reaction product of a titanium compound and/or a zirconium compound, an aminosilane and a polysilyl-functional silane.

特開2011-068930号公報JP 2011-068930 A

クロムフリー金属表面処理剤を用いて金属基材に皮膜を形成する場合において、例えば金属基材をプレコート金属用途に用いる場合、形成される皮膜には、耐食性に加えて、高強度の加工性に耐え得る塗装密着性が要求される。しかし、従来のクロムフリー金属表面処理剤は、表面処理後の金属基材に対して高強度の加工が行われた際の塗装密着性が十分とは言えず、改善の余地があった。例えば、特許文献1に記載されているようなシランカップリング剤を主成分とする処理剤は、被塗物である金属基材が平滑な表面を有する場合、塗装時に塗料ハジキが発生するため、金属表面上に均一な被膜を形成できず、塗装密着性も十分なものでは無かった。 When forming a film on a metal substrate using a chromium-free metal surface treatment agent, for example, when the metal substrate is used for precoating metal, the formed film has high strength workability in addition to corrosion resistance. Durable paint adhesion is required. However, conventional chromium-free metal surface treatment agents do not have sufficient paint adhesion when the surface-treated metal substrate is subjected to high-strength processing, and there is room for improvement. For example, a treatment agent containing a silane coupling agent as a main component, such as that described in Patent Document 1, causes paint repellency during coating when the metal base material to be coated has a smooth surface. A uniform film could not be formed on the metal surface, and the paint adhesion was not sufficient.

本発明は、上記に鑑みてなされたものであり、金属基材に対して高強度の加工性に耐え得る皮膜を形成できる、水性クロムフリー金属表面処理剤を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a water-based chromium-free metal surface treatment agent capable of forming a high-strength, workable coating on a metal substrate.

(1) 本発明は、2官能性シラン化合物(A)と、1官能性シラン化合物(B)と、アセチレングリコール系界面活性剤(C)と、を含む、水性クロムフリー表面処理剤に関する。 (1) The present invention relates to a water-based chromium-free surface treatment agent containing a bifunctional silane compound (A), a monofunctional silane compound (B), and an acetylene glycol surfactant (C).

(2) 前記2官能性シラン化合物(A)の濃度が1~100g/Lの範囲内であり、前記1官能性シラン化合物(B)の濃度が1~100g/Lの範囲内であり、前記2官能性シラン化合物(A)と前記1官能性シラン化合物(B)の濃度比(A/B)が0.1~5の範囲内である、(1)に記載の水性クロムフリー表面処理剤。 (2) The concentration of the bifunctional silane compound (A) is in the range of 1 to 100 g/L, the concentration of the monofunctional silane compound (B) is in the range of 1 to 100 g/L, and The aqueous chromium-free surface treatment agent according to (1), wherein the concentration ratio (A/B) of the bifunctional silane compound (A) and the monofunctional silane compound (B) is within the range of 0.1 to 5. .

(3) 前記アセチレングリコール系界面活性剤(C)の濃度が0.05~1g/Lの範囲内である、(1)又は(2)に記載の水性クロムフリー表面処理剤。 (3) The water-based chromium-free surface treatment agent according to (1) or (2), wherein the acetylene glycol surfactant (C) has a concentration in the range of 0.05 to 1 g/L.

(4) 鏡面仕上げしたアルミニウム板表面上での接触角が25度以下である、(1)~(3)のいずれかに記載の水性クロムフリー表面処理剤。 (4) The water-based chromium-free surface treatment agent according to any one of (1) to (3), which has a contact angle of 25 degrees or less on a mirror-finished aluminum plate surface.

(5) 水分散性金属酸化物粒子(D)を更に含み、前記水分散性金属酸化物粒子(D)は、平均粒子径が150nm以下であり、前記水分散性金属酸化物粒子(D)の濃度が1~20g/Lの範囲内である、(1)~(4)のいずれかに記載の水性クロムフリー表面処理剤。 (5) further comprising water-dispersible metal oxide particles (D), wherein the water-dispersible metal oxide particles (D) have an average particle size of 150 nm or less, and the water-dispersible metal oxide particles (D) The aqueous chromium-free surface treatment agent according to any one of (1) to (4), wherein the concentration of is within the range of 1 to 20 g/L.

(6) ポリウレタン系水分散樹脂、及びポリウレタン系水溶性樹脂のうち、少なくとも何れかであるポリウレタン系樹脂(E)を更に含み、前記ポリウレタン系樹脂(E)の濃度が1~20g/Lの範囲内である、(1)~(5)のいずれかに記載の水性クロムフリー表面処理剤。 (6) further comprising a polyurethane resin (E) that is at least one of a water-dispersed polyurethane resin and a water-soluble polyurethane resin, and the concentration of the polyurethane resin (E) is in the range of 1 to 20 g/L; The water-based chromium-free surface treatment agent according to any one of (1) to (5), which is within.

(7) ブロックイソシアネート系樹脂(F)を更に含み、前記ブロックイソシアネート系樹脂(F)の濃度が1~20g/Lの範囲内である、(1)~(6)のいずれかに記載の水性クロムフリー表面処理剤。 (7) The aqueous solution according to any one of (1) to (6), further comprising a blocked isocyanate resin (F), wherein the concentration of the blocked isocyanate resin (F) is in the range of 1 to 20 g/L. Chromium-free surface treatment agent.

(8) pHが5~7の範囲内である、(1)~(7)のいずれかに記載の水性クロムフリー表面処理剤。 (8) The water-based chromium-free surface treatment agent according to any one of (1) to (7), which has a pH within the range of 5-7.

(9) (1)~(8)のいずれかに記載の水性クロムフリー表面処理剤により表面に表面処理皮膜が形成されてなる、表面処理金属。 (9) A surface-treated metal having a surface-treated film formed thereon with the water-based chromium-free surface-treating agent according to any one of (1) to (8).

(10) 被塗物の表面を(1)~(8)のいずれかに記載の水性クロムフリー表面処理剤により処理することで表面処理皮膜を形成する表面処理皮膜形成工程を有する、表面処理方法。 (10) A surface treatment method comprising a surface treatment film forming step of forming a surface treatment film by treating the surface of an object to be coated with the aqueous chromium-free surface treatment agent according to any one of (1) to (8). .

本発明によれば、金属基材に対して高強度の加工性に耐え得る皮膜を形成できる、水性クロムフリー金属表面処理剤を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a water-based chromium-free metal surface treatment agent capable of forming a film that can withstand high-strength workability on a metal substrate.

以下、本発明の実施形態に係る水性クロムフリー表面処理剤、表面処理金属、及び表面処理方法について説明する。本発明は以下の実施形態の記載に限定されない。 Hereinafter, a water-based chromium-free surface treatment agent, a surface-treated metal, and a surface treatment method according to embodiments of the present invention will be described. The present invention is not limited to the description of the following embodiments.

<水性クロムフリー表面処理剤>
本実施形態に係る水性クロムフリー表面処理剤は、2官能性シラン化合物(A)と、1官能性シラン化合物(B)と、アセチレングリコール系界面活性剤(C)と、を含む。また、水分散性金属酸化物粒子(D)、ポリウレタン系樹脂(E)、及びブロックイソシアネート系樹脂(F)のうち、少なくともいずれかを更に含むことが好ましい。
<Aqueous chromium-free surface treatment agent>
The aqueous chromium-free surface treatment agent according to this embodiment contains a bifunctional silane compound (A), a monofunctional silane compound (B), and an acetylene glycol-based surfactant (C). Moreover, it is preferable that at least one of the water-dispersible metal oxide particles (D), the polyurethane-based resin (E), and the blocked isocyanate-based resin (F) is further included.

(2官能性シラン化合物(A))
2官能性シラン化合物(A)は、シラノール基、又は加水分解によりシラノール基を生成可能なシリル基を1分子中に2つ有する化合物である。2官能性シラン化合物(A)としては、例えば以下の式(I)で表される化合物が挙げられる。
(Bifunctional silane compound (A))
The bifunctional silane compound (A) is a compound having two silanol groups or two silyl groups capable of generating silanol groups by hydrolysis in one molecule. Examples of the bifunctional silane compound (A) include compounds represented by the following formula (I).

Figure 2022152124000001
Figure 2022152124000001

上記式(I)中、R、R、R、及びRは、それぞれ独立に水素原子又は炭素数1~30の1価の有機基を示す。上記1価の有機基としては、アルキル基、アルケニル基、シクロアルキル基、アリール基等の炭化水素基;水酸基、エポキシ基、アミノ基等の官能基を有する炭化水素基;等が挙げられる。上記1価の有機基としては、メチル基、エチル基等の炭素数1~4のアルキル基が好ましい。 In formula (I) above, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Examples of the monovalent organic group include hydrocarbon groups such as alkyl groups, alkenyl groups, cycloalkyl groups and aryl groups; hydrocarbon groups having functional groups such as hydroxyl groups, epoxy groups and amino groups; As the monovalent organic group, an alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group is preferable.

上記式(I)中、Yは、2価の有機基又はアミンを示す。2価の有機基としては、アルキレン基、アルキレンオキシ基、アルキレンチオ基、又は上記2価の有機基を部分構造として含む基が挙げられる。上記2価の有機基としては、アルキレン基が好ましい。上記2価の有機基の炭素数は、2~30であることが好ましく、2~12であることがより好ましい。 In formula (I) above, Y represents a divalent organic group or an amine. The divalent organic group includes an alkylene group, an alkyleneoxy group, an alkylenethio group, or a group containing the above divalent organic group as a partial structure. An alkylene group is preferable as the divalent organic group. The number of carbon atoms in the divalent organic group is preferably 2-30, more preferably 2-12.

上記式(I)中、X及びXは、それぞれ独立に加水分解性基を示す。加水分解性基としては、水酸基、炭素数1~4のアルコキシ基が挙げられる。X及びXは、水酸基であることが好ましい。X及びXがアルコキシ基である場合、上記アルコキシ基としては、メトキシ基又はエトキシ基が好ましい。 In formula (I) above, X 1 and X 2 each independently represent a hydrolyzable group. Hydrolyzable groups include hydroxyl groups and alkoxy groups having 1 to 4 carbon atoms. X 1 and X 2 are preferably hydroxyl groups. When X 1 and X 2 are alkoxy groups, the alkoxy group is preferably a methoxy group or an ethoxy group.

上記式(I)中、a及びbは、それぞれ独立に0~2の整数を示し、0≦a+b≦2である。また、c及びdは、それぞれ独立に0~2の整数を示し、0≦c+d≦2である。a+b及びc+dは、いずれも0又は1が好ましい。 In the above formula (I), a and b each independently represents an integer of 0 to 2, and 0≦a+b≦2. In addition, c and d each independently represent an integer of 0 to 2, and 0≦c+d≦2. Both a+b and c+d are preferably 0 or 1.

上記式(I)で表される2官能性シラン化合物(A)の具体例としては、ビス(トリメトキシシリル)メタン、1,2-ビス(トリメトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,8-ビス(トリメトキシシリル)オクタン、1,8-ビス(トリエトキシシリル)オクタン、1,9-ビス(トリメトキシシリル)ノナン、1,9-ビス(トリエトキシシリル)ノナン、ビス(トリメトキシシリル)アミン、ビス(トリエトキシシリル)アミン、ビス(トリメトキシシリルメチル)アミン、ビス(トリエトキシシリルメチル)アミン、ビス(トリメトキシシリルプロピル)アミン、ビス(トリエトキシシリルプロピル)アミン等が挙げられる。これらの中でも、取り扱い上の安全性、得られる皮膜の耐食性及び密着性の観点から、1,2-ビス(トリエトキシシリル)エタンが好ましい。 Specific examples of the bifunctional silane compound (A) represented by the formula (I) include bis(trimethoxysilyl)methane, 1,2-bis(trimethoxysilyl)ethane, 1,2-bis(tri ethoxysilyl)ethane, 1,6-bis(trimethoxysilyl)hexane, 1,6-bis(triethoxysilyl)hexane, 1,8-bis(trimethoxysilyl)octane, 1,8-bis(triethoxysilyl) ) octane, 1,9-bis(trimethoxysilyl)nonane, 1,9-bis(triethoxysilyl)nonane, bis(trimethoxysilyl)amine, bis(triethoxysilyl)amine, bis(trimethoxysilylmethyl) amine, bis(triethoxysilylmethyl)amine, bis(trimethoxysilylpropyl)amine, bis(triethoxysilylpropyl)amine and the like. Among these, 1,2-bis(triethoxysilyl)ethane is preferable from the viewpoints of safety in handling and corrosion resistance and adhesion of the obtained film.

2官能性シラン化合物(A)は、1種を単独で使用してもよく、2種以上を併用してもよい。また、2官能性シラン化合物(A)は、部分的に加水分解していてもよく、又は加水分解により縮合していてもよい。 The bifunctional silane compound (A) may be used alone or in combination of two or more. Also, the bifunctional silane compound (A) may be partially hydrolyzed or may be condensed by hydrolysis.

2官能性シラン化合物(A)の水性クロムフリー金属表面処理剤中の濃度は、1~100g/Lの範囲内であることが好ましい。 The concentration of the bifunctional silane compound (A) in the aqueous chromium-free metal surface treatment agent is preferably within the range of 1-100 g/L.

(1官能性シラン化合物(B))
1官能性シラン化合物(B)は、シラノール基、又は加水分解によりシラノール基を生成可能なシリル基を1分子中に1つ有する化合物である。1官能性シラン化合物(B)としては、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有シラン;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン;トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物;トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン;トリメチルアセトキシシラン等のモノアシルオキシシラン等が挙げられる。これらの中でも、アミノ基含有シランが好ましく、3-アミノプロピルトリエトキシシランがより好ましい。
(Monofunctional silane compound (B))
The monofunctional silane compound (B) is a compound having one silanol group or a silyl group capable of forming a silanol group by hydrolysis in one molecule. Examples of the monofunctional silane compound (B) include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2- (Aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyl amino group-containing silanes such as triethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane; 3-glycidoxypropyltrimethoxy Epoxy such as silane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane group-containing silanes; monosilanol compounds such as trimethylsilanol and triethylsilanol; monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane; monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane; and monoacyloxysilanes such as trimethylacetoxysilane. . Among these, amino group-containing silanes are preferred, and 3-aminopropyltriethoxysilane is more preferred.

1官能性シラン化合物(B)は、1種を単独で使用してもよく、2種以上を併用してもよい。また、1官能性シラン化合物(B)は、部分的に加水分解していてもよく、又は加水分解により縮合していてもよい。 The monofunctional silane compound (B) may be used alone or in combination of two or more. Moreover, the monofunctional silane compound (B) may be partially hydrolyzed or may be condensed by hydrolysis.

1官能性シラン化合物(B)の水性クロムフリー金属表面処理剤中の濃度は、1~100g/Lの範囲内であることが好ましい。 The concentration of the monofunctional silane compound (B) in the aqueous chromium-free metal surface treatment agent is preferably within the range of 1-100 g/L.

2官能性シラン化合物(A)の濃度と、1官能性シラン化合物(B)の濃度との比である、濃度比(A/B)は、0.1~5の範囲内であることが好ましく、0.25~2.5の範囲内であることがより好ましい。濃度比(A/B)が5を超える場合、皮膜と塗膜界面の水素結合の数が低下し、強度が低下することにより、塗膜との密着性が低下する。濃度比(A/B)が0.1未満である場合、皮膜の親水性が高くなることで水分の透過を招きやすくなり、塗装後の耐食性や塗膜密着性が低下する。 The concentration ratio (A/B), which is the ratio of the concentration of the bifunctional silane compound (A) and the concentration of the monofunctional silane compound (B), is preferably in the range of 0.1 to 5. , 0.25 to 2.5. If the concentration ratio (A/B) exceeds 5, the number of hydrogen bonds at the interface between the film and the coating film is reduced, resulting in a decrease in strength and reduced adhesion to the coating film. If the concentration ratio (A/B) is less than 0.1, the hydrophilicity of the coating becomes high, which makes it easier for moisture to permeate, and the corrosion resistance and coating adhesion after coating are lowered.

(アセチレングリコール系界面活性剤(C))
アセチレングリコール系界面活性剤(C)は、アセチレン基を有する非イオン性界面活性剤である。アセチレングリコール系界面活性剤(C)は、2官能性シラン化合物(A)及び1官能性シラン化合物(B)と共に水性クロムフリー金属表面処理剤に含有されることで、被塗物である金属基材に対する、水性クロムフリー金属表面処理剤の濡れ性を向上させることができる。例えば、金属基材に対する接触角を25度以下に調整できる。これにより、金属基材上に均一な塗膜を形成できる。アセチレングリコール系界面活性剤(C)としては、例えば以下の式(II)で表される化合物が挙げられる。
(Acetylene glycol surfactant (C))
Acetylene glycol surfactant (C) is a nonionic surfactant having an acetylene group. The acetylene glycol-based surfactant (C) is contained in the water-based chromium-free metal surface treatment agent together with the bifunctional silane compound (A) and the monofunctional silane compound (B), so that the metal substrate that is the object to be coated The wettability of the water-based chromium-free metal surface treatment agent to the material can be improved. For example, the contact angle with respect to the metal substrate can be adjusted to 25 degrees or less. Thereby, a uniform coating film can be formed on the metal substrate. Examples of the acetylene glycol-based surfactant (C) include compounds represented by the following formula (II).

Figure 2022152124000002
Figure 2022152124000002

上記式(II)中、R及びRは、それぞれ独立に水素原子又はメチル基を示す。上記式(II)中、R及びRは、それぞれ独立に水素原子又はアルキレン基を示す。上記アルキレン基としては、エチレン基、プロピレン基等が挙げられる。即ち、アセチレングリコール系界面活性剤(C)は、アルキレンオキサイド付加型であってもよいし、アルキレンオキサイド非付加型であってもよい。 In formula (II) above, R 5 and R 6 each independently represent a hydrogen atom or a methyl group. In formula (II) above, R 7 and R 8 each independently represent a hydrogen atom or an alkylene group. Examples of the alkylene group include an ethylene group and a propylene group. That is, the acetylene glycol-based surfactant (C) may be an alkylene oxide addition type or an alkylene oxide non-addition type.

上記式(II)中、n及びmは、それぞれ独立に1~10の整数を示す。 In the above formula (II), n and m each independently represent an integer of 1-10.

上記式(II)で表されるアセチレングリコール系界面活性剤(C)としては、市販品を用いることができる。市販品の例としては、例えば、日信化学工業株式会社製のサーフィノール(サーフィノール104、サーフィノール465等)や、エアープロダグツ社製のオルフィンシリーズ等が挙げられる。アセチレングリコール系界面活性剤(C)は、1種を単独で使用してもよく、2種以上を併用してもよい。 A commercially available product can be used as the acetylene glycol-based surfactant (C) represented by the formula (II). Examples of commercially available products include Surfynol (Surfinol 104, Surfynol 465, etc.) manufactured by Nissin Chemical Industry Co., Ltd., and Olphine series manufactured by Air Products. The acetylene glycol-based surfactant (C) may be used alone or in combination of two or more.

アセチレングリコール系界面活性剤(C)の水性クロムフリー金属表面処理剤中の濃度は、0.05~1g/Lの範囲内であることが好ましく、0.1~0.5gの範囲内であることがより好ましい。 The concentration of the acetylene glycol-based surfactant (C) in the aqueous chromium-free metal surface treatment agent is preferably in the range of 0.05 to 1 g/L, and is in the range of 0.1 to 0.5 g. is more preferable.

(水分散性金属酸化物粒子(D))
水分散性金属酸化物粒子(D)は、酸化Zr、酸化Ti、酸化Si、酸化Al、酸化Ce、酸化Nb、酸化Nd、酸化Sn、酸化Nd、酸化La等の水分散性を有する金属酸化物粒子である。水分散性金属酸化物粒子(D)が水性クロムフリー金属表面処理剤に含有されることで、形成される皮膜の脆性崩壊を抑制でき、高強度の加工に耐え得る塗装密着性をより向上できる。水分散性金属酸化物粒子(D)としては、酸化Zrであることが好ましい。水分散性金属酸化物粒子(D)は、1種を単独で使用してもよく、2種以上を併用してもよい。
(Water-dispersible metal oxide particles (D))
The water-dispersible metal oxide particles (D) are water-dispersible metal oxide particles such as Zr oxide, Ti oxide, Si oxide, Al oxide, Ce oxide, Nb oxide, Nd oxide, Sn oxide, Nd oxide, and La oxide. It is a particle of matter. By containing the water-dispersible metal oxide particles (D) in the water-based chromium-free metal surface treatment agent, brittle collapse of the formed film can be suppressed, and the coating adhesion that can withstand high-strength processing can be further improved. . The water-dispersible metal oxide particles (D) are preferably Zr oxide. The water-dispersible metal oxide particles (D) may be used singly or in combination of two or more.

水分散性金属酸化物粒子(D)の水性クロムフリー金属表面処理剤中の濃度は、1~20g/Lの範囲内であることが好ましく、2~15gの範囲内であることがより好ましい。 The concentration of the water-dispersible metal oxide particles (D) in the aqueous chromium-free metal surface treatment agent is preferably within the range of 1 to 20 g/L, more preferably within the range of 2 to 15 g.

水分散性金属酸化物粒子(D)の平均粒子径(動的光散乱法により測定されるメジアン径D50)は、150nm以下であることが好ましく、10nm~120nmであることがより好ましい。 The average particle size (median size D50 measured by dynamic light scattering) of the water-dispersible metal oxide particles (D) is preferably 150 nm or less, more preferably 10 nm to 120 nm.

(ポリウレタン系樹脂(E))
ポリウレタン系樹脂(E)は、ポリウレタン系水分散樹脂、及びポリウレタン系水溶性樹脂のうち、少なくとも何れかである。即ち、ポリウレタン系樹脂(E)は、水溶性又は水分散性のうちいずれかの性質を有する。ポリウレタン系樹脂(E)が水性クロムフリー金属表面処理剤に含有されることで、形成される皮膜の脆性崩壊を抑制でき、高強度の加工に耐え得る塗装密着性をより向上できる。ポリウレタン系樹脂(E)としては、特に限定されず、例えば、ポリオール化合物と、ポリイソシアネート化合物とを従来公知の方法により重合することで得られる。ポリウレタン系樹脂(E)は、1種を単独で使用してもよく、2種以上を併用してもよい。
(Polyurethane resin (E))
The polyurethane-based resin (E) is at least one of a polyurethane-based water-dispersible resin and a polyurethane-based water-soluble resin. That is, the polyurethane-based resin (E) has either water solubility or water dispersibility. By including the polyurethane-based resin (E) in the water-based chromium-free metal surface treatment agent, brittle collapse of the formed film can be suppressed, and the paint adhesion that can withstand high-strength processing can be further improved. The polyurethane-based resin (E) is not particularly limited, and can be obtained, for example, by polymerizing a polyol compound and a polyisocyanate compound by a conventionally known method. Polyurethane-based resin (E) may be used alone or in combination of two or more.

上記ポリオール化合物としては特に限定されず、従来公知の合成原料を使用できる。例えば、ポリエステルポリオール、ポリエステルアミドポリオール、ポリエーテルポリオール、ポリチオエーテルポリオール、ポリカーボネートポリオール、ポリアセタールポリオール、ポリオレフィンポリオール、ポリシロキサンポリオール等が挙げられる。 The polyol compound is not particularly limited, and conventionally known synthetic raw materials can be used. Examples include polyester polyols, polyesteramide polyols, polyether polyols, polythioether polyols, polycarbonate polyols, polyacetal polyols, polyolefin polyols, and polysiloxane polyols.

上記ポリイソシアネート化合物としては特に限定されず、従来公知の合成原料を使用できる。例えば、脂肪族イソシアネート、脂環族ジイソシアネート、芳香族ジイソシアネート、芳香脂肪族ジイソシアネート等が挙げられる。 The polyisocyanate compound is not particularly limited, and conventionally known synthetic raw materials can be used. Examples include aliphatic isocyanates, alicyclic diisocyanates, aromatic diisocyanates, and araliphatic diisocyanates.

ポリウレタン系樹脂(E)の水性クロムフリー金属表面処理剤中の濃度は、樹脂固形分換算で1~20g/Lの範囲内であることが好ましく、5~15gの範囲内であることがより好ましい。 The concentration of the polyurethane resin (E) in the water-based chromium-free metal surface treatment agent is preferably in the range of 1 to 20 g/L, more preferably in the range of 5 to 15 g in terms of resin solid content. .

(ブロックイソシアネート系樹脂(F))
ブロックイソシアネート系樹脂(F)は、ポリウレタン系樹脂(E)と反応して架橋構造を形成する水溶性樹脂である。ブロックイソシアネート系樹脂(F)は、フェノール系、アルコール系、オキシム系、活性メチレン系、酸アミド系、カルバミン酸塩系、及び亜硫酸塩系等のブロック剤でブロック化された1分子中に少なくとも1つのブロックイソシアネート基を有する化合物(単量体)の重縮合物である。
(Blocked isocyanate resin (F))
The blocked isocyanate-based resin (F) is a water-soluble resin that reacts with the polyurethane-based resin (E) to form a crosslinked structure. The blocked isocyanate-based resin (F) is at least one It is a polycondensate of a compound (monomer) having two blocked isocyanate groups.

ブロックイソシアネート系樹脂(F)は、1分子中に少なくとも1つのイソシアネート基を有する化合物にブロック剤を付加することにより得られる。1分子中に少なくとも1つのイソシアネート基を有する化合物としては、例えば、ヘキサメチレンジイソシアネート(3量体を含む)、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイシシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)等の脂環族ポリイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート等が挙げられる。ブロックイソシアネート系樹脂(F)は、1種を単独で使用してもよく、2種以上を併用してもよい。 A blocked isocyanate resin (F) is obtained by adding a blocking agent to a compound having at least one isocyanate group in one molecule. Compounds having at least one isocyanate group in one molecule include, for example, hexamethylene diisocyanate (including trimers), tetramethylene diisocyanate, aliphatic diisocyanates such as trimethylhexamethylene diisocyanate, isophorone diisocyanate, 4,4 Alicyclic polyisocyanates such as '-methylenebis(cyclohexyl isocyanate), aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate and xylylene diisocyanate. The blocked isocyanate-based resin (F) may be used alone or in combination of two or more.

ブロックイソシアネート系樹脂(F)の水性クロムフリー金属表面処理剤中の濃度は、樹脂固形分換算で1~20g/Lの範囲内であることが好ましく、5~15gの範囲内であることがより好ましい。 The concentration of the blocked isocyanate resin (F) in the aqueous chromium-free metal surface treatment agent is preferably in the range of 1 to 20 g/L, more preferably in the range of 5 to 15 g in terms of resin solid content. preferable.

(その他の化合物)
本実施形態に係る水性クロムフリー金属表面処理剤は、上述した各成分以外に、他の成分を更に含有していてもよい。他の成分としては、樹脂の硬化を促進させる上記以外の架橋剤、レベリング用途に用いられる表面調整剤、抑泡用途に用いられる消泡剤等が挙げられる。
(Other compounds)
The water-based chromium-free metal surface treatment agent according to this embodiment may further contain other components in addition to the components described above. Examples of other components include cross-linking agents other than those mentioned above that promote curing of the resin, surface conditioners used for leveling purposes, defoaming agents used for foam suppression purposes, and the like.

(水性クロムフリー金属表面処理剤のpH)
本実施形態に係る水性クロムフリー金属表面処理剤は、pHが5~7の範囲内であることが好ましい。水性クロムフリー金属表面処理剤のpHが7以下であることで、貯蔵安定性がより向上する。
(pH of aqueous chromium-free metal surface treatment agent)
The water-based chromium-free metal surface treatment agent according to this embodiment preferably has a pH within the range of 5-7. When the pH of the water-based chromium-free metal surface treatment agent is 7 or less, the storage stability is further improved.

(水性クロムフリー金属表面処理剤の接触角)
本実施形態に係る水性クロムフリー金属表面処理剤は、鏡面仕上げしたアルミニウム板表面上での接触角が25度以下である。従って、被塗物である金属基材に対する濡れ性が良好であり、均一な皮膜を形成できる。従って結果的に塗装密着性を向上できる。鏡面仕上げしたアルミニウム板は、超微粒子研磨材を用いたバフ研磨により、アルミニウム板の表面粗さRzが0.05~0.2μmとなるまで研磨し、表面を脱脂剤(例えば、日本ペイント・サーフケミカルズ社製サーフクリーナー155等)及び水で洗浄したものを用いることができる。接触角は、20℃に設定された恒温室内で接触角計(例えば、KRUSS社製 DSA20E)で測定される静的接触角の値を用いることができる。
(Contact angle of aqueous chromium-free metal surface treatment agent)
The water-based chromium-free metal surface treatment agent according to this embodiment has a contact angle of 25 degrees or less on a mirror-finished aluminum plate surface. Therefore, it has good wettability with respect to the metal base material to be coated, and can form a uniform coating. Therefore, the paint adhesion can be improved as a result. The mirror-finished aluminum plate is buffed with an ultrafine abrasive until the surface roughness Rz of the aluminum plate reaches 0.05 to 0.2 μm, and the surface is removed with a degreasing agent (for example, Nippon Paint Surf (Surf Cleaner 155 manufactured by Chemicals Co., Ltd.) and washed with water can be used. As the contact angle, a value of static contact angle measured by a contact angle meter (for example, DSA20E manufactured by KRUSS) in a temperature-controlled room set at 20° C. can be used.

<表面処理方法>
本実施形態に係る表面処理方法は、被塗物である金属基材を上述した本実施形態に係る水性クロムフリー金属表面処理剤により処理することで表面処理皮膜を形成する、表面処理皮膜形成工程を有する。表面処理皮膜形成工程は、例えば、被塗物である金属基材の表面に水性クロムフリー金属表面処理剤を塗布する塗布工程と、水性クロムフリー金属表面処理剤が塗布された金属基材を乾燥して皮膜を形成する乾燥工程と、を有する。
<Surface treatment method>
The surface treatment method according to the present embodiment is a surface treatment film forming step in which a surface treatment film is formed by treating a metal substrate, which is an object to be coated, with the water-based chromium-free metal surface treatment agent according to the embodiment described above. have The surface treatment film forming step includes, for example, a coating step of applying a water-based chromium-free metal surface treatment agent to the surface of the metal base material to be coated, and drying the metal base material coated with the water-based chromium-free metal surface treatment agent. and a drying step of forming a coating.

(塗布工程)
塗布工程において、水性クロムフリー金属表面処理剤を金属基材に塗布する方法としては特に限定されず、ロールコーター塗装、刷毛塗り塗装、ローラー塗装、バーコーター塗装、流し塗り塗装等の方法が挙げられる。
(Coating process)
In the coating step, the method of applying the water-based chromium-free metal surface treatment agent to the metal substrate is not particularly limited, and examples thereof include roll coater coating, brush coating, roller coating, bar coater coating, flow coating, and the like. .

(乾燥工程)
乾燥工程における乾燥方法は特に限定されず、公知の方法を用いることができる。乾燥工程における乾燥温度は、例えば、金属基材表面の到達温度であるピークメタル温度で、60~90℃であることが好ましい。
(Drying process)
A drying method in the drying step is not particularly limited, and a known method can be used. The drying temperature in the drying step is preferably, for example, 60 to 90° C. in peak metal temperature, which is the temperature reached by the surface of the metal substrate.

塗布工程と乾燥工程とは、同時並行的に行ってもよい。例えば、予め加熱しておいた金属基材に対して水性クロムフリー金属表面処理剤を塗布し、余熱を利用して乾燥させてもよい。 The coating step and the drying step may be performed concurrently. For example, a preheated metal substrate may be coated with a water-based chromium-free metal surface treatment agent and dried using residual heat.

表面処理皮膜形成工程における水性クロムフリー金属表面処理剤の皮膜量は、乾燥後の皮膜量が0.1~500mg/mの範囲内であることが好ましく、1~250mg/mの範囲内であることがより好ましい。 The film amount of the water-based chromium-free metal surface treatment agent in the surface treatment film forming step is preferably in the range of 0.1 to 500 mg/m 2 after drying, and in the range of 1 to 250 mg/m 2 is more preferable.

本実施形態に係る表面処理方法は、表面処理皮膜形成工程により皮膜が形成された金属基材に対し、更にプライマー塗装や上塗り塗装を行うものであってもよい。 The surface treatment method according to the present embodiment may further apply a primer coating or a top coating to the metal substrate on which the coating has been formed by the surface treatment coating forming step.

<表面処理金属>
本実施形態に係る表面処理金属は、上述した本実施形態に係る水性クロムフリー表面処理剤により被塗物である金属基材の表面に表面処理皮膜が形成されてなる。金属基材としては、特に限定されず、アルミニウム板、ステンレス鋼板、又は亜鉛めっき鋼板、亜鉛合金めっき鋼板、溶融亜鉛めっき鋼板等の亜鉛系めっき鋼板が挙げられる。また、上記金属基材に対して、表面処理皮膜が形成された後に、ラミネートフィルムによりラミネート加工が施されたものであってもよい。
<Surface treatment metal>
The surface-treated metal according to the present embodiment is obtained by forming a surface treatment film on the surface of a metal substrate, which is an object to be coated, with the water-based chromium-free surface treatment agent according to the present embodiment. The metal substrate is not particularly limited, and examples thereof include an aluminum plate, a stainless steel plate, and a zinc-based plated steel plate such as a galvanized steel plate, a zinc alloy plated steel plate, and a hot-dip galvanized steel plate. Moreover, after the surface treatment film is formed on the metal base material, the metal base material may be laminated with a laminate film.

アルミニウム板としては、例えば、3000番系アルミニウム合金、4000番系アルミニウム合金、5000番系アルミニウム合金、6000番系アルミニウム合金、アルミニウム系の電気めっき、溶融めっき、蒸着めっき等のアルミニウムめっき鋼板等が挙げられる。 Examples of the aluminum plate include 3000 series aluminum alloys, 4000 series aluminum alloys, 5000 series aluminum alloys, 6000 series aluminum alloys, and aluminum-based aluminum-plated steel sheets such as electroplating, hot-dip plating, and vapor deposition plating. be done.

ステンレス鋼板としては、例えば、SUS300系ステンレスや、SUS400系ステンレスが挙げられる。 Examples of stainless steel plates include SUS300 series stainless steel and SUS400 series stainless steel.

亜鉛系めっき鋼板としては、例えば、亜鉛めっき鋼板、亜鉛-ニッケルめっき鋼板、亜鉛-鉄めっき鋼板、亜鉛-クロムめっき鋼板、亜鉛-55wt%アルミニウム合金めっき鋼板等の亜鉛-アルミニウムめっき鋼板、亜鉛-チタンめっき鋼板、亜鉛-マグネシウムめっき鋼板、亜鉛-マンガンめっき鋼板等の亜鉛系の電気めっき、溶融めっき、蒸着めっき鋼板等の亜鉛又は亜鉛系合金めっき鋼板等が挙げられる。 Examples of zinc-based plated steel sheets include zinc-aluminum plated steel sheets such as zinc plated steel sheets, zinc-nickel plated steel sheets, zinc-iron plated steel sheets, zinc-chromium plated steel sheets, zinc-55 wt% aluminum alloy plated steel sheets, and zinc-titanium. Galvanized steel sheets, zinc-magnesium plated steel sheets, zinc-based electroplated steel sheets such as zinc-manganese plated steel sheets, hot-dip galvanized steel sheets, zinc- or zinc-alloy plated steel sheets such as vapor-deposited steel sheets, and the like can be mentioned.

ラミネートフィルムとしては、例えば、樹脂フィルムが用いられる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリプロピレン(PP)、ポリカーボネート(PC)、トリアセチルセルロース(TAC)、ポリ塩化ビニル(PVC)、ポリエステル、ポリオレフィン、ポリフェニレンサルファイド(PPS)、アクリル等の熱可塑性樹脂が用いられる。上記ラミネートフィルムを積層するラミネート加工方法については特に限定されず、ドライラミネート法や押出ラミネート法が例示される。 As the laminate film, for example, a resin film is used. Examples of resin films include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polycarbonate (PC), triacetyl cellulose (TAC), polyvinyl chloride (PVC), polyester, polyolefin, and polyphenylene sulfide. (PPS), acrylic and other thermoplastic resins are used. The lamination processing method for laminating the laminate film is not particularly limited, and examples thereof include a dry lamination method and an extrusion lamination method.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples.

<水性クロムフリー表面処理剤の調製>
[実施例1]
表1に記載の濃度となるように、(A)、(B)、及び(C)成分をイオン交換水に混合し撹拌することにより、実施例1の水性クロムフリー表面処理剤を得た。2官能性シラン(A)としては事前に加水分解した1,2-ビストリエトキシシリルエタン(信越化学工業株式会社製、「KBE-3026」)を用い、1官能性シラン(B)としては3-アミノプロピルエトキシシラン(信越化学工業株式会社製、「KBE-903」)を用い、活性剤(C)としてはエアプロダクツ社製のサーフィノール104(アセチレングリコール系界面活性剤、エチレンオキサイド付加型)を用いた。
<Preparation of aqueous chromium-free surface treatment agent>
[Example 1]
Components (A), (B), and (C) were mixed with ion-exchanged water and stirred so that the concentrations shown in Table 1 were obtained, thereby obtaining an aqueous chromium-free surface treatment agent of Example 1. As the bifunctional silane (A), previously hydrolyzed 1,2-bistriethoxysilylethane ("KBE-3026" manufactured by Shin-Etsu Chemical Co., Ltd.) is used, and as the monofunctional silane (B), 3- Aminopropylethoxysilane ("KBE-903" manufactured by Shin-Etsu Chemical Co., Ltd.) was used, and Surfynol 104 (acetylene glycol-based surfactant, ethylene oxide addition type) manufactured by Air Products was used as the activator (C). Using.

[実施例2~21、比較例1~5]
実施例19では、2官能性シラン(A)成分として事前に加水分解したビス(トリエトキシシリル)アミン(EVONIC社製、Dynasylan1124)を用いた。実施例20では、1官能性シラン(B)として3-グリシドキシトリエトキシシラン(信越化学工業株式会社製、KBE-403)を用いた。実施例21では、活性剤(C)としてエアプロダクツ社製のサーフィノール465(アセチレングリコール系界面活性剤、エチレンオキサイド非付加型)を用いた。比較例4では、活性剤(C)として日本乳化剤株式会社製のニューコール1000(アルキルエーテル系界面活性剤)を用いた。比較例5では、水性クロムフリー表面処理剤に代えて6価クロム含有処理剤(日本ペイント・サーフケミカルズ社製、サーフコートNRC300)を用いた。上記以外は実施例1と同様とした。
[Examples 2 to 21, Comparative Examples 1 to 5]
In Example 19, pre-hydrolyzed bis(triethoxysilyl)amine (Dynasylan 1124, manufactured by EVONIC) was used as the bifunctional silane (A) component. In Example 20, 3-glycidoxytriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-403) was used as the monofunctional silane (B). In Example 21, Surfynol 465 (acetylene glycol-based surfactant, non-ethylene oxide addition type) manufactured by Air Products was used as the activator (C). In Comparative Example 4, Newcol 1000 (alkyl ether-based surfactant) manufactured by Nippon Nyukazai Co., Ltd. was used as the activator (C). In Comparative Example 5, a hexavalent chromium-containing treatment agent (Surfcoat NRC300, Nippon Paint Surf Chemicals Co., Ltd.) was used in place of the water-based chromium-free surface treatment agent. The procedure was the same as in Example 1 except for the above.

<試験板の作製>
実施例1~21、比較例1~5の表面処理剤を用い、表1に示す金属基材としての3000番系と5000番系アルミニウム板(日本テストパネル社製、板厚0.35mm)に対してそれぞれ表面処理を行った。表面処理は、以下の手順で行った。アルカリ脱脂剤であるサーフクリーナー155(日本ペイントサーフケミカルズ社製)にアルニウム板を60℃で10secスプレー脱脂した後、スプレー水洗し、乾燥させた後、バーコーター#3で表面処理剤をアルミニウム板に塗布後、PMT(ピークメタル温度)80℃で乾燥させた。比較例5では、脱脂、水洗、乾燥後クロム付着量30mg/mとなるようにバーコーターで塗布し、PMT60℃で乾燥した。上記の方法で表面処理したアルミニウム板に熱硬化型アクリルクリアー塗料(日本ペイント・インダストリアルコーティングス社製、スーパーラック D1F R-37 ゴールド艶消(改)AP)を乾燥膜厚が5μmとなるように塗装した後、PMT250℃で50sec焼き付け乾燥し、実施例1~21、比較例1~5の試験板を得た。
<Production of test plate>
Using the surface treatment agents of Examples 1 to 21 and Comparative Examples 1 to 5, 3000 series and 5000 series aluminum plates (manufactured by Nippon Test Panel Co., Ltd., plate thickness 0.35 mm) as metal substrates shown in Table 1 A surface treatment was performed on each of them. The surface treatment was performed according to the following procedure. After degreasing the aluminum plate by spraying Surf Cleaner 155 (manufactured by Nippon Paint Surf Chemicals Co., Ltd.), which is an alkaline degreasing agent, at 60 ° C. for 10 seconds, washing with spray water, drying, and applying a surface treatment agent to the aluminum plate with a bar coater # 3. After coating, the coating was dried at a PMT (peak metal temperature) of 80°C. In Comparative Example 5, after degreasing, washing with water, and drying, the coating was applied with a bar coater so that the amount of chromium adhered was 30 mg/m 2 , and dried at a PMT of 60°C. An aluminum plate surface-treated by the above method is coated with a thermosetting acrylic clear paint (manufactured by Nippon Paint Industrial Coatings, Super Rack D1F R-37 Gold matte (modified) AP) so that the dry film thickness is 5 μm. After coating, it was baked and dried at a PMT of 250° C. for 50 seconds to obtain test panels of Examples 1-21 and Comparative Examples 1-5.

<評価>
[折り曲げ1次密着性]
20℃の環境下で、試験板を、スペーサを間に挟まずに180°折り曲げ加工(0TT)し、又は0.35mmのアルミ板2枚をスペーサとして間に挟み180°折り曲げ加工(2TT)し、折り曲げ加工部を3回テープ剥離して、剥離度合いを20倍ルーペで観察し、以下の基準で評価した。4以上を合格とし、結果を表1に示した。
5:剥離なし、4.5:1~10%剥離、4:11~20%剥離、3.5:21~30%剥離、3:31~40%剥離、2.5:41~50%剥離、2:51~60%剥離、1.5:61~70%剥離、1:71~80%剥離、0.5:81~90%剥離、0:91~100%剥離
<Evaluation>
[Primary adhesion after bending]
In an environment of 20° C., the test plate is bent 180° (0TT) without a spacer, or is bent 180° (2TT) with two 0.35 mm aluminum plates sandwiched between them as a spacer. The tape was peeled off from the bent portion three times, and the degree of peeling was observed with a magnifying glass of 20x and evaluated according to the following criteria. The results are shown in Table 1, with 4 or more passing.
5: No peeling, 4.5: 1-10% peeling, 4: 11-20% peeling, 3.5: 21-30% peeling, 3: 31-40% peeling, 2.5: 41-50% peeling , 2: 51-60% peeling, 1.5: 61-70% peeling, 1: 71-80% peeling, 0.5: 81-90% peeling, 0: 91-100% peeling

[折り曲げ2次密着性]
試験板を沸騰水に2時間浸漬後、24時間室内に放置したものについて、折り曲げ一次密着性と同様に、0TTと2TTの条件で、それぞれ同一基準で評価した。3.5以上を合格とし、結果を表1に示した。
[Secondary adhesion after bending]
After immersing the test plate in boiling water for 2 hours, it was allowed to stand in a room for 24 hours, and was evaluated under the same criteria of 0TT and 2TT as in the case of the primary bending adhesion. A score of 3.5 or higher was considered acceptable, and the results are shown in Table 1.

[糸錆長さ]
クロスカットを入れた試験板を濃塩酸50mLが入った2Lビーカーに入れ、塩酸蒸気で10分間曝露した後、40℃、RT82%の恒温恒湿セルに入れ、250時間後のカット部からの糸錆長さ、チップ数(糸錆個数)を測定し、糸錆全長を算出した。2mm以下を合格とした。結果を表1に示した。
[Thread rust length]
Place the cross-cut test plate in a 2 L beaker containing 50 mL of concentrated hydrochloric acid, expose it to hydrochloric acid vapor for 10 minutes, place it in a constant temperature and humidity cell at 40 ° C. and RT 82%, and remove the thread from the cut part after 250 hours. The length of rust and the number of chips (number of rust threads) were measured, and the total length of rust threads was calculated. 2 mm or less was set as the pass. Table 1 shows the results.

[SST(塩水噴霧試験)]
JIS Z2317に示される塩水噴霧腐食試験機にクロスカットを入れた試験板を1000hr投入し、カット部からの片側腐食平均フクレ幅と端面(上バリ、下バリ)からの平均腐食フクレ幅を測定した。1mm以下を合格とし、結果を表1に示した。
[SST (salt spray test)]
A cross-cut test plate was placed in a salt spray corrosion tester specified in JIS Z2317 for 1000 hours, and the average width of one-side corrosion blisters from the cut portion and the average width of corrosion blisters from the end faces (upper and lower burrs) were measured. . 1 mm or less was regarded as acceptable, and the results are shown in Table 1.

[CCT(複合サイクル腐食試験)]
JIS K5621に示される複合サイクル腐食試験機にクロスカットを入れた試験板を1000hr投入し、カット部からの片側腐食平均フクレ幅と端面(上バリ、下バリ)からの平均腐食フクレ幅を測定した。1mm以下を合格とし、結果を表1に示した。
[CCT (Composite Cycle Corrosion Test)]
A cross-cut test plate was placed in a combined cycle corrosion tester specified in JIS K5621 for 1000 hours, and the average width of one-side corrosion blisters from the cut portion and the average width of corrosion blisters from the end faces (upper and lower burrs) were measured. . 1 mm or less was regarded as acceptable, and the results are shown in Table 1.

[接触角測定]
実施例1~21、比較例1~4の表面処理剤を、自動接触角計(KRUSS社製 DSA20E)にセットし、アルミ板に滴下された処理剤の静的接触角を20℃の恒温室にて測定した。アルミ板は、超微粒子ポリッシャーを用いたバフ研磨により、アルミニウム板の表面粗さRzが0.05~0.2μmとなるまで研磨し、表面を脱脂剤(日本ペイント・サーフケミカルズ社製サーフクリーナー155)で60℃ 30sec脱脂した後、水洗したものを用いた。25度以下を合格とし、結果を表1に示した。
[Contact angle measurement]
The surface treatment agents of Examples 1 to 21 and Comparative Examples 1 to 4 were set in an automatic contact angle meter (DSA20E manufactured by KRUSS), and the static contact angle of the treatment agent dropped on the aluminum plate was measured in a constant temperature room of 20°C. Measured at The aluminum plate is buffed using an ultrafine particle polisher until the surface roughness Rz of the aluminum plate is 0.05 to 0.2 μm, and the surface is cleaned with a degreasing agent (Surf Cleaner 155 manufactured by Nippon Paint Surf Chemicals Co., Ltd. ) at 60° C. for 30 seconds and then washed with water. 25 degrees or less was regarded as passing, and the results are shown in Table 1.

Figure 2022152124000003
Figure 2022152124000003

[実施例22~38、比較例6~9]
表2に示す種類及び量の金属酸化物粒子(D)を更に加えた。比較例9では、水性クロムフリー表面処理剤に代えて6価クロム含有処理剤(日本ペイント・サーフケミカルズ社製、サーフコートNRC300)を用いた。上記以外は実施例1と同様に表面処理剤の調製を行った。表2に示す金属酸化物粒子(D)の平均粒子径(D50)は以下に示す通りである。
ZrO:80nm、TiO:10nm、SiO:9nm、CeO:15nm、Nb:4nm、SnO:2nm、Al:50nm
[Examples 22 to 38, Comparative Examples 6 to 9]
Metal oxide particles (D) of the type and amount shown in Table 2 were further added. In Comparative Example 9, a hexavalent chromium-containing treatment agent (Surfcoat NRC300, Nippon Paint Surf Chemicals Co., Ltd.) was used instead of the water-based chromium-free surface treatment agent. A surface treatment agent was prepared in the same manner as in Example 1 except for the above. The average particle size (D50) of the metal oxide particles (D) shown in Table 2 is as shown below.
ZrO2: 80 nm, TiO2 : 10 nm, SiO2 : 9 nm, CeO2: 15 nm, Nb2O5 : 4 nm, SnO2 : 2 nm , Al2O3 : 50 nm

<試験板の作製>
金属基材としての亜鉛-55wt%アルミニウム合金めっき鋼板(GL)(日本テストパネル社製、板厚0.35mm)に対して表面処理を行ったこと以外は実施例1、比較例5と同様に表面処理を行った。上記の方法で表面処理したGL鋼板にエポキシポリエステル系プライマー塗料(日本ペイント・インダストリアルコーティングス社製、NSC5610NC PRIMER)を乾燥膜厚が5μmとなるようにバーコーターで塗装した後、PMT215℃で焼き付け乾燥した後、ポリエステル系トップコート(日本ペイント・インダストリアルコーティングス社製、S/C 490HQ 1C4661)を乾燥膜厚が15μmとなるようにバーコーターで塗装し、PMT230℃で焼き付け乾燥し、実施例22~38、比較例6~9の試験板を得た。
<Production of test plate>
In the same manner as in Example 1 and Comparative Example 5, except that the zinc-55 wt% aluminum alloy plated steel sheet (GL) (manufactured by Nippon Test Panel Co., Ltd., plate thickness 0.35 mm) as the metal base material was subjected to surface treatment. surface treatment. Epoxy polyester primer paint (NSC5610NC PRIMER manufactured by Nippon Paint Industrial Coatings Co., Ltd.) was applied to the GL steel plate surface-treated by the above method with a bar coater so that the dry film thickness was 5 μm, and then baked and dried at a PMT of 215 ° C. After that, a polyester top coat (manufactured by Nippon Paint Industrial Coatings, S/C 490HQ 1C4661) was applied with a bar coater so that the dry film thickness was 15 μm, and baked and dried at a PMT of 230 ° C. 38 and test plates of Comparative Examples 6 to 9 were obtained.

<評価>
[折り曲げ1次密着性、折り曲げ2次密着性]
実施例1~21、比較例1~5と同様の手順で試験を行い、以下の基準で評価した。4以上を合格とし、結果を表2に示した。
5:クラック無し、4:加工部全面にクラック、3:剥離面積が加工部の20%未満、2:剥離面積が加工部の20%以上、80%未満、1:剥離面積が加工部の80%以上
<Evaluation>
[Primary Bending Adhesion, Secondary Bending Adhesion]
Tests were conducted in the same procedure as in Examples 1 to 21 and Comparative Examples 1 to 5, and evaluated according to the following criteria. The results are shown in Table 2, with 4 or more passing.
5: No cracks, 4: Cracks on the entire processed part, 3: The peeled area is less than 20% of the processed part, 2: The peeled area is 20% or more and less than 80% of the processed part, 1: The peeled area is 80% of the processed part. %that's all

[SST(塩水噴霧試験)、CCT(複合サイクル腐食試験)]
実施例1~21、比較例1~5と同様の手順で試験を行い評価した。SSTは、加工部耐食性を更に評価した。加工部耐食性は、SST試験後(2TT)の塗装表面の白錆面積割合(%)を目視で以下の基準により評価した。
5:錆なし、4.5:0~10%、4:11~20%、3.5:21~30%、3:31~40%、2.5:41~50%、2:51~60%、1.5:61~70%、1:71~80%、0.5:81~90%、0:91~100%
[SST (salt spray test), CCT (combined cycle corrosion test)]
Tests were conducted and evaluated in the same procedure as in Examples 1 to 21 and Comparative Examples 1 to 5. The SST further evaluated the work zone corrosion resistance. The corrosion resistance of the processed part was evaluated by visually observing the white rust area ratio (%) on the coated surface after the SST test (2TT) according to the following criteria.
5: No rust, 4.5: 0-10%, 4: 11-20%, 3.5: 21-30%, 3: 31-40%, 2.5: 41-50%, 2: 51- 60%, 1.5: 61-70%, 1: 71-80%, 0.5: 81-90%, 0: 91-100%

表2に示すSST、CCT試験の合格基準は以下の通りとした。SST(加工部耐食性):4以上、SST(カット部):1以下、SST(端面上下):7以下、CCT(カット部):0.7以下、CCT(端面上下):3以下 The acceptance criteria for the SST and CCT tests shown in Table 2 were as follows. SST (corrosion resistance of processed part): 4 or more, SST (cut part): 1 or less, SST (top and bottom of end face): 7 or less, CCT (cut part): 0.7 or less, CCT (top and bottom of end face): 3 or less

Figure 2022152124000004
Figure 2022152124000004

[実施例39~56、比較例10~13]
表3に示す種類及び量の金属酸化物粒子(D)、ポリウレタン系樹脂(E)(第一工業製薬社製、スーパーフレックス650)、及びブロックイソシアネート系樹脂(F)(ランクセス・ソリューションズ・ジャパン社製、Aqua BI220)を更に加えたこと以外は実施例22~38、比較例6~9と同様に表面処理剤の調製及び試験板の作製を行った。
[Examples 39 to 56, Comparative Examples 10 to 13]
The types and amounts of metal oxide particles (D) shown in Table 3, polyurethane resin (E) (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 650), and blocked isocyanate resin (F) (Lanxess Solutions Japan) The surface treatment agent was prepared and test plates were prepared in the same manner as in Examples 22 to 38 and Comparative Examples 6 to 9, except that Aqua BI220) was further added.

Figure 2022152124000005
Figure 2022152124000005

<評価>
SST試験、CCT試験の条件を1000hrから1500hrにしたこと以外は実施例22~38、比較例6~9と同様の条件で評価を行った。結果を表4に示す。なお、表4に示すSST、CCT試験の合格基準は以下の通りとした。SST(加工部耐食性):3.5以上、SST(カット部):1.5以下、SST(端面上下):6.1以下、CCT(カット部):0.7以下、CCT(端面上下):3.5以下
<Evaluation>
Evaluation was performed under the same conditions as in Examples 22 to 38 and Comparative Examples 6 to 9, except that the SST test and CCT test conditions were changed from 1000 hr to 1500 hr. Table 4 shows the results. The acceptance criteria for the SST and CCT tests shown in Table 4 were as follows. SST (processed part corrosion resistance): 3.5 or more, SST (cut part): 1.5 or less, SST (top and bottom of end face): 6.1 or less, CCT (cut part): 0.7 or less, CCT (top and bottom of end face) : 3.5 or less

Figure 2022152124000006
Figure 2022152124000006

[実施例57~74、比較例14~17]
表5に示す種類及び量の金属酸化物粒子(D)、ポリウレタン系樹脂(E)、及びブロックイソシアネート系樹脂(F)を更に加え、実施例65においては金属酸化物粒子(D)として平均粒子径(D50)が100nmのAlを用いたこと以外は実施例22~38、比較例6~9と同様に表面処理剤の調製を行った。試験板の作製は、金属基材を溶融亜鉛めっき鋼板(GI)(日本テストパネル社製、板厚0.35mm)とし、スプレー水洗後に硫酸ニッケル系の表面調整剤(NPコンディショナー700、pH3.0、60℃)に5秒間浸漬したこと以外は実施例22~38、比較例6~9と同様の手順で作製した。
[Examples 57-74, Comparative Examples 14-17]
Metal oxide particles (D), polyurethane-based resin (E), and blocked isocyanate-based resin (F) of the types and amounts shown in Table 5 were further added, and in Example 65, average particles as metal oxide particles (D) Surface treatment agents were prepared in the same manner as in Examples 22 to 38 and Comparative Examples 6 to 9, except that Al 2 O 3 having a diameter (D50) of 100 nm was used. The test plate was prepared by using a hot-dip galvanized steel sheet (GI) (manufactured by Nippon Test Panel Co., Ltd., plate thickness 0.35 mm) as the metal substrate, and after spray washing with a nickel sulfate-based surface conditioner (NP conditioner 700, pH 3.0). , 60° C.) for 5 seconds.

Figure 2022152124000007
Figure 2022152124000007

<評価>
[安定性]
調製後40℃のインキュベータで3か月静置後の表面処理液の液安定性について目視で以下の基準で評価を行った。1:問題無し、2:やや白濁あり
<Evaluation>
[Stability]
The liquid stability of the surface treatment liquid after being left still for 3 months in an incubator at 40° C. after preparation was visually evaluated according to the following criteria. 1: No problem, 2: Somewhat cloudy

上記以外は実施例22~38、比較例6~9と同様の条件で評価を行った。結果を表6に示す。なお、表6に示すSST、CCT試験の合格基準は以下の通りとした。SST(加工部耐食性):3.5以上、SST(カット部):6.0以下、SST(端面上下):6.1以下、CCT(カット部):0.7以下、CCT(端面上下):3.5以下 Evaluation was performed under the same conditions as in Examples 22 to 38 and Comparative Examples 6 to 9 except for the above. Table 6 shows the results. The acceptance criteria for the SST and CCT tests shown in Table 6 were as follows. SST (processed part corrosion resistance): 3.5 or more, SST (cut part): 6.0 or less, SST (top and bottom of end face): 6.1 or less, CCT (cut part): 0.7 or less, CCT (top and bottom of end face) : 3.5 or less

Figure 2022152124000008
Figure 2022152124000008

[実施例75~92、比較例18~21]
表7に示す種類及び量の金属酸化物粒子(D)、ポリウレタン系樹脂(E)、及びブロックイソシアネート系樹脂(F)を更に加え、実施例83においては金属酸化物粒子(D)として平均粒子径(D50)が140nmのAlを用い、金属基材をステンレス鋼板(表7に示す304はSUS304を示し、430はSUS430を示す)(日本テストパネル社製、板厚0.35mm)としたこと以外は実施例22~38、比較例6~9と同様に表面処理剤の調製及び試験板の作製を行った。
[Examples 75 to 92, Comparative Examples 18 to 21]
The types and amounts of metal oxide particles (D), polyurethane resin (E), and blocked isocyanate resin (F) shown in Table 7 were further added, and in Example 83, average particles were used as metal oxide particles (D). Al 2 O 3 with a diameter (D50) of 140 nm is used, and the metal substrate is a stainless steel plate (304 in Table 7 indicates SUS304, and 430 indicates SUS430) (manufactured by Nippon Test Panel Co., plate thickness 0.35 mm). Preparation of the surface treatment agent and preparation of test plates were carried out in the same manner as in Examples 22 to 38 and Comparative Examples 6 to 9, except that

Figure 2022152124000009
Figure 2022152124000009

<評価>
SST及びCCTを1500hrとしたこと以外は実施例57~74、比較例14~17と同様にして評価を行った。結果を表8に示す。なお、表8に示すSST、CCT試験の合格基準は以下の通りとした。SST(加工部耐食性):4.0以上、SST(カット部):1.0以下、SST(端面上下):0.5以下、CCT(カット部):0以下、CCT(端面上下):0.5以下
<Evaluation>
Evaluation was carried out in the same manner as in Examples 57-74 and Comparative Examples 14-17, except that the SST and CCT were set to 1500 hours. Table 8 shows the results. The acceptance criteria for the SST and CCT tests shown in Table 8 were as follows. SST (corrosion resistance of processed part): 4.0 or more, SST (cut part): 1.0 or less, SST (top and bottom of end face): 0.5 or less, CCT (cut part): 0 or less, CCT (top and bottom of end face): 0 .5 or less

Figure 2022152124000010
Figure 2022152124000010

[実施例93~112、比較例22~25]
表9に示す種類及び量の金属酸化物粒子(D)、ポリウレタン系樹脂(E)、及びブロックイソシアネート系樹脂(F)を更に加えたこと以外は実施例22~38、比較例6~9と同様に表面処理剤の調製を行った。試験板の作製は、アルカリ脱脂剤であるサーフクリーナー155(日本ペイントサーフケミカルズ社製)に表9に示すGI板、またはGL板(ともに日本テストパネル社製、板厚0.35mm)を60℃で10secスプレー脱脂した後、スプレー水洗した後、コバルトイオン含有系のアルカリ表面調整剤(NPコンディショナー200、pH11、60℃)に5秒間浸漬し、水洗後PMT80℃で乾燥させ、その後バーコーター#3で記載の成分の処理剤をGI板またはGL板に塗布後、PMT(ピークメタル温度)80℃で乾燥させた。表面処理後、ウレタン系接着剤を塗布し、その後アクリル系のラミネートフィルム(厚さ50μmのポリプロピレンフィルム)をローラーで圧着し、230℃で加熱して接着して実施例93~112、比較例22~25の試験板を得た。
[Examples 93-112, Comparative Examples 22-25]
Examples 22 to 38 and Comparative Examples 6 to 9, except that metal oxide particles (D), polyurethane resin (E), and blocked isocyanate resin (F) of the types and amounts shown in Table 9 were further added. A surface treatment agent was similarly prepared. To prepare the test plate, a GI plate shown in Table 9 or a GL plate (both manufactured by Nippon Test Panel Co., plate thickness 0.35 mm) was added to Surf Cleaner 155 (manufactured by Nippon Paint Surf Chemicals Co., Ltd.), which is an alkaline degreasing agent, at 60 ° C. After degreasing by spraying for 10 seconds, washing with spray water, immersing in cobalt ion-containing alkaline surface conditioner (NP conditioner 200, pH 11, 60°C) for 5 seconds, washing with water, drying at PMT 80°C, and then bar coater #3 After coating the GI plate or the GL plate with the treatment agent having the components described in , the plate was dried at a PMT (peak metal temperature) of 80°C. After the surface treatment, a urethane-based adhesive is applied, and then an acrylic laminate film (polypropylene film with a thickness of 50 μm) is pressed with a roller and heated at 230 ° C. to bond Examples 93 to 112 and Comparative Example 22. ~25 test plates were obtained.

Figure 2022152124000011
Figure 2022152124000011

<評価>
[加工1次密着試験(エリクセン試験)]
試験板に碁盤目状にカッターで切れ込みを入れ、エリクセン試験機で8mmまで押出加工後にテープ剥離を行った。テープ剥離試験は、JIS Z0237 :2009に準拠して行った。テープ剥離の程度を以下の基準により評価し、4以上を合格とした。結果を表10に示す。
5:剥離なし、4.5:1~10%剥離、4:11~20%剥離、3.5:21~30%剥離、3:31~40%剥離、2.5:41~50%剥離、2:51~60%剥離、1.5:61~70%剥離、1:71~80%剥離、0.5:81~90%剥離、0:91~100%剥離
<Evaluation>
[Processing primary adhesion test (Erichsen test)]
The test plate was cut with a cutter in a grid pattern, extruded to 8 mm with an Erichsen tester, and then the tape was peeled off. The tape peeling test was performed according to JIS Z0237:2009. The degree of tape peeling was evaluated according to the following criteria, and 4 or more was regarded as acceptable. Table 10 shows the results.
5: No peeling, 4.5: 1-10% peeling, 4: 11-20% peeling, 3.5: 21-30% peeling, 3: 31-40% peeling, 2.5: 41-50% peeling , 2: 51-60% peeling, 1.5: 61-70% peeling, 1: 71-80% peeling, 0.5: 81-90% peeling, 0: 91-100% peeling

[加工2次密着試験(エリクセン試験)]
前加工として、試験板に碁盤目状にカッターで切れ込みを入れ、エリクセン試験機で6mmまで押出加工後に98℃の沸騰水に1時間浸漬し、その後押出加工部にテープ剥離を行った。テープ剥離の程度を加工1次密着試験と同様に評価した。結果を表10に示す。
[Processing secondary adhesion test (Erichsen test)]
As a pre-processing, the test plate was cut with a cutter in a grid pattern, extruded to 6 mm with an Erichsen tester, immersed in boiling water at 98°C for 1 hour, and then tape-peeled from the extruded portion. The degree of tape peeling was evaluated in the same manner as in the first processing adhesion test. Table 10 shows the results.

上記以外に、SST及びCCTを1000hrとし、評価を行った。結果を表10に示す。なお、表10に示すSST、CCT試験の合格基準は以下の通りとした。SST(カット部):5.0以下、SST(端面上下):6.0以下、CCT(カット部):2以下、CCT(端面上下):3.5以下 In addition to the above, SST and CCT were set to 1000 hours and evaluated. Table 10 shows the results. The criteria for acceptance of the SST and CCT tests shown in Table 10 are as follows. SST (cut part): 5.0 or less, SST (top and bottom of end face): 6.0 or less, CCT (cut part): 2 or less, CCT (top and bottom of end face): 3.5 or less

Figure 2022152124000012
Figure 2022152124000012

上記実施例及び比較例の結果から、実施例に係る水性クロムフリー金属表面処理剤は、比較例に係る表面処理剤と比較して、塗装密着性が優れており、金属基材に対して高強度の加工性に耐え得る皮膜を形成できる結果が確認された。 From the results of the above examples and comparative examples, the water-based chromium-free metal surface treatment agents according to the examples are superior in paint adhesion to the metal substrate compared to the surface treatment agents according to the comparative examples. It was confirmed that a film that can withstand high workability can be formed.

Claims (10)

2官能性シラン化合物(A)と、1官能性シラン化合物(B)と、アセチレングリコール系界面活性剤(C)と、を含む、水性クロムフリー表面処理剤。 A water-based chromium-free surface treatment agent comprising a bifunctional silane compound (A), a monofunctional silane compound (B), and an acetylene glycol-based surfactant (C). 前記2官能性シラン化合物(A)の濃度が1~100g/Lの範囲内であり、
前記1官能性シラン化合物(B)の濃度が1~100g/Lの範囲内であり、
前記2官能性シラン化合物(A)と前記1官能性シラン化合物(B)の濃度比(A/B)が0.1~5の範囲内である、請求項1に記載の水性クロムフリー表面処理剤。
The concentration of the bifunctional silane compound (A) is within the range of 1 to 100 g / L,
The concentration of the monofunctional silane compound (B) is in the range of 1 to 100 g/L,
The aqueous chromium-free surface treatment according to claim 1, wherein the concentration ratio (A/B) of said bifunctional silane compound (A) and said monofunctional silane compound (B) is within the range of 0.1 to 5. agent.
前記アセチレングリコール系界面活性剤(C)の濃度が0.05~1g/Lの範囲内である、請求項1又は2に記載の水性クロムフリー表面処理剤。 3. The water-based chromium-free surface treatment agent according to claim 1, wherein the concentration of said acetylene glycol-based surfactant (C) is within the range of 0.05 to 1 g/L. 鏡面仕上げしたアルミニウム板表面上での接触角が25度以下である、請求項1~3のいずれかに記載の水性クロムフリー表面処理剤。 The aqueous chromium-free surface treatment agent according to any one of claims 1 to 3, which has a contact angle of 25 degrees or less on a mirror-finished aluminum plate surface. 水分散性金属酸化物粒子(D)を更に含み、
前記水分散性金属酸化物粒子(D)は、平均粒子径が150nm以下であり、
前記水分散性金属酸化物粒子(D)の濃度が1~20g/Lの範囲内である、請求項1~4のいずれかに記載の水性クロムフリー表面処理剤。
further comprising water-dispersible metal oxide particles (D),
The water-dispersible metal oxide particles (D) have an average particle size of 150 nm or less,
The aqueous chromium-free surface treatment agent according to any one of claims 1 to 4, wherein the water-dispersible metal oxide particles (D) have a concentration in the range of 1 to 20 g/L.
ポリウレタン系水分散樹脂、及びポリウレタン系水溶性樹脂のうち、少なくとも何れかであるポリウレタン系樹脂(E)を更に含み、
前記ポリウレタン系樹脂(E)の濃度が1~20g/Lの範囲内である、請求項1~5のいずれかに記載の水性クロムフリー表面処理剤。
Further comprising a polyurethane-based resin (E) that is at least one of a polyurethane-based water-dispersible resin and a polyurethane-based water-soluble resin,
The aqueous chromium-free surface treatment agent according to any one of claims 1 to 5, wherein the concentration of said polyurethane resin (E) is within the range of 1 to 20 g/L.
ブロックイソシアネート系樹脂(F)を更に含み、
前記ブロックイソシアネート系樹脂(F)の濃度が1~20g/Lの範囲内である、請求項1~6のいずれかに記載の水性クロムフリー表面処理剤。
further comprising a blocked isocyanate resin (F),
The water-based chromium-free surface treatment agent according to any one of claims 1 to 6, wherein the blocked isocyanate resin (F) has a concentration in the range of 1 to 20 g/L.
pHが5~7の範囲内である、請求項1~7のいずれかに記載の水性クロムフリー表面処理剤。 The aqueous chromium-free surface treatment agent according to any one of claims 1 to 7, which has a pH within the range of 5 to 7. 請求項1~8のいずれかに記載の水性クロムフリー表面処理剤により表面に表面処理皮膜が形成されてなる、表面処理金属。 A surface-treated metal having a surface-treated film formed on the surface with the water-based chromium-free surface-treating agent according to any one of claims 1 to 8. 被塗物の表面を請求項1~8のいずれかに記載の水性クロムフリー表面処理剤により処理することで表面処理皮膜を形成する表面処理皮膜形成工程を有する、表面処理方法。 A surface treatment method comprising a step of forming a surface treatment film by treating the surface of an object to be coated with the aqueous chromium-free surface treatment agent according to any one of claims 1 to 8.
JP2021054776A 2021-03-29 2021-03-29 Aqueous chromium-free surface treatment agent, surface treated metal, and surface treatment method Active JP7194768B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021054776A JP7194768B2 (en) 2021-03-29 2021-03-29 Aqueous chromium-free surface treatment agent, surface treated metal, and surface treatment method
KR1020237035248A KR20230162638A (en) 2021-03-29 2022-02-24 Water-based chromium-free surface treatments, surface treatment metals and surface treatment methods
CN202280024767.0A CN117178078A (en) 2021-03-29 2022-02-24 Aqueous chromium-free surface treatment agent, surface treatment metal and surface treatment method
AU2022252372A AU2022252372A1 (en) 2021-03-29 2022-02-24 Aqueous chrome-free surface treatment agent, surface treatment metal, and surface treatment method
PCT/JP2022/007523 WO2022209453A1 (en) 2021-03-29 2022-02-24 Aqueous chrome-free surface treatment agent, surface treatment metal, and surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021054776A JP7194768B2 (en) 2021-03-29 2021-03-29 Aqueous chromium-free surface treatment agent, surface treated metal, and surface treatment method

Publications (2)

Publication Number Publication Date
JP2022152124A true JP2022152124A (en) 2022-10-12
JP7194768B2 JP7194768B2 (en) 2022-12-22

Family

ID=83455943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021054776A Active JP7194768B2 (en) 2021-03-29 2021-03-29 Aqueous chromium-free surface treatment agent, surface treated metal, and surface treatment method

Country Status (5)

Country Link
JP (1) JP7194768B2 (en)
KR (1) KR20230162638A (en)
CN (1) CN117178078A (en)
AU (1) AU2022252372A1 (en)
WO (1) WO2022209453A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511351B2 (en) * 1987-06-18 1993-02-15 Oki Electric Ind Co Ltd
JP2003138385A (en) * 2001-10-29 2003-05-14 Nippon Steel Corp Non-lubricating film removal type plated steel sheet having excellent adhesion of coating film, corrosion resistance in worked zone and reduced environmental load
JP2020007617A (en) * 2018-07-10 2020-01-16 日本ペイント・サーフケミカルズ株式会社 Chromium free metal surface treatment agent, metal surface treatment method and metal base material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132808A (en) * 1999-02-05 2000-10-17 Brent International Plc Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture
JP2006152267A (en) * 2004-10-27 2006-06-15 Nippon Paint Co Ltd Pretreatment method for adhesive coating and aluminum alloy member
JP5669293B2 (en) 2009-09-24 2015-02-12 関西ペイント株式会社 Metal surface treatment composition and metal surface treatment method
JP6811351B1 (en) 2020-04-27 2021-01-13 日本ペイント・インダストリアルコ−ティングス株式会社 Method for manufacturing rust preventive paint composition and rust preventive coating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511351B2 (en) * 1987-06-18 1993-02-15 Oki Electric Ind Co Ltd
JP2003138385A (en) * 2001-10-29 2003-05-14 Nippon Steel Corp Non-lubricating film removal type plated steel sheet having excellent adhesion of coating film, corrosion resistance in worked zone and reduced environmental load
JP2020007617A (en) * 2018-07-10 2020-01-16 日本ペイント・サーフケミカルズ株式会社 Chromium free metal surface treatment agent, metal surface treatment method and metal base material

Also Published As

Publication number Publication date
KR20230162638A (en) 2023-11-28
WO2022209453A1 (en) 2022-10-06
CN117178078A (en) 2023-12-05
AU2022252372A1 (en) 2023-10-05
JP7194768B2 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
KR101319310B1 (en) Composition for metal surface treatment, metal surface treatment method, and metal material
JP5570452B2 (en) Surface treatment composition
TWI522493B (en) Metal surface treatment agent, surface treatment steel material and surface treatment method thereof, and coating steel material and manufacturing method thereof
JP5135669B2 (en) Manufacturing method of painted metal
WO2007148801A1 (en) Surface-treated metal material and metal surface treating agent
CN105255338A (en) Galvanized steel sheet excellent in surface abrasion resistance, corrosion resistance and acid and base resistance and water-based surface treating agent
KR102406796B1 (en) Organosilicon compound, method for producing same and metal surface treatment agent using same
WO2007069783A1 (en) Surface treatment for metal materials, surface treatment process, and surface-treated metal materials
AU2012248254A1 (en) Surface-treated metal material and aqueous metal surface treatment agent
TW201504370A (en) Aqueous metal surface treatment agent
JP4629984B2 (en) Aqueous coating agent for steel, coating method and coated steel
AU2012254470A1 (en) Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same
JP5661238B2 (en) Surface-treated galvanized steel sheet
JP7194768B2 (en) Aqueous chromium-free surface treatment agent, surface treated metal, and surface treatment method
CN102471892B (en) Surface treatment agent for use on pre-coated metal sheet, coated and surface treated metal sheet whereon surface treatment agent has been applied, and pre-coated metal sheet with excellent film adhesion during processing and which uses same
JP5490657B2 (en) High corrosion resistance surface-treated steel sheet
JP5154348B2 (en) Chemical conversion steel sheet
JP5418478B2 (en) Painted galvanized steel sheet
JP3923418B2 (en) Chromium-free galvanized steel sheet and its manufacturing method
JP4916913B2 (en) Surface-treated steel sheet and organic resin-coated steel sheet
JP2008208410A (en) Surface-treated steel sheet, and steel sheet coated with organic resin
JP2009161830A (en) Blocked isocyanate group-containing organosiloxane, and composition for metal surface treatment using the same
JP5101271B2 (en) Surface-treated steel sheet
KR100534016B1 (en) The methods for preparing an aqueous organic/inorganic nanohybrid sol-gel coating agents
CN116829653A (en) Coating compositions and methods comprising carbodiimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7194768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150