JP2022151892A - Resin product biodegradation promoter - Google Patents

Resin product biodegradation promoter Download PDF

Info

Publication number
JP2022151892A
JP2022151892A JP2021054447A JP2021054447A JP2022151892A JP 2022151892 A JP2022151892 A JP 2022151892A JP 2021054447 A JP2021054447 A JP 2021054447A JP 2021054447 A JP2021054447 A JP 2021054447A JP 2022151892 A JP2022151892 A JP 2022151892A
Authority
JP
Japan
Prior art keywords
resin
biodegradation
resin product
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021054447A
Other languages
Japanese (ja)
Other versions
JP7223385B2 (en
Inventor
良幸 ▲高▼木
Yoshiyuki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKA YUKA KOGYO KK
Original Assignee
SHIZUOKA YUKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKA YUKA KOGYO KK filed Critical SHIZUOKA YUKA KOGYO KK
Priority to JP2021054447A priority Critical patent/JP7223385B2/en
Publication of JP2022151892A publication Critical patent/JP2022151892A/en
Application granted granted Critical
Publication of JP7223385B2 publication Critical patent/JP7223385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

To provide a resin product biodegradation promoter capable of effectively utilizing plant biomass, capable of using a cellulose nano-fiber easily produced or available, capable of reducing an amount use of a resin and capable of promoting biodegradation of resin products manufactured by blending resins.SOLUTION: A resin product biodegradation promoter containing plant biomass having an average particle size of 1 mm or less and cellulose nanofibers, where a water content of the resin product biodegradation promoter is 0.1% or more and 20% or less, a mass of cellulose nanofibers is 0.1% or more and 50% or less with respect to the mass of the plant biomass.SELECTED DRAWING: Figure 12

Description

本発明は、樹脂に配合することにより、樹脂製品の生分解性を促進することができる樹脂製品生分解促進剤に関する。 TECHNICAL FIELD The present invention relates to a resin product biodegradation accelerator capable of promoting the biodegradability of resin products by blending with resin.

近年、世界的に石油由来の樹脂の廃棄物は、焼却すると二酸化炭素を発生し地球温暖化に対する問題があり、埋め立て等により廃棄しても分解されず、河川や海への流出等して環境への問題があり、樹脂の使用量の削減が求められている。 In recent years, petroleum-derived resin waste has become a global warming problem as it generates carbon dioxide when incinerated. There is a problem with the use of resin, and there is a demand for reducing the amount of resin used.

また、植物性バイオマスは、光合成により大気中の二酸化炭素から生成されたものであり、これを利用する過程で二酸化炭素が排出されたとしてもカーボンニュートラルになることから、化石資源の代替として期待されているが、植物性バイオマスの有効活用がなされていないという問題点がある。 In addition, plant biomass is produced from carbon dioxide in the atmosphere through photosynthesis, and is carbon neutral even if carbon dioxide is emitted during the process of using it. Therefore, it is expected to be an alternative to fossil resources. However, there is a problem that plant biomass is not effectively utilized.

樹脂の使用量の削減と植物性バイオマスの活用法としては、特許文献1に植物性バイオマス等を増量剤として樹脂に配合する樹脂成型品が記載されているが、樹脂成型品の廃棄については、生分解性の樹脂を使うことのみの記載があるだけで、樹脂成型品の生分解が遅いという問題点については何ら記載がない。 As a method for reducing the amount of resin used and utilizing plant biomass, Patent Document 1 describes a resin molded product in which plant biomass or the like is used as an extender to be blended with resin. There is only a description of using a biodegradable resin, and there is no description of the problem of slow biodegradation of resin moldings.

生分解性樹脂の生分解性の促進としては、特許文献2にソルボサーマル処理したセルロースナノファイバーを生分解性樹脂に加えることで、生分解性が促進することが記載されているが、ソルボサーマル処理をしたセルロースナノファイバーに限定され、簡単に製造又は入手できないという問題点がある。 As for promotion of biodegradability of biodegradable resin, it is described in Patent Document 2 that biodegradability is promoted by adding solvothermally treated cellulose nanofibers to biodegradable resin, but solvothermal The problem is that it is limited to treated cellulose nanofibers and is not easily manufactured or available.

特開2001-226492号Japanese Patent Application Laid-Open No. 2001-226492 特開2021-021041号Japanese Patent Application Laid-Open No. 2021-021041

本発明は、植物性バイオマスの有効活用でき、簡単に製造又は入手できるセルロースナノファイバーを使用することができ、樹脂の使用量の削減することができ、樹脂に配合することにより樹脂製品の生分解を促進することができる樹脂製品生分解促進剤を提供する。 The present invention can effectively utilize plant biomass, can use cellulose nanofibers that can be easily manufactured or obtained, can reduce the amount of resin used, and can biodegrade resin products by blending with resin. To provide a resin product biodegradation accelerator capable of promoting

平均粒径が1mm以下の植物性バイオマスと、セルロースナノファイバーと、を含む樹脂製品生分解促進剤であって、
前記樹脂製品生分解促進剤の含水率は0.1%以上20%以下であり、
前記セルロースナノファイバーの質量は、前記植物性バイオマスの質量に対して0.1%以上50%以下であり、
樹脂に配合して製造される樹脂製品の生分解が促進される。
A resin product biodegradation accelerator containing plant biomass having an average particle size of 1 mm or less and cellulose nanofibers,
The water content of the resin product biodegradation accelerator is 0.1% or more and 20% or less,
The mass of the cellulose nanofibers is 0.1% or more and 50% or less with respect to the mass of the plant biomass,
Biodegradation of resin products manufactured by blending with resin is promoted.

前記植物性バイオマスは、食品副産物である。 Said plant biomass is a food by-product.

前記植物性バイオマスは、前記植物性バイオマスの表面温度が200℃以下で乾燥されることにより、含水率が0.1%以上20%以下である。 The plant biomass has a water content of 0.1% or more and 20% or less by drying at a surface temperature of 200° C. or less.

樹脂製品生分解促進剤と、樹脂と、を含む樹脂製品であって、
前記樹脂製品生分解促進剤の質量は、前記樹脂製品の質量に対して0.1%以上40%以下である。
A resin product containing a resin product biodegradation accelerator and a resin,
The mass of the resin product biodegradation accelerator is 0.1% or more and 40% or less with respect to the mass of the resin product.

本発明の樹脂用生分解性促進剤は、植物性バイオマスの有効活用でき、樹脂に配合することにより樹脂の使用量の削減することができ、簡単に製造又は入手できるセルロースナノファイバーを使用することができるものであり、本発明の樹脂用生分解性促進剤を配合して製造する樹脂製品は生分解が促進される。 The biodegradability accelerator for resin of the present invention can effectively utilize plant biomass, can reduce the amount of resin used by being blended with resin, and uses cellulose nanofibers that can be easily manufactured or obtained. The biodegradation of the resin product produced by blending the biodegradation accelerator for resin of the present invention is promoted.

土壌埋設試験前の試験片の写真である。It is a photograph of a test piece before a soil embedding test. 土壌埋設試験後2週間~12週間のポリ乳酸のみ(比較例1)の試験片の写真である。2 is a photograph of a test piece of polylactic acid alone (Comparative Example 1) two to twelve weeks after the soil burial test. 土壌埋設試験後2週間~12週間のポリ乳酸とセルロースナノファイバーの質量比が10:0.1(比較例2)の試験片の写真である。2 is a photograph of a test piece with a mass ratio of polylactic acid and cellulose nanofibers of 10:0.1 (Comparative Example 2) two to twelve weeks after the soil burial test. 土壌埋設試験後2週間~12週間のポリ乳酸とセルロースナノファイバーの質量比が10:1(比較例3)の試験片の写真である。2 is a photograph of a test piece with a mass ratio of polylactic acid and cellulose nanofibers of 10:1 (Comparative Example 3) 2 to 12 weeks after the soil burial test. 土壌埋設試験後2週間~12週間のポリ乳酸とおからとセルロースナノファイバーの質量比が7:3:0(比較例4)の試験片の写真である。2 is a photograph of a test piece having a mass ratio of polylactic acid, bean curd refuse and cellulose nanofibers of 7:3:0 (Comparative Example 4) two to twelve weeks after the soil burial test. 土壌埋設試験後2週間~12週間のポリ乳酸とおからとセルロースナノファイバーの質量比が7:3:0.1(実施例1)の試験片の写真である。2 is a photograph of a test piece having a mass ratio of polylactic acid, bean curd refuse and cellulose nanofibers of 7:3:0.1 (Example 1) two to 12 weeks after the soil burial test. 土壌埋設試験後2週間~12週間のポリ乳酸とおからとセルロースナノファイバーの質量比が7:3:1(実施例2)の試験片の写真である。2 is a photograph of a test piece having a mass ratio of polylactic acid, bean curd refuse and cellulose nanofibers of 7:3:1 (Example 2) two to twelve weeks after the soil burial test. 土壌に埋設してから4週目のポリ乳酸のみ(比較例1)の試験片の表面の状態を観察した走査電子顕微鏡写真である。4 is a scanning electron micrograph showing the state of the surface of a polylactic acid-only test piece (Comparative Example 1) four weeks after being buried in soil. 土壌に埋設してから4週目のポリ乳酸とセルロースナノファイバーの質量比が10:0.1(比較例2)の試験片の表面の状態を観察した走査電子顕微鏡写真である。4 is a scanning electron micrograph showing the surface state of a test piece with a mass ratio of polylactic acid and cellulose nanofibers of 10:0.1 (Comparative Example 2) four weeks after being buried in soil. 土壌に埋設してから4週目のポリ乳酸とセルロースナノファイバーの質量比が10:1(比較例3)の試験片の表面の状態を観察した走査電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph showing the state of the surface of a test piece having a mass ratio of polylactic acid and cellulose nanofibers of 10:1 (Comparative Example 3) four weeks after being buried in soil. 土壌に埋設してから4週目のポリ乳酸とおからとセルロースナノファイバーの質量比が7:3:0(比較例4)の試験片の表面の状態を観察した走査電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph showing the state of the surface of a test piece with a mass ratio of polylactic acid, bean curd refuse and cellulose nanofibers of 7:3:0 (Comparative Example 4) four weeks after being buried in soil. 土壌に埋設してから4週目のポリ乳酸とおからとセルロースナノファイバーの質量比が7:3:0.1(実施例1)の試験片の表面の状態を観察した走査電子顕微鏡写真である。4 is a scanning electron micrograph showing the state of the surface of a test piece having a mass ratio of polylactic acid, bean curd refuse, and cellulose nanofibers of 7:3:0.1 (Example 1) four weeks after being buried in soil. . 土壌に埋設してから4週目のポリ乳酸とおからとセルロースナノファイバーの質量比が7:3:1(実施例2)の試験片の表面の状態を観察した走査電子顕微鏡写真である。4 is a scanning electron micrograph showing the state of the surface of a test piece having a mass ratio of polylactic acid, bean curd refuse and cellulose nanofibers of 7:3:1 (Example 2) four weeks after being buried in soil.

以下、本発明の実施の形態の例について図を参照しながら説明する。尚、本発明は、以下の形態の例に限定されるものではない。 Hereinafter, examples of embodiments of the present invention will be described with reference to the drawings. In addition, the present invention is not limited to the examples of the following forms.

本発明の樹脂製品生分解促進剤は、平均粒径が1mm以下の植物性バイオマスとセルロースナノファイバーと(以下、「CNF」という)を含む。植物性バイオマスの平均粒径を1mm以下とすることにより、樹脂に均一に配合しやすくなり、出来上がった樹脂製品の強度や成型に不具合を生じにくくする。植物性バイオマスの粒径が1mm前後の場合は、そのまま用いたり、篩でふるったりする。植物性バイオマスの粒径が大きいものは、一般的な方法で粉砕したり、粉砕後に篩でふるったりして平均粒径を1mm以下とする。 The resin product biodegradation accelerator of the present invention contains plant biomass having an average particle size of 1 mm or less and cellulose nanofibers (hereinafter referred to as "CNF"). By setting the average particle diameter of the plant biomass to 1 mm or less, it becomes easier to uniformly mix the biomass with the resin, and problems with the strength and molding of the finished resin product are less likely to occur. When the particle size of the plant biomass is about 1 mm, it is used as it is or sieved. Plant biomass with a large particle size is pulverized by a common method or sieved after pulverization to an average particle size of 1 mm or less.

前記樹脂製品生分解促進剤の含水率は0.1%以上20%以下とする。含水率が20%を超えると、樹脂に配合した際に、水が沸騰するなどして樹脂に配合できなかったり、できあがった樹脂製品の強度や成型に不具合を生じたりする。前記CNFの質量は、前前記植物性バイオマスの粉砕物の質量に対して0.1%以上50%以下とする。樹脂製品生分解促進剤を樹脂に配合して製造される樹脂製品は、生分解は促進される。生分解としては、一例として、土壌中における微生物等による生分解が挙げられる。 The moisture content of the resin product biodegradation accelerator is set to 0.1% or more and 20% or less. If the water content exceeds 20%, the water boils when blended into the resin, and the strength and molding of the finished resin product may be impaired. The mass of the CNF is 0.1% or more and 50% or less with respect to the mass of the pulverized plant biomass. Biodegradation of resin products produced by blending a resin product biodegradation accelerator with resin is accelerated. One example of biodegradation is biodegradation by microorganisms in soil.

本発明の樹脂製品生分解促進剤の形状は、樹脂に配合しやすい形状であればよく、一例として粉末状、顆粒状、ペレット状などの形状が挙げられる。 The shape of the resin product biodegradation accelerator of the present invention may be any shape as long as it is easy to mix with the resin, and examples thereof include powders, granules, and pellets.

(植物性バイオマス)
一例として、前記植物性バイオマスは食品副産物とし、おから、コーヒー粕、茶葉の屑、茶殻、麦茶の粕、豆類の皮、柑橘類の皮、芋の皮、ビールの搾り粕、ジュースの搾り粕、ふすま、米ぬか、大豆の搾り粕、又は菜種の搾り粕、の内少なくとも1つを含むものとする。食品副産物は生分解を行う微生物等に分解されやすいため、樹脂に配合して製造される樹脂製品の生分解はより促進される。
(Plant biomass)
As an example, the plant biomass is food by-products such as bean curd refuse, coffee grounds, tea leaf waste, used tea leaves, barley tea grounds, bean skins, citrus peels, potato skins, beer lees, juice lees, At least one of bran, rice bran, soybean lees, or rapeseed lees is included. Since food by-products are easily decomposed by biodegradable microorganisms, the biodegradation of resin products manufactured by mixing them with resin is promoted.

植物性バイオマスは、前記植物性バイオマスの表面温度が200℃以下で乾燥されることにより、含水率が0.1%以上20%以下になる。植物性バイオマスが、食品副産物(おから、コーヒー粕、茶葉の屑、茶殻、麦茶の粕、豆類の皮、柑橘類の皮、芋の皮、ビールの搾り粕、ジュースの搾り粕、ふすま、米ぬか、大豆の搾り粕、又は菜種の搾り粕等)の場合、多くの水分を含有するため、一例として、熱風乾燥を用いて乾燥する。熱風乾燥は、食品副産物を攪拌しながら、熱風を当てることにより乾燥させるものであり、この際、食品副産物の表面温度が約200℃以下となるように、熱風の温度を調整する。食品副産物の温度が約200℃を超えてしまうと、食品副産物が焦げたり、成分が変性するなどしたりするため、樹脂に配合して製造される樹脂製品の生分解が促進されにくくなる。食品副産物を乾燥させる際に熱風は熱を奪われるので、一例として、熱風の温度の上限は約400℃とする。熱風の温度の下限は特に限定はなく、一例として約80℃とする。食品副産物の平均粒径が大きい(5mm程度を超える)場合は、乾燥させる前に粉砕することにより、乾燥効率を上げることができる。 The plant biomass has a water content of 0.1% or more and 20% or less by drying at a surface temperature of 200° C. or less. Vegetable biomass is converted into food by-products (bean curd refuse, coffee grounds, tea leaf waste, used tea leaves, barley tea grounds, bean skins, citrus peels, potato skins, beer lees, juice lees, wheat bran, rice bran, In the case of soybean lees, rapeseed lees, etc.), since they contain a lot of water, they are dried using, for example, hot air drying. Hot air drying involves drying food by-products by applying hot air to them while stirring them. At this time, the temperature of the hot air is adjusted so that the surface temperature of the food by-products is about 200° C. or less. If the temperature of the food by-products exceeds about 200°C, the food by-products will burn or the components will be denatured, making it difficult to promote the biodegradation of the resin products that are produced by blending with the resin. As an example, the upper limit of the temperature of the hot air is about 400° C., because the hot air loses heat when drying the food by-products. The lower limit of the hot air temperature is not particularly limited, and is set to about 80° C. as an example. If the food by-product has a large average particle size (greater than about 5 mm), the drying efficiency can be increased by pulverizing the food by-product before drying.

本発明の樹脂製品生分解促進剤に用いるCNFは、木材を構成するセルロースをナノレベルまで細かくほぐしたものをいう。一般にCNFは、粉末のもの、水に懸濁したもの、化学処理(TEMPO酸化処理、CM化処理など)したものがあるが、どのような状態のCNFでも用いることができ、CNFの製造方法も特に限定はなく、簡単に製造又は入手できるセルロースナノファイバーを使用することができる。 The CNF used in the resin product biodegradation accelerator of the present invention refers to finely loosened cellulose constituting wood to a nano level. In general, CNF is powdered, suspended in water, or chemically treated (TEMPO oxidation treatment, CM treatment, etc.), but any state of CNF can be used, and the CNF production method is also There is no particular limitation, and easily manufactured or available cellulose nanofibers can be used.

CNFは、含水率が0.1%以上20%以下の植物性バイオマスに添加して混合したり、植物性バイオマスの乾燥前又は乾燥中に添加して混合したりする。CNFは、元々植物由来であって植物性バイオマスとの親和性があるので、植物バイオマス中に均一に混合される。 CNF is added and mixed with plant biomass having a moisture content of 0.1% or more and 20% or less, or added and mixed before or during drying of plant biomass. Since CNF is originally derived from plants and has affinity with plant biomass, it is uniformly mixed in plant biomass.

本発明の樹脂製品生分解促進剤を配合することができる樹脂は、特に限定はなく、一例として、熱可塑性樹脂、生分解性樹脂、又はこれら樹脂を再生した樹脂とする。熱可塑性樹脂としては、一例として、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリ塩化ビニル、ポリエチレンテレフタレートなどが挙げられる。生分解性樹脂としては、一例として、ポリ乳酸、ポリグリコール酸、ポリブチレンサクシネート、ポリブチレンアジペート、ポリエチレンテレフタレートサクシネート、ポリビニルアルコールなどが挙げられる。熱可塑性樹脂として生分解性樹脂を使用することにより、本発明の樹脂製品生分解促進剤を配合した樹脂製品は、焼却せずに、土壌に埋めるなどして廃棄することが可能となる。 The resin to which the resin product biodegradation accelerator of the present invention can be added is not particularly limited, and examples thereof include thermoplastic resins, biodegradable resins, and resins obtained by regenerating these resins. Examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, ABS resin, polyvinyl chloride, and polyethylene terephthalate. Examples of biodegradable resins include polylactic acid, polyglycolic acid, polybutylene succinate, polybutylene adipate, polyethylene terephthalate succinate, and polyvinyl alcohol. By using a biodegradable resin as the thermoplastic resin, the resin product containing the resin product biodegradation accelerator of the present invention can be discarded by burying it in the soil without incinerating it.

本発明の樹脂製品生分解促進剤を含む樹脂は、生分解性が促進される。一例として、樹脂製品生分解促進剤の質量は、樹脂の質量に対して0.1%以40%以下である。本発明の樹脂製品生分解促進剤は熱可塑性樹脂に配合することができる。樹脂製品生分解促進剤を含む熱可塑性樹脂は、一般的に用いられる方法を用いて樹脂製品に加工することができる。 The biodegradability of the resin containing the resin product biodegradation accelerator of the present invention is promoted. As an example, the mass of the resin product biodegradation accelerator is 0.1% or more and 40% or less with respect to the mass of the resin. The resin product biodegradation accelerator of the present invention can be blended with a thermoplastic resin. Thermoplastic resins containing resin product biodegradation accelerators can be processed into resin products using commonly used methods.

次に実施例、比較例を挙げ、本発明を説明するが、本発明はこれらの実施例に何ら制約されるものではない。 EXAMPLES Next, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例と比較例)
樹脂としてポリ乳酸(以下、「PLA」という。)を使用した試験片を用いて、生分解試験を行った、試験に用いた比較例及び実施例を表1に示す。比較例4及び実施例1、2に使用したおからは、おからを攪拌しながら、280℃~300℃程度の熱風を発生させ、おからの表面温度を約80℃~130℃に加熱し、含水率を約8%に乾燥させたものを使用した。実施例は、含水率が約8%のおからに粉末状のCNF(株式会社スギノマシン製、BINFIS-S(登録商標))を加えて混合した樹脂製品生分解促進剤を用いた。試験に使用した試験片は、全て、湿度約20%、室温のデシケーター内に2週間以上静置し、十分に乾燥させたものを使用した。乾燥処理後の試験片の質量を測定し、生分解前質量とした。
(Example and Comparative Example)
Table 1 shows comparative examples and examples used in the biodegradation test, in which a test piece using polylactic acid (hereinafter referred to as "PLA") as a resin was used. The bean curd refuse used in Comparative Example 4 and Examples 1 and 2 was heated to a surface temperature of approximately 80° C. to 130° C. by generating a hot air of about 280° C. to 300° C. while stirring the bean curd refuse. , dried to a moisture content of about 8%. In the example, a resin product biodegradation accelerator was used in which powdered CNF (manufactured by Sugino Machine Co., Ltd., BINFIS-S (registered trademark)) was added to okara with a moisture content of about 8% and mixed. All of the test pieces used in the test were left to stand in a desiccator at room temperature with a humidity of about 20% for two weeks or more and sufficiently dried. The mass of the test piece after the drying treatment was measured and taken as the mass before biodegradation.

(表1)

Figure 2022151892000002
(Table 1)
Figure 2022151892000002

(土壌埋設試験)
土埋設試験の方法について説明する。各比較例、各実施例につき18本の試験を、竹林の表層土壌を入れたプラスチックコンテナ内に半分程度埋設した。試験片を埋設したプラスチックコンテナは、プラスチックコンテナ内に水の入ったプレスチック容器を載置し、プラスチックコンテナの上をビニール製のシートで覆い、土壌からの水分の揮散を防いだ状態にして、30℃の暗所に静置した。
(Soil burying test)
The soil burial test method will be explained. About half of the 18 test samples for each comparative example and each example were buried in a plastic container containing surface soil of a bamboo forest. A plastic container filled with water was placed inside the plastic container in which the test piece was embedded, and the top of the plastic container was covered with a vinyl sheet to prevent moisture from evaporating from the soil. It was placed in a dark place at 30°C.

各試験片は、2週間毎に3本ずつ回収した。回収した試験片は、試験片の表面に付着した土壌を除いた後、70%エタノール溶液を含侵させた紙製ウェスで表面を拭き取り、約30℃で1週間静置し、エタノールを揮発させた後、目視にて試験片の状態を確認した。その後、エタノールを揮発させた試験片は、湿度約20%、室温のデシケーター内で2週間~1か月程度静置した。静置した試験片は、時間を空けて質量を測定し質量が安定した時点における質量を、生分解後質量とした。 Three test specimens were collected every two weeks. After removing the soil adhering to the surface of the collected test piece, the surface was wiped with a paper rag impregnated with 70% ethanol solution, and allowed to stand at about 30°C for 1 week to volatilize the ethanol. After that, the state of the test piece was visually confirmed. Thereafter, the test piece from which ethanol was volatilized was allowed to stand in a desiccator at room temperature with a humidity of about 20% for about 2 weeks to 1 month. The mass of the test piece left standing was measured at intervals of time, and the mass at the time when the mass became stable was defined as the mass after biodegradation.

埋設前及び埋設後12週までの各試験片の写真を図1~図7に示す。実施例及び比較例を目視で確認した結果、比較例1(PLAのみ)は、全く変化がなかった。比較例2,3(PLA+CNF)はCNFが熱変性した結果生じた着色が少し脱色していたが、試験片の表面は平滑なままであった。比較例4(PLA+おから)及び実施例1,2(PLA+おから+CNF)は、濃い茶色から大幅な退色が生じた。埋設4週目以降は、土壌やバイオフィルムが試験片に強く付着した。試験片の表面の平滑性が失われており、試験片が生分解されていることが観察できた。おからのみの比較例4に比べ、本発明の樹脂製品生分解促進剤を配合した実施例1,2の方は、試験片の表面の生分解が促進されていることが観察できた。 Photographs of each test piece before burying and up to 12 weeks after burying are shown in FIGS. As a result of visually confirming the examples and comparative examples, there was no change in comparative example 1 (only PLA). In Comparative Examples 2 and 3 (PLA+CNF), the coloring caused by thermal denaturation of CNF was slightly decolored, but the surface of the test piece remained smooth. Comparative Example 4 (PLA + bean curd refuse) and Examples 1 and 2 (PLA + bean curd refuse + CNF) caused significant fading from dark brown. After the 4th week of burying, soil and biofilm strongly adhered to the specimens. It was observed that the surface smoothness of the test piece was lost and the test piece was biodegraded. Compared to Comparative Example 4, in which only bean curd refuse was used, in Examples 1 and 2, in which the resin product biodegradation accelerator of the present invention was blended, it was observed that biodegradation of the surface of the test piece was accelerated.

比較例及び実施例における生分解質量を表2にまとめた。各試験片の生分解前質と生分解後質量を測定し、各試験片の生分解前質量から生分解後質量を引いた質量を生分解質量とした。生分解率は、生分解前の質量における生分解質量の割合とした。土壌埋設試験における生分解率を表2にまとめた。 Table 2 summarizes the biodegradable mass in Comparative Examples and Examples. The pre-biodegradation mass and post-biodegradation mass of each test piece were measured, and the biodegradation mass was obtained by subtracting the post-biodegradation mass from the pre-biodegradation mass of each test piece. The biodegradation rate was defined as the ratio of the biodegradation mass to the mass before biodegradation. Table 2 summarizes the biodegradation rate in the soil burial test.

(表2)

Figure 2022151892000003
(Table 2)
Figure 2022151892000003

表2より、以下のことが分かった。比較例1,2,3はほとんど生分解がされていないことから、CNFを添加しただけでは土壌微生物による生分解は促進されないことが分かった。比較例4と実施例1,2を比べた結果、おからにCNFを添加した場合は、おからのみの場合より、試験片の生分解性は促進することが分かった。そして、おからに添加するCNFの量が多いほど、試験片の生分解性は促進することが分かった。尚、比較例1~3において、生分解率がマイナスの値を示す理由は、試験片を土壌に埋設することにより、試験片が土壌中の水分を吸収し、試験片の質量が増加したためと考えられる。 From Table 2, the following was found. Since Comparative Examples 1, 2 and 3 were hardly biodegraded, it was found that the mere addition of CNF does not promote biodegradation by soil microorganisms. As a result of comparing Comparative Example 4 with Examples 1 and 2, it was found that the addition of CNF to bean curd refuse promoted the biodegradability of the test piece more than the case of bean curd refuse alone. And it turned out that biodegradability of a test piece is accelerated, so that the amount of CNF added to bean curd refuse is large. In Comparative Examples 1 to 3, the reason why the biodegradation rate shows a negative value is that when the test piece was buried in the soil, the test piece absorbed water in the soil and the mass of the test piece increased. Conceivable.

土壌に埋設してから4週目の試験片の表面を走査電子顕微鏡(日本電子株式会社製、JCM-6000plus)にて、倍率1000倍で観察し、写真を撮影した(図8~図13参照)。PLAのみの試験片(比較例1)に比べ、CNFのみを添加した試験片(比較例2,3)は、僅かに表面の凹凸が観察できた。おからのみを添加した試験片(比較例4)は表面がえぐれていたが、おからにCNFを添加した試験片(実施例1,2)は、更に深くえぐれており、試験片の生分解が進んでいることが分かった。そして、CNFの添加量が0.1%の場合(実施例1)より、CNFの添加量が1.0%の場合(実施例2)の方が、深くえぐれており、CNFの添加量が増えるにつれて生分解が促進されることが分かった。 Four weeks after burying in the soil, the surface of the test piece was observed with a scanning electron microscope (manufactured by JEOL Ltd., JCM-6000plus) at a magnification of 1000, and photographs were taken (see FIGS. 8 to 13). ). Compared to the test piece containing only PLA (Comparative Example 1), the test pieces containing only CNF (Comparative Examples 2 and 3) showed slight surface irregularities. The surface of the test piece to which only bean curd refuse was added (Comparative Example 4) was scooped out, but the test pieces to which CNF was added to bean curd refuse (Examples 1 and 2) were scooped out deeper, and the test piece biodegraded. was found to be progressing. Then, when the amount of CNF added is 0.1% (Example 1), when the amount of CNF added is 1.0% (Example 2), the recess is deeper, and the amount of CNF added is It was found that biodegradation is accelerated as the amount increases.

(菌床埋設試験)
直径90mmのポテトデキストロース寒天培地にカワラタケ菌糸を蔓延させ、前記寒天培地の半量に水約50mlを加えてホモジナイズし、菌体懸濁液を作成した。作成した菌体懸濁液を、蒸留水を加えて含水率を約70%にした後に121℃で20分間滅菌処理した木粉(ブナ)に加え、よく混合し、30℃、暗所で2週間静置して培養した。培養後、菌糸が木粉に十分蔓延したことを確認し、比較例及び実施例の試験片を埋設し、30℃で2週間静置した。
(Microbe bed burying test)
A potato dextrose agar medium with a diameter of 90 mm was spread with C. versicolor mycelium, and about half of the agar medium was homogenized with about 50 ml of water to prepare a cell suspension. Distilled water was added to the prepared bacterial cell suspension to make the water content about 70%, then added to wood flour (beech) sterilized at 121°C for 20 minutes, mixed well, and dried at 30°C in the dark for 2 hours. It was left to stand for a week and cultured. After culturing, it was confirmed that the mycelium had sufficiently spread over the wood flour, and the test pieces of Comparative Examples and Examples were embedded and allowed to stand at 30° C. for 2 weeks.

前記土壌埋設試験と同様に、各試験片の生分解前質と生分解後質量を測定し、各試験片の生分解前質量から生分解後質量を引いた質量を生分解質量とした。生分解率は、生分解前の質量における生分解質量の割合とした。土壌埋設試験における生分解率を表3にまとめた。 The mass before biodegradation and the mass after biodegradation of each test piece were measured in the same manner as in the soil burial test, and the biodegradation mass was obtained by subtracting the mass after biodegradation from the mass before biodegradation of each test piece. The biodegradation rate was defined as the ratio of the biodegradation mass to the mass before biodegradation. Table 3 summarizes the biodegradation rate in the soil burial test.

(表3)

Figure 2022151892000004
(Table 3)
Figure 2022151892000004

前記土壌埋設試験と同様に、表3より、比較例1,2,3はほとんど生分解がされていないことから、CNFを添加しても土壌微生物による生分解は促進されないことが分かった。比較例4と実施例1,2を比べた結果、おからにCNFを添加した場合は、おからのみの場合より、試験片の生分解性は促進することが分かった。そして、おからに添加するCNFの量が多いほど、試験片の生分解性は促進することが分かった。
Similar to the soil burial test, Table 3 shows that Comparative Examples 1, 2, and 3 are hardly biodegraded, and therefore, the addition of CNF does not promote biodegradation by soil microorganisms. As a result of comparing Comparative Example 4 with Examples 1 and 2, it was found that the addition of CNF to bean curd refuse promoted the biodegradability of the test piece more than the case of bean curd refuse alone. And it turned out that biodegradability of a test piece is accelerated, so that the amount of CNF added to bean curd refuse is large.

Claims (4)

平均粒径が1mm以下の植物性バイオマスと、セルロースナノファイバーと、を含む樹脂製品生分解促進剤であって、
前記樹脂製品生分解促進剤の含水率は0.1%以上20%以下であり、
前記セルロースナノファイバーの質量は、前記植物性バイオマスの質量に対して0.1%以上50%以下であり、
樹脂に配合して製造される樹脂製品の生分解が促進される、
樹脂製品生分解促進剤。
A resin product biodegradation accelerator containing plant biomass having an average particle size of 1 mm or less and cellulose nanofibers,
The water content of the resin product biodegradation accelerator is 0.1% or more and 20% or less,
The mass of the cellulose nanofibers is 0.1% or more and 50% or less with respect to the mass of the plant biomass,
Promotes biodegradation of resin products manufactured by blending with resin,
Resin product biodegradation accelerator.
前記植物性バイオマスは、食品副産物である、
請求項1に記載の樹脂製品生分解促進剤。
wherein the plant biomass is a food by-product;
The resin product biodegradation accelerator according to claim 1 .
前記植物性バイオマスは、前記植物性バイオマスの表面温度が200℃以下で乾燥されることにより、含水率が0.1%以上20%以下である、
請求項1又は請求項2に記載の樹脂製品生分解促進剤。
The plant biomass has a water content of 0.1% or more and 20% or less by drying at a surface temperature of 200 ° C. or less.
The resin product biodegradation accelerator according to claim 1 or 2.
請求項1ないし請求項3のいずれか1項に記載の樹脂製品生分解促進剤と、樹脂と、を含む樹脂製品であって、
前記樹脂製品生分解促進剤の質量は、前記樹脂製品の質量に対して0.1%以上40%以下である、樹脂製品。
A resin product comprising the resin product biodegradation accelerator according to any one of claims 1 to 3 and a resin,
The resin product, wherein the mass of the resin product biodegradation accelerator is 0.1% or more and 40% or less with respect to the mass of the resin product.
JP2021054447A 2021-03-28 2021-03-28 Resin product biodegradation accelerator Active JP7223385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021054447A JP7223385B2 (en) 2021-03-28 2021-03-28 Resin product biodegradation accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021054447A JP7223385B2 (en) 2021-03-28 2021-03-28 Resin product biodegradation accelerator

Publications (2)

Publication Number Publication Date
JP2022151892A true JP2022151892A (en) 2022-10-11
JP7223385B2 JP7223385B2 (en) 2023-02-16

Family

ID=83544305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021054447A Active JP7223385B2 (en) 2021-03-28 2021-03-28 Resin product biodegradation accelerator

Country Status (1)

Country Link
JP (1) JP7223385B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226492A (en) * 2000-02-16 2001-08-21 Mitsubishi Pencil Co Ltd Resin molded product
JP2020050855A (en) * 2018-09-20 2020-04-02 アイ‐コンポロジー株式会社 Biodegradable resin composition, master batch, and molded body thereof
JP2021021041A (en) * 2019-07-30 2021-02-18 Gsアライアンス株式会社 Biodegradable composite material containing cellulose nanofiber and biodegradable resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226492A (en) * 2000-02-16 2001-08-21 Mitsubishi Pencil Co Ltd Resin molded product
JP2020050855A (en) * 2018-09-20 2020-04-02 アイ‐コンポロジー株式会社 Biodegradable resin composition, master batch, and molded body thereof
JP2021021041A (en) * 2019-07-30 2021-02-18 Gsアライアンス株式会社 Biodegradable composite material containing cellulose nanofiber and biodegradable resin

Also Published As

Publication number Publication date
JP7223385B2 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
Coppola et al. Bioplastic from renewable biomass: a facile solution for a greener environment
US8513329B2 (en) Chemical additives to make polymeric materials biodegradable
CN104718247B (en) Biodegradable composition, method and application thereof
Ramadhan et al. The potential of food waste as bioplastic material to promote environmental sustainability: A review
George et al. Biowaste to bioplastics: An ecofriendly approach for a sustainable future
CN107586441B (en) Wine lees-based composite material and process for preparing 3D printing wire by using same
CN1389517A (en) Plant fiber material product capable of being biodegraded completely and its making process
CN109485998A (en) A kind of composite plastic of novel degradable and preparation method thereof
Fink The chemistry of bio-based polymers
CN101240114A (en) Composition of environmental protection plastic products and manufacturing method
JP7223385B2 (en) Resin product biodegradation accelerator
KR102300547B1 (en) Biodegradable Plastic Composite using Livestock Organic Resource and Manufacturing Method thereof
CN106084312A (en) A kind of disposable tableware degradation plastic
CN111560159A (en) Bamboo powder poly (butylene succinate) starch biodegradable plastic and preparation method thereof
KR100636825B1 (en) The biodegradable polymer containing mineral materials
JP2008201860A (en) Method for recycling and recovering food waste, sludge and waste fluid
Womer et al. Hybridizations and reinforcements in mycelium composites: A review
Gao et al. Biodegradability of PLA and Tea Waste Composites Based on “CHAMU” and the “Tea Waste Recycling System”
KR20030012511A (en) A method of manufacturing plastic goods including charcoal and goods thereof
CN103665446A (en) Biodegradable plastic preparation method
Swain et al. Production of eco-friendly plastics and bioplastics from crustacean shells and their environmental applications
KR20230087229A (en) disposable cup
JP2003205950A (en) Packaging bag made of plastic film and packaging bag made of composite material
CN206917136U (en) A kind of Degradable environment protection wallpaper
CN106565998A (en) Cassava starch degradable film and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220617

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230129

R150 Certificate of patent or registration of utility model

Ref document number: 7223385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150