JP2022149083A - Truck for railway vehicle - Google Patents

Truck for railway vehicle Download PDF

Info

Publication number
JP2022149083A
JP2022149083A JP2021051055A JP2021051055A JP2022149083A JP 2022149083 A JP2022149083 A JP 2022149083A JP 2021051055 A JP2021051055 A JP 2021051055A JP 2021051055 A JP2021051055 A JP 2021051055A JP 2022149083 A JP2022149083 A JP 2022149083A
Authority
JP
Japan
Prior art keywords
wheel
bogie
vehicle
wheels
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021051055A
Other languages
Japanese (ja)
Inventor
正隆 干鯛
Masataka Hidai
憲次郎 合田
Kenjiro Aida
隆夫 渡邊
Takao Watanabe
一雄 亀川
Kazuo Kamekawa
信吾 井上
Shingo Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021051055A priority Critical patent/JP2022149083A/en
Publication of JP2022149083A publication Critical patent/JP2022149083A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a truck for a railway vehicle capable of reducing a lateral pressure during curve passage, without adding a new unit.SOLUTION: A truck for a railway vehicle is pivotally supported to a vehicle body so as to freely turn according to a bogie angle, and serves as a bogie truck that supports the vehicle body in a cross direction, the bogie truck is configured so that: a plurality of wheel shafts for pivotally supporting wheels rolled on a rail to a bogie truck for suspending the bogie truck is distinguished at an arrangement position to a travel direction, and in a vehicle end side wheel shaft separated from a center of the vehicle body and other wheel shafts, and wheels pivotally supported by the respective wheel shafts, there is a difference, as the difference, on the vehicle end side wheel shaft, a rotation radius difference of left and right wheels on internal and external locus of the curve can be greater. A shape of the wheel pivotally supported by the vehicle end side wheel shaft is configured so that, to both wheels pivotally supported by other wheel shafts, a position where a curvature varies from a tread part to a flange part in a cross section of the wheel, is arranged close to a track center side by a prescribed distance.SELECTED DRAWING: Figure 6

Description

本発明は、鉄道車両用台車に関する。 The present invention relates to a bogie for railway vehicles.

一般的な鉄道車両用台車は、車軸の両端部に、勾配の付いた踏面部(wheel tread)、レールからの逸脱を防止するためのフランジ部(wheel flange)を有する車輪が固定された輪軸と、輪軸を回転自由に保持する軸箱体と、台車枠から構成されたボギー台車である。 A typical railway vehicle bogie has a wheelset with a wheel tread with a slope at both ends of the axle and a wheel flange to prevent deviation from the rail. , a bogie bogie composed of a bogie frame and an axle box body that holds a wheelset so that it can rotate freely.

ボギー台車に限らず、車輪踏面部の形状(以下、「車輪踏面形状」と呼ぶ)によって、曲線通過時に車輪とレールとの間で発生する接触力の大きさが変わるので、車輪踏面形状が、横圧の大きさに影響を及ぼすことが知られている。したがって、曲線通過時の横圧の低減を図って、様々に検討された車輪踏面形状が知られている(例えば、特許文献1)。 Not limited to bogies, the shape of the wheel tread (hereinafter referred to as "wheel tread shape") changes the amount of contact force generated between the wheel and the rail when passing a curve. It is known to affect the magnitude of lateral force. Therefore, various wheel tread shapes are known to reduce the lateral force when a vehicle passes through a curve (for example, Patent Literature 1).

特開2012-206708号公報Japanese Unexamined Patent Application Publication No. 2012-206708

特許文献1で記載された車輪踏面形状では、車輪のフランジの車輪幅方向反対側の部分に、車輪研磨装置により微小凹凸を形成した構成となっている。これにより、曲線通過時に、曲線内軌側のレールでは、上述の車輪踏面形状の微小凹凸部が接触することで、車輪とレールとの間で発生する接触力を小さくし、その結果として、曲線外軌側のレールで発生する横圧を小さくする効果が得られる発明である。 In the wheel tread shape described in Patent Literature 1, minute unevenness is formed by a wheel polishing machine on a portion of the wheel flange on the opposite side in the wheel width direction. As a result, when passing through a curve, on the rail on the inner rail side of the curve, the minute unevenness of the wheel tread shape comes into contact with the above-mentioned fine unevenness of the wheel tread, reducing the contact force generated between the wheel and the rail. This invention provides the effect of reducing the lateral force generated on the rail on the outer rail side.

しかし、特許文献1の構成では、横圧を低減したい対象台車の全てに、車輪研磨装置を搭載する負担が生じる。このような負担を軽減してなお、曲線通過時の横圧を低減し、対脱線安全性能の向上を可能とする、鉄道車両用台車が求められている。本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、新たな装置の追加なしに、曲線通過時の横圧を低減できる鉄道車両用台車を提供することにある。 However, in the configuration of Patent Literature 1, there is a burden of mounting the wheel polishing device on all the target trucks whose lateral force is to be reduced. There is a demand for a railway vehicle bogie that can reduce such a burden and still reduce the lateral force when passing through a curve, thereby improving the safety performance against derailment. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a bogie for railway vehicles that can reduce the lateral force when passing through a curve without adding a new device.

上記課題を解決する本発明は、車体に対し、ボギー角度に応じて旋回自在に軸支されるとともに、車体を前後で支承するボギー台車としての鉄道車両用台車であって、レール上で転動する車輪をボギー台車に軸支してボギー台車を懸架する複数の輪軸は、進行方向に対する配設位置で区別され、区別された車体の中央から遠い車端側輪軸と、それ以外の輪軸と、それぞれの輪軸により軸支された車輪の形状に相違点を有し、相違点として、車端側輪軸の方が、曲線の内外軌における左右車輪の回転半径差をより大きく確保できる形状にした。 The present invention, which solves the above problems, is a bogie for a railway vehicle that is pivotally supported on a vehicle body so as to be rotatable according to the bogie angle, and supports the vehicle body in the front and rear, the bogie being a bogie that rolls on rails. A plurality of wheel sets for suspending the bogie by pivotally supporting the wheels on the bogie are distinguished by their arrangement positions with respect to the direction of travel. There is a difference in the shape of the wheels pivotally supported by each wheel set, and the difference is that the wheel set on the end side has a shape that can ensure a larger difference in the turning radius between the left and right wheels on the inner and outer rails of the curve.

本発明によれば、新たな装置の追加なしに、曲線通過時の横圧を低減できる鉄道車両用台車を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the bogie for rail vehicles which can reduce the lateral force at the time of curve passage can be provided, without adding a new apparatus.

本発明の実施例1に係る鉄道車両用台車を説明するため、車体断面図も含めた側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view including a cross-sectional view of a vehicle body for explaining a railroad vehicle bogie according to a first embodiment of the present invention; 図1の車体の断面図(図1A-A断面)と、その車体の上から透視した鉄道車両用台車の平面図である。FIG. 1 is a cross-sectional view of the car body of FIG. 1 (cross section of FIG. 1A-A), and a plan view of the bogie for railway vehicles seen through from above the car body. 図2の車輪の断面図(図2B視点)であり、車輪踏面形状別の曲率変化点の位置を説明するための図である。FIG. 2B is a cross-sectional view of the wheel of FIG. 2 (viewpoint of FIG. 2B) for explaining the positions of curvature change points for different wheel tread shapes. 急曲線軌道を走行中の比較例の台車挙動の模式平面図である。FIG. 5 is a schematic plan view of the behavior of the bogie of the comparative example while traveling on a sharply curved track; 図1の台車が、急曲線軌道を走行した際の台車挙動の模式平面図である。FIG. 2 is a schematic plan view of the bogie behavior when the bogie of FIG. 1 runs on a sharply curved track; 実施例2に係る台車における車端側輪軸と車両中央側輪軸の車輪断面形状を重ねた断面図である。FIG. 11 is a cross-sectional view in which the wheel cross-sectional shapes of the vehicle end side wheel set and the vehicle center side wheel set in the bogie according to the second embodiment are superimposed. 実施例3に係る台車における車端側輪軸と車両中央側輪軸の車輪断面形状を重ねた断面図である。FIG. 11 is a cross-sectional view in which the wheel cross-sectional shapes of the vehicle end side wheel set and the vehicle center side wheel set in the bogie according to the third embodiment are superimposed.

実施例1は図1~図3及び図5を用いて説明する。実施例2は図6を用いて説明する。実施例3は図7を用いて説明する。実施例4は図面を用いずに説明する。比較例は図4を用いて説明する。 Embodiment 1 will be described with reference to FIGS. 1 to 3 and 5. FIG. A second embodiment will be described with reference to FIG. Example 3 will be described with reference to FIG. Example 4 will be described without using drawings. A comparative example will be described with reference to FIG.

まず、実施例1から説明する。図1は、本発明の実施例1に係る鉄道車両用台車(以下、「本台車」又は単に「台車」ともいう)16を説明するため、車体断面図も含めた側面図である。本発明が適用対象とする図1の鉄道車両は、車体1、台車16を有する。車体1と台車枠3の間は、空気ばね30、不図示の牽引装置、及びヨーダンパ等により弾性支持されている。 First, Example 1 will be described. Embodiment 1 FIG. 1 is a side view including a cross-sectional view of a vehicle body for explaining a railroad vehicle bogie (hereinafter also referred to as "main bogie" or simply "bogie") 16 according to Embodiment 1 of the present invention. The railway vehicle shown in FIG. 1 to which the present invention is applied has a vehicle body 1 and a bogie 16 . The space between the vehicle body 1 and the bogie frame 3 is elastically supported by an air spring 30, a traction device (not shown), a yaw damper, and the like.

台車16は、台車枠3、軸箱体2、軸箱支持装置6、車端側輪軸4、車両中央側輪軸5で主に構成される。ここで、一方の車両中央側輪軸5は、通常の輪軸である。この車両中央側輪軸5のほか、図4に示す前後両方ともに通常形状の輪軸5を、これ以降は輪軸5と略称する。他方の車端側輪軸4は、一方の輪軸5に対して車輪断面形状が異なり、本発明の特徴を有する輪軸である。これ以降、この車端側輪軸4を輪軸4と略称する。 The bogie 16 is mainly composed of a bogie frame 3 , an axle box body 2 , an axle box support device 6 , a vehicle end side wheel set 4 and a vehicle center side wheel set 5 . Here, one vehicle center side wheel set 5 is a normal wheel set. In addition to this vehicle center side wheel set 5, the wheel set 5 having a normal shape on both front and rear sides shown in FIG. The other wheel set 4 is a wheel set having a wheel cross-sectional shape different from that of the one wheel set 5 and having the characteristics of the present invention. Hereinafter, the vehicle end side wheel set 4 will be abbreviated as the wheel set 4 .

台車16において、輪軸4と輪軸5は、それぞれ軸箱体2に対して回転可能に保持されており、その軸箱体2と台車枠3との間は、軸箱支持装置6により弾性支持されている。軸箱支持装置6には、様々な方式があるが、本発明においては、いずれの方式であっても良い。車体1に具備されるもう片方の台車16は、車体1の反対側の車端側に、輪軸4が配置される向きで配置される。 In the bogie 16, the wheelset 4 and the wheelset 5 are rotatably held with respect to the axle box body 2, and are elastically supported by the axle box support device 6 between the axle box body 2 and the bogie frame 3. ing. There are various methods for the axle box support device 6, and any method may be used in the present invention. The other bogie 16 provided on the vehicle body 1 is arranged on the opposite vehicle end side of the vehicle body 1 in the direction in which the wheelset 4 is arranged.

また、1両の鉄道車両は、それを構成する1つの車体1その前後に1台ずつ配設された1対の台車16で支承され、それぞれの台車16には2軸以上の輪軸2が枕木方向に軸支されている。なお、各実施例において、一車両には合計4本の輪軸2が具備され、1つの台車16に、2本の輪軸2が軸支されたものを一般例として示すが、1つの台車16に、3軸以上の輪軸2が軸支されたものにも本発明は適用できる。 A single railway car is supported by a pair of bogies 16 arranged one each on the front and rear sides of the car body 1 that constitutes the car. directionally pivoted. In each embodiment, one vehicle is provided with a total of four wheel sets 2, and one truck 16 is shown as a general example in which two wheel sets 2 are pivotally supported. , three or more wheelsets 2 are also supported.

図2は、図1の車体の断面図(図1A-A断面)と、その車体を上から透過して視認した台車の平面図である。図2において、輪軸4、及び輪軸5は、台車枠3に対し、軸箱支持装置6(図1)により弾性的に軸支されている。図1、及び図2に示すように、台車枠3において、輪軸4は車端側に、輪軸5は車端側と反対側の位置に、軸支されている。 FIG. 2 is a cross-sectional view of the car body of FIG. 1 (cross section of FIG. 1A-A) and a plan view of the bogie seen through the car body from above. In FIG. 2, the wheelset 4 and the wheelset 5 are elastically supported on the bogie frame 3 by the axle box support device 6 (FIG. 1). As shown in FIGS. 1 and 2, in the bogie frame 3, the wheel set 4 is supported on the car end side, and the wheel set 5 is supported on the opposite side of the car end side.

台車枠3は、台車中心部付近で、車体1に固定された中心ピンと、牽引装置で連結されている(不図示)。牽引装置の両端部は、紙面に鉛直方向の軸周りに対し、剛性の低いゴムブッシュなどの弾性体で連結されている。これにより、車両が曲線通過時には、台車中心部付近を旋回中心として、台車16が車体1に対して、紙面に鉛直方向の軸回りに旋回可能な構成となっている。 The bogie frame 3 is connected to a center pin fixed to the vehicle body 1 by a traction device near the center of the bogie (not shown). Both ends of the traction device are connected by an elastic member such as a rubber bush having low rigidity about the axis in the vertical direction to the paper surface. As a result, when the vehicle passes through a curved line, the bogie 16 can turn about the axis in the vertical direction to the plane of the drawing with the center of the bogie as the turning center.

図3は、図2の車輪の断面図(図2B視点)であり、車輪踏面形状別の曲率変化点の位置を説明するための図である。図3において、台車に具備された2つの種別の輪軸4と輪軸5と、それぞれの車輪踏面形状を、図2のB地点からの視点で重ねて示す。輪軸4の輪軸5と、それぞれの車輪踏面形状において、輪軸4の車輪踏面形状では、踏面部からフランジ部位置へと曲率が変化する位置が、軌道中心を基準として、輪軸5と比べて、軌道中心側に寄り付いた位置である構成となっている。 FIG. 3 is a cross-sectional view (viewpoint of FIG. 2B) of the wheel in FIG. 2, and is a diagram for explaining the positions of curvature change points for different wheel tread shapes. In FIG. 3, two types of wheelset 4 and wheelset 5 provided on the bogie and their respective wheel tread shapes are shown superimposed from the viewpoint from point B in FIG. In the wheel tread shape of the wheelset 4, the position where the curvature changes from the tread portion to the flange portion position is closer to the track than the wheel set 5 with respect to the track center. It is configured to be positioned close to the center side.

なお、図3に示す車輪踏面形状は、フランジ外側面距離(half distance between the outside surfaces of wheel flanges)に関連する。フランジ外側面距離は、車輪一対の中心線から、車輪踏面の基準点から10~13mm下方位置までの水平距離が定義されている。このフランジ外側面距離は、走行安定性に影響するフランジ遊間を決定する重要な値であり、最大値と最小値が規定されている(第2版鉄道技術用語辞典)。したがって、規定の最大値と最小値の範囲内で適宜に設定可能である。 It should be noted that the wheel tread shape shown in FIG. 3 is related to the half distance between the outside surfaces of wheel flanges. The flange outer side distance is defined as the horizontal distance from the center line of a pair of wheels to a position 10 to 13 mm below the reference point of the wheel tread. This flange outer side distance is an important value that determines the flange clearance that affects running stability, and the maximum and minimum values are specified (Railway Technical Glossary, 2nd Edition). Therefore, it can be appropriately set within the prescribed maximum and minimum values.

すなわち、輪軸4では輪軸5と比べて、車輪フランジ部の枕木方向の厚みが薄く、車輪フランジ部がレール7と接触するまでにおいて、輪軸4が枕木方向の変位量をより大きく確保できる構成となっている。換言すると、本台車16が曲線通過時にフランジ接触を起こさずに円滑な通過を実現するためには、輪軸4の左右(軸方向)変位の許容範囲を広げるように、フランジ遊間を大きくした。 That is, in the wheelset 4, the thickness of the wheel flange portion in the sleeper direction is thinner than that of the wheelset 5, so that the wheelset 4 can secure a larger amount of displacement in the sleeper direction until the wheel flange portion comes into contact with the rail 7. ing. In other words, in order for the bogie 16 to smoothly pass through a curved line without contacting the flanges, the clearance between the flanges is increased so as to widen the allowable range of lateral (axial) displacement of the wheelset 4.

さらに換言すると、複数の輪軸4,5のうち、車端側の輪軸4により軸支された両輪の軌間設定を、正規の軌間(ゲージ;Gauge)に対応付けられた寸法よりも実質広げたことにより、曲率の大きい(曲線半径の小さい)曲線(以下、「急曲線」ともいう)区間における転舵動作をスムーズにした。なお、車体1に具備されたもう片方の台車16においても、車端側に輪軸4を、車端側と反対側に輪軸5が具備された構成となっている。これにより、車両がどちらの方向に走行しても、輪軸4が、曲線にはじめに進入する輪軸となる車両の構成になっている。 Furthermore, in other words, the gauge setting of both wheels supported by the wheel set 4 on the vehicle end side among the plurality of wheel sets 4, 5 is substantially wider than the dimension corresponding to the regular gauge. Thus, the steering operation in a section with a large curvature (a small curve radius) (hereinafter also referred to as a "sharp curve") is smoothed. The other bogie 16 provided on the vehicle body 1 is also provided with a wheelset 4 on the vehicle end side and a wheelset 5 on the side opposite to the vehicle end side. As a result, no matter which direction the vehicle travels, the wheelset 4 is the first wheelset to enter the curve.

つぎに、図4に示す比較例の台車と、図5に示す本発明の特徴を備えた台車16と、を対比する。ここで、図4の比較例と、図5の本台車16と、それぞれの台車が、横圧を低減させながら急曲線通過する動作原理を説明する。図4は、急曲線軌道を走行中の比較例の台車挙動の模式平面図である。 Next, the truck of the comparative example shown in FIG. 4 and the truck 16 having the characteristics of the present invention shown in FIG. 5 will be compared. Here, the operation principle of the comparative example shown in FIG. 4 and the main truck 16 shown in FIG. 5 and each truck passing through a sharp curve while reducing the lateral force will be described. FIG. 4 is a schematic plan view of the bogie behavior of the comparative example while traveling on a sharply curved track.

比較例の台車とは、輪軸5の種類と同じに揃えた2本の輪軸5のみを具備した台車であり、本発明の特徴を備えていない。換言すると、図4の比較例は、図1の本台車16に対し、輪軸4を輪軸5に置き換えたものである。なお、輪軸5は、上述のように、図1の台車16において車両中央側のみに配設された普通のものである。 The truck of the comparative example is a truck having only two wheel sets 5 of the same type as the wheel sets 5, and does not have the characteristics of the present invention. In other words, the comparative example of FIG. 4 is obtained by replacing the wheelset 4 with the wheelset 5 in the main bogie 16 of FIG. As described above, the wheelset 5 is an ordinary one provided only on the center side of the vehicle in the bogie 16 of FIG.

図4に示した比較例の台車では、以下(1)~(3)に示す動作原理によって、横圧が発生する。以降、純粋転がり線9とは、勾配の付いた車輪踏面をもつ輪軸が、曲線を滑らずに転走できる中立線を意味する。この純粋転がり線9に対して、輪軸が枕木方向のどちらかに寄ると、車輪とレール7との間で前後方向の滑りが発生し、内側軌道と外側軌道と(以下、「内外軌」という)、それぞれを転走する両輪の間で、逆向きに前後方向のクリープ力(creep force)が作用する。 In the truck of the comparative example shown in FIG. 4, a lateral force is generated according to the operating principles (1) to (3) below. Hereinafter, the pure rolling line 9 means a neutral line along which a wheel set with a sloped wheel tread can roll without slipping on a curved line. If the wheelset deviates in either direction of the sleeper with respect to this pure rolling line 9, slippage occurs between the wheels and the rails 7 in the longitudinal direction, causing the inner and outer raceways (hereinafter referred to as "inner and outer rails"). ), a creep force in the longitudinal direction acts in opposite directions between the two wheels rolling on each other.

(1)曲線にはじめに進入する、進行方向の前側に位置する輪軸5は、内外軌の車輪の回転半径差を得るために、曲線外軌側レール7に寄れる所まで変位する。輪軸5の重心位置が、曲線の純粋転がり線9よりも、曲線外軌側に位置する。 (1) The wheelset 5, which is positioned on the front side in the direction of travel and enters the curve first, is displaced to the point where it can come close to the rail 7 on the outside of the curve in order to obtain the difference in the turning radii of the wheels on the inside and outside. The center-of-gravity position of the wheelset 5 is located on the outer rail side of the curve rather than the pure rolling line 9 of the curve.

これにより、曲線外軌側の車輪では駆動の向きに、内軌側の車輪では制動の向きに、車輪とレール7との間の前後方向のクリープ力(黒矢印)が作用する。これら内外軌において、逆向きに生じた前後方向のクリープ力により、台車全体の操舵を助長する時計回りの向きにモーメントが生じる。 As a result, a longitudinal creep force (black arrow) between the wheel and the rail 7 acts on the wheel on the outer rail side of the curve in the driving direction, and on the wheel on the inner rail side in the braking direction. On these inner and outer rails, the longitudinal creep forces induced in opposite directions create a moment in a clockwise direction that assists steering of the entire bogie.

(2)進行方向の前側に位置する輪軸5が、曲線の接線方向に沿えずに直進する向きとなるので、台車全体の姿勢も同様に、曲線の接線方向に対して角度をもつ。これにより、進行方向の後側に位置する輪軸5では、その重心位置が、曲線の純粋転がり線9よりも、曲線内軌側に位置する。 (2) Since the wheelset 5 located on the front side of the traveling direction is oriented to go straight instead of along the tangential direction of the curve, the attitude of the whole truck also has an angle with respect to the tangential direction of the curve. As a result, the center of gravity of the wheel set 5 positioned on the rear side in the traveling direction is positioned on the inner raceway side of the curve with respect to the pure rolling line 9 of the curve.

これにより、曲線外軌側の車輪では制動の向きに、内軌側の車輪では駆動の向きに、車輪とレール7との間の前後方向のクリープ力(黒矢印)が作用する。これら内外軌において、逆向きに生じた前後方向のクリープ力により、台車全体の操舵を妨げる反時計回りの向きにモーメントが生じる。 As a result, a longitudinal creep force (black arrow) between the wheel and the rail 7 acts in the direction of braking for the wheels on the outer rail side of the curve and in the direction of driving for the wheels on the inner rail side of the curve. On these inner and outer rails, creep forces in the fore-and-aft directions, which are generated in opposite directions, generate a moment in the counterclockwise direction that hinders the steering of the entire bogie.

(3)以上より、進行方向の前側に位置する輪軸5では、操舵を助長する向きのモーメントが生じる。しかし、進行方向の後側に位置する輪軸5では、操舵を妨げる向きのモーメントが生じる。操舵を妨げる向きのモーメントと対抗するために、進行方向の前側に位置する輪軸5では、車輪フランジ部とレール7の接触位置で、レール7を枕木方向の外側に押す力である横圧が発生する。 (3) As described above, the wheel set 5 located on the front side in the direction of travel generates a moment in the direction of assisting the steering. However, at the wheelset 5 located on the rear side in the direction of travel, a moment is generated in the direction that hinders steering. In order to counteract the moment that hinders steering, the wheelset 5 located on the front side in the direction of travel generates a lateral force, which is a force that pushes the rail 7 outward in the sleeper direction, at the contact point between the wheel flange portion and the rail 7. do.

その横圧の反作用の力、(灰色矢印、これも「横圧8」という)で、台車全体の操舵を助長する時計回りの向きのモーメントが作用する。以上のように、台車全体の操舵を妨げる向きのモーメントと対抗するために、進行方向の前側に位置する輪軸5の曲線外軌側で、横圧8が発生する。 The counteracting force of the lateral force (gray arrow, also referred to as "lateral force 8") acts as a clockwise moment that assists the steering of the entire bogie. As described above, a lateral force 8 is generated on the curved outer track side of the wheelset 5 located on the front side in the direction of travel in order to counteract the moment that hinders the steering of the entire bogie.

図5は、図1の台車16が、急曲線軌道を走行した際の台車挙動の模式平面図である。すなわち、図5は、図1の台車16が、急曲線を通過する際の車輪とレール7との間で生じる接触力の模式図を示す。図5の台車は、以下(4)~(6)に示す動作原理により、図4に示した比較例の台車と比べて、進行方向の前側に位置する輪軸4の曲線外軌側で発生する横圧を低減できる。 FIG. 5 is a schematic plan view of the bogie behavior when the bogie 16 of FIG. 1 runs on a sharply curved track. That is, FIG. 5 shows a schematic diagram of the contact force generated between the wheels and the rails 7 when the bogie 16 of FIG. 1 passes through a sharp curve. In the bogie of FIG. 5, due to the operating principles shown in (4) to (6) below, compared to the bogie of the comparative example shown in FIG. Lateral pressure can be reduced.

(4)曲線にはじめに進入する、進行方向の前側に位置する輪軸4は、左右車輪の回転半径差を得るために、曲線外軌側レール7に寄れる所まで変位する。輪軸4は、図3で述べた通りに、フランジ厚さ(thickness of flange)を薄くしてフランジ遊間を広げているのでフランジ接触に至るまでの輪軸4の枕木方向への移動量が大きく、輪軸4の重心位置が、比較例の台車と比べて、曲線の純粋転がり線9に対して、曲線外軌側に寄る量を大きくできる。 (4) The wheel set 4 positioned on the front side in the direction of travel, which enters the curve first, is displaced to the point where it can approach the rail 7 on the outside of the curve in order to obtain the difference in the turning radius between the left and right wheels. As described in FIG. 3, the wheelset 4 has a thin thickness of flange and widens the flange clearance, so the amount of movement of the wheelset 4 in the direction of the sleeper until it comes into contact with the flange is large. The position of the center of gravity of 4 can increase the amount of deviation to the outer track side of the curve with respect to the pure rolling line 9 of the curve, compared to the bogie of the comparative example.

これにより、車輪とレール7との間の前後方向の滑り量も大きくなるので、曲線外軌側の車輪で駆動の向き、内軌側の車輪で制動の向きに作用する前後方向のクリープ力(黒矢印)が、図4の比較例の台車と比べて大きくできる。これにより、台車全体の操舵を助長する時計回りの向きのモーメントを大きくできる。 As a result, the amount of slip in the longitudinal direction between the wheels and the rail 7 also increases, so the longitudinal creep force ( black arrow) can be made larger than the truck of the comparative example in FIG. As a result, the clockwise moment that assists the steering of the entire bogie can be increased.

(5)進行方向の前側に位置する輪軸4が、曲線外軌側に多く変位することで、台車全体の姿勢についても、曲線外軌側に多く変位することとなり、進行方向の後ろ側に位置する輪軸5の重心位置が、比較例の台車と比べて、純粋転がり線9よりも、曲線内軌側に寄る量を小さくできる。 (5) Since the wheelset 4 located on the front side in the direction of travel is displaced more to the outside of the curved rail, the posture of the entire bogie also displaces more to the outer side of the curve, and the wheel set is positioned on the rear side of the direction of travel. The position of the center of gravity of the wheelset 5 can be made smaller than the pure rolling line 9 by shifting to the inner rail side of the curve as compared with the bogie of the comparative example.

これにより、曲線外軌側の車輪で制動の向き、内軌側の車輪で駆動の向きに作用する前後方向のクリープ力(黒矢印)を、図4の比較例の台車と比べて小さくできる。これにより、台車全体の操舵を妨げる反時計回りの向きのモーメントを小さくできる。 As a result, the longitudinal creep forces (black arrows) acting in the direction of braking for the wheels on the outer rail side of the curve and in the direction of driving for the wheels on the inner rail side of the curve can be reduced compared to the bogie of the comparative example in FIG. As a result, the counterclockwise moment that hinders the steering of the entire bogie can be reduced.

(6)以上より、本発明の台車では、進行方向の前側に位置する輪軸4では操舵を助長する向きのモーメントを大きく、かつ、進行方向の後側に位置する輪軸5では操舵を妨げる向きのモーメントを小さくできる。 (6) As described above, in the bogie of the present invention, the wheelset 4 located on the front side in the direction of travel has a large moment in the direction that promotes steering, and the wheelset 5 located on the rear side in the direction of travel has a moment in the direction that hinders steering. Moment can be reduced.

これにより、輪軸4のフランジ部の接触位置で発生する横圧によって、操舵を助長するのに必要なモーメント量を小さくできる。従って、進行方向の前側に位置する輪軸4の曲線外軌側で発生する横圧8を小さくできる。これにより、車両の対脱線安全性能の向上、きしり音の低減、軌道保守費用の低減につなげることができる。 As a result, the lateral force generated at the contact position of the flange portion of the wheelset 4 can reduce the amount of moment required to assist steering. Therefore, it is possible to reduce the lateral force 8 generated on the outer track side of the curve of the wheel set 4 located on the front side in the traveling direction. As a result, it is possible to improve the safety performance against derailment of rolling stock, reduce squeak noise, and reduce track maintenance costs.

つぎに、直線走行時の車両運動特性への影響について述べる。直線走行時には、フランジ遊間において、車輪とレール7の中立接触位置の近傍で接触しながら走行する。図3に示したように、輪軸4と輪軸5とレール7は、中立接触状態の近傍では、同じ踏面形状の範囲で接触する。 Next, the influence on vehicle motion characteristics during straight running will be described. During straight running, the vehicle travels while contacting near the neutral contact position between the wheel and the rail 7 in the gap between the flanges. As shown in FIG. 3, the wheelset 4, the wheelset 5 and the rail 7 are in contact with each other within the same tread surface shape in the vicinity of the neutral contact state.

従って、本発明の台車では、直線走行時において、比較例の台車の運動特性を維持できる。万が一、輪軸がフランジ遊間を超える間際まで大きく枕木方向に振動する蛇行動が増幅した場合にも、輪軸5とレール7とのフランジ隙間量は、比較例の台車と同じなので、レール7からの逸脱防止の機能も、比較例の台車と同レベルで維持される。 Therefore, the bogie of the present invention can maintain the motion characteristics of the bogie of the comparative example during straight running. Even in the unlikely event that the meandering action in which the wheelset vibrates in the direction of the sleeper is amplified until just before the wheelset exceeds the flange clearance, the flange clearance amount between the wheelset 5 and the rail 7 is the same as that of the bogie of the comparative example. The protection function is also maintained at the same level as the truck of the comparative example.

図6は、実施例2に係る台車における車端側輪軸と車両中央側輪軸の車輪断面形状を重ねた断面図である。実施例2の台車は、図3に示した実施例1の車端側輪軸4と車両中央側輪軸5との区別を実現するための別形態であるが、実施例2でも実施例1と同様に、車端側輪軸4を輪軸4と称し、車両中央側輪軸5は輪軸5と称す。 FIG. 6 is a cross-sectional view in which the wheel cross-sectional shapes of the vehicle end side wheel set and the vehicle center side wheel set in the bogie according to the second embodiment are superimposed. The bogie of Example 2 is a different form for realizing the distinction between the vehicle end side wheel set 4 and the vehicle center side wheel set 5 of Example 1 shown in FIG. In addition, the vehicle end side wheel set 4 is referred to as the wheel set 4, and the vehicle center side wheel set 5 is referred to as the wheel set 5. As shown in FIG.

図6に示すように、実施例2の台車は、車端側の輪軸4と、車端側と反対側の輪軸5の車輪踏面形状は同じで、輪軸4のフランジ背面間の距離34が、輪軸5のフランジ背面間の距離35と比べて狭い構成となっている。 As shown in FIG. 6, in the bogie of Example 2, the wheel tread shape of the wheelset 4 on the vehicle end side and the wheelset 5 on the opposite side to the vehicle end side are the same, and the distance 34 between the flange back surfaces of the wheelset 4 is The configuration is narrower than the distance 35 between the flange back surfaces of the wheelset 5 .

これにより、実施例2の台車において、輪軸4では、曲線通過時の外軌側レール7に寄れるまでの変位量が、輪軸5よりも大きくできる。従って、実施例1の図4で述べたことと同様の動作原理で、急曲線で進行方向の前側に位置する輪軸4の曲線外軌側で発生する横圧を小さくできる。 As a result, in the bogie of the second embodiment, the wheel set 4 can be displaced more than the wheel set 5 until it can come close to the outer rail side rail 7 when passing through a curve. Therefore, with the same principle of operation as described in FIG. 4 of the first embodiment, the lateral force generated on the outer track side of the curve of the wheel set 4 located on the front side in the direction of travel in a sharp curve can be reduced.

車輪内面距離に対し、両輪それぞれの車輪幅を足して形成された踏面の最外端36、すなわち、輪軸4の軌道中心から最遠の部位36については、図6紙面における最左側まで輪軸4が移動し得る条件であっても、レール7からの脱落を防止するために、必要に応じて車輪幅を幅方向に厚くしても良い。 The outermost end 36 of the tread formed by adding the wheel width of each wheel to the wheel inner surface distance, that is, the farthest portion 36 from the center of the track of the wheelset 4, the wheelset 4 extends to the leftmost side in FIG. In order to prevent falling off the rails 7 even under conditions where movement is possible, the width of the wheels may be increased in the width direction as necessary.

図7は、実施例3に係る台車における車端側輪軸と車両中央側輪軸の車輪断面形状を重ねた断面図である。実施例3の台車は、図3の実施例1のほか、図6の実施例2にも示した、車端輪軸4と車両中央側輪軸5の別形態であるが、この実施例3でも実施例1,2と同様に、車端側輪軸4を輪軸4と称し、車両中央側輪軸5は輪軸5と称す。図7に示すように、実施例3の台車は、車端側の輪軸4と、車端側と反対側の輪軸5の車輪踏面形状で、輪軸4で軸支された車輪の踏面勾配(tread gradient)が、輪軸5で軸支された車輪の踏面勾配と比べて大きい構成となっている。 FIG. 7 is a cross-sectional view in which the wheel cross-sectional shapes of the vehicle end side wheel set and the vehicle center side wheel set in the bogie according to the third embodiment are superimposed. The bogie of Example 3 is a different form of the wheel axles 4 at the vehicle center side and the wheel axles 5 on the center side of the vehicle shown in Example 2 of FIG. 6 in addition to Example 1 of FIG. As in Examples 1 and 2, the vehicle end side wheel set 4 is referred to as wheel set 4, and the vehicle center side wheel set 5 is referred to as wheel set 5. As shown in FIG. 7, the bogie of Example 3 has a wheel tread shape of a wheelset 4 on the vehicle end side and a wheelset 5 on the opposite side from the vehicle end side, and the tread slope of the wheel supported by the wheelset 4 is tread. gradient) is greater than the tread gradient of the wheel supported by the wheelset 5 .

図7に示す実施例3の台車は、曲線にはじめに進入する輪軸4で、車輪踏面勾配が輪軸5と比べて大きいため、曲線の内外軌における左右車輪の回転半径差をより大きく確保できる。これはすなわち、車輪とレール7との間の前後方向の滑り量も大きくでき、曲線外軌側の車輪での駆動の向き、内軌側の車輪での制動の向きに作用する前後方向のクリープ力を大きくでき、台車全体の操舵を助長する向きのモーメントを大きくできる。これにより、進行方向の前側に位置する輪軸4の曲線外軌側で発生する横圧を小さくできる。 In the bogie of Embodiment 3 shown in FIG. 7, the wheel set 4, which enters the curve first, has a larger wheel tread slope than the wheel set 5, so a larger difference in turning radius between the left and right wheels can be ensured on the inner and outer rails of the curve. This means that the amount of slip in the longitudinal direction between the wheels and the rails 7 can be increased, and longitudinal creep acting on the driving direction of the wheels on the outer rail side of the curve and the braking direction of the wheels on the inner rail side of the curve. The force can be increased, and the moment in the direction that promotes the steering of the entire bogie can be increased. As a result, the lateral force generated on the curved outer track side of the wheel set 4 located on the front side in the traveling direction can be reduced.

実施例4の台車は、車端側の輪軸4と、車端側と反対側の輪軸5で車輪踏面形状は同じとし、輪軸4には、フランジ背面間距離を可変、任意の寸法で固定できる機構を設けた構成とする。 In the bogie of Embodiment 4, the wheel tread shape is the same for the wheelset 4 on the vehicle end side and the wheelset 5 on the opposite side to the vehicle end side, and the distance between the flange back surfaces can be changed and fixed to any dimension on the wheelset 4. It is configured with a mechanism.

これにより、実施例2と同じ寸法関係とした場合、実施例2と同じ効果が得られる。走行区間によって、曲線半径が異なるような場合、曲線半径に応じて最適なフランジ背面間距離に設定をすることで、特定の曲線半径のみならず、多くの曲線で横圧を小さくできる。これにより、軌道保守費用を低減できる可能性がある。 As a result, when the dimensional relationship is the same as in the second embodiment, the same effects as in the second embodiment can be obtained. If the curve radii differ depending on the travel section, setting the optimum distance between the back surfaces of the flanges according to the curve radii can reduce the lateral force not only on specific curve radii but also on many curves. This has the potential to reduce track maintenance costs.

[補足]
鉄道車両の車軸を回転自在に保持する軸箱体は、軸箱支持装置によって、台車枠に対して弾性支持されている。一般的に鉄道車両が曲率の小さい(曲線半径の大きい)曲線(緩い曲線)区間を走行する場合、輪軸が曲線外軌側レール7に寄ることで、車輪踏面勾配のため、内軌側では車輪回転半径が小さい踏面部で、曲線外軌側では車輪回転半径が大きい踏面部でレール7と接触し、これら内外軌の車輪の回転半径差による自己操舵機能のため、台車は曲線をスムーズに転走することができる。
[supplement]
An axle box body that rotatably holds an axle of a railway vehicle is elastically supported on a bogie frame by an axle box support device. In general, when a railway vehicle travels on a curve (loose curve) section with a small curvature (large curve radius), the wheels on the inner rail side will be The tread portion with a small turning radius contacts the rail 7 at the tread portion with a large turning radius on the outer track side of the curve. can run.

一方で、急曲線区間を走行する場合は、内軌側レールと外軌側レールの行路差が大きく、自己操舵機能の限界を超えるため、内外軌の車輪の回転半径差だけではスムーズに転走することができない。一般的に、一車両に4本具備された輪軸のうち、急曲線区間にはじめに進入する輪軸では、内外軌の車輪の回転半径差を最大限確保できるように、輪軸が曲線外軌側に大きく寄った状態となり、車輪フランジ部とレール7が接触する。 On the other hand, when traveling on a sharp curve section, the difference in course between the inner and outer rails is large and exceeds the limit of the self-steering function. Can not do it. In general, among the four wheelsets provided in a vehicle, the wheelset that enters a sharp curve section first has a large wheelset on the outer rail side of the curve so as to maximize the difference in turning radius between the inner and outer rails. It will be in a close state, and the wheel flange portion and the rail 7 will come into contact with each other.

この状態では、車輪フランジ部でレール7を外側に押す力が発生し、輪軸がその反力を横圧として受けることで、輪軸により台車全体が曲線に沿う向きの操舵モーメントが生じる。これにより、台車は急曲線を転走することができる。この横圧は、曲線にはじめに進入する輪軸で最も大きくなり、対脱線安全性の低下、車輪フランジとレール7との間でのきしり音の発生、軌道保守費増加の一因となり得るため、これを低減することが重要な課題となっている。 In this state, the wheel flanges generate a force that pushes the rails 7 outward, and the wheelsets receive the reaction force as lateral pressure, thereby generating a steering moment that causes the entire truck to follow the curve. This allows the truck to roll on a sharp curve. This lateral force is the largest at the wheelset that first enters the curve, which can lead to a decrease in safety against derailment, generation of squealing noise between the wheel flange and rail 7, and increase in track maintenance costs. reduction is an important issue.

本発明の実施形態に係る鉄道車両用台車(本台車)16は、つぎのように総括できる。
[1]本台車16は、ボギー台車16である。1つの車体1の前後それぞれの床下に配設された合計2つのボギー台車16が、線路上で車体1を走行可能に支承する。2つのボギー台車16は、走行する線路の曲線に沿うようなボギー角度が得られるように、車体1に対して水平方向の旋回を自在にできる機構により軸支されている。
The railway vehicle bogie (main bogie) 16 according to the embodiment of the present invention can be summarized as follows.
[1] The main truck 16 is a bogie truck 16 . A total of two bogies 16 arranged under floors of the front and rear of one vehicle body 1 support the vehicle body 1 so as to be able to run on the track. The two bogies 16 are pivotally supported by a mechanism capable of freely turning in the horizontal direction with respect to the vehicle body 1 so as to obtain a bogie angle that follows the curve of the running track.

まず、レール7上で転動する車輪をボギー台車に軸支して本台車16を懸架する複数の輪軸4,5は、進行方向に対する配設位置で区別される。すなわち、車体1の中央から遠い車端側輪軸4と、それ以外の輪軸5と、それぞれの輪軸4,5により軸支された車輪の形状には相違点を有する。すなわち、車端側の輪軸4は、それ以外の輪軸5に比べて曲線の内外軌における左右車輪の回転半径差をより大きく確保できる形状にする。 First, a plurality of wheel sets 4 and 5, which support the bogie carriage with the wheels rolling on the rail 7 and suspend the main carriage 16, are distinguished by their arrangement positions in the traveling direction. That is, there is a difference in the shape of the wheels pivotally supported by the wheel shafts 4 far from the center of the vehicle body 1 and the other wheel shafts 5 . That is, the wheelset 4 on the vehicle end side has a shape that can ensure a larger difference in the turning radius between the left and right wheels on the inner and outer rails of the curve than the other wheelset 5 .

なお、鉄道車両の進行方向に依存するが、進行前方の車端側の輪軸4は、曲線区間を最初に転動する。逆に、進行後方の車端側の輪軸4は、曲線区間を最後に転動する。また、レール7上を転動する車輪は、一般的な一体軸輪の場合、輪軸4,5それぞれの軸芯を回転軸として、これら輪軸4,5とそれぞれ一体回転するように軸支されている。つまり、同一軸の両輪は、走行区間が直線と曲線との区別なく、常に同一回転である。したがって、同軸一体回転する両輪間において、回転速度差はもちろんのこと、位相差も生じない。 Although it depends on the traveling direction of the railroad vehicle, the wheelset 4 on the vehicle end side ahead of the traveling rolls first in the curved section. Conversely, the wheelset 4 on the vehicle end side behind the vehicle rolls on the curved section last. Further, in the case of a general integral wheel, the wheels rolling on the rail 7 are pivotally supported so as to rotate integrally with the wheelsets 4 and 5 with the axes of the wheelsets 4 and 5 as rotation axes. there is In other words, both wheels on the same axis always rotate in the same direction regardless of whether the traveling section is straight or curved. Therefore, neither rotational speed difference nor phase difference occurs between the two wheels rotating coaxially.

以下、2本のレール7、及びそれらを転動する両輪のうち、曲線外軌レール側頭部と、そこに当接する車端側の輪軸5(図4)、又は輪軸4(図5)のフランジ斜面(図4、図5参照)に着目する。図4の比較例に示す台車を備えた鉄道車両は、曲線区間に差し掛かると、最初に進行前方の車端側の輪軸5が、そのフランジ斜面を曲線外軌レール側頭部に当接し、曲線外側へ枕木方向に横圧荷重を付与しながら転動する。 Below, two rails 7 and two wheels that roll on them, the side head of the curved outer track rail, and the wheelset 5 (FIG. 4) on the car end side that contacts there, or the wheelset 4 (FIG. 5) Focus on the slope of the flange (see FIGS. 4 and 5). When the railway vehicle equipped with the bogie shown in the comparative example of FIG. 4 reaches a curved section, the wheelset 5 on the car end side ahead of travel first contacts the side head of the curved outer track rail with the flange slope. It rolls to the outside of the curve while applying a lateral pressure load in the direction of the sleeper.

このとき、当接部分は、いわゆる「曲線外軌レール側頭部の摩耗」が進行する。このように、鉄道車両は、当接部分を摩耗しながらも、きしり音を伴って許容範囲の曲線区間を通過できる。しかし、曲率半径や走行速度その他の条件が限界を超えると、フランジが曲線外軌レール7に乗り上げて脱線する。このような曲線区間での脱線防止のためにも、普通鉄道構造規則第14条により、「本線における円曲線の長さ(円弧長)は、最大車両長さ以上としなければならない」と規定されている。 At this time, so-called "abrasion of the side head of the out-of-curve rail" progresses in the contact portion. In this way, the railway vehicle can pass through the allowable curve section with a squeak while wearing the abutting portion. However, when the radius of curvature, running speed, and other conditions exceed the limits, the flange runs over the curved rail 7 and derails. In order to prevent derailment in such curved sections, Article 14 of the Ordinary Railway Construction Regulations stipulates that ``the length of the circular curve (arc length) on the main line must be greater than or equal to the maximum vehicle length.'' ing.

換言すれば、曲線通過性能の観点から、車両長さが長いほど、曲線区間は曲率を小さく(曲線半径を大きく)緩やかで直線に近くする必要がある。したがって、走行する車両の最大長さに応じて路線に対する曲率の制限が規定される。また、台車は、直線区間における高速安定性と、急曲線部における曲線通過性能と、相反する関係にあるため、これらの両立を追求しながらも妥協点を見出すように設計される。このような観点からも、本台車16は、輪軸5による高速安定性と、輪軸4による曲線通過性能と、を両立させ易くするものである。 In other words, from the viewpoint of curve-traversing performance, the longer the vehicle length, the smaller the curvature (the larger the curve radius) of the curved section, which is required to be gentler and closer to a straight line. Therefore, the curvature limit for the route is defined according to the maximum length of the running vehicle. In addition, bogies have a conflicting relationship between high-speed stability on straight sections and curve-passing performance on sharp curves, so they are designed to find a compromise while pursuing both. From this point of view as well, the bogie 16 makes it easy to achieve both high-speed stability due to the wheelset 5 and curve passage performance due to the wheelset 4 .

一方、図5の本台車16を備えた鉄道車両は、曲線区間に差し掛かると、最初に進行前方の車端側の輪軸4が、そのフランジ斜面を曲線外軌レール側頭部に接近する。ここで、車体1の中央から遠い車端側の輪軸4と、それ以外の輪軸5と、2種類に区別された輪軸4,5それぞれの種類毎に軸支される車輪の形状を異なるものにする。すなわち、車端側の輪軸4は、曲線の内外軌にわたる左右車輪の回転半径差をより大きく確保できる形状である。 On the other hand, when a railway vehicle equipped with the main bogie 16 of FIG. 5 approaches a curved section, the wheelset 4 on the vehicle end side in front of the vehicle first approaches the side head of the curved rail on the slope of the flange. Wheelsets 4 on the end side of the vehicle body far from the center of the vehicle body 1 and wheelsets 5 other than the wheelset 4 are divided into two types, and the shapes of the wheels to be supported are different for each type of the wheelsets 4 and 5. do. That is, the wheelset 4 on the vehicle end side has a shape that can secure a greater difference in the turning radius between the left and right wheels over the inner and outer rails of the curve.

例えば、急曲線区間適応型として、図3に示すように、輪軸4は輪軸5よりもフランジ厚さを薄くすれば、その分だけ、曲線外軌レール側頭部との間の隙間を多くできるため、当接するまでの余裕が確保される。したがって、急曲線区間にはじめに進入する輪軸4は、同環境条件の輪軸5に比べて、内外軌の車輪の回転半径差をより大きくできる。このような本台車16は、新たな装置の追加することなく、曲線通過時の横圧をさらに低減できる。その結果、車長の長い鉄道車両であっても、本台車16を車体1の前後に備えたことにより、急曲線区間を走行する際も、脱線することなく良好に曲線通過できる。 For example, as shown in FIG. 3, if the flange thickness of the wheelset 4 is thinner than that of the wheelset 5, the clearance between the outer track rail and the side head of the curved outer track rail can be increased accordingly. Therefore, a margin is ensured until they come into contact with each other. Therefore, the wheel set 4 that enters the sharp curve section first can have a greater difference in the turning radii between the inner and outer rail wheels than the wheel set 5 under the same environmental conditions. Such a main truck 16 can further reduce the lateral force when passing through a curve without adding a new device. As a result, even if the railway vehicle has a long vehicle length, the main bogies 16 are provided at the front and rear of the vehicle body 1, so that the vehicle can smoothly pass the curve without derailing even when traveling in a sharp curve section.

[2]上記[1]の本台車16において、車端側輪軸4により軸支された車輪の形状は、他の輪軸5により軸支された両輪に対し、車輪断面で踏面部からフランジ部へと曲率が変化する位置を、所定距離だけ軌道中心側に近寄せられた。このように構成された本台車16は、複数の輪軸4,5のうち、車端側の輪軸4により軸支された両輪の軌間設定が、正規の軌間よりも実質広げられているので、急曲線区間において転舵動作がスムーズである。 [2] In the main bogie 16 of [1] above, the shape of the wheels supported by the vehicle end side wheel set 4 is different from the two wheels supported by the other wheel set 5 from the tread portion to the flange portion in the wheel cross section. and the position where the curvature changes is brought closer to the center of the trajectory by a predetermined distance. In the main bogie 16 constructed in this manner, the gauge of both wheels supported by the wheel set 4 on the vehicle end side among the plurality of wheel sets 4 and 5 is substantially wider than the regular gauge, so that the track can be rapidly moved. Steering operation is smooth in curved sections.

[3]上記[1]の本台車16において、図6に示すように、車端側の輪軸4により軸支された車輪5の車輪内面距離(車輪フランジ背面間距離)34は、他の輪軸5により軸支された両輪の車輪内面距離35に対して狭く設定されている。このように構成された本台車16は、車輪内面距離34が狭くされた分だけ、曲線外軌レール側頭部との間の隙間を多くできるため、当接するまでの余裕が確保される。したがって、急曲線区間にはじめに進入する輪軸4は、同環境条件の輪軸5に比べて、内外軌の車輪の回転半径差をより大きくできる。その結果、横力8を低減できて、急曲線区間において転舵動作がスムーズである。 [3] In the main bogie 16 of [1] above, as shown in FIG. It is set narrower than the wheel inner surface distance 35 of both wheels pivotally supported by 5. In the main bogie 16 configured in this manner, the narrower wheel inner surface distance 34 increases the gap between the side head of the curved outer track rail and secures a margin until contact. Therefore, the wheel set 4 that enters the sharp curve section first can have a greater difference in the turning radii between the inner and outer rail wheels than the wheel set 5 under the same environmental conditions. As a result, the lateral force 8 can be reduced, and the steering operation is smooth in sharp curve sections.

[4]上記[1]の本台車16において、車端側の輪軸4により軸支された車輪の形状は、他の輪軸5により軸支された両輪に対し、車端側の輪軸4の車輪断面で、輪軸4の踏面勾配を大きくした。このように構成された本台車16は、図7に示すように、輪軸4は、その踏面勾配を大きくされた分だけ、急曲線区間にはじめに進入する輪軸4は、同環境条件の輪軸5に比べて、内外軌の車輪の回転半径差をより大きくできる。その結果、横力8を低減できて、急曲線区間において転舵動作がスムーズである。 [4] In the main bogie 16 of [1] above, the shape of the wheels supported by the wheelset 4 on the vehicle end side is different from the two wheels supported by the other wheelset 5 on the wheelset 4 on the vehicle end side. In the cross section, the tread slope of the wheelset 4 is increased. In the main bogie 16 constructed in this way, as shown in FIG. 7, the wheelsets 4 that enter the sharp curve section first are the wheelsets 5 that have the same environmental conditions as shown in FIG. In comparison, the difference in radius of rotation between the inner and outer rail wheels can be increased. As a result, the lateral force 8 can be reduced, and the steering operation is smooth in sharp curve sections.

[5]上記[1]の本台車16において、車端側の輪軸4により軸支された車輪の形状は、他の輪軸5により軸支された両輪に対し、車端側の輪軸4の車輪断面で、車輪内面距離(back gauge;図6の34,35参照)を可変できるフリーゲージ(Free Gauge)機構を備えた。なお、車輪内面距離は、鉄道に関する技術上の基準を定める省令第67条の解釈基準では、軌間が1067mmの場合は989~994mmと示されているので、この場合の可変範囲は5mmである。 [5] In the main bogie 16 of [1] above, the shape of the wheels supported by the wheelset 4 on the vehicle end side is different from the two wheels supported by the other wheelset 5 on the wheelset 4 on the vehicle end side. It has a free gauge mechanism that can vary the wheel inner surface distance (back gauge; see 34 and 35 in FIG. 6) in cross section. In addition, the wheel inner surface distance is 989 to 994 mm when the gauge is 1067 mm according to the interpretation standard of Article 67 of the ministerial ordinance that defines the technical standards for railways, so the variable range in this case is 5 mm.

このように、フリーゲージ機構を備えた本台車16は、複数の輪軸4,5のうち、車端側の輪軸4により軸支された両輪の軌間設定を正規の幅よりも、例えば5mmまでは適宜に狭めることにより、内外軌の車輪の回転半径差をより大きくできる。その結果、横力8を低減できて、急曲線区間において転舵動作がスムーズである。なお、ここでいうフリーゲージ機構は、数十cmも異なる軌間の線路を行き来させる目的のフリーゲージトレイン(FGT)用でなく、可変範囲を5mm程度に限定するものである。 In this way, the main bogie 16 equipped with the free gauge mechanism sets the gauge of both wheels supported by the wheelset 4 on the vehicle end side out of the plurality of wheelsets 4 and 5 to a width up to, for example, 5 mm wider than the normal width. By appropriately narrowing, the difference in the rotation radii of the wheels on the inner and outer rails can be increased. As a result, the lateral force 8 can be reduced, and the steering operation is smooth in sharp curve sections. It should be noted that the free gauge mechanism here is not for a free gauge train (FGT) for the purpose of crossing tracks with different gauges of several tens of centimeters, but is limited to a variable range of about 5 mm.

1…車体、2…軸箱体、3…台車枠、4…車端側輪軸(「輪軸4」と略す)、5…車両中央側輪軸(「輪軸5」と略す)、6…軸箱支持装置、7…レール、8…横圧、9…純粋転がり線、16…鉄道車両用台車(本台車)、30…空気ばね、34(35)…輪軸4(5)の車輪内面距離、36…輪軸4の軌道中心から外側の部位



DESCRIPTION OF SYMBOLS 1... Vehicle body, 2... Axle box body, 3... Bogie frame, 4... Car end side wheel set (abbreviated as "wheel set 4"), 5... Vehicle center side wheel set (abbreviated as "wheel set 5"), 6... Axle box support Apparatus 7 Rail 8 Lateral force 9 Pure rolling line 16 Railway vehicle bogie (main bogie) 30 Air spring 34 (35) Wheel inner surface distance of wheelset 4 (5) 36 Outer part from the center of the raceway of wheelset 4



Claims (5)

車体に対し、ボギー角度に応じて旋回自在に軸支されるとともに、前記車体を前後で支承するボギー台車としての鉄道車両用台車であって、
レール上で転動する車輪を前記ボギー台車に軸支して前記ボギー台車を懸架する複数の輪軸は、進行方向に対する配設位置で区別され、
該区別された前記車体の中央から遠い車端側輪軸と、それ以外の輪軸と、それぞれの輪軸により軸支された前記車輪の形状に相違点を有し、
該相違点として、前記車端側輪軸の方が、曲線の内外軌における左右車輪の回転半径差をより大きく確保できる形状にした、
鉄道車両用台車。
A bogie for a railway vehicle as a bogie that is pivotally supported on a vehicle body so as to be rotatable according to a bogie angle and supports the vehicle body in the front and rear,
A plurality of wheel sets that support the wheels rolling on the rails on the bogie and suspend the bogie are distinguished by their positions relative to the traveling direction,
There are differences in the shape of the wheels pivotally supported by the differentiated vehicle end side wheel axles far from the center of the vehicle body, the other wheel axles, and the respective wheel axles,
The difference is that the wheelset on the vehicle end side has a shape that can ensure a larger difference in the turning radius between the left and right wheels on the inner and outer rails of the curve.
Bogies for railway vehicles.
前記車端側輪軸により軸支された前記車輪の形状は、他の前記輪軸により軸支された両輪に対し、
車輪断面で踏面部からフランジ部へと曲率が変化する位置が、所定距離だけ軌道中心側に近寄せられた、
請求項1に記載の鉄道車両用台車。
The shape of the wheel supported by the wheel set on the vehicle end side is different from the two wheels supported by the other wheel set.
The position where the curvature changes from the tread portion to the flange portion in the wheel cross section is brought closer to the center of the track by a predetermined distance.
The railway vehicle bogie according to claim 1.
前記車端側輪軸により軸支された前記車輪の形状は、他の前記輪軸により軸支された両輪に対し、
車輪内面距離を狭くした、
請求項1に記載の鉄道車両用台車。
The shape of the wheel supported by the wheel set on the vehicle end side is different from the two wheels supported by the other wheel set.
The distance between the inner surfaces of the wheels has been narrowed,
The railway vehicle bogie according to claim 1.
前記車端側輪軸により軸支された前記車輪の形状は、他の前記輪軸により軸支された両輪に対し、
踏面勾配を大きくする、
請求項1に記載の鉄道車両用台車。
The shape of the wheel supported by the wheel set on the vehicle end side is different from the two wheels supported by the other wheel set.
increase the tread slope,
The railway vehicle bogie according to claim 1.
前記車端側輪軸及びそれにより軸支される両輪の構成において、
車輪内面距離を可変できる機構を備えた、
請求項1に記載の鉄道車両用台車。
In the configuration of the vehicle end side wheel set and both wheels supported by it,
Equipped with a mechanism that can change the wheel inner surface distance,
The railway vehicle bogie according to claim 1.
JP2021051055A 2021-03-25 2021-03-25 Truck for railway vehicle Pending JP2022149083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021051055A JP2022149083A (en) 2021-03-25 2021-03-25 Truck for railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021051055A JP2022149083A (en) 2021-03-25 2021-03-25 Truck for railway vehicle

Publications (1)

Publication Number Publication Date
JP2022149083A true JP2022149083A (en) 2022-10-06

Family

ID=83463762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021051055A Pending JP2022149083A (en) 2021-03-25 2021-03-25 Truck for railway vehicle

Country Status (1)

Country Link
JP (1) JP2022149083A (en)

Similar Documents

Publication Publication Date Title
JP5187311B2 (en) Railway vehicle steering carriage, railway vehicle and articulated vehicle
US8353248B2 (en) Track-guided vehicle wheel track
JP5433877B2 (en) Self-steering device for railway vehicles
SG172980A1 (en) Track-guided vehicle wheel truck
JP5828235B2 (en) Railcar steering wheel
TWI466791B (en) Railway vehicle trolley steering method and device and railway vehicle trolley
JP5051771B2 (en) Wheel unit, bogie, railway vehicle and railway system
JP6079881B2 (en) Railcar bogie
KR100659708B1 (en) The bogie traveling stability device for using mr fluid and the method thereof
JP2022149083A (en) Truck for railway vehicle
JP2004161115A (en) Rolling stock having truck frame turning device
KR101040376B1 (en) Steering Bogie for Railway Vehicles using Yaw Motion of the Center Pivot
JP4490890B2 (en) Vehicle track
KR101040375B1 (en) Steering Bogie for Railway Vehicles using Three Bar Link Type
JPH03258656A (en) Rolling stock four wheel truck
KR20130071294A (en) Independence rotating wheels suspension apparatus for low-floor vehicle
JPH057222B2 (en)
EP2164741A1 (en) Steered axle railway truck
KR101231834B1 (en) Steering system for the railway vehicles using the relative displacement between the car body and the bogie
KR101433733B1 (en) bogie for railway vehicle
GB2494942A (en) Wheel arrangement for vehicle travelling on rails
JP2006273078A (en) Truck
JP2017024536A (en) Truck for railway vehicle
JPH01106770A (en) Traveling truck for track vehicle