JP2022145473A - Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system - Google Patents

Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system Download PDF

Info

Publication number
JP2022145473A
JP2022145473A JP2021197193A JP2021197193A JP2022145473A JP 2022145473 A JP2022145473 A JP 2022145473A JP 2021197193 A JP2021197193 A JP 2021197193A JP 2021197193 A JP2021197193 A JP 2021197193A JP 2022145473 A JP2022145473 A JP 2022145473A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021197193A
Other languages
Japanese (ja)
Other versions
JP7197670B2 (en
Inventor
裕一 佐飛
Yuichi Satobi
輝 吉川
Teru Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2021197193A priority Critical patent/JP7197670B2/en
Publication of JP2022145473A publication Critical patent/JP2022145473A/en
Application granted granted Critical
Publication of JP7197670B2 publication Critical patent/JP7197670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the high-rate cycle characteristic of a nonaqueous electrolyte secondary battery.
SOLUTION: A cathode for a nonaqueous electrolyte secondary battery has: a cathode collector 11; and a cathode active material layer 12 being present on the cathode collector 11. The cathode active material layer 12 has one or more cathode active material particles containing a cathode active material; a true density D of the cathode active material and a true density D1 of the cathode active material layer satisfy 0.96D≤D1<D. It is preferred that the cathode active material contains a compound represented by the general formula, LiFexM(1-x)PO4 (where 0≤x≤1, and M is Co, Ni, Mn, Al, Ti or Zr).
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。 The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, a battery module, and a battery system using the same.

非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、金属箔(集電体)の表面に固着させたものが知られている。
リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。
A non-aqueous electrolyte secondary battery is generally composed of a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (separator) placed between the positive electrode and the negative electrode.
As a positive electrode for non-aqueous electrolyte secondary batteries, there is known one in which a composition comprising a positive electrode active material containing lithium ions, a conductive aid, and a binder is adhered to the surface of a metal foil (current collector). ing.
Examples of positive electrode active materials containing lithium ions include lithium transition metal composite oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate ( LiFePO 4 ) and other lithium phosphate compounds have been put to practical use.

特許文献1には、アルミニウム箔上に、リチウムリン酸化合物と、結着材と、導電助剤とからなる正極活物質層を設けた正極が記載されている。正極活物質層において、リチウムリン酸化合物の一次粒子に起因する細孔と二次粒子に起因する細孔を特定の割合とするとともに、空隙率を特定の範囲とすることによって、サイクル特定が向上した例が記載されている。 Patent Document 1 describes a positive electrode in which a positive electrode active material layer composed of a lithium phosphate compound, a binder, and a conductive aid is provided on an aluminum foil. In the positive electrode active material layer, the ratio of pores caused by the primary particles and the pores caused by the secondary particles of the lithium phosphate compound is set to a specific ratio, and the porosity is set to a specific range, thereby improving cycle identification. Examples are given.

リチウムリン酸化合物の中でも、リン酸鉄リチウムは電気抵抗が高いため低抵抗化による性能改善が課題である。
非特許文献1には、リン酸鉄系活物質の表面をカーボンで被覆することにより、電池容量を改善したことが報告されている。
Among lithium phosphate compounds, lithium iron phosphate has a high electrical resistance, so it is necessary to improve the performance by reducing the resistance.
Non-Patent Document 1 reports that the battery capacity is improved by coating the surface of the iron phosphate-based active material with carbon.

特開2014-13748号公報JP 2014-13748 A

I.Belharouak, C.Johnson, K.Amine, Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4, Electrochemistry Communications, Volume 7, Issue 10, October 2005, Pages 983-988I.Belharouak, C.Johnson, K.Amine, Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4, Electrochemistry Communications, Volume 7, Issue 10, October 2005, Pages 983-988

しかし、これらの方法は必ずしも充分ではなく、電池特性のさらなる向上が求められている。
本発明は、非水電解質二次電池の高レートサイクル特性を向上できる非水電解質二次電池用正極を提供する。
However, these methods are not always satisfactory, and further improvement in battery characteristics is required.
The present invention provides a positive electrode for a non-aqueous electrolyte secondary battery that can improve the high rate cycle characteristics of the non-aqueous electrolyte secondary battery.

本発明は、以下の態様を有する。
<1>
正極集電体と、前記正極集電体上に存在する正極活物質層とを有し、
前記正極活物質層は、正極活物質を含む1つ以上の正極活物質粒子を有し、
前記正極活物質の真密度Dと、前記正極活物質層の真密度D1とは、下記(s)式を満たす、非水電解質二次電池用正極。
0.96D≦D1<D ・・・(s)
<2>
前記正極活物質は、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、<1>に記載の非水電解質二次電池用正極。
<3>
前記正極活物質は、LiFePOで表されるリン酸鉄リチウムである、<2>に記載の非水電解質二次電池用正極。
<4>
前記真密度D1は、3.4g/cm以上3.6g/cm未満である、<3>に記載の非水電解質二次電池用正極。
<5>
前記正極活物質層は、導電助剤及び結着材を含み、
前記導電助剤の含有量は、前記正極活物質層の総質量に対し1質量%以下であり、
前記結着材の含有量は、前記正極活物質層の総質量に対し1質量%以下である、<1>~<4>のいずれかに記載の非水電解質二次電池用正極。
<6>
前記正極活物質層は、導電助剤を含まない、<1>~<5>のいずれかに記載の非水電解質二次電池用正極。
<7>
前記正極活物質粒子の一部又は全部は、前記正極活物質の芯部と、前記芯部を被覆する被覆部とを有し、
前記被覆部は導電材料を含み、
前記導電材料の含有量は、前記正極活物質粒子の総質量に対し1.3質量%以下である、<1>~<6>のいずれかに記載の非水電解質二次電池用正極。
<8>
下記試験方法により求められるサイクル容量維持率は80%以上である、<1>~<7>のいずれかに記載の非水電解質二次電池用正極。
(試験方法)
定格容量1Ahの非水電解質二次電池とし、3Cレート、3.8Vで充電し10秒間休止し、次いで、3Cレート、2.0Vで放電し10秒間休止する充放電サイクルを1000回繰り返し、その後0.2Cレート、2.5Vで放電した際の放電容量Bを測定し、充放電サイクルに供する前の非水電解質二次電池の放電容量Aで放電容量Bを除してサイクル容量維持率(%)とする。
<9>
<1>~<8>のいずれかに記載の非水電解質二次電池用正極と、負極と、前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質と、を備える、非水電解質二次電池。
<10>
<9>に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
The present invention has the following aspects.
<1>
Having a positive electrode current collector and a positive electrode active material layer present on the positive electrode current collector,
The positive electrode active material layer has one or more positive electrode active material particles containing a positive electrode active material,
A positive electrode for a non-aqueous electrolyte secondary battery, wherein the true density D of the positive electrode active material and the true density D1 of the positive electrode active material layer satisfy the following formula (s).
0.96D≦D1<D (s)
<2>
The positive electrode active material is a compound represented by the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to <1>, comprising:
<3>
The positive electrode for a non-aqueous electrolyte secondary battery according to <2>, wherein the positive electrode active material is lithium iron phosphate represented by LiFePO 4 .
<4>
The positive electrode for a nonaqueous electrolyte secondary battery according to <3>, wherein the true density D1 is 3.4 g/cm 3 or more and less than 3.6 g/cm 3 .
<5>
The positive electrode active material layer contains a conductive aid and a binder,
The content of the conductive aid is 1% by mass or less with respect to the total mass of the positive electrode active material layer,
The positive electrode for a nonaqueous electrolyte secondary battery according to any one of <1> to <4>, wherein the content of the binder is 1% by mass or less with respect to the total mass of the positive electrode active material layer.
<6>
The positive electrode for a non-aqueous electrolyte secondary battery according to any one of <1> to <5>, wherein the positive electrode active material layer does not contain a conductive aid.
<7>
Some or all of the positive electrode active material particles have a core portion of the positive electrode active material and a covering portion covering the core portion,
the covering includes a conductive material;
The positive electrode for a nonaqueous electrolyte secondary battery according to any one of <1> to <6>, wherein the content of the conductive material is 1.3% by mass or less with respect to the total mass of the positive electrode active material particles.
<8>
The positive electrode for a non-aqueous electrolyte secondary battery according to any one of <1> to <7>, which has a cycle capacity retention rate of 80% or more as determined by the following test method.
(Test method)
A non-aqueous electrolyte secondary battery with a rated capacity of 1 Ah, charging at 3C rate, 3.8 V, resting for 10 seconds, then discharging at 3 C rate, 2.0 V, resting for 10 seconds, repeating 1000 charge-discharge cycles. Measure the discharge capacity B when discharged at 0.2 C rate and 2.5 V, and divide the discharge capacity B by the discharge capacity A of the non-aqueous electrolyte secondary battery before being subjected to the charge / discharge cycle to obtain the cycle capacity maintenance rate ( %).
<9>
The positive electrode for the non-aqueous electrolyte secondary battery according to any one of <1> to <8>, the negative electrode, and the non-aqueous electrolyte present between the positive electrode for the non-aqueous electrolyte secondary battery and the negative electrode, A non-aqueous electrolyte secondary battery.
<10>
A battery module or battery system comprising a plurality of the non-aqueous electrolyte secondary batteries according to <9>.

本発明の非水電解質二次電池用正極によれば、非水電解質二次電池の高レートサイクル特性を向上できる。 According to the positive electrode for a non-aqueous electrolyte secondary battery of the present invention, the high rate cycle characteristics of the non-aqueous electrolyte secondary battery can be improved.

本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention; FIG. 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention; FIG.

本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
In the present specification and claims, "-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a positive electrode for a non-aqueous electrolyte secondary battery of the present invention, and FIG. 2 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte secondary battery of the present invention. .
1 and 2 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratios and the like of each component may differ from the actual ones.

<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、正極集電体11と正極活物質層12を有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
図1の例において、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。正極集電体本体14のみを正極集電体11としてもよい。
<Positive electrode for non-aqueous electrolyte secondary battery>
A positive electrode for a non-aqueous electrolyte secondary battery (also simply referred to as “positive electrode”) 1 of this embodiment has a positive electrode current collector 11 and a positive electrode active material layer 12 .
The positive electrode active material layer 12 exists on at least one surface of the positive electrode current collector 11 . A positive electrode active material layer 12 may be present on both surfaces of the positive electrode current collector 11 .
In the example of FIG. 1, the positive electrode current collector 11 has a positive electrode current collector main body 14 and a current collector coating layer 15 that covers the surface of the positive electrode current collector main body 14 on the positive electrode active material layer 12 side. Only the positive electrode current collector main body 14 may be used as the positive electrode current collector 11 .

[正極活物質層]
正極活物質層12は、正極活物質粒子を1つ以上有する。正極活物質層12は、さらに結着材を含んでいてもよい。正極活物質層12は、さらに導電助剤を含んでもよい。
正極活物質粒子は、正極活物質を含む。正極活物質粒子は、正極活物質のみからなる粒子でもよいし、正極活物質の芯部と、芯部を被複する被覆部(活物質被覆部)とを有してもよい(いわゆる被覆粒子)。正極活物質層12に含まれる正極活物質粒子の群の少なくとも一部は、被覆粒子であることが好ましい。
正極活物質層12の総質量に対して、正極活物質の含有量は80.0~99.9質量%が好ましく、90.0~99.5質量%がより好ましい。
[Positive electrode active material layer]
The positive electrode active material layer 12 has one or more positive electrode active material particles. The positive electrode active material layer 12 may further contain a binder. The positive electrode active material layer 12 may further contain a conductive aid.
The positive electrode active material particles contain a positive electrode active material. The positive electrode active material particles may be particles composed only of the positive electrode active material, or may have a core portion of the positive electrode active material and a coating portion (active material coating portion) covering the core portion (so-called coated particles ). At least part of the group of positive electrode active material particles contained in the positive electrode active material layer 12 is preferably coated particles.
The content of the positive electrode active material is preferably 80.0 to 99.9% by mass, more preferably 90.0 to 99.5% by mass, based on the total mass of the positive electrode active material layer 12 .

正極活物質は、オリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)POで(以下「一般式(I)」ともいう。)表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、Fe及びM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
The positive electrode active material preferably contains a compound having an olivine crystal structure.
A compound having an olivine-type crystal structure is preferably a compound represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as “general formula (I)”). 0≦x≦1 in general formula (I). M is Co, Ni, Mn, Al, Ti or Zr. A small amount of Fe and M (Co, Ni, Mn, Al, Ti or Zr) can be substituted with other elements to the extent that the physical properties are not changed. Even if the compound represented by the general formula (I) contains a trace amount of metal impurities, the effects of the present invention are not impaired.
The compound represented by the general formula (I) is preferably lithium iron phosphate represented by LiFePO 4 (hereinafter also simply referred to as “lithium iron phosphate”).

正極活物質は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
他の正極活物質は1種でもよく、2種以上でもよい。
The positive electrode active material may contain a positive electrode active material other than the compound having an olivine crystal structure.
Another positive electrode active material is preferably a lithium transition metal composite oxide. For example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium nickel cobalt oxide ( LiNixCoyAlzO2 , where x + y + z = 1), lithium nickel cobalt manganate ( LiNixCoyMnz O2 , where x+y+z= 1 ), lithium manganate ( LiMn2O4), lithium cobalt manganate (LiMnCoO4), lithium manganese chromate ( LiMnCrO4 ), lithium vanadium nickelate ( LiNiVO4 ), nickel - substituted manganates Lithium (for example, LiMn 1.5 Ni 0.5 O 4 ), lithium vanadium cobaltate (LiCoVO 4 ), non-stoichiometric compounds obtained by substituting a part of these compounds with metal elements, and the like. Examples of the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn and Ge.
1 type may be sufficient as another positive electrode active material, and 2 or more types may be sufficient as it.

本実施形態の正極活物質粒子としては、正極活物質の表面の少なくとも一部が導電材料で被覆された被覆粒子が好ましい。被覆粒子を正極活物質粒子として用いることで、電池容量、高レートサイクル特性をより高められる。 The positive electrode active material particles of the present embodiment are preferably coated particles in which at least part of the surface of the positive electrode active material is coated with a conductive material. By using the coated particles as the positive electrode active material particles, the battery capacity and high rate cycle characteristics can be further enhanced.

活物質被覆部の導電材料は、炭素を含むことが好ましい。導電材料は、炭素のみからなってもよいし、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
The conductive material of the active material coating preferably contains carbon. The conductive material may consist of carbon only, or may be a conductive organic compound containing carbon and other elements than carbon. Nitrogen, hydrogen, oxygen and the like can be exemplified as other elements. In the conductive organic compound, the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less.
It is more preferable that the conductive material forming the active material coating portion consist of carbon only.

活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
活物質被覆部を有する正極活物質の総質量に対して、導電材料の含有量は0.1~3.0質量%が好ましく、0.5~1.5質量%がより好ましく、0.7~1.3質量%がさらに好ましい。
It is more preferable that the conductive material forming the active material coating portion consist of carbon only.
The content of the conductive material is preferably 0.1 to 3.0% by mass, more preferably 0.5 to 1.5% by mass, and 0.7 based on the total mass of the positive electrode active material having the active material coating. ~1.3% by mass is more preferred.

被覆粒子としては、オリビン型結晶構造を有する化合物を芯部とする被覆粒子が好ましく、一般式(I)で表される化合物を芯部とする被覆粒子がより好ましく、リン酸鉄リチウムを芯部とする被覆粒子(以下「被覆リン酸鉄リチウム」ともいう。)がさらに好ましい。これらの被覆粒子であれば、電池容量、サイクル特性により高められる。
加えて、被覆粒子は、芯部の表面全体が導電材料で被覆されていることが、特に好ましい。
The coated particles are preferably coated particles having a core composed of a compound having an olivine-type crystal structure, more preferably coated particles having a core composed of a compound represented by general formula (I), and lithium iron phosphate as a core. Coated particles (hereinafter also referred to as “coated lithium iron phosphate”) are more preferable. These coated particles can improve battery capacity and cycle characteristics.
In addition, it is particularly preferable for the coated particles that the entire surface of the core is coated with a conductive material.

被覆粒子は、公知の方法で製造できる。以下に、被覆リン酸鉄リチウムを例にして、被覆粒子の製造方法を説明する。
例えば、特許第5098146号公報に記載の方法を用いてリン酸鉄リチウム粉末を作製し、GS Yuasa Technical Report、2008年6月、第5巻、第1号、第27~31頁等に記載の方法を用いて、リン酸鉄リチウム粉末の表面の少なくとも一部を炭素で被覆できる。
具体的には、まず、シュウ酸鉄二水和物、リン酸二水素アンモニウム、及び炭酸リチウムを、特定のモル比で計り、これらを不活性雰囲気下で粉砕及び混合する。次に、得られた混合物を窒素雰囲気下で加熱処理することによってリン酸鉄リチウム粉末を作製する。次いで、リン酸鉄リチウム粉末をロータリーキルンに入れ、窒素をキャリアガスとしたメタノール蒸気を供給しながら加熱処理することによって、表面の少なくとも一部を炭素で被覆したリン酸鉄リチウム粉末を得る。
例えば、粉砕工程における粉砕時間によってリン酸鉄リチウム粉末の粒子径を調整できる。メタノール蒸気を供給しながら加熱処理する工程における加熱時間及び温度等によって、リン酸鉄リチウム粉末を被覆する炭素の量を調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除く事が望ましい。
他の正極活物質は、表面の少なくとも一部に前記活物質被覆部が存在してもよい。
Coated particles can be produced by known methods. A method for producing coated particles will be described below using coated lithium iron phosphate as an example.
For example, lithium iron phosphate powder is prepared using the method described in Japanese Patent No. 5098146, and described in GS Yuasa Technical Report, June 2008, Vol. 5, No. 1, pp. 27-31. The method can be used to coat at least a portion of the surface of the lithium iron phosphate powder with carbon.
Specifically, first, iron oxalate dihydrate, ammonium dihydrogen phosphate, and lithium carbonate are weighed in a specific molar ratio, and these are pulverized and mixed under an inert atmosphere. Next, a lithium iron phosphate powder is produced by heat-treating the obtained mixture in a nitrogen atmosphere. Next, the lithium iron phosphate powder is placed in a rotary kiln and heat-treated while supplying methanol vapor using nitrogen as a carrier gas to obtain a lithium iron phosphate powder having at least a portion of the surface coated with carbon.
For example, the particle size of the lithium iron phosphate powder can be adjusted by adjusting the pulverization time in the pulverization step. The amount of carbon covering the lithium iron phosphate powder can be adjusted by the heating time and temperature in the step of heat-treating while supplying methanol vapor. It is desirable to remove the uncoated carbon particles by subsequent steps such as classification and washing.
Other positive electrode active materials may have the active material coating on at least part of the surface.

正極活物質粒子の総質量に対して、被覆粒子の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%でもよい。 The content of the coated particles is preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and may be 100% by mass with respect to the total mass of the positive electrode active material particles.

正極活物質の総質量に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
被覆リン酸鉄リチウムを用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウムの含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
The content of the compound having an olivine crystal structure is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, relative to the total mass of the positive electrode active material. 100 mass % may be sufficient.
When coated lithium iron phosphate is used, the content of coated lithium iron phosphate is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more, relative to the total mass of the positive electrode active material particles. preferable. 100 mass % may be sufficient.

正極活物質層12の総質量に対して、正極活物質粒子の含有量は、90質量%以上が好ましく、95質量%以上がより好ましく、99質量%超がさらに好ましく、99.5質量%以上が特に好ましく、100質量%でもよい。正極活物質粒子の含有量が上記下限値以上であれば、電池容量、サイクル特性により高められる。 The content of the positive electrode active material particles is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably over 99% by mass, and 99.5% by mass or more with respect to the total mass of the positive electrode active material layer 12. is particularly preferred, and may be 100% by mass. If the content of the positive electrode active material particles is at least the above lower limit, the battery capacity and cycle characteristics are improved.

正極活物質粒子の群(即ち、正極活物質粒子の粉体)の平均粒子径は、例えば0.1~20.0μmが好ましく、0.2~10.0μmがより好ましい。正極活物質粒子を2種以上用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
本明細書における正極活物質粒子の群の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
The group of positive electrode active material particles (that is, the powder of positive electrode active material particles) preferably has an average particle size of, for example, 0.1 to 20.0 μm, more preferably 0.2 to 10.0 μm. When two or more kinds of positive electrode active material particles are used, each average particle size should be within the above range.
The average particle size of a group of positive electrode active material particles in the present specification is a volume-based median size measured using a particle size distribution analyzer based on a laser diffraction/scattering method.

正極活物質層12に含まれる結着材は、有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層12における結着材の含有量は、例えば、正極活物質層12の総質量に対して、1質量%以下が好ましく、0.5質量%以下がより好ましい。結着材の含有量が上記上限値以下であれば、正極活物質層12において、リチウムイオンの伝導に寄与しない物質の割合が少なくなり、正極活物質層12の真密度を高めて、さらに、正極1の表面を覆う結着材の割合が少なくなり、リチウムの伝導をより高めることで、高レートサイクル特性のさらなる向上を図れる。
正極活物質層12が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層12の総質量に対して0.1質量%以上が好ましい。
The binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, Polyvinyl acetal, polyethylene oxide, polyethylene glycol, carboxymethyl cellulose, polyacrylonitrile, polyimide and the like. One type of binder may be used, or two or more types may be used in combination.
The content of the binder in the positive electrode active material layer 12 is, for example, preferably 1% by mass or less, more preferably 0.5% by mass or less, relative to the total mass of the positive electrode active material layer 12 . If the content of the binder is equal to or less than the above upper limit, the proportion of the material that does not contribute to the conduction of lithium ions in the positive electrode active material layer 12 is reduced, the true density of the positive electrode active material layer 12 is increased, and furthermore, By reducing the ratio of the binder covering the surface of the positive electrode 1 and increasing the conductivity of lithium, the high rate cycle characteristics can be further improved.
When the positive electrode active material layer 12 contains a binder, the lower limit of the content of the binder is preferably 0.1% by mass or more with respect to the total mass of the positive electrode active material layer 12 .

正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層12における導電助剤の含有量は、例えば、正極活物質層12の総質量に対して、1質量部以下が好ましく、0.5質量%以下がより好ましく、0.2質量%以下がさらに好ましく、0質量%(即ち、導電助剤を含まない)が特に好ましい。導電助剤の含有量が上記上限値以下であれば、正極活物質層12において、リチウムイオンの伝導に寄与しない物質の割合が少なくなり、正極活物質層12の真密度を高めて、高レートサイクル特性のさらなる向上を図れる。
正極活物質層12に導電助剤を配合する場合、導電助剤の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層12の総質量に対して0.1質量%超とされる。
なお、正極活物質層12が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層12の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
Examples of conductive aids contained in the positive electrode active material layer 12 include carbon materials such as graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). One type of conductive aid may be used, or two or more types may be used in combination.
The content of the conductive aid in the positive electrode active material layer 12 is, for example, preferably 1 part by mass or less, more preferably 0.5% by mass or less, and 0.2% by mass with respect to the total mass of the positive electrode active material layer 12. The following are more preferable, and 0% by mass (that is, containing no conductive aid) is particularly preferable. If the content of the conductive aid is equal to or less than the above upper limit, the ratio of the material that does not contribute to the conduction of lithium ions in the positive electrode active material layer 12 is reduced, the true density of the positive electrode active material layer 12 is increased, and the rate is increased. Cycle characteristics can be further improved.
When the positive electrode active material layer 12 is blended with the conductive aid, the lower limit of the conductive aid is appropriately determined according to the type of the conductive aid. % by mass.
It should be noted that the fact that the positive electrode active material layer 12 "does not contain a conductive aid" means that it does not substantially contain any conductive aid, and does not exclude substances contained to such an extent that the effect of the present invention is not affected. For example, if the content of the conductive aid is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer 12, it can be determined that it is not substantially contained.

[正極集電体]
正極集電体本体14を構成する材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
正極集電体本体14の厚みは、例えば8~40μmが好ましく、10~25μmがより好ましい。
正極集電体本体14の厚み及び正極集電体11の厚みは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社の製品名「MDH-25M」が挙げられる。
[Positive collector]
Examples of the material forming the positive electrode current collector main body 14 include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
The thickness of the positive electrode current collector main body 14 is, for example, preferably 8 to 40 μm, more preferably 10 to 25 μm.
The thickness of the positive electrode current collector main body 14 and the thickness of the positive electrode current collector 11 can be measured using a micrometer. An example of the measuring instrument is Mitutoyo's product name "MDH-25M".

[集電体被覆層]
集電体被覆層15は導電材料を含む。
集電体被覆層15中の導電材料は、炭素を含むことが好ましく、炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工する方法で製造できる。
[Current collector coating layer]
Current collector coating layer 15 includes a conductive material.
The conductive material in the current collector coating layer 15 preferably contains carbon, and more preferably a conductive material consisting only of carbon.
The current collector coating layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. The binder for the current collector coating layer 15 can be exemplified by the same binder as the binder for the positive electrode active material layer 12 .
The positive electrode current collector 11 in which the surface of the positive electrode current collector main body 14 is coated with the current collector coating layer 15 is coated with a slurry containing a conductive material, a binder, and a solvent by a known coating method such as a gravure method. can be produced by coating the surface of the positive electrode current collector main body 14 using

集電体被覆層15の厚さは、0.1~4.0μmが好ましい。
集電体被覆層の厚さは、集電体被覆層の断面の電子顕微鏡(SEM、TEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。正極集電体本体14の表面の少なくとも一部に厚さ0.1μm以上の集電体被覆層が存在し、集電体被覆層の厚さの最大値が4.0μm以下であることが好ましい。
The thickness of the current collector coating layer 15 is preferably 0.1 to 4.0 μm.
The thickness of the current collector coating layer can be measured by measuring the thickness of the coating layer in a cross-sectional electron microscope (SEM, TEM) image of the current collector coating layer. The thickness of the current collector coating layer may not be uniform. A current collector coating layer having a thickness of 0.1 μm or more is present on at least a portion of the surface of the positive electrode current collector main body 14, and the maximum thickness of the current collector coating layer is preferably 4.0 μm or less. .

[正極の製造方法]
本実施形態の正極1は、例えば、正極活物質、結着材、及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で製造できる。正極製造用組成物は導電助剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
[Manufacturing method of positive electrode]
The positive electrode 1 of the present embodiment is produced by, for example, applying a positive electrode manufacturing composition containing a positive electrode active material, a binder, and a solvent onto a positive electrode current collector 11, drying the solvent, and removing the solvent to obtain a positive electrode active material. It can be manufactured by the method of forming layer 12 . The composition for positive electrode production may contain a conductive aid.
The thickness of the positive electrode active material layer 12 can be adjusted by a method in which a laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11 is sandwiched between two flat jigs and is evenly pressed in the thickness direction. . For example, a method of applying pressure using a roll press can be used.

正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。 A non-aqueous solvent is preferable as the solvent for the positive electrode-manufacturing composition. Examples thereof include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone. One solvent may be used, or two or more solvents may be used in combination.

正極活物質層12は、分散剤を含んでもよい。分散剤としては、例えば、ポリビニルピロリドン(PVP)、ワンショットワニス(トーヨーカラー社製)等が挙げられる。 The positive electrode active material layer 12 may contain a dispersant. Dispersants include, for example, polyvinylpyrrolidone (PVP) and one-shot varnish (manufactured by Toyocolor Co., Ltd.).

正極活物質を被覆する導電材料及び導電助剤の少なくとも一方が炭素を含む場合、正極1から正極集電体本体14を除いた残部の質量に対して、導電性炭素の含有量は0.5~3.5質量%が好ましく、1.5~3.0質量%がより好ましい。
正極1が正極集電体本体14と正極活物質層12とからなる場合、正極1から正極集電体本体14を除いた残部の質量は、正極活物質層12の質量である。
正極1が正極集電体本体14と集電体被覆層15と正極活物質層12とからなる場合、正極1から正極集電体本体14を除いた残部の質量は、集電体被覆層15と正極活物質層12の合計質量である。
正極活物質層12の総質量に対して、導電性炭素の含有量が上記の範囲内であると、電池容量をより改善し、より優れたサイクル特性を有する非水電解質二次電池を実現できる。
正極1から正極集電体本体14を除いた残部の質量に対する導電性炭素の含有量は、正極集電体本体14上に存在する層の全量を剥がして120℃環境で真空乾燥させた乾燥物(粉体)を測定対象として、下記≪導電性炭素含有量の測定方法≫で測定できる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素と、集電体被覆層15中の炭素を含む。結着材中の炭素は含まれない。
When at least one of the conductive material covering the positive electrode active material and the conductive aid contains carbon, the content of conductive carbon is 0.5 with respect to the mass of the remainder after removing the positive electrode current collector main body 14 from the positive electrode 1. ~3.5% by mass is preferable, and 1.5 to 3.0% by mass is more preferable.
When the positive electrode 1 is composed of the positive electrode current collector main body 14 and the positive electrode active material layer 12 , the mass of the positive electrode 1 excluding the positive electrode current collector main body 14 is the mass of the positive electrode active material layer 12 .
When the positive electrode 1 is composed of the positive electrode current collector main body 14, the current collector coating layer 15, and the positive electrode active material layer 12, the mass of the remainder after removing the positive electrode current collector main body 14 from the positive electrode 1 is the current collector coating layer 15. and the total mass of the positive electrode active material layer 12 .
When the content of the conductive carbon is within the above range with respect to the total mass of the positive electrode active material layer 12, the battery capacity can be further improved, and a non-aqueous electrolyte secondary battery having better cycle characteristics can be realized. .
The content of conductive carbon with respect to the mass of the remainder of the positive electrode 1 excluding the positive electrode current collector main body 14 is obtained by removing the entire amount of the layer existing on the positive electrode current collector main body 14 and vacuum-drying it in a 120 ° C. environment. (Powder) can be measured by the following <<Method for measuring conductive carbon content>>.
The content of conductive carbon measured by the following «Method for measuring conductive carbon content» includes carbon in the active material coating portion, carbon in the conductive aid, and carbon in the current collector coating layer 15. . Carbon in the binder is not included.

前記測定対象物を得る方法としては、例えば、以下の方法を用いることができる。
まず、正極1を任意の大きさに打ち抜き、溶剤(例えば、N-メチルピロリドン)に浸漬して攪拌する方法で、正極集電体本体14上に存在する層(粉体)を完全に剥がす。次いで、正極集電体本体14に粉体が付着していないことを確認し、正極集電体本体14を溶剤から取り出し、剥がした粉体と溶剤を含む懸濁液(スラリー)を得る。得られた懸濁液を120℃で乾燥して溶剤を完全に揮発させ、目的の測定対象物(粉体)を得る。
As a method for obtaining the measurement object, for example, the following method can be used.
First, the positive electrode 1 is punched out to an arbitrary size, immersed in a solvent (for example, N-methylpyrrolidone) and stirred to completely peel off the layer (powder) present on the positive electrode current collector body 14 . After confirming that no powder adheres to the positive electrode current collector main body 14, the positive electrode current collector main body 14 is removed from the solvent to obtain a suspension (slurry) containing the removed powder and the solvent. The suspension thus obtained is dried at 120° C. to completely volatilize the solvent to obtain the target measurement object (powder).

≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示唆熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 …(a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 …(a2)
<<Method for measuring conductive carbon content>>
[Measurement method A]
The object to be measured is uniformly mixed, a sample (mass w1) is weighed, and thermogravimetric suggestive heat (TG-DTA) measurement is performed in the following steps A1 and A2 to obtain a TG curve. From the obtained TG curve, the following first weight reduction amount M1 (unit: mass %) and second weight reduction amount M2 (unit: mass %) are determined. Subtract M1 from M2 to obtain the content of conductive carbon (unit: % by mass).
Step A1: In an argon stream of 300 mL/min, the temperature is raised from 30° C. to 600° C. at a rate of temperature increase of 10° C./min and held at 600° C. for 10 minutes. A first weight reduction amount M1 is obtained.
M1=(w1-w2)/w1×100 (a1)
Step A2: Immediately after step A1, the temperature is lowered from 600° C. at a rate of 10° C./min, held at 200° C. for 10 minutes, and then the measurement gas is completely replaced from argon to oxygen with an oxygen flow of 100 mL/min. Inside, the temperature is increased from 200 ° C. to 1000 ° C. at a temperature increase rate of 10 ° C./min, and the mass w3 when held at 1000 ° C. for 10 minutes is calculated by the following formula (a2) to obtain the second weight reduction amount M2 ( Unit: % by mass).
M2=(w1-w3)/w1×100 (a2)

[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
[Measurement method B]
The object to be measured is uniformly mixed and 0.0001 mg of the sample is precisely weighed, the sample is burned under the following combustion conditions, the carbon dioxide generated is quantified by a CHN elemental analyzer, and the total carbon content M3 ( Unit: % by mass). In addition, the first weight reduction amount M1 is obtained by the procedure of step A1 of the measuring method A described above. Subtract M1 from M3 to obtain the conductive carbon content (unit: % by mass).
[Combustion conditions]
Combustion furnace: 1150°C
Reduction furnace: 850°C
Helium flow rate: 200 mL/min Oxygen flow rate: 25-30 mL/min

[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN-Nジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>。
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>。
[Measurement method C]
The total carbon content M3 (unit: % by mass) contained in the sample is measured in the same manner as in the measurement method B above. Also, the binder-derived carbon content M4 (unit: % by mass) is determined by the following method. Subtract M4 from M3 to obtain the conductive carbon content (unit: % by mass).
When the binder is polyvinylidene fluoride (PVDF: monomer (CH 2 CF 2 ) molecular weight 64), the content of fluoride ions (F ) measured by combustion ion chromatography using a tubular combustion method ( Unit: % by mass), the fluorine atomic weight (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF by the following formula.
PVDF content (unit: mass%) = fluoride ion content (unit: mass%) x 64/38
PVDF-derived carbon content M4 (unit: mass%) = fluoride ion content (unit: mass%) x 12/19
The fact that the binder is polyvinylidene fluoride is confirmed by Fourier transform infrared spectrum (FT-IR) measurement of the sample or the liquid obtained by extracting the sample with N-N dimethylformamide (DMF) solvent, and the C-F bond derived It can be confirmed by a method for confirming absorption. It can also be confirmed by 19 F-NMR measurement.
If the binder is identified to be other than PVDF, the content of the binder (unit: mass %) corresponding to the molecular weight and the content of carbon (unit: mass %) of carbon content M4 can be calculated.
These techniques are described in the following publications.
Toray Research Center The TRC News No. 117 (Sep. 2013) pp. 34-37, [searched on February 10, 2021], Internet <https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34- 37).pdf>.
Tosoh Analysis Center Technical Report No. T1019 2017.09.20, [retrieved on February 10, 2021], Internet <http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>.

≪導電性炭素の分析方法≫
正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素等は、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
<<Method for analyzing conductive carbon>>
The conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is the conductive aid can be distinguished by the following analysis method.
For example, the particles in the positive electrode active material layer are analyzed by transmission electron microscope electron energy loss spectroscopy (TEM-EELS), and particles having a carbon-derived peak near 290 eV only in the vicinity of the particle surface are positive electrode active materials, Particles in which carbon-derived peaks are present even inside the particles can be determined to be conductive aids.
As another method, the particles in the positive electrode active material layer are subjected to mapping analysis by Raman spectroscopy. Particles that are positive electrode active materials and in which only the G-band and D-band are observed can be determined as conductive aids. A small amount of carbon considered as an impurity, a small amount of carbon unintentionally peeled off from the surface of the positive electrode active material during production, and the like are not determined to be conductive aids.
Using these methods, it is possible to confirm whether or not the positive electrode active material layer contains a conductive aid made of a carbon material.

[正極活物質層の細孔比表面積及び中心細孔径]
本実施形態の正極活物質層12の細孔比表面積は、5.0~10.0m/gが好ましく、6.0~9.5m/gがより好ましく、7.0~9.0m/gがさらに好ましい。
本実施形態の正極活物質層12の中心細孔径は、0.06~0.150μmが好ましく、0.06~0.130μmがより好ましく、0.08~0.120μmがさらに好ましい。
本明細書において、正極活物質層12の細孔比表面積及び中心細孔径は、水銀圧入法により測定した値である。中心細孔径は、細孔径分布の細孔径0.003~1.000μmの範囲におけるメジアン径(D50、単位:μm)として算出する。
[Pore Specific Surface Area and Central Pore Diameter of Positive Electrode Active Material Layer]
The pore specific surface area of the positive electrode active material layer 12 of the present embodiment is preferably 5.0 to 10.0 m 2 /g, more preferably 6.0 to 9.5 m 2 /g, and more preferably 7.0 to 9.0 m 2 /g. 2 /g is more preferred.
The center pore diameter of the positive electrode active material layer 12 of the present embodiment is preferably 0.06 to 0.150 μm, more preferably 0.06 to 0.130 μm, even more preferably 0.08 to 0.120 μm.
In this specification, the pore specific surface area and central pore diameter of the positive electrode active material layer 12 are values measured by a mercury porosimetry method. The central pore diameter is calculated as the median diameter (D50, unit: μm) in the pore diameter range of 0.003 to 1.000 μm in the pore diameter distribution.

正極活物質層12の細孔比表面積及び中心細孔径が上記の範囲内であると、非水電解質二次電池の高レートサイクル特性の向上効果に優れる。
細孔表面積が上記範囲の上限値以下では、反応表面積が小さいため、高レート充放電サイクル時に局所的に正極活物質の微粉や導電助剤などに電流が集中して正極1と電解液との副反応が高くなる箇所が少なくなり、劣化が抑えられやすい。
中心細孔径が上記範囲の下限値以上では、正極活物質の微粉や導電助剤などが凝集した箇所が少ないため、高レート充放電サイクル時に反応ムラが生じ難く、正極1と電解液との副反応が高くなる箇所が少なくなり、劣化が抑えられやすい。
正極活物質層12の細孔比表面積及び中心細孔径は、例えば正極活物質の含有量、正極活物質の粒子径、正極活物質層12の厚み等によって調整できる。正極活物質層12が導電助剤を有する場合は、導電助剤の含有量、導電助剤の粒子径によっても調整できる。また、正極活物質に含まれる微粉の量や、正極製造用組成物を調製する際の分散状態による影響も受ける。
例えば、導電助剤の粒子径が正極活物質の粒子径より小さい場合、導電助剤の含有量を低減することによって細孔表面積を低減し、中心細孔径を増大できる。
When the pore specific surface area and central pore diameter of the positive electrode active material layer 12 are within the above ranges, the effect of improving the high rate cycle characteristics of the non-aqueous electrolyte secondary battery is excellent.
If the pore surface area is equal to or less than the upper limit of the above range, the reaction surface area is small, so current is locally concentrated in the fine powder of the positive electrode active material, the conductive aid, etc. during high-rate charge-discharge cycles, and the connection between the positive electrode 1 and the electrolyte solution occurs. The number of places where the side reaction is high is reduced, and deterioration is easily suppressed.
When the central pore diameter is at least the lower limit of the above range, there are few places where the fine powder of the positive electrode active material, the conductive agent, etc. aggregate, so that uneven reaction hardly occurs during high-rate charge-discharge cycles, and the positive electrode 1 and the electrolyte solution do not have a secondary reaction. The number of places where the reaction is high is reduced, and deterioration is easily suppressed.
The pore specific surface area and central pore diameter of the positive electrode active material layer 12 can be adjusted by, for example, the content of the positive electrode active material, the particle size of the positive electrode active material, the thickness of the positive electrode active material layer 12, and the like. When the positive electrode active material layer 12 contains a conductive aid, it can also be adjusted by the content of the conductive aid and the particle size of the conductive aid. It is also affected by the amount of fine powder contained in the positive electrode active material and the state of dispersion when preparing the composition for manufacturing a positive electrode.
For example, when the particle size of the conductive additive is smaller than that of the positive electrode active material, the pore surface area can be reduced and the central pore size can be increased by reducing the content of the conductive additive.

[正極活物質層の密度]
本実施形態において、正極活物質層12の真密度D1と、正極活物質粒子の真密度Dとは、下記(s)式を満たす。
[Density of positive electrode active material layer]
In the present embodiment, the true density D1 of the positive electrode active material layer 12 and the true density D of the positive electrode active material particles satisfy the following formula (s).

0.96D≦D1<D ・・・(s) 0.96D≦D1<D (s)

即ち、真密度Dに対する真密度D1の比(D1/D比)は、0.96以上1未満である。
D1/D比は、0.97~0.99が好ましく、0.98~0.99がより好ましい。D1/D比が上記下限値以上であれば、正極活物質層12においてリチウムイオン伝導に寄与する物質の割合を高め、均一な充放電反応を円滑に行うことで、高レートサイクル特性を向上できる。D1/D比が上記上限値以下であれば、他の成分(例えば、結着材、導電性助剤等)を配合した効果を発揮できる。
なお、D1/D比は、正極活物質層12における正極活物質の含有量により調節できる。
That is, the ratio of the true density D1 to the true density D (D1/D ratio) is 0.96 or more and less than 1.
The D1/D ratio is preferably 0.97-0.99, more preferably 0.98-0.99. If the D1/D ratio is equal to or higher than the above lower limit, the proportion of the substance that contributes to lithium ion conduction in the positive electrode active material layer 12 is increased, and uniform charge-discharge reactions are smoothly performed, thereby improving high-rate cycle characteristics. . If the D1/D ratio is equal to or less than the above upper limit, the effect of blending other components (for example, a binder, a conductive aid, etc.) can be exhibited.
Note that the D1/D ratio can be adjusted by the content of the positive electrode active material in the positive electrode active material layer 12 .

正極活物質の真密度Dは、いわゆるアルキメデス法によって測定できる。
正極活物質粒子が正極活物質からなる場合、正極活物質粒子をそのまま真密度Dの測定用のサンプルとする。
正極活物質粒子が被覆粒子である場合、被覆層を除去して、芯部を取り出し、この芯部(即ち、正極活物質)を真密度Dの測定用のサンプルとする。
被覆粒子の被覆層を除去する方法としては、芯部が導電性カーボンの層である場合、被覆粒子を焼成する方法が挙げられる。被覆粒子の焼成条件は、例えば、800~900℃で、3時間以上とされる。
正極活物質層12中の正極活物質を取り出す方法としては、正極活物質層12をN-メチルピロリドン(NMP)等の溶剤で洗浄し、次いで酸素下で正極活物質層12を焼成する方法が挙げられる。この方法によれば、結着材等の有機材料、導電助剤等を除去して、正極活物質を採取できる。正極活物質層12の焼成条件は、例えば、800~900℃、3時間以上とされる。
真密度Dの測定方法としては、Heガス置換法等が挙げられる。Heガス置換法においては、例えば、マイクロメリティックス、乾式密度計、アキュピックII 1340(低容積膨張法、例えば10cmタイプであればサンプル量0.2cm以上)を用いることができる。
真密度Dの測定結果の一例として、正極活物質層12を焼成して得られたLiFePO数gを10cmセルに採取し、繰り返し5回以上測定して平均値を求めたところ、3.55g/cmの値が得られた。同様に、LiCoOの真密度を測定したところ、5.0g/cmであった。
また、充放電電位、電池容量、ICPによる組成分析から正極活物質を特定できれば、その結晶材料固有の真密度が文献値、又は同様に作成した同材料の測定により得られる。LiFePOの文献値は3.6g/cmであり、上記試験結果と概ね一致する。
The true density D of the positive electrode active material can be measured by the so-called Archimedes method.
When the positive electrode active material particles are made of the positive electrode active material, the positive electrode active material particles are used as a sample for measuring the true density D as they are.
When the positive electrode active material particles are coated particles, the coating layer is removed, the core portion is taken out, and this core portion (that is, the positive electrode active material) is used as a sample for measuring the true density D.
As a method for removing the coating layer of the coated particles, when the core portion is a layer of conductive carbon, a method of baking the coated particles can be mentioned. The firing conditions for the coated particles are, for example, 800 to 900° C. for 3 hours or more.
As a method for extracting the positive electrode active material in the positive electrode active material layer 12, there is a method of washing the positive electrode active material layer 12 with a solvent such as N-methylpyrrolidone (NMP) and then baking the positive electrode active material layer 12 in the presence of oxygen. mentioned. According to this method, the positive electrode active material can be collected by removing the organic material such as the binder, the conductive aid, and the like. The firing conditions for the positive electrode active material layer 12 are, for example, 800 to 900° C. and 3 hours or more.
Examples of the method for measuring the true density D include a He gas replacement method. In the He gas replacement method, for example, Micromeritics, dry density meter, Accupic II 1340 (low volume expansion method, for example, 10 cm 3 type, sample amount 0.2 cm 3 or more) can be used.
As an example of the measurement results of the true density D, 4 g of LiFePO 4 obtained by firing the positive electrode active material layer 12 was sampled in a 10 cm 3 cell, and the measurements were repeated five times or more to obtain an average value. A value of 55 g/cm 3 was obtained. Similarly, the true density of LiCoO 2 was measured to be 5.0 g/cm 3 .
Also, if the positive electrode active material can be identified from the charge/discharge potential, battery capacity, and composition analysis by ICP, the true density inherent to the crystal material can be obtained from literature values or similarly prepared measurements of the same material. The literature value for LiFePO 4 is 3.6 g/cm 3 , which roughly agrees with the above test results.

正極活物質層12の真密度D1は、真密度Dと同様にHeガス置換法にて求めることができる。まず、正極集電体11を含んだ状態で、正極1の真密度D2を測定する。次いで、正極集電体11の厚さ及び質量を考慮し、真密度D2の値から真密度D1を算出する。真密度D1の算出に際しては、正極集電体11の厚さ及び質量を測定し、これを正極1の体積及び質量から減算することで、正極活物質層12のみの真密度D1を得ることができる。正極集電体11から正極活物質層12を剥離し、剥離した正極活物質層12の真密度を測定することで、真密度D1を求めてもよい。但し、この方法によると、正極集電体11に付着物が残ると、誤差が発生する。このため、真密度D1の求める方法としては、正極集電体11を含んだ状態で正極1の真密度D2を測定し、真密度D2から真密度D1を算出する方法が好ましい。 Like the true density D, the true density D1 of the positive electrode active material layer 12 can be obtained by the He gas replacement method. First, the true density D2 of the positive electrode 1 is measured while including the positive electrode current collector 11 . Next, considering the thickness and mass of the positive electrode current collector 11, the true density D1 is calculated from the value of the true density D2. When calculating the true density D1, the thickness and mass of the positive electrode current collector 11 are measured and subtracted from the volume and mass of the positive electrode 1 to obtain the true density D1 of only the positive electrode active material layer 12. can. The true density D1 may be obtained by peeling the positive electrode active material layer 12 from the positive electrode current collector 11 and measuring the true density of the peeled positive electrode active material layer 12 . However, according to this method, an error occurs if deposits remain on the positive electrode current collector 11 . Therefore, as a method for obtaining the true density D1, a method of measuring the true density D2 of the positive electrode 1 in a state including the positive electrode current collector 11 and calculating the true density D1 from the true density D2 is preferable.

本実施形態において、正極活物質層12の体積密度は、特に限定されないが、2.05~2.80g/cmが好ましく、2.15~2.50g/cmがより好ましい。
正極活物質層12の体積密度は、例えば以下の測定方法により測定できる。
正極1及び正極集電体11の厚みをそれぞれマイクロゲージで測定し、これらの差から正極活物質層12の厚みを算出する。正極1及び正極集電体11の厚みは、それぞれ任意の5点以上で測定した値の平均値とする。正極集電体11の厚みとして、後述の正極集電体露出部13の厚みを用いてよい。
正極を所定の面積となるように打ち抜いた測定試料の質量を測定し、予め測定した正極集電体11の質量を差し引いて、正極活物質層12の質量を算出する。
下記式(1)に基づいて、正極活物質層12の体積密度を算出する。
体積密度(単位:g/cm)=正極活物質層の質量(単位:g)/[(正極活物質層の厚み(単位:cm)×測定試料の面積(単位:cm)]・・・(1)
In this embodiment, the volume density of the positive electrode active material layer 12 is not particularly limited, but is preferably 2.05 to 2.80 g/cm 3 and more preferably 2.15 to 2.50 g/cm 3 .
The volume density of the positive electrode active material layer 12 can be measured, for example, by the following measuring method.
The thicknesses of the positive electrode 1 and the positive electrode current collector 11 are each measured with a microgauge, and the thickness of the positive electrode active material layer 12 is calculated from the difference between them. The thickness of the positive electrode 1 and the positive electrode current collector 11 is the average value of the values measured at five or more arbitrary points. As the thickness of the positive electrode current collector 11, the thickness of the positive electrode current collector exposed portion 13, which will be described later, may be used.
The mass of a measurement sample obtained by punching out a positive electrode to have a predetermined area is measured, and the mass of the positive electrode active material layer 12 is calculated by subtracting the pre-measured mass of the positive electrode current collector 11 .
The volume density of the positive electrode active material layer 12 is calculated based on the following formula (1).
Volume density (unit: g/cm 3 )=mass of positive electrode active material layer (unit: g)/[(thickness of positive electrode active material layer (unit: cm)×area of measurement sample (unit: cm 2 )]...・(1)

正極活物質層12の体積密度が上記の範囲内であると、電池の体積エネルギー密度をより改善し、より優れたサイクル特性を有する非水電解質二次電池を実現できる。
正極活物質層12の体積密度は、例えば、正極活物質の含有量、正極活物質の粒子径、正極活物質層12の厚み等によって調整できる。正極活物質層12が導電助剤を有する場合は、導電助剤の種類(比表面積、比重)、導電助剤の含有量、導電助剤の粒子径によっても調整できる。
When the volume density of the positive electrode active material layer 12 is within the above range, the volume energy density of the battery can be further improved, and a non-aqueous electrolyte secondary battery having superior cycle characteristics can be realized.
The volume density of the positive electrode active material layer 12 can be adjusted by, for example, the content of the positive electrode active material, the particle size of the positive electrode active material, the thickness of the positive electrode active material layer 12, and the like. When the positive electrode active material layer 12 contains a conductive aid, it can also be adjusted by the type (specific surface area, specific gravity) of the conductive aid, the content of the conductive aid, and the particle size of the conductive aid.

[サイクル容量維持率]
本実施形態の正極1において、下記試験方法により求められるサイクル容量維持率は80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましく、100%でもよい。サイクル容量維持率が上記下限値以上であれば、高レートサイクル特性をより高められる。
(試験方法)
定格容量1Ahの非水電解質二次電池とし、3Cレート、3.8Vで充電し10秒間休止し、次いで、3Cレート、2.0Vで放電し10秒間休止する充放電サイクルを1000回繰り返し、その後0.2Cレート、2.5Vで放電した際の放電容量Bを測定し、充放電サイクルに供する前の非水電解質二次電池の放電容量Aで放電容量Bを除してサイクル容量維持率(%)とする。
[Cycle capacity retention rate]
In the positive electrode 1 of the present embodiment, the cycle capacity retention rate obtained by the following test method is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and may be 100%. If the cycle capacity retention rate is equal to or higher than the above lower limit, high rate cycle characteristics can be further enhanced.
(Test method)
A non-aqueous electrolyte secondary battery with a rated capacity of 1 Ah, charging at 3C rate, 3.8 V, resting for 10 seconds, then discharging at 3 C rate, 2.0 V, resting for 10 seconds, repeating 1000 charge-discharge cycles. Measure the discharge capacity B when discharged at 0.2 C rate and 2.5 V, and divide the discharge capacity B by the discharge capacity A of the non-aqueous electrolyte secondary battery before being subjected to the charge / discharge cycle to obtain the cycle capacity maintenance rate ( %).

<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解質とを備える。さらにセパレータ2を備えてもよい。図中符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12とを有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3及びセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
本実施形態の非水電解質二次電池10は、例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製し、電極積層体をアルミラミネート袋等の外装体(筐体)5に封入し、非水電解質(図示せず)を注入して密閉する方法で製造できる。
図2では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3及びセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように配置する。
<Non-aqueous electrolyte secondary battery>
A non-aqueous electrolyte secondary battery 10 of the present embodiment shown in FIG. 2 includes the positive electrode 1 for non-aqueous electrolyte secondary batteries of the present embodiment, a negative electrode 3, and a non-aqueous electrolyte. Further, a separator 2 may be provided. Reference numeral 5 in the figure is an exterior body.
In this embodiment, the positive electrode 1 has a plate-like positive electrode current collector 11 and positive electrode active material layers 12 provided on both surfaces thereof. The positive electrode active material layer 12 exists on part of the surface of the positive electrode current collector 11 . An edge portion of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the positive electrode current collector exposed portion 13 .
The negative electrode 3 has a plate-like negative electrode current collector 31 and negative electrode active material layers 32 provided on both sides thereof. The negative electrode active material layer 32 exists on part of the surface of the negative electrode current collector 31 . An edge portion of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist. A terminal tab (not shown) is electrically connected to an arbitrary portion of the negative electrode current collector exposed portion 33 .
The shapes of the positive electrode 1, the negative electrode 3, and the separator 2 are not particularly limited. For example, it may be rectangular in plan view.
The non-aqueous electrolyte secondary battery 10 of the present embodiment is produced, for example, by fabricating an electrode laminate in which the positive electrode 1 and the negative electrode 3 are alternately laminated with the separator 2 interposed therebetween, and the electrode laminate is packaged in an outer package such as an aluminum laminate bag ( It can be manufactured by a method of enclosing in a housing 5, injecting a non-aqueous electrolyte (not shown), and sealing.
FIG. 2 typically shows a structure in which negative electrodes/separators/positive electrodes/separators/negative electrodes are laminated in this order, but the number of electrodes can be changed as appropriate. One or more positive electrodes 1 are sufficient, and any number of positive electrodes 1 can be used according to the battery capacity to be obtained. One more negative electrode 3 and separator 2 than the number of positive electrodes 1 are used, and they are arranged so that the outermost layer is the negative electrode 3 .

[負極]
負極活物質層32は負極活物質を含む。負極活物質層32は、さらに結着材を含んでもよい。負極活物質層32は、さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
[Negative electrode]
The negative electrode active material layer 32 contains a negative electrode active material. The negative electrode active material layer 32 may further contain a binder. The negative electrode active material layer 32 may further contain a conductive aid. The shape of the negative electrode active material is preferably particulate.
For the negative electrode 3, for example, a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent is prepared, coated on the negative electrode current collector 31, and dried to remove the solvent to obtain the negative electrode active material. It can be manufactured by any method that forms layer 32 . The negative electrode production composition may contain a conductive aid.

負極活物質及び導電助剤としては、例えばグラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。 Examples of negative electrode active materials and conductive aids include carbon materials such as graphite, graphene, hard carbon, ketjen black, acetylene black, and carbon nanotubes (CNT). Each of the negative electrode active material and the conductive aid may be used alone or in combination of two or more.

負極集電体31の材料、負極製造用組成物中の結着材、溶媒としては、上記した正極集電体11の材料、正極製造用組成物中の結着材、溶媒と同様のものを例示できる。負極製造用組成物中の結着材、溶媒は、それぞれ1種でもよく2種以上を併用してもよい。 As the material of the negative electrode current collector 31 and the binder and solvent in the composition for manufacturing the negative electrode, the same materials as the material of the positive electrode current collector 11 and the binder and solvent in the composition for manufacturing the positive electrode are used. I can give an example. The binder and the solvent in the negative electrode-producing composition may be used alone or in combination of two or more.

負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。 The total content of the negative electrode active material and the conductive aid is preferably 80.0 to 99.9 mass %, more preferably 85.0 to 98.0 mass %, relative to the total mass of the negative electrode active material layer 32 .

[セパレータ]
セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解質を保持してもよい。
セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
[Separator]
A separator 2 is arranged between the negative electrode 3 and the positive electrode 1 to prevent short circuit or the like. The separator 2 may hold a non-aqueous electrolyte, which will be described later.
The separator 2 is not particularly limited, and can be exemplified by porous polymer membranes, non-woven fabrics, glass fibers, and the like.
An insulating layer may be provided on one or both surfaces of the separator 2 . The insulating layer is preferably a layer having a porous structure in which insulating fine particles are bound with an insulating layer binder.

セパレータ2は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
The separator 2 may contain various plasticizers, antioxidants and flame retardants.
Antioxidants include phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenolic antioxidants, and polyphenolic antioxidants; hindered amine antioxidants; phosphorus antioxidants. benzotriazole-based antioxidants; benzophenone-based antioxidants; triazine-based antioxidants; salicylic acid ester-based antioxidants, and the like. Phenolic antioxidants and phosphorus antioxidants are preferred.

[非水電解質]
非水電解質は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
[Non-aqueous electrolyte]
A non-aqueous electrolyte fills between the positive electrode 1 and the negative electrode 3 . For example, known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors and the like.
As the non-aqueous electrolyte, a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in an organic solvent is preferable.

有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。 The organic solvent preferably has resistance to high voltage. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, Polar solvents such as tetrahydrafuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate, or mixtures of two or more of these polar solvents are included.

電解質塩は、特に限定されず、例えばLiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。 The electrolyte salt is not particularly limited, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN(SO 2 F) 2 and LiN(SO 2 CF 3 ). 2 , Li( SO2CF2CF3 ) 2 , LiN( COCF3 ) 2 , LiN ( COCF2CF3 ) 2 , or a mixture of two or more of these salts.

本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
The non-aqueous electrolyte secondary battery of the present embodiment can be used as a lithium ion secondary battery for various uses such as industrial use, consumer use, automobile use, and residential use.
The mode of use of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited. For example, it can be used for a battery module configured by connecting a plurality of non-aqueous electrolyte secondary batteries in series or in parallel, a battery system including a plurality of electrically connected battery modules and a battery control system, and the like.
Examples of battery systems include battery packs, stationary storage battery systems, automotive power storage battery systems, automotive auxiliary equipment storage battery systems, and emergency power supply storage battery systems.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。 EXAMPLES The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.

<使用原料>
[正極活物質粒子]
・LiFePOの被覆粒子:芯部(LiFePO)の真密度3.55g/cm。被覆部は導電性炭素。表中の導電性炭素の量は、正極活物質粒子100質量%に対する割合である。
・LiCoO(被覆部無):真密度5.00g/cm
[導電助剤]
・カーボンブラック:真密度2.30g/cm
[結着材]
・ポリフッ化ビニリデン(PVDF):真密度1.20g/cm
[分散剤]
・ポリビニルピロリドン(PVP):真密度1.78g/cm
<Raw materials used>
[Positive electrode active material particles]
LiFePO 4 coated particles: core (LiFePO 4 ) true density 3.55 g/cm 3 . Conductive carbon coating. The amount of conductive carbon in the table is a ratio with respect to 100% by mass of the positive electrode active material particles.
· LiCoO 2 (no covering portion): True density 5.00 g/cm 3 .
[Conductive agent]
- Carbon black: True density 2.30 g/cm 3 .
[Binder]
• Polyvinylidene fluoride (PVDF): True density 1.20 g/cm 3 .
[Dispersant]
• Polyvinylpyrrolidone (PVP): True density 1.78 g/cm 3 .

[正極集電体]
・アルミニウム箔(厚さ15μm)の両面に、集電体被覆層(厚さ2μ)を有する正極集電体。集電体被覆層は、カーボンブラック(100質量部)と結着材(40質量部)とを含む。
(製造方法)
以下の方法で正極集電体本体の表裏両面を集電体被覆層で被覆して正極集電体を作製した。正極集電体本体としてはアルミニウム箔(厚さ15μm)を用いた。
カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合してスラリーを得た。NMPの使用量はスラリーを塗工するのに必要な量とした。
得られたスラリーを正極集電体本体の両面に、乾燥後の塗膜の厚さ(両面合計)が2μmとなるように、グラビア法で塗工し、乾燥し溶媒を除去して正極集電体とした。両面それぞれの集電体被覆層15は、塗布量及び厚みが互いに均等になるように形成した。
[Positive collector]
- A positive electrode current collector having a current collector coating layer (thickness: 2 µm) on both sides of an aluminum foil (thickness: 15 µm). The current collector coating layer contains carbon black (100 parts by mass) and a binder (40 parts by mass).
(Production method)
A positive electrode current collector was produced by coating both the front and back surfaces of a positive electrode current collector body with a current collector coating layer by the following method. An aluminum foil (thickness: 15 μm) was used as the main body of the positive electrode current collector.
A slurry was obtained by mixing 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and N-methylpyrrolidone (NMP) as a solvent. The amount of NMP used was the amount necessary for coating the slurry.
The obtained slurry is applied to both sides of the positive electrode current collector body by gravure so that the thickness of the coating film after drying (both sides total) is 2 μm, dried to remove the solvent, and the positive electrode current collector is coated. body. The current collector coating layers 15 on both sides were formed so that the coating amount and thickness were uniform.

<測定方法>
[サイクル容量維持率]
サイクル容量維持率の評価は、下記(1)~(7)の手順に沿って行った。
(1)定格容量が1Ahとなるように非水電解質二次電池(セル)を作製し、常温(25℃)下で、サイクル評価を実施した。
(2)得られたセルに対して、0.2Cレート(即ち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(即ち、20mA)として充電を行った。
(3)容量確認のための放電を0.2Cレートで一定電流にて終止電圧2.5Vで行った。このときの放電容量を基準容量とし、基準容量を1Cレートの電流値とした(即ち、1,000mAとした)。
(4)セルの3Cレート(即ち、3000mA)で一定電流にて終止電圧3.8Vで充電を行った後、10秒間休止し、この状態から3Cレートにて終止電圧2.0Vで放電を行い、10秒間休止した。
(5)(4)のサイクル試験を1,000回繰り返した。
(6)(2)と同様の充電を実施した後に、(3)と同じ容量確認を実施した。
(7)(6)で測定された容量確認での放電容量をサイクル試験前の基準容量で除して百分率とする事で、1,000サイクル後のサイクル容量維持率(1,000サイクル容量維持率、単位:%)とした。
<Measurement method>
[Cycle capacity retention rate]
The cycle capacity retention rate was evaluated according to the following procedures (1) to (7).
(1) A non-aqueous electrolyte secondary battery (cell) was produced so as to have a rated capacity of 1 Ah, and cycle evaluation was performed at room temperature (25°C).
(2) The resulting cell was charged at a constant current rate of 0.2C (i.e., 200mA) with a final voltage of 3.6V, and then terminated with 1/10 of the charging current at a constant voltage. Charging was done as a current (ie 20 mA).
(3) Discharge for capacity confirmation was performed at a constant current of 0.2C rate and a final voltage of 2.5V. The discharge capacity at this time was taken as the reference capacity, and the reference capacity was taken as the current value of the 1C rate (that is, 1,000 mA).
(4) After charging the cell at a constant current at a 3C rate (that is, 3000 mA) with a final voltage of 3.8 V, resting for 10 seconds, and discharging from this state at a 3 C rate with a final voltage of 2.0 V , rested for 10 seconds.
(5) The cycle test of (4) was repeated 1,000 times.
(6) After performing the same charging as in (2), the same capacity confirmation as in (3) was performed.
(7) By dividing the discharge capacity in capacity confirmation measured in (6) by the reference capacity before the cycle test and making it a percentage, the cycle capacity retention rate after 1,000 cycles (1,000 cycle capacity retention rate, unit: %).

<製造例1:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
<Production Example 1: Production of Negative Electrode>
100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent are mixed, A composition for manufacturing a negative electrode having a solid content of 50% by mass was obtained.
The obtained composition for manufacturing a negative electrode was coated on both sides of a copper foil (thickness: 8 μm), dried in vacuum at 100° C., and then pressed under a load of 2 kN to obtain a negative electrode sheet. The obtained negative electrode sheet was punched out to obtain a negative electrode.

<製造例2:非水電解質二次電池の製造>
以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
各例の正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
得られた非水電解質二次電池を用いて、サイクル容量維持率を測定した。
<Production Example 2: Production of Nonaqueous Electrolyte Secondary Battery>
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 2 was manufactured by the following method.
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed so that the volume ratio of EC:DEC was 3 :7. An aqueous electrolyte was prepared.
The positive electrode of each example and the negative electrode obtained in Production Example 1 were alternately laminated via a separator to prepare an electrode laminate having the negative electrode as the outermost layer. A polyolefin film (thickness: 15 μm) was used as the separator.
In the process of producing the electrode laminate, first, the separator 2 and the positive electrode 1 were laminated, and then the negative electrode 3 was laminated on the separator 2 .
A terminal tab is electrically connected to each of the positive electrode current collector exposed portion 13 and the negative electrode current collector exposed portion 33 of the electrode laminate, and the electrodes are stacked with an aluminum laminate film so that the terminal tab protrudes to the outside. The body was sandwiched, and three sides were laminated and sealed.
Subsequently, a non-aqueous electrolyte was injected from one side that was left unsealed, and vacuum-sealed to manufacture a non-aqueous electrolyte secondary battery (laminate cell).
The cycle capacity retention rate was measured using the obtained non-aqueous electrolyte secondary battery.

<実施例1~3、比較例1~2>
表1の組成に従い、正極活物質粒子と導電助剤と結着材と分散剤とを溶媒(NMP)に分散して正極製造用組成物とした。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。なお、表中における正極活物質粒子、導電助剤、結着材及び分散剤の配合量は、溶媒以外の合計(即ち、正極活物質粒子、導電助剤、結着材及び分散剤の合計量)100質量%に対する割合である。表中、各組成の含有量は質量%を表し、「-」は配合していないことを示す
正極集電体上にそれぞれの正極製造用組成物を塗工し、予備乾燥後、120℃で真空乾燥して正極活物質層を形成した。正極製造用組成物の塗工量を31mg/cmとした。得られた積層物を10kNの荷重で加圧プレスして正極シートとした。次いで、正極シートを打ち抜き、正極とした。
各例の正極について、真密度D1を求めた。
各例の正極を用いて非水電解質二次電池を製造し、この非水電解質二次電池でサイクル容量維持率を求めた。その結果を表中に示す。
<Examples 1-3, Comparative Examples 1-2>
According to the composition shown in Table 1, the positive electrode active material particles, the conductive aid, the binder, and the dispersing agent were dispersed in a solvent (NMP) to prepare a composition for manufacturing a positive electrode. The amount of the solvent used was the amount necessary for coating the composition for manufacturing a positive electrode. The amounts of the positive electrode active material particles, the conductive aid, the binder, and the dispersant in the table are the total amount other than the solvent (i.e., the total amount of the positive electrode active material particles, the conductive aid, the binder, and the dispersant). ) is a ratio to 100% by mass. In the table, the content of each composition represents % by mass, and "-" indicates that it is not blended. Vacuum drying was performed to form a positive electrode active material layer. The coating amount of the positive electrode manufacturing composition was set to 31 mg/cm 2 . The resulting laminate was pressure-pressed with a load of 10 kN to form a positive electrode sheet. Then, the positive electrode sheet was punched out to obtain a positive electrode.
The true density D1 was obtained for the positive electrode of each example.
A non-aqueous electrolyte secondary battery was produced using the positive electrode of each example, and the cycle capacity retention rate was determined for this non-aqueous electrolyte secondary battery. The results are shown in the table.

Figure 2022145473000002
Figure 2022145473000002

表1に示すように、本発明を適用した実施例1~3は、サイクル容量維持率が82%以上であった。
D1/D比が96%未満である比較例1~2は、いずれもサイクル容量維持率が68%以下であった。
これらの結果から、本発明を適用することで、高レートサイクル特性を向上できることが確認された。
As shown in Table 1, Examples 1 to 3 to which the present invention was applied had a cycle capacity retention rate of 82% or more.
In Comparative Examples 1 and 2, in which the D1/D ratio was less than 96%, the cycle capacity retention rate was 68% or less.
From these results, it was confirmed that the high rate cycle characteristics can be improved by applying the present invention.

1 正極
2 セパレータ
3 負極
5 外装体
10 二次電池
11 正極集電体
12 正極活物質層
13 正極集電体露出部
14 正極集電体本体
15 集電体被覆層
31 負極集電体
32 負極活物質層
33 負極集電体露出部
REFERENCE SIGNS LIST 1 positive electrode 2 separator 3 negative electrode 5 exterior body 10 secondary battery 11 positive electrode current collector 12 positive electrode active material layer 13 positive electrode current collector exposed portion 14 positive electrode current collector body 15 current collector coating layer 31 negative electrode current collector 32 negative electrode active Material layer 33 Negative electrode current collector exposed portion

Claims (10)

正極集電体と、前記正極集電体上に存在する正極活物質層とを有し、
前記正極活物質層は、正極活物質を含む1つ以上の正極活物質粒子を有し、
前記正極活物質の真密度Dと、前記正極活物質層の真密度D1とは、下記(s)式を満たす、非水電解質二次電池用正極。
0.96D≦D1<D ・・・(s)
Having a positive electrode current collector and a positive electrode active material layer present on the positive electrode current collector,
The positive electrode active material layer has one or more positive electrode active material particles containing a positive electrode active material,
A positive electrode for a non-aqueous electrolyte secondary battery, wherein the true density D of the positive electrode active material and the true density D1 of the positive electrode active material layer satisfy the following formula (s).
0.96D≦D1<D (s)
前記正極活物質は、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1に記載の非水電解質二次電池用正極。 The positive electrode active material is a compound represented by the general formula LiFe x M (1-x) PO 4 (where 0≦x≦1 and M is Co, Ni, Mn, Al, Ti or Zr). The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, comprising: 前記正極活物質は、LiFePOで表されるリン酸鉄リチウムである、請求項1に記載の非水電解質二次電池用正極。 2. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein said positive electrode active material is lithium iron phosphate represented by LiFePO4 . 前記真密度D1は、3.4g/cm以上3.6g/cm未満である、請求項3に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein said true density D1 is 3.4 g/ cm3 or more and less than 3.6 g/ cm3 . 前記正極活物質層は、導電助剤及び結着材を含み、
前記導電助剤の含有量は、前記正極活物質層の総質量に対し1質量%以下であり、
前記結着材の含有量は、前記正極活物質層の総質量に対し1質量%以下である、請求項1~4のいずれか一項に記載の非水電解質二次電池用正極。
The positive electrode active material layer contains a conductive aid and a binder,
The content of the conductive aid is 1% by mass or less with respect to the total mass of the positive electrode active material layer,
5. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the content of said binder is 1% by mass or less with respect to the total mass of said positive electrode active material layer.
前記正極活物質層は、導電助剤を含まない、請求項1~4のいずれか一項に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the positive electrode active material layer does not contain a conductive aid. 前記正極活物質粒子の一部又は全部は、前記正極活物質の芯部と、前記芯部を被覆する被覆部とを有し、
前記被覆部は導電材料を含み、
前記導電材料の含有量は、前記正極活物質粒子の総質量に対し1.3質量%以下である、請求項1~6のいずれか一項に記載の非水電解質二次電池用正極。
Some or all of the positive electrode active material particles have a core portion of the positive electrode active material and a covering portion covering the core portion,
the covering includes a conductive material;
The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the content of said conductive material is 1.3% by mass or less with respect to the total mass of said positive electrode active material particles.
下記試験方法により求められるサイクル容量維持率は80%以上である、請求項1~7のいずれか一項に記載の非水電解質二次電池用正極。
(試験方法)
定格容量1Ahの非水電解質二次電池とし、3Cレート、3.8Vで充電し10秒間休止し、次いで、3Cレート、2.0Vで放電し10秒間休止する充放電サイクルを1000回繰り返し、その後0.2Cレート、2.5Vで放電した際の放電容量Bを測定し、充放電サイクルに供する前の非水電解質二次電池の放電容量Aで放電容量Bを除してサイクル容量維持率(%)とする。
The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein a cycle capacity retention rate determined by the following test method is 80% or more.
(Test method)
A non-aqueous electrolyte secondary battery with a rated capacity of 1 Ah, charging at 3C rate, 3.8 V, resting for 10 seconds, then discharging at 3 C rate, 2.0 V, resting for 10 seconds, repeating 1000 charge-discharge cycles. Measure the discharge capacity B when discharged at 0.2 C rate and 2.5 V, and divide the discharge capacity B by the discharge capacity A of the non-aqueous electrolyte secondary battery before being subjected to the charge / discharge cycle to obtain the cycle capacity maintenance rate ( %).
請求項1~8のいずれか一項に記載の非水電解質二次電池用正極と、負極と、前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質と、を備える、非水電解質二次電池。 The positive electrode for the non-aqueous electrolyte secondary battery according to any one of claims 1 to 8, the negative electrode, and the non-aqueous electrolyte present between the positive electrode for the non-aqueous electrolyte secondary battery and the negative electrode, A non-aqueous electrolyte secondary battery. 請求項9に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。 A battery module or battery system comprising a plurality of the non-aqueous electrolyte secondary batteries according to claim 9 .
JP2021197193A 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same Active JP7197670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021197193A JP7197670B2 (en) 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021045981 2021-03-19
JP2021197193A JP7197670B2 (en) 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021045981 Division 2021-03-19 2021-03-19

Publications (2)

Publication Number Publication Date
JP2022145473A true JP2022145473A (en) 2022-10-04
JP7197670B2 JP7197670B2 (en) 2022-12-27

Family

ID=87884658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021197193A Active JP7197670B2 (en) 2021-03-19 2021-12-03 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same

Country Status (1)

Country Link
JP (1) JP7197670B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367610A (en) * 2001-06-07 2002-12-20 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2006331937A (en) * 2005-05-27 2006-12-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367610A (en) * 2001-06-07 2002-12-20 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2006331937A (en) * 2005-05-27 2006-12-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7197670B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP2022144809A (en) Cathode for nonaqueous electrolyte secondary battery
WO2023176895A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, battery module, and battery system
JP7234450B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, manufacturing method thereof, non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP7138228B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP2022145471A (en) Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery module and battery system
JP7197670B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7181372B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7193671B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same, method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP7149437B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7157863B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7316424B1 (en) NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, BATTERY MODULE, AND BATTERY SYSTEM
JP7149436B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2023176929A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
WO2024009988A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery, battery module, and battery system using same, and method for producing positive electrode for nonaqueous electrolyte secondary batteries
JP7197669B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
US20230178723A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP7323690B1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2024048784A1 (en) Non-aqueous electrolyte secondary-battery positive electrode, non-aqueous electrolyte secondary battery using the same, battery module, and battery system
WO2023182271A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system that use same
JP2023029333A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system that employ the same
JP2022145469A (en) Cathode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, battery module, and battery system
JP2023140733A (en) Composition for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module and battery system, and method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP2023141411A (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same
JP2023141406A (en) Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module, and battery system using the same, and composition for manufacturing positive electrode
JP2023141414A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R151 Written notification of patent or utility model registration

Ref document number: 7197670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151