JP2022145084A - Fluid transfer device - Google Patents

Fluid transfer device Download PDF

Info

Publication number
JP2022145084A
JP2022145084A JP2021046340A JP2021046340A JP2022145084A JP 2022145084 A JP2022145084 A JP 2022145084A JP 2021046340 A JP2021046340 A JP 2021046340A JP 2021046340 A JP2021046340 A JP 2021046340A JP 2022145084 A JP2022145084 A JP 2022145084A
Authority
JP
Japan
Prior art keywords
outer peripheral
casing
transfer device
spiral blade
fluid transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021046340A
Other languages
Japanese (ja)
Other versions
JP2022145084A5 (en
Inventor
正和 原
Masakazu Hara
弘樹 松本
Hiroki Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takedaworks
Takeda Works Corp
Original Assignee
Takedaworks
Takeda Works Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takedaworks, Takeda Works Corp filed Critical Takedaworks
Priority to JP2021046340A priority Critical patent/JP2022145084A/en
Priority to PCT/JP2022/010107 priority patent/WO2022196457A1/en
Publication of JP2022145084A publication Critical patent/JP2022145084A/en
Publication of JP2022145084A5 publication Critical patent/JP2022145084A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Screw Conveyors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

To provide a fluid transfer device which can be easily manufactured without requiring high machining accuracy.SOLUTION: A fluid transfer device is configured in the following manner: a cylindrical casing includes a cylindrical peripheral wall part, one end wall part having a first connection port capable of being connected to a first external pipe, and disposed on one end side in an axial center direction of the cylindrical peripheral wall part, and the other end wall part having a second connection port capable of being connected to a second external pipe, and disposed on the other end side in the axial center direction of the cylindrical peripheral wall part; a rotor includes a rotary shaft part pivotally supported by the one end wall part and the other end wall part of the casing to be rotated by external power, and a spiral blade part disposed on an outer peripheral surface of the rotary shaft part; the spiral blade part includes an outer peripheral sliding part which can slide while being in close contact with an inner peripheral surface of the cylindrical peripheral wall part; and fluid in the first external pipe is transferred into the second external pipe by normally rotating the rotor, and the fluid in the second external pipe is transferred into the first external pipe by reversely rotating the rotor.SELECTED DRAWING: Figure 1

Description

本発明は、気体、液体、ゲル、粉体、スラリー等の流体を移送可能な流体移送装置に関する。 The present invention relates to a fluid transport device capable of transporting fluid such as gas, liquid, gel, powder, and slurry.

従来の流体移送装置として、特許文献1~3にはスクリュー式真空ポンプ(スクリュー形ドライ真空ポンプ)が開示されている。これら従来のスクリュー式真空ポンプは、一般に、吸気口と排気口を有するケーシング内に2つのスクリューロータが平行かつ回転可能に設けられ、各ロータとケーシングの内壁面との間およびロータ相互間に僅かな隙間が設けられ、これらの隙間を保ちながら各ロータが電動モータにて回転するように構成されている。そして、各ロータが回転することにより、各ロータとケーシングとの間の空間が軸方向に連続移送され、この空間に吸気口から空気を吸入し、空気を圧縮しながら排気口へ移送して外部へ排気するようになっている。 Patent documents 1 to 3 disclose screw type vacuum pumps (screw type dry vacuum pumps) as conventional fluid transfer devices. These conventional screw-type vacuum pumps generally have two screw rotors rotatably arranged in parallel within a casing having an air intake and an air exhaust, and a small amount of space is provided between each rotor and the inner wall surface of the casing and between the rotors. gaps are provided, and each rotor is configured to rotate by the electric motor while maintaining these gaps. As each rotor rotates, the space between each rotor and the casing is continuously transferred in the axial direction. It is designed to exhaust to

特開2000-45976号公報JP-A-2000-45976 特開2003-97480号公報JP-A-2003-97480 特開2019-143620号公報JP 2019-143620 A

上述のように構成された従来のスクリュー式真空ポンプの場合、吸気口に接続パイプを介して接続された被真空物を設定真空圧(0.1~1.0Pa程度)まで減圧するための設計排気速度および最大差圧を実現するには、定格の回転数を必要とするため、電動モータにて各ロータを高速回転(約3000~6000min-1程度の回転数が一般的)させており、それによってケーシング内の温度が上昇する。そのため、各ロータとケーシングとの熱膨張による接触を回避するためにケーシングを冷却液で冷却する必要があった。 In the case of the conventional screw type vacuum pump configured as described above, it is designed to reduce the pressure of the object to be vacuumed, which is connected to the suction port through the connection pipe, to the set vacuum pressure (about 0.1 to 1.0 Pa). In order to achieve the exhaust speed and maximum differential pressure, a rated rotation speed is required, so each rotor is rotated at high speed (generally about 3000 to 6000 min -1 rotation speed) by an electric motor. This causes the temperature inside the casing to rise. Therefore, it was necessary to cool the casing with a coolant in order to avoid contact between the rotors and the casing due to thermal expansion.

また、従来のスクリュー式真空ポンプでは、上述のように設定真空圧を得るために定格の回転数で各ロータを高速回転させる必要があるため、ユーザが電動モータの出力を調整することができない。そのため、例えば、被真空物を低真空状態(105~102Pa)で連続的に長時間維持したいような場合でも、低真空を超えた中真空状態(102~10-1Pa)を維持するよう電動モータが高出力で長時間駆動することとなり、この結果、エネルギーロスが大きく、ポンプ寿命も短くなってしまう。 In addition, in the conventional screw vacuum pump, the user cannot adjust the output of the electric motor because it is necessary to rotate each rotor at high speed at the rated number of revolutions in order to obtain the set vacuum pressure as described above. Therefore, for example, even if you want to keep the object to be vacuumed in a low vacuum state (10 5 to 10 2 Pa) continuously for a long time, a medium vacuum state (10 2 to 10 -1 Pa) exceeding the low vacuum state is required. The electric motor is driven at a high output for a long time to maintain this, resulting in a large energy loss and a shortened pump life.

本発明は、以上のような事情を考慮してなされた流体移送装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a fluid transfer device that takes the above circumstances into consideration.

本発明によれば、円筒形のケーシングと、前記ケーシング内における前記ケーシングと同一軸心上に回転可能に設けられた回転体とを備え、
前記ケーシングは、円筒周壁部と、第1の外部配管と接続可能な第1接続口を有し前記円筒周壁部の軸心方向一端側に設けられた一端壁部と、第2の外部配管と接続可能な第2接続口を有し前記円筒周壁部の軸心方向他端側に設けられた他端壁部とを有し、
前記回転体は、外部動力にて回転するように前記ケーシングの前記一端壁部と前記他端壁部に枢支された回転軸部と、前記回転軸部の外周面に設けられた螺旋羽根部とを有し、
前記螺旋羽根部は、前記円筒周壁部の内周面に密着しながら摺動可能な螺旋ベルト状の外周摺動部を有し、
前記回転体を正回転させることにより第1の外部配管内の流体を前記第1接続口から前記ケーシング内へ流入させて前記第2接続口から第2の外部配管内へ移送し、前記回転体を逆回転させることにより第2の外部配管内の流体を前記第2接続口から前記ケーシング内へ流入させて前記第1接続口から第1の外部配管内へ移送するように構成された、ことを特徴とする流体移送装置が提供される。
According to the present invention, comprising a cylindrical casing and a rotating body provided rotatably on the same axis as the casing in the casing,
The casing includes a cylindrical peripheral wall portion, a first end wall portion having a first connection port connectable to a first external pipe and provided on one axial end side of the cylindrical peripheral wall portion, and a second external pipe. a second end wall portion having a connectable second connection port and provided on the other end side of the cylindrical peripheral wall portion in the axial direction;
The rotating body includes a rotating shaft portion pivotally supported by the one end wall portion and the other end wall portion of the casing so as to be rotated by an external power, and a spiral blade portion provided on the outer peripheral surface of the rotating shaft portion. and
The spiral blade portion has a spiral belt-shaped outer peripheral sliding portion that can slide while being in close contact with the inner peripheral surface of the cylindrical peripheral wall portion,
By rotating the rotating body forward, the fluid in the first external pipe flows into the casing from the first connection port and is transferred from the second connection port into the second external pipe. by reversely rotating the fluid in the second external pipe to flow into the casing from the second connection port and to be transferred from the first connection port into the first external pipe. There is provided a fluid transfer device characterized by:

本発明の流体移送装置は、従来のスクリュー式真空ポンプと比べて、部品点数が少なく、構造が簡素であり、高精度な加工技術を必要としないため、低コストにて容易に製造することができる。
つまり、従来のスクリュー式真空ポンプでは、2つのスクリューロータ同士の間隙および各ロータとケーシングとの間隙を微小かつ高精度に保つ必要があるため加工技術の難易度が高く、また部品点数も多いため、製造コストが高い。
これに対し、本発明の流体移送装置では、回転体の螺旋羽根部における螺旋ベルト状の外周摺接部をシール部としてケーシングの円筒周壁部の内周面に密着させながら摺動させる構成であるため、高精度な加工技術は不要であり、部品点数が少ない簡素な構造であるため、低コストにて容易に製造することができる。
Compared to conventional screw vacuum pumps, the fluid transfer device of the present invention has a smaller number of parts, a simpler structure, and does not require high-precision processing technology, so it can be easily manufactured at low cost. can.
In other words, in the conventional screw vacuum pump, the gap between the two screw rotors and the gap between each rotor and the casing must be kept minute and precise, so the processing technology is highly difficult, and the number of parts is large. , the manufacturing cost is high.
On the other hand, in the fluid transfer device of the present invention, the helical belt-shaped outer peripheral sliding contact portion of the helical blade portion of the rotor is used as a sealing portion to allow the helical belt to slide while being in close contact with the inner peripheral surface of the cylindrical peripheral wall portion of the casing. Therefore, high-precision processing technology is not required, and since it has a simple structure with a small number of parts, it can be easily manufactured at low cost.

また、従来のスクリュー式真空ポンプでは、高速回転する各ロータとケーシングとが熱膨張によって接触するのを回避するために(微小なクリアランスを維持するために)冷却する必要がある。
これに対し、本発明の流体移送装置は、螺旋羽根部における外周摺接部をケーシングの円筒周壁部の内周面に密着させながら摺動させる構成であるため、微小なクリアランスを維持するための冷却を必要としない。
Further, in the conventional screw vacuum pump, it is necessary to cool (to maintain a minute clearance) in order to avoid contact between the rotors rotating at high speed and the casing due to thermal expansion.
On the other hand, in the fluid transfer device of the present invention, since the outer peripheral sliding contact portion of the spiral blade portion slides while being in close contact with the inner peripheral surface of the cylindrical peripheral wall portion of the casing, it is possible to maintain a minute clearance. Does not require cooling.

また、従来のスクリュー式真空ポンプでは、各ロータとケーシングとのクリアランスを確保しながら空気を軸方向に移動させるためには各ロータを高速回転させる必要があり、そのためユーザ側で電動モータを出力調整することができない。
これに対し、本発明の流体移送装置は、回転体を低速回転させて低真空を得ることができ、回転体の回転数を徐々に上げることで真空度を増加させることも可能であり、ユーザー側にて所望の真空圧に応じた回転体の回転数調整が可能である。
In conventional screw-type vacuum pumps, it is necessary to rotate each rotor at high speed in order to move the air in the axial direction while ensuring the clearance between each rotor and the casing. Can not do it.
In contrast, in the fluid transfer device of the present invention, a low vacuum can be obtained by rotating the rotating body at a low speed, and the degree of vacuum can be increased by gradually increasing the number of revolutions of the rotating body. On the other hand, it is possible to adjust the rotation speed of the rotating body according to the desired vacuum pressure.

さらに、本発明の流体移送装置は、被真空物中の気体(例えば空気)を抜いて減圧する真空ポンプとしての機能に加えて、液体、ゲル、粉体等(例えば、水、飲料水、ゼリー、小麦粉等)の様々な流体を移送する機能をも備えている。しかも、回転体を正回転させて流体を一方向へ移送させ、回転体を逆回転させて流体を逆方向へ移送させることができると共に、ゲル状固形物を粉砕せずに移送することができる。 Furthermore, the fluid transfer device of the present invention functions as a vacuum pump for extracting gas (e.g., air) from an object to be vacuumed to reduce the pressure. , flour, etc.). Moreover, the rotating body can be rotated forward to transport the fluid in one direction, and the rotating body can be rotated in the reverse direction to transport the fluid in the opposite direction, and the gel-like solid can be transported without being pulverized. .

本発明の一実施形態の流体移送装置を正面側から視た縦断面図である。1 is a vertical cross-sectional view of a fluid transfer device according to an embodiment of the present invention, viewed from the front side; FIG. 図1の流体移送装置を第1接続口側から視た右側面図である。2 is a right side view of the fluid transfer device of FIG. 1 as viewed from the first connection port side; FIG. 図1の流体移送装置を第2接続口側から視た左側面図である。2 is a left side view of the fluid transfer device of FIG. 1 as viewed from a second connection port side; FIG. 図1の流体移送装置における回転体の縦断面図である。FIG. 2 is a vertical cross-sectional view of a rotating body in the fluid transfer device of FIG. 1; 図4の回転体を左側から視た左側面図である。FIG. 5 is a left side view of the rotating body of FIG. 4 as viewed from the left side; 図4の回転体における外周摺動部の固定部分を示す断面図である。FIG. 5 is a cross-sectional view showing a fixing portion of an outer peripheral sliding portion in the rotating body of FIG. 4; 図4の回転体における外周摺動部の端部の固定部分を示す断面図である。FIG. 5 is a cross-sectional view showing a fixing portion of an end portion of an outer peripheral sliding portion in the rotating body of FIG. 4; 図4の回転体から取り外した外周摺動部を示す部分斜視図である。5 is a partial perspective view showing an outer peripheral sliding portion removed from the rotating body of FIG. 4; FIG. 図1の流体移送装置のシミュレーションデータである。2 is simulation data for the fluid transfer device of FIG. 1; 図4の外周摺接部の固定部分の変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a modification of the fixing portion of the outer peripheral sliding contact portion of FIG. 4 ;

以下、図面を用いて本発明をさらに詳述する。なお、以下の説明は、すべての点で例示であって、本発明を限定するものと解されるべきではない。 The present invention will be described in further detail below with reference to the drawings. It should be noted that the following description is illustrative in all respects and should not be construed as limiting the present invention.

図1は本発明の一実施形態の流体移送装置を正面側から視た縦断面図であり、図2は図1の流体移送装置を第1接続口側から視た右側面図であり、図3は図1の流体移送装置を第2接続口側から視た左側面図である。また、図4は図1の流体移送装置における回転体の縦断面図であり、図5は図4の回転体を左側から視た左側面図である。
図1~5に示すように、本実施形態の流体移送装置1は、円筒形のケーシング10と、ケーシング10内におけるケーシング10と同一軸心Q上に回転可能に設けられた1つの回転体30とを備える。また、この流体移送装置1は、回転体30を回転駆動する電動モータ60をさらに備えていてもよい。なお、電動モータ60としては、出力制御(出力軸の回転数調整)が可能であり、さらには正逆回転可能なタイプを用いることができる。
FIG. 1 is a vertical cross-sectional view of a fluid transfer device according to an embodiment of the present invention viewed from the front side, and FIG. 2 is a right side view of the fluid transfer device of FIG. 1 viewed from the first connection port side. 3 is a left side view of the fluid transfer device of FIG. 1 as viewed from the second connection port side. 4 is a longitudinal sectional view of the rotating body in the fluid transfer device of FIG. 1, and FIG. 5 is a left side view of the rotating body of FIG. 4 viewed from the left side.
As shown in FIGS. 1 to 5, the fluid transfer device 1 of the present embodiment includes a cylindrical casing 10 and a rotating body 30 provided rotatably on the same axis Q as the casing 10 within the casing 10. and Further, the fluid transfer device 1 may further include an electric motor 60 that drives the rotor 30 to rotate. As the electric motor 60, a type capable of output control (rotation speed adjustment of the output shaft) and forward/reverse rotation can be used.

ケーシング10は、円筒周壁部11と、第1の外部配管21と接続可能な第1接続口12aを有し円筒周壁部11の軸心Q方向の一端側に設けられた一端壁部12と、第2の外部配管22と接続可能な第2接続口13aを有し円筒周壁部11の軸心Q方向の他端側に設けられた他端壁部13とを有する。なお、本実施形態の場合、第1接続口12aと第2接続口13aは、第1接続口12aが上となり第2接続口13aが下となるように軸心Qに対して点対称的に配置されている(図2と3参照)。 The casing 10 includes a cylindrical peripheral wall portion 11, a first end wall portion 12 having a first connection port 12a connectable to a first external pipe 21 and provided at one end side of the cylindrical peripheral wall portion 11 in the direction of the axis Q, and a second end wall portion 13 provided on the other end side of the cylindrical peripheral wall portion 11 in the axial center Q direction and having a second connection port 13a connectable to the second external pipe 22 . In the case of the present embodiment, the first connection port 12a and the second connection port 13a are point symmetrical with respect to the axis Q so that the first connection port 12a is on top and the second connection port 13a is on the bottom. positioned (see Figures 2 and 3).

また、ケーシング10は、一端壁部12および他端壁部13にそれぞれ連結された一対の脚部14と、第1接続口12aと第2接続口13aとにそれぞれ接続された一対の接続具15と、回転体30の後述の回転軸部31の一端側および他端側をそれぞれ回転可能に支持する一対の支持部16、17とを有している。なお、ケーシング10の一端壁部12および他端壁部13は軸心Q上に回転軸部31の一端側および他端側を気密的に挿通させる挿通孔12b、13bをそれぞれ有している。 The casing 10 also includes a pair of legs 14 respectively connected to the one end wall 12 and the other end wall 13, and a pair of connectors 15 respectively connected to the first connection port 12a and the second connection port 13a. and a pair of support portions 16 and 17 that rotatably support one end side and the other end side of a rotation shaft portion 31 (to be described later) of the rotating body 30, respectively. The one end wall portion 12 and the other end wall portion 13 of the casing 10 have insertion holes 12b and 13b on the axial center Q for airtightly inserting one end side and the other end side of the rotating shaft portion 31, respectively.

一端壁部12に設けられた支持部16は、一端壁部12の外面に固定されたカバー16aと、カバー16a内に設けられて回転軸部31の一端側を回転可能に支持するベアリング16bとを有する。
他端壁部13に設けられた支持部17は、他端壁部13の外面に固定されたカバー17aと、カバー17a内に設けられて回転軸部31の他端側を回転可能に支持するベアリング17bとを有する。なお、カバー17aには、回転軸部31の他端を気密的に挿通させる挿通孔17aaが設けられている。
The support portion 16 provided on the one end wall portion 12 includes a cover 16a fixed to the outer surface of the one end wall portion 12, and a bearing 16b provided in the cover 16a and rotatably supporting one end side of the rotating shaft portion 31. have
The support portion 17 provided on the other end wall portion 13 includes a cover 17a fixed to the outer surface of the other end wall portion 13 and a cover 17a provided inside the cover 17a to rotatably support the other end side of the rotating shaft portion 31. and a bearing 17b. The cover 17a is provided with an insertion hole 17aa through which the other end of the rotating shaft portion 31 is airtightly inserted.

回転体30は、外部動力としての電動モータ60にて回転するようにケーシング10の一端壁部12と他端壁部13に枢支された前記回転軸部31と、回転軸部31の外周面に設けられた螺旋羽根部32とを有する。
回転軸部31は、ケーシング10内に配置される丸軸状の大径部31aと、大径部31aの一端と他端に連設された一対の丸軸状の中径部31bと、他端側の中径部31bに連設された丸軸状の小径部31cとを有し、各中径部31bの端部には雄ねじ31baが設けられている(図1と4参照)。
The rotating body 30 includes the rotating shaft portion 31 pivotally supported by the one end wall portion 12 and the other end wall portion 13 of the casing 10 so as to be rotated by an electric motor 60 as an external power source, and the outer peripheral surface of the rotating shaft portion 31. It has a spiral blade portion 32 provided in.
The rotating shaft portion 31 includes a round shaft-shaped large diameter portion 31a arranged in the casing 10, a pair of round shaft-shaped medium diameter portions 31b connected to one end and the other end of the large diameter portion 31a, and others. It has a round shaft-shaped small diameter portion 31c connected to the middle diameter portion 31b on the end side, and a male screw 31ba is provided at the end of each middle diameter portion 31b (see FIGS. 1 and 4).

この回転軸部31の一対の中径部31bが、ケーシング10の一端壁部12および他端壁部13の挿通孔12b、13bを挿通し、かつ、一対の支持部16、17のベアリング16b、17bにて支持されている。また、一対の中径部31bの雄ねじ31baにはそれぞれナット33が2個ずつ螺着されており、これらのナット33により各ベアリング16b、17bが一端壁部12および他端壁部13側に押し付けられており、それによって回転軸部31が軸心Q方向に位置決めされている(図1参照)。 A pair of medium-diameter portions 31b of the rotating shaft portion 31 are inserted through the insertion holes 12b and 13b of the one end wall portion 12 and the other end wall portion 13 of the casing 10, and the bearings 16b of the pair of support portions 16 and 17, 17b. Two nuts 33 are screwed onto the male threads 31ba of the pair of medium-diameter portions 31b, respectively. The rotating shaft portion 31 is thereby positioned in the direction of the axis Q (see FIG. 1).

螺旋羽根部32は、回転軸部31の外周面に固定された螺旋羽根本体32aと、螺旋羽根本体32aの外周部に着脱可能に取り付けられた螺旋ベルト状の外周摺動部32bとを有してなり、ケーシング10の円筒周壁部11の内周面に外周摺動部32bが密着しながら摺動回転するようになっている(図1と4参照)。 The spiral blade portion 32 has a spiral blade main body 32a fixed to the outer peripheral surface of the rotating shaft portion 31, and a spiral belt-shaped outer peripheral sliding portion 32b detachably attached to the outer peripheral portion of the spiral blade main body 32a. Thus, the outer peripheral sliding portion 32b is adapted to slide and rotate while being in close contact with the inner peripheral surface of the cylindrical peripheral wall portion 11 of the casing 10 (see FIGS. 1 and 4).

螺旋羽根本体32aは、一定の外径Dを有するように湾曲した外周部および回転軸部31を挿入可能とする内周部を有する螺旋板材(厚さ1~2mm程度)にて構成されており、内周部が回転軸部31の大径部31aに溶接されている。本実施形態の場合、螺旋羽根本体32aの螺旋巻数は2であり、螺旋ピッチPは100mm程度であり、外径Dは180mm程度である。特に、螺旋羽根本体32aは、金属の削り出し加工ではなく、軸への螺旋板材の溶接により形成したものであるため、螺旋の谷を深くすることができる。 The spiral blade main body 32a is composed of a spiral plate material (thickness of about 1 to 2 mm) having an outer peripheral portion curved to have a constant outer diameter D and an inner peripheral portion into which the rotating shaft portion 31 can be inserted. , the inner peripheral portion of which is welded to the large diameter portion 31 a of the rotating shaft portion 31 . In the case of this embodiment, the number of spiral turns of the spiral blade body 32a is 2, the spiral pitch P is about 100 mm, and the outer diameter D is about 180 mm. In particular, since the spiral blade main body 32a is formed by welding the spiral plate material to the shaft instead of machining metal, the troughs of the spiral can be deepened.

そのため、ケーシング10の軸方向の長さを短くしても流体の移送量を大きくすることができる。つまり、コンパクトでありながら移送量の大きい流体移送装置1を得ることができる。なお、螺旋羽根本体32aの螺旋巻数、螺旋ピッチPおよび外径D等は、流体移送装置の用途によって自由に設定することができ、本実施形態では真空ポンプ用として設計している。 Therefore, even if the length of the casing 10 in the axial direction is shortened, the amount of fluid transferred can be increased. That is, it is possible to obtain the fluid transfer device 1 that is compact and has a large transfer amount. The number of helical turns, the helical pitch P, the outer diameter D, etc. of the helical blade body 32a can be freely set according to the application of the fluid transfer device, and this embodiment is designed for a vacuum pump.

図6は図4の回転体における外周摺動部の固定部分を示す断面図であり、図7は図4の回転体における外周摺動部の端部の固定部分を示す断面図である。また、図8は図4の回転体から取り外した外周摺動部を示す部分斜視図である。
図1、4~7に示すように、螺旋羽根本体32aは、外周摺動部32bを離脱可能に螺旋羽根本体32aの外周部に固定する複数の固定部を有している。複数の固定部は、外周摺動部32bを離脱可能に受け入れる複数のねじ孔付き受片32aaを外周部に長手方向に沿って有すると共に、複数のねじ孔付き受片32aaの各ねじ孔に羅着する複数のねじピン32abをそれぞれ有している。
6 is a cross-sectional view showing a fixed portion of the outer peripheral sliding portion in the rotating body of FIG. 4, and FIG. 7 is a cross-sectional view showing a fixed portion of the end portion of the outer peripheral sliding portion in the rotating body of FIG. 8 is a partial perspective view showing an outer peripheral sliding portion removed from the rotating body of FIG.
As shown in FIGS. 1 and 4 to 7, the spiral blade main body 32a has a plurality of fixing portions for detachably fixing the outer peripheral sliding portion 32b to the outer peripheral portion of the spiral blade main body 32a. The plurality of fixed portions have a plurality of receiving pieces 32aa with threaded holes that detachably receive the outer peripheral sliding portion 32b along the longitudinal direction on the outer peripheral portion, and are aligned with the respective screw holes of the plurality of receiving pieces 32aa with threaded holes. Each has a plurality of threaded pins 32ab for attachment.

複数のねじ孔付き受片32aaは、略Z形に折り曲げられた板片であり、螺旋羽根本体32aの外周部側で開放するように外周部の左側の面(第2接続口13a側の面)に所定中心角度θ1(例えば、約72°)で配置され溶接されている。但し、外周摺動部32bの長手方向の両端を固定する一対のねじ孔付き受片32aaは、隣接する他のねじ孔付き受片32aaと狭い中心角度θ2(例えば36°)をもって配置されている。なお、中心角度θ1、θ2は特に限定されるものではない。 The receiving pieces 32aa with a plurality of screw holes are plate pieces that are bent in a substantially Z shape, and are arranged so as to open on the outer peripheral side of the spiral blade main body 32a. ) at a predetermined center angle θ1 (for example, about 72°) and welded. However, the pair of receiving pieces 32aa with screw holes that fix both ends in the longitudinal direction of the outer peripheral sliding portion 32b are arranged with a narrow center angle θ2 (for example, 36°) from the adjacent other receiving pieces 32aa with screw holes. . Note that the center angles θ1 and θ2 are not particularly limited.

図4~8に示すように、外周摺動部32bは、複数のねじピン32abにて螺旋羽根本体32aの外周部に押さえ付けられる螺旋ベルト状の弾性部32baと、ケーシング10の円筒周壁部11の内周面に密着しながら摺動するように弾性部32baの表面に一体状に設けられた低摩擦部32bbとを有してなる。また、弾性部32baには、複数のねじピン32abが挿入される1本の溝部32bcが長手方向に沿って設けられている。 As shown in FIGS. 4 to 8, the outer peripheral sliding portion 32b includes a spiral belt-like elastic portion 32ba pressed against the outer peripheral portion of the spiral blade main body 32a by a plurality of screw pins 32ab, and the cylindrical peripheral wall portion 11 of the casing 10. and a low-friction portion 32bb integrally provided on the surface of the elastic portion 32ba so as to slide in close contact with the inner peripheral surface of the elastic portion 32ba. In addition, one groove portion 32bc into which a plurality of screw pins 32ab are inserted is provided in the elastic portion 32ba along the longitudinal direction.

外周摺動部32bにおいて、弾性部32baは、天然または合成ゴムからなり、螺旋羽根本体32aの外周部の長さとほぼ同一の長さを有している。この弾性部32baは、螺旋羽根本体32aの外周部とねじ孔付き受片32aaとの間のスペースに受け入れられる部分が矩形断面に形成され、前記スペースから径方向外方へ突出した部分が半円形断面に形成されている。 In the outer peripheral sliding portion 32b, the elastic portion 32ba is made of natural or synthetic rubber and has substantially the same length as the outer peripheral portion of the spiral blade main body 32a. The elastic portion 32ba has a rectangular cross-sectional portion that is received in the space between the outer peripheral portion of the spiral blade main body 32a and the threaded receiving piece 32aa, and a semicircular portion that protrudes radially outward from the space. It is formed in a cross section.

外周摺動部32bにおいて、低摩擦部32bbは、摩擦抵抗の小さい樹脂材料、例えば、テフロン(登録商標)といったフッ素樹脂からなり、弾性部32baの半円形断面部分の外表面を覆うように層状にコーティング(加硫接着)されている。
溝部32bcは、低摩擦部32bbがコーティングされていない弾性部32baの一側面に沿って形成されている。なお、溝部32bcの代わりに複数の凹部を弾性部32baに設けてもよい。
In the outer peripheral sliding portion 32b, the low-friction portion 32bb is made of a resin material with low frictional resistance, for example, a fluororesin such as Teflon (registered trademark), and is layered so as to cover the outer surface of the semicircular cross-sectional portion of the elastic portion 32ba. Coated (vulcanized).
The groove portion 32bc is formed along one side surface of the elastic portion 32ba that is not coated with the low friction portion 32bb. In addition, you may provide several recessed parts in the elastic part 32ba instead of the groove part 32bc.

外周摺動部32bは、複数のねじ孔付き受片32aaにて受け入れられた状態において、複数の短いねじピン32abが溝部32bc内に挿入されることによって螺旋羽根本体32aの外周部に押さえ付けられている(図6参照)但し、外周摺動部32bの長手方向の両端は、2本の長いねじピン32abが溝部32bcから弾性部32baを貫通して螺旋羽根本体32aの外周部に当接することによって固定されている。これにより、外周摺動部32b全体が螺旋羽根本体32aの外周部に沿って位置ずれしないように止められている。なお、外周摺動部32bに溝部32bcを設けているため、各ねじピン32abの締め付けを緩めれば、外周摺動部32bを螺旋羽根本体32aの外周部に沿って位置調整するときに長手方向に位置をずらしやすくなる。 The outer peripheral sliding portion 32b is pressed against the outer peripheral portion of the spiral blade main body 32a by inserting a plurality of short screw pins 32ab into the grooves 32bc while being received by the plurality of receiving pieces 32aa with screw holes. (See FIG. 6) However, at both ends in the longitudinal direction of the outer peripheral sliding portion 32b, two long screw pins 32ab pass through the elastic portion 32ba from the groove portion 32bc and abut on the outer peripheral portion of the spiral blade main body 32a. fixed by As a result, the entire outer peripheral sliding portion 32b is stopped along the outer peripheral portion of the spiral blade main body 32a so as not to be displaced. In addition, since the outer peripheral sliding portion 32b is provided with the groove portion 32bc, if the screw pins 32ab are loosened, the position of the outer peripheral sliding portion 32b along the outer peripheral portion of the spiral blade main body 32a can be adjusted in the longitudinal direction. It becomes easier to shift the position to

このように、複数のねじ孔付き受片32aaにて受け入れられかつ複数のねじピン32abにて位置決め固定された外周摺動部32bは、低摩擦部32bbの頂部が螺旋羽根本体32aの外周部の端部よりも僅かに(0.5~1mm)径方向外方に突出している。これにより、回転体30の回転時に低摩擦部32bbはケーシング10の内周面に気密的に摺動するが、螺旋羽根本体32aの外周部はケーシング10の内周面に摺動しない。 In this manner, the outer peripheral sliding portion 32b received by the plurality of receiving pieces 32aa with screw holes and positioned and fixed by the plurality of screw pins 32ab is such that the top of the low friction portion 32bb is the outer peripheral portion of the spiral blade main body 32a. It protrudes slightly (0.5 to 1 mm) radially outward from the end. As a result, the low friction portion 32bb slides airtightly on the inner peripheral surface of the casing 10 when the rotor 30 rotates, but the outer peripheral portion of the spiral blade main body 32a does not slide on the inner peripheral surface of the casing 10. FIG.

したがって、図1に示すように、この流体移送装置1の電動モータ60を駆動させて回転体30を矢印A方向(第1接続口12a側から視て反時計回り)に正回転させることにより第1の外部配管21内の流体を第1接続口12aからケーシング10内へ流入させて第2接続口13aから第2の外部配管22内へ移送させることができる。 Therefore, as shown in FIG. 1, by driving the electric motor 60 of the fluid transfer device 1 to rotate the rotating body 30 forward in the direction of arrow A (counterclockwise when viewed from the first connection port 12a side), the first The fluid in one external pipe 21 can flow into the casing 10 from the first connection port 12a and can be transferred into the second external pipe 22 from the second connection port 13a.

この流体移送装置1の具体的な用途の一例として、円筒形のロータリータンクが水平軸心を中心に回転しながら内部に投入した有機廃棄物を微生物によって分解処理する有機廃棄物処理装置のロータリータンク内を減圧する真空ポンプとして使用することができる。 As an example of a specific application of this fluid transfer device 1, a rotary tank of an organic waste treatment device in which organic waste introduced into the cylindrical rotary tank while rotating around a horizontal axis is decomposed by microorganisms. It can be used as a vacuum pump to reduce the pressure inside.

この場合、流体移送装置1の第1接続口12aに第1の外部配管21を介して有機廃棄物処理装置に接続し、回転体30を正回転させることによりロータリータンク内を減圧する。このとき、例えば回転体30が正回転し続けることにより、ロータリータンク内のガス(空気、水蒸気、発酵過程で生ずるガス等を含む)がケーシング10内を通って第2の外部配管22内へ排気され、ロータリータンク内が低真空状態(105~102Pa)に維持される。この際、ケーシング10を水などで冷却する必要はない。なお、ケーシング10の第2接続口13aの接続具15と第2の外部配管22との間にガスの逆流を防ぐ逆止弁を設けてもよく、第2の外部配管の下流側端部を臭気処理装置に接続して無臭化したガスを大気中に排気するようにしてもよい。 In this case, the first connection port 12a of the fluid transfer device 1 is connected to the organic waste treatment device through the first external pipe 21, and the rotor 30 is rotated forward to reduce the pressure in the rotary tank. At this time, for example, the rotating body 30 continues to rotate forward, so that gas (including air, steam, gas generated in the fermentation process, etc.) in the rotary tank passes through the casing 10 and is discharged into the second external pipe 22. and the interior of the rotary tank is maintained in a low vacuum state (10 5 to 10 2 Pa). At this time, there is no need to cool the casing 10 with water or the like. A check valve may be provided between the connector 15 of the second connection port 13a of the casing 10 and the second external pipe 22 to prevent backflow of gas, and the downstream end of the second external pipe may be It may be connected to an odor treatment device to exhaust deodorized gas into the atmosphere.

また、流体移送装置1をより高い真空度が必要な装置に接続し、電動モータ60の出力を上げて回転体30を約250~1500min-1程度まで回転させれば、装置内を中真空(102~10-1Pa)にすることも可能である。しかも、ケーシングを水などで冷却する必要もない。 In addition, if the fluid transfer device 1 is connected to a device that requires a higher degree of vacuum, and the output of the electric motor 60 is increased to rotate the rotating body 30 to about 250 to 1500 min -1 , the interior of the device can be placed in a medium vacuum ( 10 2 to 10 -1 Pa) is also possible. Moreover, there is no need to cool the casing with water or the like.

また、この流体移送装置1は、空気のような気体の移送以外にも、例えば、水や飲料水等の液体、ゼリーや寒天等のゲル、小麦粉やセメント等の粉体、モルタル、生コンクリート等のスラリーといった様々な流体を一方側(例えば貯蔵タンク)から他方側(例えば次工程の処理装置)へ移送する装置として使用することができる。さらに、この流体移送装置1は、回転体30を逆回転(図1の矢印A方向と逆方向)させることにより、各種流体を第2接続口13a側から第1接続口12a側へ移送することも可能である。 In addition to transporting gases such as air, the fluid transfer device 1 can also transfer liquids such as water and drinking water, gels such as jelly and agar, powders such as flour and cement, mortar, ready-mixed concrete, and the like. It can be used as a device to transfer various fluids such as slurries from one side (eg a storage tank) to the other side (eg a subsequent processing unit). Furthermore, the fluid transfer device 1 transfers various fluids from the second connection port 13a side to the first connection port 12a side by rotating the rotating body 30 in the reverse direction (the direction opposite to the direction of the arrow A in FIG. 1). is also possible.

このように、この流体移送装置1が気体以外にも液体、ゲル、粉体、スラリーといった様々な流体を移送することができる主な要因としては、従来のスクリュー式真空ポンプのようにロータが2本でなく1本であり、かつ、軸に螺旋羽根を溶接したロータを使用しているため広い流路を確保できる、従来のスクリュー式真空ポンプのようにロータ同士および各ロータとケーシングとの間の微小なクリアランスを形成せず、クリアランスに流体(固形物)が挟まって各ロータの回転を妨げるようなことがない、低速回転が可能である、外周摺動部32bはねじピン32abを取り外して容易に交換可能であり、構造も簡素であるためメンテナンス性に優れているなどの点が挙げられる。 As described above, the main reason why the fluid transfer device 1 can transfer various fluids such as liquid, gel, powder, and slurry in addition to gas is that, unlike the conventional screw type vacuum pump, the two rotors are provided. It is not a single piece, but a rotor with spiral blades welded to the shaft, so a wide flow path can be secured. Like a conventional screw type vacuum pump, between rotors and each rotor and casing The outer peripheral sliding portion 32b is capable of rotating at a low speed without forming a minute clearance, and preventing the rotation of each rotor from being blocked by a fluid (solid matter) caught in the clearance. It is easy to replace, and has a simple structure, so it is easy to maintain.

図9は図1の流体移送装置1のシミュレーションデータである。このシミュレーションデータは、次の条件に基づいて導き出されている。
ケーシング10の容積:2434.8cm3
螺旋ピッチP:100mm
螺旋羽根本体32aの螺旋巻数:2
回転軸部31の直径:32mm
螺旋羽根本体32aの谷深さ:73.5mm
螺旋羽根本体32aの外径D:179mm
被真空物であるタンクの容量:690L
FIG. 9 shows simulation data of the fluid transfer device 1 of FIG. This simulation data is derived based on the following conditions.
Volume of casing 10: 2434.8 cm 3
Spiral pitch P: 100mm
Number of spiral turns of spiral blade main body 32a: 2
Diameter of rotating shaft portion 31: 32 mm
Valley depth of spiral blade main body 32a: 73.5 mm
Outer diameter D of spiral blade main body 32a: 179 mm
Capacity of the tank to be vacuumed: 690L

図9のシミュレーションデータでは、流体移送装置1の回転体30の回転速度とタンク内圧力と排気時間(経過時間)との関係を次の式(1)により算出している。
t=V/S*2.303logP1/P2 ・・・ (1)
t:排気時間
V:タンク容量
S:実行排気速度
P1:現在のタンク内圧力
P2:目標タンク内圧力
なお、前記式(1)では常用対数(log10)を自然対数(ln)に変換するために2.303倍している。
また、標準気圧(101325Pa)での実行排気速度Sは、次のように回転数に応じて規定されている。
250(min-1)S=1217.41725
500(min-1)S=2434.8345
750(min-1)S=3652.25175
1000(min-1)S=4869.669
1250(min-1)S=6087.08625
1500(min-1)S=7304.5035
なお、標準気圧(101325Pa)での実行排気速度S=ケーシング10の容積(2434.8cm3)×螺旋羽根本体32aの螺旋巻数(2)×回転速度(250~1500min-1)である。
In the simulation data of FIG. 9, the relationship between the rotation speed of the rotating body 30 of the fluid transfer device 1, the pressure inside the tank, and the exhaust time (elapsed time) is calculated by the following equation (1).
t=V/S*2.303logP1/P2 (1)
t: Evacuation time V: Tank volume S: Effective exhaust speed P1: Current tank internal pressure P2: Target tank internal pressure Note that in the above equation (1), the common logarithm (log 10 ) is converted to the natural logarithm (ln). is multiplied by 2.303.
Also, the effective exhaust speed S at standard atmospheric pressure (101325 Pa) is defined according to the rotation speed as follows.
250 (min -1 ) S = 1217.41725
500 (min -1 ) S = 2434.8345
750 (min -1 ) S = 3652.25175
1000 (min -1 ) S = 4869.669
1250 (min -1 ) S = 6087.08625
1500 (min -1 ) S = 7304.5035
Note that the effective exhaust speed S at standard atmospheric pressure (101325 Pa) = the volume of the casing 10 (2434.8 cm 3 ) x the number of spiral turns of the spiral blade main body 32a (2) x the rotational speed (250 to 1500 min -1 ).

このシミュレーションデータから、容量690Lのタンクの内部圧力を4000Pa(低真空)にするために、回転数1500min-1では0.36minで目標圧力に達することがわかる。 From this simulation data, it can be seen that the target pressure is reached in 0.36 min at a rotation speed of 1500 min −1 in order to set the internal pressure of the 690 L capacity tank to 4000 Pa (low vacuum).

図10は図4の外周摺接部の固定部分の変形例を示す断面図である。なお、図10において、図6中の要素と同様の要素には同一の符号を付している。
図10に示すように、螺旋羽根部132は、螺旋羽根本体32aの外周部の端部に固定部としてのねじ孔付き受片132aaが設けられてもよい。
FIG. 10 is a cross-sectional view showing a modification of the fixing portion of the outer peripheral sliding contact portion of FIG. In FIG. 10, elements similar to those in FIG. 6 are given the same reference numerals.
As shown in FIG. 10, the spiral blade portion 132 may be provided with a receiving piece 132aa with a screw hole as a fixing portion at the end of the outer peripheral portion of the spiral blade main body 32a.

この場合、ねじ孔付き受片132aaは、螺旋羽根本体32aの外周部に跨いだ状態で溶接される小さいU字形部分と、外周摺動部132bを受け入れる大きいU字形部分とが連設されてなり、大きいU字形部分に一対のねじ孔が形成されている。
また、外周摺動部132bは、両側面に溝部32bcを有する弾性部132baと、弾性部132baの表面の一部を覆う低摩擦部132bbとを有してなる。なお、低摩擦部132bbの頂部は、ねじ孔付き受片132aaよりも0.5~1mm程度径方向外方へ突出している。
In this case, the receiving piece 132aa with a threaded hole is composed of a small U-shaped portion that is welded across the outer peripheral portion of the spiral blade body 32a and a large U-shaped portion that receives the outer peripheral sliding portion 132b. , a pair of screw holes are formed in the large U-shaped portion.
Further, the outer peripheral sliding portion 132b has an elastic portion 132ba having groove portions 32bc on both side surfaces, and a low friction portion 132bb covering a part of the surface of the elastic portion 132ba. The top of the low-friction portion 132bb protrudes radially outward by about 0.5 to 1 mm from the receiving piece 132aa with a screw hole.

ねじ孔付き受片132aaの大きいU字形部分の一対のねじ孔にねじピン32abを螺着することにより、一対のねじピン32abが外周摺動部132bの一対の溝部32bcに嵌り込んで外周摺動部132bを位置決め固定する。なお、図示省略するが、外周摺動部132bの両端は、図7に示したように1本のねじピン32abが外周摺動部132bを貫通して反対側のねじ孔に螺着することにより位置ずれを防止している。 By screwing the screw pins 32ab into the pair of screw holes in the large U-shaped portion of the threaded receiving piece 132aa, the pair of screw pins 32ab are fitted into the pair of grooves 32bc of the outer peripheral sliding portion 132b to slide on the outer periphery. The portion 132b is positioned and fixed. Although not shown, both ends of the outer peripheral sliding portion 132b are formed by screwing one screw pin 32ab through the outer peripheral sliding portion 132b and screwing it into the screw hole on the opposite side as shown in FIG. Prevents misalignment.

(まとめ)
以上に述べたように、
(1)本発明による流体移送装置は、円筒形のケーシングと、前記ケーシング内における前記ケーシングと同一軸心上に回転可能に設けられた回転体とを備え、
前記ケーシングは、円筒周壁部と、第1の外部配管と接続可能な第1接続口を有し前記円筒周壁部の軸心方向一端側に設けられた一端壁部と、第2の外部配管と接続可能な第2接続口を有し前記円筒周壁部の軸心方向他端側に設けられた他端壁部とを有し、
前記回転体は、外部動力にて回転するように前記ケーシングの前記一端壁部と前記他端壁部に枢支された回転軸部と、前記回転軸部の外周面に設けられた螺旋羽根部とを有し、
前記螺旋羽根部は、前記円筒周壁部の内周面に密着しながら摺動可能な螺旋ベルト状の外周摺動部を有し、
前記回転体を正回転させることにより第1の外部配管内の流体を前記第1接続口から前記ケーシング内へ流入させて前記第2接続口から第2の外部配管内へ移送し、前記回転体を逆回転させることにより第2の外部配管内の流体を前記第2接続口から前記ケーシング内へ流入させて前記第1接続口から第1の外部配管内へ移送するように構成された、ことを特徴とする。
(summary)
As mentioned above,
(1) A fluid transfer device according to the present invention includes a cylindrical casing and a rotating body rotatably provided in the casing on the same axis as the casing,
The casing includes a cylindrical peripheral wall portion, a first end wall portion having a first connection port connectable to a first external pipe and provided on one axial end side of the cylindrical peripheral wall portion, and a second external pipe. a second end wall portion having a connectable second connection port and provided on the other end side of the cylindrical peripheral wall portion in the axial direction;
The rotating body includes a rotating shaft portion pivotally supported by the one end wall portion and the other end wall portion of the casing so as to be rotated by an external power, and a spiral blade portion provided on the outer peripheral surface of the rotating shaft portion. and
The spiral blade portion has a spiral belt-shaped outer peripheral sliding portion that can slide while being in close contact with the inner peripheral surface of the cylindrical peripheral wall portion,
By rotating the rotating body forward, the fluid in the first external pipe flows into the casing from the first connection port and is transferred from the second connection port into the second external pipe. by reversely rotating the fluid in the second external pipe to flow into the casing from the second connection port and to be transferred from the first connection port into the first external pipe. characterized by

本発明による流体移送装置は、次のように構成されてもよく、それらが適宜組み合わされてもよい。
(2)前記螺旋羽根部は、前記回転軸部の外周面に固定された螺旋羽根本体と、前記螺旋羽根本体の外周部に着脱可能に取り付けられた前記外周摺動部とを有してなるものであってもよい。
この構成によれば、古い外周摺動部を螺旋羽根本体から取り外して新しい外周摺動部と交換することができる。
The fluid transfer device according to the present invention may be configured as follows, or may be combined as appropriate.
(2) The spiral blade portion has a spiral blade main body fixed to the outer peripheral surface of the rotating shaft portion, and the outer peripheral sliding portion detachably attached to the outer peripheral portion of the spiral blade main body. can be anything.
According to this configuration, the old outer peripheral sliding portion can be removed from the spiral blade main body and replaced with a new outer peripheral sliding portion.

(3)前記螺旋羽根本体は、前記外周摺動部を離脱可能に受け入れる複数のねじ孔付き受片を前記外周部に長手方向に沿って有すると共に、前記複数のねじ孔付き受片の各ねじ孔に羅着する複数のねじピンを有し、
前記外周摺動部は、前記複数のねじ孔付き受片にて受け入れられた状態で前記複数のねじピンにて前記螺旋羽根本体の前記外周部に押さえ付けられているものであってもよい。
この構成によれば、外周摺動部の螺旋羽根本体への着脱が容易な取付構造を得ることができる。
(3) The spiral blade main body has a plurality of receiving pieces with threaded holes that detachably receive the outer peripheral sliding portion along the longitudinal direction of the outer peripheral portion, and each screw of the plurality of receiving pieces with threaded holes having a plurality of threaded pins that engage the holes;
The outer peripheral sliding portion may be held by the plurality of screw pins against the outer peripheral portion of the spiral blade main body while being received by the plurality of receiving pieces with screw holes.
According to this configuration, it is possible to obtain a mounting structure that facilitates attachment and detachment of the outer peripheral sliding portion to and from the spiral blade main body.

(4)前記外周摺動部は、前記複数のねじピンが挿入される溝部または複数の凹部を長手方向に沿って有しているものであってもよい。
この構成によれば、複数のねじピンによる外周摺動部の螺旋羽根本体への固定および位置調整が容易となる。
(4) The outer peripheral sliding portion may have grooves or a plurality of recesses along the longitudinal direction into which the plurality of screw pins are inserted.
According to this configuration, it becomes easy to fix the outer peripheral sliding portion to the spiral blade body and adjust the position thereof by means of the plurality of screw pins.

(5)前記複数のねじピンのうちの前記外周摺動部の長手方向の両端部に対応する一対のねじピンは、前記外周摺動部を貫通して前記螺旋羽根本体の前記外周部に当接するものであってもよい。
この構成によれば、螺旋羽根本体の外周部に対する外周摺動部の長手方向の位置ずれを容易に防止することができる。
(5) Of the plurality of screw pins, a pair of screw pins corresponding to both ends in the longitudinal direction of the outer peripheral sliding portion pass through the outer peripheral sliding portion and come into contact with the outer peripheral portion of the spiral blade main body. It may be in contact.
According to this configuration, it is possible to easily prevent longitudinal displacement of the outer peripheral sliding portion with respect to the outer peripheral portion of the spiral blade main body.

(6)前記外周摺動部は、前記複数のねじピンにて押さえ付けられる螺旋ベルト状の弾性部と、前記ケーシングの前記円筒周壁部の内周面に密着しながら摺動するように前記弾性部の表面に一体状に設けられた低摩擦部とを有してなるものであってもよい。
この構成によれば、弾性部を金型内にセットしてフッ素樹脂を流し込むインサート成形にて外周摺動部を形成することができる。
(6) The outer peripheral sliding portion includes a spiral belt-shaped elastic portion pressed by the plurality of screw pins, and the elastic belt so as to slide in close contact with the inner peripheral surface of the cylindrical peripheral wall portion of the casing. and a low-friction portion integrally provided on the surface of the portion.
According to this configuration, the outer peripheral sliding portion can be formed by insert molding in which the elastic portion is set in the mold and the fluororesin is poured.

(7)前記回転体の前記回転軸部と連結した出力軸を有する電動モータをさらに備え、
前記電動モータが、出力調整可能であってもよい。
この構成によれば、移送の対象物である流体の種類や目的等に応じて、回転体の回転数を調整することができる。
(7) further comprising an electric motor having an output shaft coupled to the rotating shaft portion of the rotating body;
The electric motor may be adjustable in output.
According to this configuration, the number of rotations of the rotor can be adjusted according to the type and purpose of the fluid to be transferred.

本発明の好ましい態様には、上述した複数の態様のうちの何れかを組み合わせたものも含まれる。
前述した実施の形態の他にも、本発明について種々の変形例があり得る。それらの変形例は、本発明の範囲に属さないと解されるべきものではない。本発明には、請求の範囲と均等の意味および前記範囲内でのすべての変形とが含まれるべきである。
Preferred aspects of the invention also include combinations of any of the aspects described above.
In addition to the embodiments described above, various modifications of the present invention are possible. Those modifications should not be construed as not belonging to the scope of the present invention. The present invention should include all modifications within the scope of the claims, the meaning of equivalents, and the scope.

1:流体移送装置、 10:ケーシング、 11:円筒周壁部、 12:一端壁部、 12a:第1接続口、 12b:挿通孔、 13:他端壁部、 13a:第2接続口、 13b:挿通孔、 14:脚部、 15:接続具、 16:支持部、 16a:カバー、 16b:ベアリング、 17:支持部、 17a:カバー、 17aa:挿通孔、 11b:ベアリング、 21:第1の外部配管、 22:第2の外部配管、 30:回転体、 31:回転軸部、 31a:大径部、 31b:中径部、 31ba:雄ネジ、 31c:小径部、 32:螺旋羽根部、 32a:螺旋羽根本体、 32aa:ねじ孔付き受片、 32ab:ねじピン、 32b:外周摺動部、 32ba:弾性部、 32bb:低摩擦部、 32bc:溝部、 33:ナット、 60:電動モータ、 132:螺旋羽根部、 132aa:ねじ付き受片、 132b:外周摺動部、 132ba:弾性部、 132bb:低摩擦部、 D:外径、 P:螺旋ピッチ、 Q:軸心 Reference Signs List 1: fluid transfer device 10: casing 11: cylindrical peripheral wall portion 12: one end wall portion 12a: first connection port 12b: insertion hole 13: other end wall portion 13a: second connection port 13b: Insertion hole 14: Leg 15: Connector 16: Support 16a: Cover 16b: Bearing 17: Support 17a: Cover 17aa: Insertion hole 11b: Bearing 21: First exterior Pipe 22: Second external pipe 30: Rotating body 31: Rotating shaft portion 31a: Large diameter portion 31b: Medium diameter portion 31ba: Male screw 31c: Small diameter portion 32: Spiral blade portion 32a : Spiral blade main body 32aa: Receiving piece with threaded hole 32ab: Screw pin 32b: Peripheral sliding part 32ba: Elastic part 32bb: Low friction part 32bc: Groove part 33: Nut 60: Electric motor 132 : spiral blade portion 132aa: threaded receiving piece 132b: outer peripheral sliding portion 132ba: elastic portion 132bb: low friction portion D: outer diameter P: helical pitch Q: shaft center

Claims (7)

円筒形のケーシングと、前記ケーシング内における前記ケーシングと同一軸心上に回転可能に設けられた回転体とを備え、
前記ケーシングは、円筒周壁部と、第1の外部配管と接続可能な第1接続口を有し前記円筒周壁部の軸心方向一端側に設けられた一端壁部と、第2の外部配管と接続可能な第2接続口を有し前記円筒周壁部の軸心方向他端側に設けられた他端壁部とを有し、
前記回転体は、外部動力にて回転するように前記ケーシングの前記一端壁部と前記他端壁部に枢支された回転軸部と、前記回転軸部の外周面に設けられた螺旋羽根部とを有し、
前記螺旋羽根部は、前記円筒周壁部の内周面に密着しながら摺動可能な螺旋ベルト状の外周摺動部を有し、
前記回転体を正回転させることにより第1の外部配管内の流体を前記第1接続口から前記ケーシング内へ流入させて前記第2接続口から第2の外部配管内へ移送し、前記回転体を逆回転させることにより第2の外部配管内の流体を前記第2接続口から前記ケーシング内へ流入させて前記第1接続口から第1の外部配管内へ移送するように構成された、ことを特徴とする流体移送装置。
A cylindrical casing and a rotating body provided rotatably on the same axis as the casing in the casing,
The casing includes a cylindrical peripheral wall portion, a first end wall portion having a first connection port connectable to a first external pipe and provided on one axial end side of the cylindrical peripheral wall portion, and a second external pipe. a second end wall portion having a connectable second connection port and provided on the other end side of the cylindrical peripheral wall portion in the axial direction;
The rotating body includes a rotating shaft portion pivotally supported by the one end wall portion and the other end wall portion of the casing so as to be rotated by an external power, and a spiral blade portion provided on the outer peripheral surface of the rotating shaft portion. and
The spiral blade portion has a spiral belt-shaped outer peripheral sliding portion that can slide while being in close contact with the inner peripheral surface of the cylindrical peripheral wall portion,
By rotating the rotating body forward, the fluid in the first external pipe flows into the casing from the first connection port and is transferred from the second connection port into the second external pipe. by reversely rotating the fluid in the second external pipe to flow into the casing from the second connection port and to be transferred from the first connection port into the first external pipe. A fluid transfer device characterized by:
前記螺旋羽根部は、前記回転軸部の外周面に固定された螺旋羽根本体と、前記螺旋羽根本体の外周部に着脱可能に取り付けられた前記外周摺動部とを有してなる、請求項1に記載の流体移送装置。 The spiral blade portion has a spiral blade main body fixed to the outer peripheral surface of the rotating shaft portion, and the outer peripheral sliding portion detachably attached to the outer peripheral portion of the spiral blade main body. 2. The fluid transfer device according to claim 1. 前記螺旋羽根本体は、前記外周摺動部を離脱可能に受け入れる複数のねじ孔付き受片を前記外周部に長手方向に沿って有すると共に、前記複数のねじ孔付き受片の各ねじ孔に羅着する複数のねじピンを有し、
前記外周摺動部は、前記複数のねじ孔付き受片にて受け入れられた状態で前記複数のねじピンにて前記螺旋羽根本体の前記外周部に押さえ付けられている、請求項2に記載の流体移送装置。
The spiral blade main body has a plurality of receiving pieces with threaded holes for detachably receiving the outer peripheral sliding portion along the longitudinal direction of the outer peripheral portion, and the threaded holes of the plurality of receiving pieces with threaded holes are threaded. having a plurality of threaded pins attached to it;
3. The outer peripheral sliding portion according to claim 2, wherein the outer peripheral sliding portion is pressed against the outer peripheral portion of the spiral blade body by the plurality of screw pins while being received by the plurality of receiving pieces with screw holes. Fluid transfer device.
前記外周摺動部は、前記複数のねじピンが挿入される溝部または複数の凹部を長手方向に沿って有している、請求項3に記載の流体移送装置。 4. The fluid transfer device according to claim 3, wherein the outer peripheral sliding portion has grooves or a plurality of recesses along the longitudinal direction into which the plurality of screw pins are inserted. 前記複数のねじピンのうちの前記外周摺動部の長手方向の両端部に対応する一対のねじピンは、前記外周摺動部を貫通して前記螺旋羽根本体の前記外周部に当接する、請求項3または4に記載の流体移送装置。 A pair of screw pins among the plurality of screw pins corresponding to both ends in the longitudinal direction of the outer peripheral sliding portion pass through the outer peripheral sliding portion and come into contact with the outer peripheral portion of the spiral blade main body. 5. A fluid transfer device according to Item 3 or 4. 前記外周摺動部は、前記複数のねじピンにて押さえ付けられる螺旋ベルト状の弾性部と、前記ケーシングの前記円筒周壁部の内周面に密着しながら摺動するように前記弾性部の表面に一体状に設けられた低摩擦部とを有してなる、請求項3~5のいずれか1つに記載の流体移送装置。 The outer peripheral sliding portion includes a helical belt-shaped elastic portion pressed by the plurality of screw pins, and a surface of the elastic portion so as to slide in close contact with the inner peripheral surface of the cylindrical peripheral wall portion of the casing. 6. The fluid transfer device according to any one of claims 3 to 5, further comprising a low-friction portion provided integrally with the fluid transfer device. 前記回転体の前記回転軸部と連結した出力軸を有する電動モータをさらに備え、
前記電動モータが、出力調整可能である、請求項1~6のいずれか1つに記載の流体移送装置。
further comprising an electric motor having an output shaft coupled to the rotating shaft portion of the rotating body;
The fluid transfer device according to any one of claims 1 to 6, wherein the electric motor is adjustable in output.
JP2021046340A 2021-03-19 2021-03-19 Fluid transfer device Pending JP2022145084A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021046340A JP2022145084A (en) 2021-03-19 2021-03-19 Fluid transfer device
PCT/JP2022/010107 WO2022196457A1 (en) 2021-03-19 2022-03-08 Fluid transportation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021046340A JP2022145084A (en) 2021-03-19 2021-03-19 Fluid transfer device

Publications (2)

Publication Number Publication Date
JP2022145084A true JP2022145084A (en) 2022-10-03
JP2022145084A5 JP2022145084A5 (en) 2023-12-22

Family

ID=83320494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021046340A Pending JP2022145084A (en) 2021-03-19 2021-03-19 Fluid transfer device

Country Status (2)

Country Link
JP (1) JP2022145084A (en)
WO (1) WO2022196457A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132505A (en) * 1973-09-14 1975-10-20
DK171674B1 (en) * 1993-06-18 1997-03-10 Phoenix Contractors A screw conveyor
JP3619596B2 (en) * 1995-01-26 2005-02-09 武田薬品工業株式会社 Solid material spiral conveyor

Also Published As

Publication number Publication date
WO2022196457A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JPWO2005113984A1 (en) Screw rotor and screw fluid machine
JP2009293529A (en) Uniaxial eccentric screw pump
WO2022196457A1 (en) Fluid transportation device
EP2610493B1 (en) Stator seal structure for single-shaft eccentric screw pump
JPH0587059A (en) Uniaxis eccentric screw pump
CN101498300A (en) Pump impeller
WO2005024239A1 (en) Air-cooled dry vacuum pump
RU2638113C2 (en) Pd geared pump
US10189005B2 (en) Pump for corrosive fluids
US7338267B2 (en) Hinged paddle pump
CN110735794A (en) Vacuum pump system with oil-lubricated vacuum pump
JP2010248978A (en) Uniaxial eccentric screw pump system, stator deterioration state determination device, and stator deterioration state determination method
JP3085539U (en) Shaft seal structure of vacuum pump
KR100274572B1 (en) A stator of a mono pump
JP2018178826A (en) Horizontal shaft pump
JP2005054691A (en) Two-shaft screw pump
JPS63302189A (en) Eccentric screw pump
JP2009085154A (en) Scroll fluid machine
US20170030368A1 (en) Monoblock axial pump
KR102634783B1 (en) A vacuum pump having screw rotor
CN220586118U (en) Lubricating and cooling structure of electronic water pump
JP5507364B2 (en) Uniaxial eccentric screw pump
JP5639812B2 (en) Vane pump
JPS63295891A (en) Screw centrifugal pump
CN111706505B (en) Inner gearing double screw pump

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231214