JP2022144208A - 伝送路及び量子コンピュータ - Google Patents

伝送路及び量子コンピュータ Download PDF

Info

Publication number
JP2022144208A
JP2022144208A JP2021045117A JP2021045117A JP2022144208A JP 2022144208 A JP2022144208 A JP 2022144208A JP 2021045117 A JP2021045117 A JP 2021045117A JP 2021045117 A JP2021045117 A JP 2021045117A JP 2022144208 A JP2022144208 A JP 2022144208A
Authority
JP
Japan
Prior art keywords
conductor layer
region
transmission line
width
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021045117A
Other languages
English (en)
Other versions
JP7494136B2 (ja
Inventor
民雄 河口
Tamio Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2021045117A priority Critical patent/JP7494136B2/ja
Priority claimed from JP2021045117A external-priority patent/JP7494136B2/ja
Priority to US17/468,944 priority patent/US11699837B2/en
Publication of JP2022144208A publication Critical patent/JP2022144208A/ja
Application granted granted Critical
Publication of JP7494136B2 publication Critical patent/JP7494136B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/088Stacked transmission lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Human Computer Interaction (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Waveguides (AREA)

Abstract

Figure 2022144208000001
【課題】小型化及び断熱性に優れて、低損失で高周波信号を導波できる。
【解決手段】伝送路は、第1の方向に延びる第1の導体層と、前記第1の導体層の第1の面側に、第1の誘電体層を介して配置され前記第1の方向に延びる第2の導体層と、前記第1の導体層の前記第1の面とは反対の第2の面側に、第2の誘電体層を介して配置され前記第1の方向に延びる第3の導体層とを備え、前記第2の導体層及び前記第3の導体層は、前記第1の方向に交差する第2の方向の幅が前記第1の方向の複数箇所で異なっており、前記第1の導体層、前記第2の導体層及び前記第3の導体層は、前記第1の面の法線方向から平面視したときに、少なくとも一部が重なり合っている。
【選択図】図2

Description

本発明の一実施形態は、伝送路及び量子コンピュータに関する。
量子コンピュータや超伝導フィルタなどは、極低温環境下で動作させる必要があり、常温環境下の信号処理回路との間で信号を送受する際に、常温環境下の熱が極低温環境下に伝達されないようにする必要がある。
断熱導波管を用いる手法が提案されているが、小型化が困難であり、量子コンピュータなどのように多数の信号を送受する用途には適さない。
また、伝送路に熱伝導率の悪い部材を設ける手法も提案されているが、熱伝導率の悪い部材は一般に、高周波における誘電損失が大きく、信号の通過特性が悪化するという問題がある。
特許第4236408号公報 特許第6495790号公報
そこで、本発明の一実施形態では、小型化及び断熱性に優れて、低損失で高周波信号を導波可能な伝送路及び量子コンピュータを提供するものである。
上記の課題を解決するために、本発明の一実施形態によれば、第1の方向に延びる第1の導体層と、
前記第1の導体層の第1の面側に、第1の誘電体層を介して配置され前記第1の方向に延びる第2の導体層と、
前記第1の導体層の前記第1の面とは反対の第2の面側に、第2の誘電体層を介して配置され前記第1の方向に延びる第3の導体層とを備え、
前記第2の導体層及び前記第3の導体層は、前記第1の方向に交差する第2の方向の幅が前記第1の方向の複数箇所で異なっており、
前記第1の導体層、前記第2の導体層及び前記第3の導体層は、前記第1の面の法線方向から平面視したときに、少なくとも一部が重なり合っている、伝送路が提供される。
(a)はストリップライン構造の伝送路の斜視図、(b)はL1層、L2層、及びL3層の平面図。 (a)は第1の実施形態による伝送路の斜視図、(b)はL1層、L2層、及びL3層の平面図。 (a)は第2の実施形態による伝送路の斜視図、(b)はL1層、L2層、及びL3層の平面図。 第2の実施形態による伝送路の電磁界シミュレーションの計算結果を示す図。 第3の実施形態による伝送路の第1例を示すL2層の平面図。 第3の実施形態による伝送路の第2例を示すL2層の平面図。 第4の実施形態による伝送路の斜視図。 第4の実施形態による伝送路のL1層又はL3層の平面図。 第4の実施形態による伝送路の電磁界シミュレーションの計算結果を示す図。 第2の方向に隣接する第1~第3の導体層2,4,6が同一層に配置されないように多層化した伝送路の断面図。 第2の方向に隣接する第1~第3の導体層2,4,6を同一層に配置するように多層化した伝送路の断面図。 量子コンピュータの概略構成を示すブロック図。
以下、図面を参照して、伝送路及び量子コンピュータの実施形態について説明する。以下では、伝送路及び量子コンピュータの主要な構成部分を中心に説明するが、伝送路及び量子コンピュータには、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
(第1の実施形態)
第1の実施形態による伝送路の構造を説明する前に、ストリップライン形状の伝送路について説明する。図1(a)はストリップライン構造の伝送路100の斜視図である。この伝送路100は複数の層が積層された積層構造であり、最上層をL1層、中間層をL2層、最下層をL3層と呼ぶ。図1(b)は、L1層、L2層、及びL3層の平面図である。
図1(a)と図1(b)に示すように、ストリップライン構造の伝送路100は、L2層に信号伝送用の細幅の導体層101からなる信号線路を配置し、この導体層101の上面側と下面側に、誘電体層102、103を介して接地電位のベタパターン(以下、グランド層104、105と呼ぶ)を配置して、導体層101を上下のグランド層104、105で挟み込んだ構造になっている。
ストリップライン構造の特性インピーダンスZoは、誘電体層102、103の比誘電率er、厚さh、信号線路の線路幅wを用いると、以下の式(1)で表される。
Figure 2022144208000002
なお、本明細書における「幅」とは、信号伝搬方向(第1の方向X)に直交する方向(第2の方向Y)の長さを指す。式(1)では、グランド層104、105の幅を無限大にしているが、実際の伝送路100では、厚さhの5倍程度、又は信号線路である導体層101の幅wの10倍程度と十分に大きな値であればよい。
図1のストリップライン構造の伝送路100は、信号線路である導体層101の上下をグランド層104、105で挟み込んだ構造であるため、信号線路である導体層101とグランド層104、105との間で電磁界は閉じており、電磁界が外部に漏れ出さない構成になっている。このため、このストリップライン構造を多層配線基板等に適用すると、信号線路間のアイソレーションを十分に確保できる。よって、図1の伝送路100は、信号線路の多層化に適している。
その一方で、図1のストリップライン構造の伝送路100を低温デバイス等の入出力配線に適用した場合、グランド層104、105の面積が大きいため、グランド層104、105を介して外部からの熱が侵入してしまう。よって、伝送路100の入出力側で温度差がある場合には、グランド層104、105を介して熱が伝達されることから、図1のストリップライン構造の伝送路100は不向きである。
このように、高温(常温)部と低温部の間に図1の伝送路100を接続して信号伝送を行う場合、伝送路100を介して高温(常温)部からの熱が伝送路100を介して低温部に伝達され、低温部の冷却機構に大きな負荷がかかり、十分な冷却ができなくなって、冷却部を所望の温度に維持できなくおそれがある。
例えば、超伝導素材を用いたデバイスは、極低温の環境下で動作させる必要がある。このデバイスは、極低温よりも高い温度環境下の信号処理回路との間で信号の送受を行うことがある。この場合に用いられる伝送路を介して極低温環境下に熱が侵入すると、超伝導状態を維持するのが困難になり、上述したデバイスは正常に動作しなくなる。例えば、デバイスで使用される超伝導体が高温超伝導体であるYBCOの場合、デバイスを冷却する冷却部を超伝導材料の臨界温度以下(例えば80K以下)程度に維持する必要があり、外部からの熱の侵入を極力抑制する必要がある。
また、量子コンピュータなどの超伝導素子ゲートの場合、絶対零度に近いmKオーダーに冷却する必要があるため、伝送路の断熱性能を向上させることが不可欠である。
図2は第1の実施形態による伝送路1を示す図である。より詳細には、図2(a)は第1の実施形態による伝送路1の斜視図、図2(b)は第1の実施形態による伝送路1の平面図であり、図1(b)と同様に、L1層、L2層、及びL3層の平面図を示している。
L2層は、第1の方向Xに延びる第1の導体層2を有する。第1の導体層2は、誘電体基板(第2の誘電体層3)上に形成される細長の導電パターンである。第1の導体層2は、例えば、誘電体基板(第2の誘電体層3)上に導体材料からなるベタパターンを形成した後に、エッチングにより線幅を細くして形成される。
L1層は、第2の導体層4を有する。第2の導体層4は、第1の導体層2の第1の面側に、第1の誘電体層5を介して配置される。第1の面とは、例えば伝送路1の上面である。第2の導体層4は、第1の導体層2と同様に、第1の方向Xに延びている。
L3層は、第3の導体層6を有する。第3の導体層6は、第1の導体層2の第1の面(例えば上面)とは反対の第2の面側に、第2の誘電体層3を介して配置される。第2の面とは、例えば伝送路1の下面である。第3の導体層6は、第2の導体層4と同様に、第1の方向Xに延びている。
第2の導体層4及び第3の導体層6は、第1の方向Xに交差する第2の方向Yの幅が第1の方向Xの複数箇所で異なっている。すなわち、第2の導体層4及び第3の導体層6は、図1(b)のL1層のようなベタパターンではなく、線幅の大きい領域(第1の領域及び第2の領域)7、8と、小さい領域(第3の領域)9とを有する。
第1の導体層2、第2の導体層4及び第3の導体層6は、第1の面の法線方向から平面視したときに、少なくとも一部が重なり合っている。このように、第1の導体層2、第2の導体層4及び第3の導体層6が上下に重なるように配置することで、電磁界を閉じ込めることができ、EMIノイズを抑制できる。
第1の導体層2の第1の方向Xにおける一端側と他端側は、互いに異なる温度環境下に配置することができる。例えば、一端側は高温(常温)環境下の信号処理回路に接続され、他端側は低温環境下の信号処理回路に接続される。このように、図2の伝送路1は、高温(常温)環境下の信号処理回路と、低温環境下の信号処理回路との間で信号の送受を行うために使用することができる。
図2(b)に示すように、第2の導体層4及び第3の導体層6の第1の方向Xにおける一端側の第1の領域7内の幅と、他端側の第2の領域8内の幅とは、第1の方向Xにおける第1の領域7及び第2の領域8の間の第3の領域9内の少なくとも一部の幅よりも広い。このように、第2の導体層4と第3の導体層6は、信号伝搬方向の両端部側の幅を広くし、両端部の間の幅を狭くしている。第2の導体層4と第3の導体層6の幅を狭くすることで、熱伝導率を低下させることができる。
例えば、第1の実施形態による伝送路1の一端側を常温環境下に接続し、他端側を低温環境下に接続する場合を考える。一様な素材の熱伝導率λ、長さL、断面積Sとし、素材端の高温(常温)側の温度Th、低温側の温度Tlに保持する場合、この素材を伝達する熱量Qは、以下の式(2)で表される。
Figure 2022144208000003
式(2)からわかるように、高い断熱性を得るには、熱伝導率λが悪い素材がよく、断面積Sは小さい方がよく、全体の長さLは長い方がよい。そこで、第1の実施形態による伝送路1では、グランド層である第2の導体層4と第3の導体層6の断面積をできるだけ小さくする。より具体的には、第2の導体層4と第3の導体層6の信号伝搬方向の一部の領域(第3の領域9)内の導体材料を除去して、第2の導体層4と第3の導体層6の断面積を大幅に削減する。
なお、第2の導体層4と第3の導体層6の線幅を極端に小さくすると、電磁界を閉じ込めることができなくなるため、第2の導体層4と第3の導体層6の線幅は、信号線路である第1の導体層2の線幅と同程度以上の線幅にするのが望ましい。また、第2の導体層4のパターン形状と、第3の導体層6のパターン形状は同一であるのが望ましい。パターン形状を同一にすることで、信号線路である第1の導体層2の上下方向の電磁界の非平衡による放射を抑制できる。
第1の実施形態による伝送路1は、第1の導体層2と第2の導体層4の間に第1の誘電体層5を配置し、第1の導体層2と第3の導体層6の間に第2の誘電体層3を配置しているが、第1の誘電体層5と第2の誘電体層3の材料は、高周波帯における誘電損失が小さく、熱伝導率が悪い材料が望ましい。例えば、製造の容易性の観点では、フレキシブル基板に用いられる材料(例えば、ポリイミドや液晶ポリマー素材)などが望ましい。
また、誘電体の断面積も全体の熱伝導に寄与するため、第1の誘電体層5と第2の誘電体層3は薄い素材が望ましい。また、信号伝送やグランド層に用いられる導体材料は、銅や金などの高周波損失の小さい金属材料が望ましい。また、導体材料の厚さは、信号の表皮深さ程度があれば十分であり、できるだけ薄いのが望ましい。
また、極低温環境で用いる場合例えばニオブチタン(NbTi)などの熱伝導材料を導体材料として用いてもよい。一実用例として、厚さ0.1mmのポリイミド基板を用いる場合、信号線路である第1の導体層2の幅を65μm、グランド層である第2の導体層4と第3の導体層6における線幅の小さい第3の領域9の線幅を0.1mm程度としてもよい。このような形状の伝送路1を高温(常温)環境下と低温環境下の間に接続した場合、高温(常温)環境下の熱を断熱した上で、高温(常温)環境下と低温環境下の間で高周波信号の伝送を行うことができる。
このように、第1の実施形態では、信号線路である第1の導体層2の上下に、グランド層である第2の導体層4と第3の導体層6を配置したストリップライン構造の伝送路1において、第2の導体層4と第3の導体層6に線幅の小さい第3の領域9を設けるため、通常のストリップライン構造の伝送路1と比べて、断熱性能を向上できる。また、第3の領域9の線幅を調整することで、高周波帯における信号伝送を行うことができる。
(第2の実施形態)
図3は第2の実施形態による伝送路1aを示す図である。より詳細には、図3(a)は第2の実施形態による伝送路1aの斜視図、図3(b)は第2の実施形態による伝送路1aの平面図であり、図2(b)と同様に、L1層、L2層、及びL3層の平面図を示している。
L1層内の第2の導体層4における第3の領域9と、L3層内の第3の導体層6における第3の領域9は、第1の幅の領域9aと、第1の幅よりも広い第2の幅の領域9bとを有する。第2の導体層4における第3の領域9と、第3の導体層6における第3の領域9では、第1の幅のサイズを同じにし、かつ第2の幅のサイズを同じにするのが望ましい。また、第2の導体層4における第3の領域9の形状は、第3の導体層6における第3の領域9の形状と同じであるのが望ましい。すなわち、伝送路1aの上面の法線方向から平面視したときに、第2の導体層4と第3の導体層6は重なり合うのが望ましい。
第2の幅の領域9bは、図3(a)及び図3(b)に示すように、第2の導体層4と第3の導体層6とを導通させる複数の導電ビア部材10を有する。導電ビア部材10は、第2の導体層4と第3の導体層6における第3の領域9内の第2の幅の領域9bの幅方向の両端側に配置されている。第2の幅の方向における2つの導電ビア部材10の間隔は、第1の幅よりも広くするのが望ましい。
図3(c)に示すように、第2の幅の方向における2つの導電ビア部材10を通る断面において、第1の導体層2は、第2の導体層4と、2つの導電ビア部材10と、第3の導体層6とによって取り囲まれている。
第3の領域9内における第2の幅の領域9bは、第1の方向Xに沿って周期的に配置されていてもよい。この場合、第3の領域9内における第2の幅の領域9bは、第1の方向Xに沿って、第1の導体層2で送受される信号の波長の1/4以下の間隔で配置されるのが望ましい。
第2の導体層4及び第3の導体層6における第2の幅は、第1の導体層2の幅の1~3倍であるのが望ましい。
図4は第2の実施形態による伝送路1aの電磁界シミュレーションの計算結果を示す図である。図4の横軸は周波数[GHz]、縦軸は減衰量[dB]である。図4には、通過損失の曲線w1と、反射特性の曲線w2とが図示されている。曲線w2に示すように、反射特性は約-30dB以下に抑えられている。これにより、図3の実施形態による伝送路1aによれば、断熱性を向上させるとともに、放射損失を抑制できる。
このように、第2の実施形態による伝送路1aは、グランド層である第2の導体層4と第3導体層の両端側の第1の領域7と第2の領域8の間の第3の領域9に、第1の幅の領域9aと、第1の幅よりも広い第2の幅の領域9bを設けるとともに、第2の導体層4における第2の幅の領域9bと、第3の導体層6における第2の幅の領域9bとを導電ビア部材10で導通させる。これにより、第2の幅の領域9bの断面では、第1の導体層2の周囲を2つの導電ビア部材10と、第2の導体層4、及び第3の導体層6で取り囲むことができる。よって、電磁界の閉じ込め効果を高めることができ、断熱性能だけでなく、放射損失も抑制できる。
(第3の実施形態)
上述した第1及び第2の実施形態による第1の導体層2は、第1の方向Xに沿って同一の材料で形成されている例を示したが、第1の導体層2の材料は、第1の方向Xの全域にわたって必ずしも同じである必要はない。また、第1及び第2の実施形態による第1の導体層2は、信号伝送方向(第1の方向X)に沿って、第2の方向Yの幅が一定である例を示したが、第1の導体層2の幅は必ずしも一定である必要はない。
図5は第3の実施形態による伝送路1bの第1例を示すL2層の平面図である。図5のL2層は、図3(b)のL2層とは異なる形状の第1の導体層2を有する。図5における第1の導体層2は、第1の方向Xの一部領域に、一部領域以外の領域よりも抵抗値が大きい抵抗部11を有する。抵抗部11は、第1の導体層2の一部領域に、第1の導体層2よりも高い抵抗値の材料からなる抵抗膜を配置したものである。
第1の導体層2の一部領域に抵抗部11を設けることで、第1の導体層2の一端側から侵入された熱を抵抗部11で発散させることができ、第1の導体層2の他端側への熱雑音を低減することができる。
図6は第3の実施形態による伝送路1bの第2例を示すL2層の平面図である。図6のL2層は、図3(b)及び図5のL2層とは異なる形状の第1の導体層2を有する。図6における第1の導体層2は、第2の方向Yの幅がそれぞれ異なる複数の受動素子12を有する。これら複数の受動素子12は、第1の導体層2にて伝送される信号の通過特性を調整するフィルタリング処理を行うフィルタ部13として機能する。複数の受動素子12のそれぞれは、より具体的には、キャパシタ、インダクタ又は抵抗である。複数の受動素子12を組み合わせることで、ローパスフィルタ、バンドパスフィルタ、又はハイパスフィルタを構成することができる。図6の第1の導体層2には、必要に応じて、図5と同様に抵抗膜を配置してもよい。
図5及び図6の伝送路1bは、第2の実施形態による伝送路1bと同様に、グランド層である第2の導体層4と第3の導体層6の第3の領域9に、第1の幅の領域9aと第2の幅の領域9bを有しているが、第1の実施形態による伝送路1と同様に、第3の領域9の幅が均一であってもよい。
このように、第3の実施形態による伝送路1bでは、第1の導体層2の一部領域に抵抗部11を形成したり、フィルタ部13を形成したりすることができるため、第1の導体層2を高周波信号の伝送経路として使用するだけでなく、熱雑音の抑制や、信号の通過特性の制御に用いることができる。
(第4の実施形態)
第1~第3の実施形態による伝送路1、1a、1bは、第1の導体層2を介して一つの信号を送受する例を示すが、複数の第1の導体層2を設けて複数の信号を送受するようにしてもよい。
図7Aは第4の実施形態による伝送路1cの斜視図、図7Bは第4の実施形態による伝送路1cのL1層又はL3層の平面図である。図7A及び図7Bに示すように、第4の実施形態による伝送路1cは、信号伝送方向である第1の方向Xに交差する第2の方向Yに離隔して、複数の第1の導体層2と、複数の第2の導体層4と、複数の第3の導体層6とが配置されている。
複数の第1の導体層2、複数の第2の導体層4、及び複数の第3の導体層6は、伝送路1cの上面から平面視したときに、それぞれ対応するもの同士が重なり合うように配置されるのが望ましい。
本実施形態による伝送路1cは、L1層に同一形状の複数の第1の導体層2を第2の方向Yに離隔して配置し、L2層に同一形状の複数の第2の導体層4を第2の方向Yに離隔して配置し、L3層に同一形状の複数の第3の導体層6を第2の方向Yに離隔して配置すればよいため、比較的容易に作製することができる。
図8は第4の実施形態による伝送路1cの電磁界シミュレーションの計算結果を示す図である。図8の横軸は周波数[Hz]、縦軸は減衰量[dB]である。図8には、1番目の信号入力部に入力された信号が1番目の信号出力部から出力される割合を示す通過損失の曲線w3と、1番目の信号入力部に入力された信号が1番目の信号入力部に戻る割合を示す反射特性の曲線w4、1番目の信号入力部に入力した信号が2番目の信号入力部に漏れ出す割合を示すアイソレーション特性の曲線w5と、1番目の信号入力部に入力した信号が2番目の信号出力部に漏れ出す割合を示すアイソレーション特性の曲線w6とが図示されている。曲線w4に示すように、反射特性は-30dB以下に抑えられている。また、曲線w5に示すように、アイソレーション特性はー60dB以下に抑制できており、隣接する第1の導体層2への信号の漏れはほとんど存在しないことがわかる。
上述した図7A及び図7Bは、2本の信号線を伝送する伝送路1cの例を示すが、第2の方向Yに離隔して配置される第1~第3の導体層2,4,6を増やすことで、多数の信号線を伝送可能な伝送路1cを小面積で作製できる。
図7A及び図7Bの伝送路1cは、第2の実施形態による伝送路1bと同様に、グランド層である第2の導体層4と第3の導体層6の第3の領域9に、第1の幅の領域9aと第2の幅の領域9bを有しているが、第1の実施形態による伝送路1と同様に、第3の領域9の幅が均一であってもよい。
ただし、第2の導体層4及び第3の導体層6における第3の領域9に第1の幅の領域9aと第2の幅の領域9bを設けた方が、アイソレーション特性を改善できる。特に、第2の幅の長さが所定の長さ以上でないと、アイソレーション特性が悪化する可能性がある。
上述した図7A及び図7Bでは、L1層、L2層及びL3層の面方向に複数の第1~第3の導体層2,4,6を配置しているが、積層方向に複数の第1~第3の導体層2,4,6を配置してもよい。この場合、同一の層内に配置される第1~第3の導体層2,4,6が密に配置さないようにしてもよい。具体的には、積層される複数の第1の導体層2、複数の第2の導体層4、及び複数の第3の導体層6のうち、第2の方向Yに隣接する2つの第1の導体層2、対応する2つの第2の導体層4、及び対応する2つの第3の導体層6は、それぞれ異なる層に配置されるようにしてもよい。
図9Aは第2の方向Yに隣接する第1~第3の導体層2,4,6が同一層に配置されないように多層化した伝送路1cの断面図、図9Bは第2の方向Yに隣接する第1~第3の導体層2,4,6を同一層に配置するように多層化した伝送路1cの断面図である。図9Aは、第1~第3の導体層2,4,6を上下に3層分積層した伝送路1cの例を示している。各層の最下層である第3の導体層6は、誘電体層14上に配置されている。
図9Aの伝送路1cは、図9Bの伝送路1cに比べると、伝送可能な信号本数が少なくなるが、第2の方向Yに隣接する導体層同士の間隔を広げられるため、アイソレーション特性を向上できる。
第4の実施形態では、面方向及び積層方向の少なくとも一方に、複数の第1~第3の導体層2,4,6を配置するため、伝送路1cにて伝送できる信号の数を増やすことができる。同一形状の複数の第1の導体層2と、同一形状の第2~第3の導体層6とを面方向及び積層方向の少なくとも一方に配置するだけでよいため、半導体プロセスにて比較的容易に作製できる。また、第2の実施形態による伝送路1aと同様に、第2の導体層4と第3の導体層6の第3の領域9に第1の幅の領域9aと第2の幅の領域9bを設けて、導電ビア部材10で第2の導体層4と第3の導体層6を導通させることで電磁界を閉じ込めることができるため、隣接する信号間での信号の漏れを抑制できる。
(第5の実施形態)
上述した第1~第4の実施形態による伝送路1、1a、1b、1cは、ストリップライン構造を採用しつつ、信号経路である第1の導体層2の上下に配置されるグランド層である第2の導体層4と第3の導体層6の一部である第3の領域9内の少なくとも一部の線幅を小さくすることで、高温(常温)環境下からの熱が低温環境下に侵入しないようにしている。このように、第1~第4の実施形態による伝送路1、1a、1b、1cは、温度差の大きい2つの環境下での信号伝送に適用することができる。以下では、第1~第4の実施形態による伝送路1、1a、1b、1cを量子コンピュータで用いる例を説明する。
図10は量子コンピュータ21の概略構成を示すブロック図である。図10の量子コンピュータ21は、第1の信号処理回路22、第2の信号処理回路23、及び第1~第4の実施形態による伝送路1、1a、1b、1cを収納する冷凍機24を備えている。
第1の信号処理回路22は、第1の温度範囲で信号処理を行う。第1の温度範囲は、例えば4K(カルビン)~50Kである。第1の信号処理回路22は、第1の温度範囲よりも高温(常温)環境下で信号処理を行う第3の信号処理回路25、26との間で信号の送受を行う。第1の信号処理回路22と第3の信号処理回路25、26との間の信号伝送にも、第1~第4の実施形態による伝送路1、1a、1b、1cを用いてもよい。
第2の信号処理回路23は、第1の信号処理回路22と分離して配置され、第1の温度範囲よりも低い第2の温度範囲で信号処理を行う。第2の温度範囲は、例えば4K以下、具体的には絶対零度近くの10mK程度である。
冷凍機24は、第2の信号処理回路23を冷却する冷却部27を有する。第2の信号処理回路23は、超伝導材料を用いて構成されるプロセッサ23aを有する。その他、第2の信号処理回路23は、信号分離部23bと、信号多重化部23cを有していてもよい。信号分離部23bは、第1の信号処理回路22からの多重化信号を受信して、個々の信号に分離する。信号多重化部23cは、複数の信号を多重化して1本の信号として出力する。信号分離部23b及び信号多重化部23cを設けることで、第1の信号処理回路22と第2の信号処理回路23の間で送受される信号の数を減らすことができる。
同様に、第1の信号処理回路22と第3の信号処理回路25、26との間でも、信号を多重化して送受してもよい。この場合、第3の信号処理回路25、26内に信号多重化部25aと信号分離部26aを設ける必要がある。
第1の信号処理回路22と第2の信号処理回路23とは、第1~第4の実施形態による伝送路1、1a、1b、1cにて信号の送受を行う。図10では、第1の信号処理回路22から出力された信号を第2の信号処理回路23に入力するための伝送路と、第2の信号処理回路23から出力された信号を第1の信号処理回路22に入力するための伝送路とを別個に設けているが、一つの伝送路で、双方向に信号を送受するようにしてもよい。
第2の信号処理回路23は、絶対零度に近い温度に冷却しなければならず、第1の信号処理回路22との間に接続される伝送路を通して熱が侵入するのを防止する必要がある。第1~第4の実施形態による伝送路1、1a、1b、1cは、信号伝送時の断熱性能に優れるため、第1の信号処理回路22からの熱が伝送路を介して第2の信号処理回路23に侵入するおそれがなくなり、冷却部27に過度の負担がかからなくなり、第2の信号処理回路23を絶対零度近くに安定して冷却することができる。
本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
1、1a、1b、1c 伝送路、2 第1の導体層、3 第2の誘電体層、4 第3の導体層、5 第1の誘電体層、6 第3の導体層、7 第1の領域、8 第2の領域、9 第3の領域、10 導電ビア部材、11 抵抗部、12 受動素子、13 フィルタ部、14 誘電体層、21 量子コンピュータ、22 第1の信号処理回路、23 第2の信号処理回路、23a プロセッサ、23b 信号分離部、23c 信号多重化部、24 冷凍機、25 第3の信号処理回路、25a 信号多重化部、26 第3の信号処理回路、26a 信号分離部、27 冷却部、100 伝送路、101 導体層、102 誘電体層、103 誘電体層、104 グランド層

Claims (20)

  1. 第1の方向に延びる第1の導体層と、
    前記第1の導体層の第1の面側に、第1の誘電体層を介して配置され前記第1の方向に延びる第2の導体層と、
    前記第1の導体層の前記第1の面とは反対の第2の面側に、第2の誘電体層を介して配置され前記第1の方向に延びる第3の導体層とを備え、
    前記第2の導体層及び前記第3の導体層は、前記第1の方向に交差する第2の方向の幅が前記第1の方向の複数箇所で異なっており、
    前記第1の導体層、前記第2の導体層及び前記第3の導体層は、前記第1の面の法線方向から平面視したときに、少なくとも一部が重なり合っている、伝送路。
  2. 前記第1の導体層の前記第1の方向における一端側及び他端側は、互いに異なる温度環境下に配置される、請求項1に記載の伝送路。
  3. 前記第2の導体層及び前記第3の導体層の前記第1の方向における一端側の第1の領域内の前記幅と、他端側の第2の領域内の前記幅とは、前記第1の方向における前記第1の領域及び前記第2の領域の間の第3の領域内の少なくとも一部の前記幅よりも広い、請求項1又は2に記載の伝送路。
  4. 前記第2の導体層及び前記第3の導体層における前記第3の領域は、前記幅が第1の幅の領域と、前記幅が前記第1の幅よりも広い第2の幅の領域とを有する、請求項3に記載の伝送路。
  5. 前記第2の導体層における前記第3の領域内の前記第1の幅と、前記第3の導体層における前記第3の領域内の前記第1の幅とは同一である、請求項4に記載の伝送路。
  6. 前記第2の導体層における前記第3の領域の形状は、前記第3の導体層における前記第3の領域の形状と同一である、請求項4又は5に記載の伝送路。
  7. 前記第2の導体層における前記第3の領域内の前記第2の幅の領域と、前記第3の導体層における前記第3の領域内の前記第2の幅の領域とを導通させる導電ビア部材を備える、請求項4乃至6のいずれか一項に記載の伝送路。
  8. 前記導電ビア部材は、前記第2の導体層及び前記第3の導体層における前記第3の領域内の前記第2の幅の領域の幅方向の両端側に配置される、請求項7に記載の伝送路。
  9. 前記第2の幅の方向における前記導電ビア部材の間隔は、前記第2の導体層及び前記第3の導体層における前記第1の幅よりも広い、請求項8に記載の伝送路。
  10. 前記第3の領域内の前記第2の幅の方向の2つの前記導電ビア部材を通る断面において、前記第1の導体層は、前記第2の導体層と、前記2つの導電ビア部材と、前記第3の導体層とで取り囲まれる、請求項7乃至9のいずれか一項に記載の伝送路。
  11. 前記第3の領域内における前記第2の幅の領域は、前記第1の方向に沿って周期的に配置される、請求項4乃至10のいずれか一項に記載の伝送路。
  12. 前記第3の領域内における前記第2の幅の領域は、前記第1の方向に沿って、前記第1の導体層で送受される信号の波長の1/4以下の間隔で配置される、請求項11に記載の伝送路。
  13. 前記第2の導体層及び前記第3の導体層における前記第2の幅は、前記第1の導体層の幅の1~3倍である、請求項4乃至12のいずれか一項に記載の伝送路。
  14. 前記第2の方向に離隔して複数の前記第1の導体層、複数の前記第2の導体層、及び複数の前記第3の導体層が配置される、請求項1乃至13のいずれか一項に記載の伝送路。
  15. 前記複数の第1の導体層、前記複数の第2の導体層、及び前記複数の第3の導体層は、前記第1の面の法線方向から平面視したときに、それぞれ対応するもの同士が重なり合うように配置される、請求項14に記載の伝送路。
  16. 積層される前記複数の第1の導体層、前記複数の第2の導体層、及び前記複数の第3の導体層のうち、前記第2の方向に隣接する2つの前記第1の導体層、対応する2つの前記第2の導体層、及び対応する2つの前記第3の導体層は、それぞれ異なる層に配置される、請求項15に記載の伝送路。
  17. 前記第1の導体層は、前記第1の方向の一部領域に、前記一部領域以外の領域よりも抵抗値が大きい抵抗部を有する、請求項1乃至16のいずれか一項に記載の伝送路。
  18. 前記第1の導体層は、前記第2の方向の幅がそれぞれ異なる複数の受動素子を有し、
    前記複数の受動素子は、前記第1の導体層にて伝送される信号の通過特性を調整するフィルタリング処理を行う、請求項1乃至17のいずれか一項に記載の伝送路。
  19. 第1の温度範囲で信号処理を行う第1の信号処理回路と、
    前記第1の信号処理回路と分離して配置され、前記第1の温度範囲よりも低い第2の温度範囲で信号処理を行う第2の信号処理回路と、
    前記第1の信号処理回路と前記第2の信号処理回路との間で信号の送受を行う、請求項1乃至17のいずれか一項に記載の伝送路と、を備える、量子コンピュータ。
  20. 前記第1の信号処理回路及び前記第2の信号処理回路が収納される冷凍機と、
    前記第1の温度範囲よりも高い第3の温度範囲で信号処理を行うとともに、前記第1の信号処理回路との間で信号の送受を行う第3の信号処理回路と、を備え、
    前記冷凍機は、前記第2の信号処理回路を冷却する冷却部を有する、請求項19に記載の量子コンピュータ。
JP2021045117A 2021-03-18 2021-03-18 伝送路及び量子コンピュータ Active JP7494136B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021045117A JP7494136B2 (ja) 2021-03-18 伝送路及び量子コンピュータ
US17/468,944 US11699837B2 (en) 2021-03-18 2021-09-08 Transmission line and quantum computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021045117A JP7494136B2 (ja) 2021-03-18 伝送路及び量子コンピュータ

Publications (2)

Publication Number Publication Date
JP2022144208A true JP2022144208A (ja) 2022-10-03
JP7494136B2 JP7494136B2 (ja) 2024-06-03

Family

ID=

Also Published As

Publication number Publication date
US11699837B2 (en) 2023-07-11
US20230071251A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US11342646B2 (en) Connecting electrical circuitry in a quantum computing system
US7719105B2 (en) High speed electrical interconnects and method of manufacturing thereof
US7880556B2 (en) Interconnection system with a dielectric system having holes therein that run uninterrupted through the dielectric system
EP3580701B1 (en) Flexible wiring for low temperature applications
JP5658826B2 (ja) モノリシックマイクロ波集積回路
US7975378B1 (en) Method of manufacturing high speed printed circuit board interconnects
US20080176751A1 (en) Systems, methods, and apparatus for electrical filters
Colless et al. Cryogenic high-frequency readout and control platform for spin qubits
US5476719A (en) Superconducting multi-layer microstrip structure for multi-chip modules and microwave circuits
JP3037064B2 (ja) 容量性結合構造
Walter et al. Laminated NbTi-on-Kapton microstrip cables for flexible sub-kelvin RF electronics
KR102407360B1 (ko) 초전도 전기 커플러를 가진 열적으로 격리된 접지면들
JP7494136B2 (ja) 伝送路及び量子コンピュータ
JP2022144208A (ja) 伝送路及び量子コンピュータ
Sawicki et al. Novel coupled-line conductor-backed coplanar and microstrip directional couplers for PCB and LTCC applications
JP7424520B2 (ja) 配線基板及びその製造方法
US20170373365A1 (en) Ultra broadband planar via-less crossover with high isolation
US11823811B2 (en) High-density cryogenic wiring for superconducting qubit control
NL2029508B1 (en) Flexible planar transmission line with a filter
Yildiz et al. Analysis of differential crosstalk and transmission for via arrays in low temperature cofired ceramics
Yin et al. Frequency‐dependent maximum average power‐handling capabilities of single and edge‐coupled microstrip lines on low‐temperature co‐fired ceramic (LTCC) substrates
CN221102617U (zh) 用于超导量子计算机系统的排线
JPH01171244A (ja) 集積回路装置
CN118160148A (zh) 具有滤波器的柔性平面传输线
JP2022154920A (ja) 量子演算装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240522