JP2022143988A - 飛行体の着地装置及び測量システム及び測定方法 - Google Patents

飛行体の着地装置及び測量システム及び測定方法 Download PDF

Info

Publication number
JP2022143988A
JP2022143988A JP2021044812A JP2021044812A JP2022143988A JP 2022143988 A JP2022143988 A JP 2022143988A JP 2021044812 A JP2021044812 A JP 2021044812A JP 2021044812 A JP2021044812 A JP 2021044812A JP 2022143988 A JP2022143988 A JP 2022143988A
Authority
JP
Japan
Prior art keywords
landing
centering member
point cloud
cloud data
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021044812A
Other languages
English (en)
Inventor
泰造 江野
Taizo Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2021044812A priority Critical patent/JP2022143988A/ja
Publication of JP2022143988A publication Critical patent/JP2022143988A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】UAVを正確な位置に着地させるガイド機能を有する着地装置、更に着地状態で測定を可能とする測量システム、更にその測定方法を提供する。【解決手段】飛行体5に設けられ鉛直下方に延出する着陸棒7と自立可能な着地台13とを含む飛行体の着地装置であって、前記着陸棒は、シャフト14と該シャフトに回転自在且つ摺動自在に設けられたガイド球と前記シャフトの下端に回転自在に設けられた倒立円錐形の先端部材とを有し、該先端部材は前記ガイド球の下面に形成された凹部に収納可能となっており、前記着地台は、上部に第1センタリング部材21を有し、下部に第2センタリング部材22を有し、前記第1センタリング部材は、第一通孔を有し、前記第2センタリング部材は、第二通孔を有し、前記着陸棒の下降により、前記着陸棒が前記第1センタリング部材と前記第2センタリング部材により位置決め、固定される様、構成する。【選択図】図2

Description

本発明は無人飛行体、特に測量機を搭載した飛行体の着地装置及び測量システム及びその測定方法に関するものである。
近年、小型無人飛行体(UAV:Unmanned Air Vehicle)の進歩に伴い、UAVに各種装置を搭載して遠隔操作により飛行させ、或はUAVを自律飛行させ、所要の作業が行われている。例えば、UAVに写真測量用カメラ、レーザスキャナ等の測定機を搭載し、写真測量、或は飛行しつつ点群データを取得し、広範囲の測定が行われている。
特に、レーザスキャナを搭載したUAVでは、簡便に広範囲の点群データを取得でき、詳細な地形の3次元測定、或は構築物の3次元測定が可能である。
UAVによる測定では飛行中に測量を実行し、測量完了後には所定位置に着地させるが、着地後測定することは行われてなく、測量後のUAVの着地位置には精度は要求されていない。
通常、UAVは下方に延出する4本の脚を有しており、脚を介して平坦な箇所に着地しており、所定の範囲内に着地できれば充分であった。
特開2018-44913号公報 特開2016-161411号公報 特開2020-94865号公報 特許第6752459号公報
本発明は、UAVを正確な位置に着地させるガイド機能を有する着地装置、更に着地状態で測定を可能とする測量システム、更にその測定方法を提供するものである。
本発明は、飛行体に設けられ鉛直下方に延出する着陸棒と自立可能な着地台とを含む飛行体の着地装置であって、前記着陸棒は、シャフトと該シャフトに回転自在且つ摺動自在に設けられたガイド球と前記シャフトの下端に回転自在に設けられた倒立円錐形の先端部材とを有し、該先端部材は前記ガイド球の下面に形成された凹部に収納可能となっており、前記着地台は、上部に第1センタリング部材を有し、下部に第2センタリング部材を有し、前記第1センタリング部材と前記第2センタリング部材は同一鉛直線上に設けられ、前記第1センタリング部材は、上部の大径孔と下部の小径孔からなる第一通孔を有し、前記第2センタリング部材は、上方に向って拡大するテーパ孔と該テーパ孔の下端に連通する細径孔からなる第二通孔を有し、前記着陸棒の下降により、前記ガイド球が前記大径孔に案内されて該大径孔に嵌合し、前記着陸棒の更なる下降で前記シャフトが前記ガイド球を摺動して下方に延出し、前記先端部材が前記テーパ孔に案内され、前記先端部材と前記テーパ孔とが契合し、前記着陸棒が前記第1センタリング部材と前記第2センタリング部材により位置決め、固定される様構成された飛行体の着地装置に係るものである。
又本発明は、上記飛行体の着地装置と、遠隔操縦可能な飛行装置と、前記飛行装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記飛行装置の上面に設けられ、水平軸心を中心に測距光を回転照射して点群データを取得するレーザスキャナと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動、前記レーザスキャナの駆動を制御可能な制御装置と、前記飛行装置の下面に設けられ、前記第1センタリング部材の上面に検出光を射出し、上面からの反射検出光を検出して前記着地装置に対する回転角を検出する回転角検出器とを具備し、前記飛行装置が前記着地装置に着地した状態で、前記遠隔操縦機により前記制御装置を介し、前記レーザスキャナを駆動させると共に前記プロペラユニットを駆動させ前記飛行装置を水平回転させ、点群データを取得し、前記制御装置は、取得される点群データと前記回転角検出器が検出する回転角とを関連付けて前記着地装置の設置位置を基準とする3次元データを取得する様構成した測量システムに係るものである。
又本発明は、前記着地装置は、既知のグローバル3次元座標を有する設置点に設置され、前記制御装置は、前記グローバル3次元座標に基づき前記点群データをグローバル3次元座標系に座標変換する様構成された測量システムに係るものである。
又本発明は、前記着地装置を複数設置点に設置し、前記飛行装置を前記着地装置に順次着地させ、各着地装置に於いて、点群データを取得し、前記制御装置は取得した複数の点群データをグローバル3次元座標系に統合する様構成した測量システムに係るものである。
又本発明は、更に、光波測量機を有し、該光波測量機により前記着地装置を測定し、該着地装置の設置点を既知化する様構成した測量システムに係るものである。
又本発明は、前記飛行装置はGNSS(Global Navigation Satellite System)装置を搭載し、前記飛行装置が前記着地装置に着地した状態で、GNSS装置によりグローバル3次元座標を取得し、該着地装置の設置点を既知化する様構成した測量システムに係るものである。
又本発明は、更に、演算処理装置を有し、取得した点群データの座標変換、点群データの統合処理を含むデータ処理を前記演算処理装置で実行する様構成された測量システムに係るものである。
更に又本発明は、上記測量システムに於いて、前記レーザスキャナのデータ取得範囲を超える広範囲の測定領域、或は死角の存在する測定領域のグローバル3次元座標系の点群データを取得する測定方法に係るものである。
本発明によれば、飛行体に設けられ鉛直下方に延出する着陸棒と自立可能な着地台とを含む飛行体の着地装置であって、前記着陸棒は、シャフトと該シャフトに回転自在且つ摺動自在に設けられたガイド球と前記シャフトの下端に回転自在に設けられた倒立円錐形の先端部材とを有し、該先端部材は前記ガイド球の下面に形成された凹部に収納可能となっており、前記着地台は、上部に第1センタリング部材を有し、下部に第2センタリング部材を有し、前記第1センタリング部材と前記第2センタリング部材は同一鉛直線上に設けられ、前記第1センタリング部材は、上部の大径孔と下部の小径孔からなる第一通孔を有し、前記第2センタリング部材は、上方に向って拡大するテーパ孔と該テーパ孔の下端に連通する細径孔からなる第二通孔を有し、前記着陸棒の下降により、前記ガイド球が前記大径孔に案内されて該大径孔に嵌合し、前記着陸棒の更なる下降で前記シャフトが前記ガイド球を摺動して下方に延出し、前記先端部材が前記テーパ孔に案内され、前記先端部材と前記テーパ孔とが契合し、前記着陸棒が前記第1センタリング部材と前記第2センタリング部材により位置決め、固定される様構成されたので、飛行姿勢が不安定飛行装置を、確実に前記着地台に水平姿勢で着地させることができる。
又本発明によれば、上記飛行体の着地装置と、遠隔操縦可能な飛行装置と、前記飛行装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記飛行装置の上面に設けられ、水平軸心を中心に測距光を回転照射して点群データを取得するレーザスキャナと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動、前記レーザスキャナの駆動を制御可能な制御装置と、前記飛行装置の下面に設けられ、前記第1センタリング部材の上面に検出光を射出し、上面からの反射検出光を検出して前記着地装置に対する回転角を検出する回転角検出器とを具備し、前記飛行装置が前記着地装置に着地した状態で、前記遠隔操縦機により前記制御装置を介し、前記レーザスキャナを駆動させると共に前記プロペラユニットを駆動させ前記飛行装置を水平回転させ、点群データを取得し、前記制御装置は、取得される点群データと前記回転角検出器が検出する回転角とを関連付けて前記着地装置の設置位置を基準とする3次元データを取得する様構成したので、
飛行姿勢が不安で且つ1次元の走査のみのレーザスキャナにより3次元座標を有する点群データを取得することができる。
更に又本発明によれば、上記測量システムに於いて、前記レーザスキャナのデータ取得範囲を超える広範囲の測定領域、或は死角の存在する測定領域のグローバル3次元座標系の点群データを取得するという優れた効果を発揮する。
本発明の実施例に係る測量システムの構成図である。 該実施例に於いて、UAVが着地装置に着地し、支持された状態を示す斜視図である。 (A)(B)(C)(D)(E)は着地時に於けるUAVの着陸棒と着地装置との関係を示す図である。 着地装置の第1センタリング部材の変更例を示す断面図である。 UAVの制御系を示す概略ブロック図である。 (A)(B)は回転角検出器に用いられる角度検出パターンの一例を示し、モアレ縞用検出パターンを示している。 遠隔操縦機の概略ブロック図である。
以下、図面を参照しつつ本発明の実施例を説明する。
測量システム1は、主に遠隔操縦可能な小型無人飛行装置(UAV)2、該UAV2の着地動作を補助し、該UAV2の着地状態を保持する着地装置3、前記UAV2を遠隔操縦可能な遠隔操縦機4(後述)から構成される。
先ず、図1を参照してUAV2について説明する。尚、以下の説明では該UAV2が基準姿勢、即ち水平状態での説明とする。
前記UAV2は、主に飛行体5と、前記飛行体5の上面に設けられ、測距光を回転照射する測定機としてのレーザスキャナ6と、前記飛行体5の下面に固定され、鉛直下方に延出する着陸棒7と、前記飛行体5の下面に設けられた飛行体カメラ8と、回転角検出器9、前記遠隔操縦機4との間で通信を行う飛行体通信部10とを具備している。
前記飛行体5には基準点が設定されている。該基準点は、例えば前記飛行体5の機械中心であり、該基準点と前記レーザスキャナ6の測定基準点との位置関係は、既知となっている。又、前記飛行体5と、前記レーザスキャナ6と、飛行体カメラ8とは一体化されている。
前記飛行体5は、放射状に延出する複数で且つ偶数のプロペラフレーム11(図示では11a~11d)を有し、該プロペラフレーム11の先端にプロペラユニット12a~12dが設けられる。該プロペラユニット12a~12dは、プロペラモータとプロペラとを含む。
前記レーザスキャナ6は、パルス発光又はバースト発光されたレーザ光線を測距光として射出し、走査鏡(後述)を介して測距光を回転照射する。該走査鏡は、水平軸心を中心に鉛直方向に回転する。従って、測距光は、前記飛行体5の基準点を含む鉛直平面内で1次元に回転照射される。
尚、バースト発光については、特許文献2に開示されている。
前記着地装置3は、前記着陸棒7と着地台13とを含む。
前記着陸棒7は、シャフト14と該シャフト14の下端に設けられたガイド球15とを有し、前記シャフト14の軸心16が前記基準点を通過する様に設けられている。尚、前記シャフト14は軽量化の為、中空構造が好ましい。
図3(A)に示される様に、前記シャフト14の下端には倒立円錐形状の先端部材14aが前記シャフト14の軸心を中心に回転自在に設けられている。
前記ガイド球15は前記シャフト14に対して摺動自在、且つ回転自在に設けられており、前記ガイド球15は自重により前記シャフト14の下端に位置する様になっている。又、前記ガイド球15の中心は前記シャフト14の軸心16上に位置し、前記ガイド球15が下端に位置する状態で、前記ガイド球15の中心と前記基準点との距離は既知となっている。又、前記先端部材14aの先端と前記基準点との距離も既知となっている。
前記ガイド球15の下面から前記シャフト14の軸心16と同心の凹部15aが形成され、前記ガイド球15が下端に位置する状態では、前記先端部材14aが前記凹部15aに収納される様になっている。
前記飛行体カメラ8は、前記UAV2の下方の画像を取得する様に設けられ、特に前記飛行体カメラ8は、前記UAV2の下方の広域画像と、前記ガイド球15を中心とした部分画像とに切替えて取得できる様に構成されてもよい。
図1~図3を参照して前記着地台13について説明する。
該着地台13は、所定の設置点Pに水平に設置される。該設置点Pは既知のグローバル座標を有する等、既知となっている。或は、前記着地台13が設置後、既知化される。
該着地台13は、4本の傾斜脚17と、該傾斜脚17,17の下部間に掛渡される4本の辺部材18と、前記傾斜脚17,17の下部間に設けられる2本の対角部材19とより四角錐状に構成され、前記傾斜脚17の上端部には第1センタリング部材21、前記対角部材19の中心部には第2センタリング部材22が設けられている。
前記第1センタリング部材21と前記第2センタリング部材22とは、同一軸心23上に配置され、合致しており、該軸心23の下方延長は前記着地台13の設置点Pを示している。尚、前記着地台13が水平に設置され状態では、前記軸心23は鉛直となる。
又、前記着地台13の形状、構造は上記したものに限定されることはなく、安定に自立し、且つ前記第1センタリング部材21、前記第2センタリング部材22を同一鉛直線上に保持する形状、構造であればよい。
図3(A)により、前記第1センタリング部材21、前記第2センタリング部材22を説明する。
前記第1センタリング部材21は第一通孔が穿設された、円筒形状であり、第一通孔の上部の大径孔21aの直径は前記ガイド球15の直径より大きく、深さは前記ガイド球15の半径より大きくなっている。又、下部の小径孔21bの直径は前記大径孔21aの直径より小さく、前記凹部15aの直径より大きくなっている。
前記大径孔21aの内周面にはリング24が嵌込まれ、該リング24の内径は、前記ガイド球15の外径と一致するか僅かに小さく設定されている。又、前記リング24の材質は、前記ガイド球15との摩擦抵抗が小さく、該ガイド球15が容易に嵌合、或は通過可能となっている。例えば、前記リング24の材質としては、フッ素樹脂等が採用される。
前記第2センタリング部材22は第二通孔が穿設された、円筒形状であり、第二通孔は上方に向って拡大するテーパ孔22aと該テーパ孔22aの下端に連通する細径孔22bから形成されている。
前記テーパ孔22aのテーパ形状は、前記先端部材14aのテーパ形状と同一であり、前記テーパ孔22aの上端の直径は前記先端部材14aの最大径よりも充分大きく、例えば1.5倍となっている。又、前記細径孔22bの直径は、前記先端部材14aの最大径よりも小さく設定されている。
次に、図2、図3を参照して、前記UAV2の着地作動について説明する。
上記した様に、前記着地台13は予め前記UAV2を着地させたい位置(設置点P)に設置される。
前記遠隔操縦機4による遠隔操縦により、前記UAV2が前記着地台13の上方に飛行される。前記ガイド球15が前記第1センタリング部材21に嵌入される様、前記UAV2が降下される。
前記UAV2は水平姿勢とは限らず、傾斜しており、この為、前記シャフト14も図3(A)に示される様に傾斜し、前記ガイド球15の中心も、前記軸心23から外れた位置にある。
前記ガイド球15の中心が、前記大径孔21aの上方に位置する様に移動させ、更に降下させる(図3(B)参照)。
前記ガイド球15が前記大径孔21aの内縁に当りながら降下すると、前記ガイド球15は前記大径孔21aの中心側に移動され、前記ガイド球15の中心が前記軸心23と合致すると、前記ガイド球15は下方のみ移動し、該ガイド球15は前記小径孔21bの内縁に当接して、下降が停止する。
該ガイド球15が前記小径孔21bの内縁に当接した状態では、前記リング24が前記ガイド球15の最大径位置に当接する。従って、該ガイド球15は、前記小径孔21bと前記リング24によって前記大径孔21a内で中心が前記軸心23上に位置する様に保持される(図3(C)参照)。
更に、前記UAV2が降下すると、前記ガイド球15がガイド部材となって、該ガイド球15に対して前記シャフト14が摺動し、下方に移動する。
前記先端部材14aが前記テーパ孔22aに到達すると、テーパによる案内作用によって、先端部材14aは中心に移動され、該先端部材14aの先端部分が前記細径孔22bに嵌入する。前記先端部材14aのテーパ形状と前記テーパ孔22aのテーパ形状が契合した状態で、上下方向の位置決めが行われると共に前記シャフト14(着陸棒7)の軸心が前記軸心23と合致する(芯合せされる)(図3(D)、図3(E)参照)。
この時、前記設置点Pと前記先端部材14aの先端間の距離は既知となっている。従って、前記設置点Pと前記飛行体5の基準点間の距離も既知となる。
而して、前記シャフト14は前記先端部材14aと前記テーパ孔22aとの嵌合、前記ガイド球15の前記大径孔21aとの嵌合によって、前記シャフト14の軸心16と前記軸心23とが合致する。従って、前記シャフト14は鉛直の状態で指示される。
即ち、図2に示される様に、前記UAV2は水平の状態で、前記着地台13を介して着地し、更に水平の姿勢で保持される。
又、前記シャフト14は前記ガイド球15に対して回転自在であり、前記シャフト14と前記先端部材14aとは回転自在であるので、前記UAV2は前記シャフト14を中心に水平姿勢を保った状態で、水平方向に回転自在となる。
即ち、前記着地装置3は、前記UAV2に着地を案内すると共に該UAV2を水平状態に保持し、且つ回転自在に保持する。
前記UAV2が前記着地台13から離反する場合は、前記UAV2が上昇すれば、前記先端部材14aが前記テーパ孔22aから外れ、更に前記先端部材14aが前記ガイド球15に収納され、前記ガイド球15が前記シャフト14の下端に保持された状態で上昇する。
図4は、第1センタリング部材21の変形を示しており、該第1センタリング部材21の案内作用を更に強調させたものであり、大径孔21aの上端部にテーパ部21cを形成している。該テーパ部21cにより前記ガイド球15が軸心23からより離反した状態でも、前記ガイド球15を前記第1センタリング部材21の中心に案内することができる。
次に、図5~図7を参照して前記UAV2、前記着地装置3、前記遠隔操縦機4を適用した測量システムについて説明する。
前記飛行体5は、制御装置27を内蔵している。該制御装置27は、主に演算制御部28、記憶部29、撮像制御部31、飛行制御部32、プロペラユニットドライバ部33、スキャナ制御部34、センサ制御部35、前記飛行体通信部10とを具備している。
尚、本実施例では、前記スキャナ制御部34が前記制御装置27に含まれているが、別構成としてもよい。例えば、前記レーザスキャナ6内に前記スキャナ制御部34を設け、前記飛行体通信部10を介して前記飛行体5を前記レーザスキャナ6との間で制御信号の授受を行ってもよい。
前記飛行体カメラ8の撮影は、前記撮像制御部31によって制御される。前記飛行体カメラ8によって撮影された画像は、画像データとして前記撮像制御部31に入力される。
前記飛行体カメラ8としてはデジタルカメラが設けられ、静止画像が撮影できると共に、動画像、又は連続する画像を構成するフレーム画像を取得可能となっている。又、撮像素子として、画素の集合体であるCCD、CMOSセンサ等が設けられ、各画素は撮像素子内での位置が特定できる様になっている。例えば、前記飛行体カメラ8の光軸が撮像素子を通過する点を原点とする直交座標によって、各画素の位置が特定される。各画素は、受光信号と共に画素座標を前記撮像制御部31に出力する。
前記記憶部29には、プログラム格納部とデータ格納部とが形成される。前記プログラム格納部には、前記飛行体カメラ8の撮影を制御する為の撮影プログラム、前記プロペラユニット12a~12dを駆動制御する為の飛行制御プログラム、前記レーザスキャナ6による測距作動を制御する測距プログラム、取得したデータを前記遠隔操縦機4に送信し、又該遠隔操縦機4からの飛行指令や撮像指令を受信する為の通信プログラム等のプログラムが格納されている。
前記データ格納部には、前記飛行体カメラ8で取得した静止画像データや動画像データ、前記レーザスキャナ6で取得された点群データ等のデータ類が格納される。
前記撮像制御部31は、前記演算制御部28から発せられる制御信号に基づき、前記飛行体カメラ8の撮像に関する制御を行う。即ち、撮影タイミング、焦点合せ、撮像倍率の変更等の制御を行う。
前記スキャナ制御部34は、前記レーザスキャナ6の駆動を制御する。即ち、前記スキャナ制御部34は、測距光の発光間隔、走査鏡37の回転速度等を制御し、該走査鏡37を介して前記測距光を回転照射する。即ち、前記スキャナ制御部34は、前記レーザスキャナ6から照射される測距光の照射点間隔、点群密度を制御する。又、反射測距光の受光結果は前記走査鏡37の回転角と関連づけられて前記演算制御部28に入力され、測距及び測角が実行される。
前記センサ制御部35は、前記回転角検出器9の角度検出を制御するものである。
該回転角検出器9について説明する。
該回転角検出器9は、前記飛行体5が前記着地装置3に保持された状態(図2参照)での、該着地台13に対する回転角、方向を検出するものである。
前記第1センタリング部材21の上面には角度検出パターン38が設けられている。該角度検出パターン38は基準位置(0゜)を有しており、前記着地台13を設置する場合は、基準位置(前記角度検出パターン38の0゜)が所定の方向、例えば真北に向く様に、前記着地台13の向きが設定される。従って、前記基準位置は、基準方向も示す。
前記回転角検出器9は、検出光を前記角度検出パターン38に照射し、該角度検出パターン38からの反射光から前記角度検出パターン38を読取り、前記基準位置からの角度(水平角)を検出する様になっている。尚、前記角度検出パターン38の微細なパターンを読取れる様、検出光としてはレーザ光線が使用されるのが好ましい。
又、前記回転角検出器9が検出する角度と、測距光の照射方向とは既知の関係となっている。即ち、測距光が回転照射される平面の方向と前記回転角検出器9が検出する方向(水平角)とが一致する様に設定されている。
検出パターンとしては、円周方向に所定角度ピッチで角度メモリを形成したパターン、或は図6に示す様なモアレ縞を生成するパターン等である。尚、図6(A)で示されるパターンは同心多重円を形成したパターン39を重ね合せ、一方を横方向にずらした場合に発生するモアレ縞39aを示しており、図6(B)で示されるパターンは多数の平行線を形成したパターン40を重ね合せ、一方を回転させた場合に発生するモアレ縞40aを示しており、いずれもモアレ縞39a,40aを読取ることで横方向の変位、回転変位を検出することができる。
本実施例に、モアレ縞を適用する場合は、一方のパターンを角度検出パターン38として、前記第1センタリング部材21の表面に形成し、他方のパターンは前記回転角検出器9に内蔵させ、角度検出パターン38からの反射光(即ち像)を内蔵したパターンに重合させことでモアレ縞を発生させることができる。
尚、前記回転角検出器9は上記検出方法に限らず種々の検出方法が採用可能である。例えば、前記第1センタリング部材21の上面に角度検出パターンを設けず、前記第1センタリング部材21の表面の微細性状の画像を所定時間間隔で取得し、画像間の微細性状のづれに基づき回転角を検出する等である。
前記飛行体通信部10は、前記飛行体5が前記遠隔操縦機4で遠隔操作される場合に、前記遠隔操縦機4からの操縦信号を受信し、該操縦信号を前記演算制御部28に入力する。或は、前記飛行体カメラ8で撮影した画像データを前記遠隔操縦機4に送信する等の機能を有する。
前記演算制御部28は、前記記憶部29に格納された各種プログラムに基づき、測定対象物を測距光で走査(測定)する為の各種制御を実行する。又、前記演算制御部28は、前記撮像制御部31、前記飛行制御部32、前記スキャナ制御部34に制御信号を発し、これら制御部の統合制御を実行する。
前記飛行制御部32は、前記演算制御部28からの飛行に関する制御信号に基づき前記プロペラユニットドライバ部33を介して前記プロペラユニット12a~12d制御し、前記UAV2を所要の状態で飛行させる。
例えば、前記飛行制御部32は、前記プロペラユニット12a~12dを制御し、上昇下降、前進後退、ホバリング、ホバリングした状態で水平方向に回転させる等の飛行を実行する。
図7を参照して、前記遠隔操縦機4について説明する。
前記遠隔操縦機4は、例えばスマートフォンやタブレット等の携帯端末、或は該携帯端末に入力装置が接続又は一体化された装置となっている。前記遠隔操縦機4は、演算機能を有する端末演算処理部41、データ、プログラムを格納する端末記憶部42、端末通信部43、操作部44、表示部45を有している。
前記遠隔操縦機4は、前記端末通信部43と前記飛行体通信部10との間で無線通信、光通信が可能となっている。前記遠隔操縦機4は、前記飛行装置2の飛行を遠隔操作し、前記レーザスキャナ6による測距作動も遠隔操作可能となっている。
前記端末演算処理部41は、前記操作部44から入力された指令に基づき制御用のコマンドを作成し、前記端末通信部43を介して前記UAV2に送信する。或は、前記UAV2から送信された画像データ、測定データ等を前記表示部45に表示させ、或は前記端末記憶部42に格納する。
前記端末記憶部42には、前記飛行装置2との通信を行う為の通信プログラム、前記飛行体カメラ8で取得された画像等を表示する為の表示プログラム、タッチパネル等を介して指示を入力する為の操作プログラム、制御用のコマンドを作成する為プログラム、等のプログラムが格納される。
前記端末通信部43は、前記飛行装置2の飛行体通信部10との間で通信を行う。又、前記操作部44は前記表示部45と一体に設けられたコントローラのボタン等を介して各種指示を入力し、前記飛行体5の操作を行う。
前記表示部45は、前記飛行体カメラ8で取得された画像、前記レーザスキャナ6で取得された測定結果等が表示される。
尚、前記表示部45の全てをタッチパネルとしてもよい。該表示部45が全てタッチパネルである場合には、前記操作部44を省略してもよい。この場合、前記表示部45には前記飛行体5を操作する為の操作パネルが設けられる。
上記測量システムによる測定作動について説明する。
測定データを取得したい領域(以下、測定領域)内の既知の設置点(地心座標系(グローバル座標系)で3次元座標が既知の点)に前記着地台13を設置する。又、測定領域が広範囲の場合、或は死角部分が存在する様な測定領域では、前記着地台13を複数の既知点に設置する。
前記遠隔操縦機4からの遠隔操縦で前記UAV2を、前記着地台13の上方迄飛行させ、前記ガイド球15が前記第1センタリング部材21に挿入される様降下させる。
尚、前記ガイド球15の前記第1センタリング部材21への挿入作用で、目視による操作が困難な場合は、前記飛行体カメラ8で取得される下方画像を前記遠隔操縦機4の表示部45に表示させ、該表示部45の表示に基づき遠隔操作をしてもよい。
尚、前記遠隔操縦機4からの操作で、前記下方画像は、前記着地台13に対して前記UAV2の高度が高い場合は低倍率とし、又前記ガイド球15が前記第1センタリング部材21に接近した状態では高倍率に切替えてもよい。
前記ガイド球15が前記第1センタリング部材21に嵌合されると、前記UAV2を更に降下させれば、前記第1センタリング部材21、前記第2センタリング部材22と前記着陸棒7との相互ガイド機能で、前記ガイド球15が前記大径孔21aに嵌合し、更に前記先端部材14aがテーパ孔22aに嵌合する(図3(E)参照)。前記シャフト14が前記着地台13に支持され、図2に示される様に前記UAV2は前記着地台13に着地する。
前記遠隔操縦機4からの操作で、前記レーザスキャナ6を起動させ、測距光を鉛直方向に回転照射し、更に前記回転角検出器9による回転角検出を可能とする。更に、前記遠隔操縦機4からの操作で前記UAV2を前記シャフト14を中心に水平回転させる。
前記レーザスキャナ6によるパルス測距光の鉛直方向の回転照射と前記UAV2の水平方向の回転との協働で、前記シャフト14を中心とする水平、鉛直の全方向の点群データが取得できる。点群データは、前記記憶部29に一時格納され、逐次、前記飛行体通信部10を介して前記遠隔操縦機4に送信され、前記端末記憶部42に格納される。
点群データの各測定点の鉛直角は前記レーザスキャナ6が具備する回転角検出器により検出され、又水平角(基準方向からの水平角)は前記回転角検出器9により検出される。従って、各パルス測距光毎の各測定点の測定データは測距値、鉛直角、水平角を有する3次元データ(前記基準点を原点とした3次元座標)となっている。又、前記レーザスキャナ6の基準点は、前記設置点Pを通過する鉛直線上にあり、又、前記設置点Pと前記基準点間の距離も既知である。
前記端末演算処理部41は、前記点群データを測定データの3次元座標、前記設置点Pと前記基準点間の距離及び前記設置点Pのグローバル座標に基づき点群データの3次元座標をグローバル座標系に座標変換することができる。座標変換後のデータは前記端末記憶部42に保存する。
尚、座標変換の演算処理は、前記演算制御部28で行ってもよく、該演算制御部28で座標変換したデータを前記遠隔操縦機4に送信してもよい。
前記着地台13が複数の既知点に設置されている場合、第1の着地台13での点群データの取得が完了すると、前記遠隔操縦機4により前記UAV2を第2の着地台13迄飛行させ、該着地台13に着地させる。第2の着地台13に於いて、同様に点群データを取得する。
更に前記着地台13が設置されている場合は、第3の着地台13、第4の着地台13と順次、飛行し、着地し、それぞれの着地台13に於いて点群データを取得する。
各着地台13で取得した、点群データは各着地台13の設置点のグローバル座標に基づきそれぞれグローバルに変換される。
各着地台13で取得された点群データをグローバル座標系に座標変換することで、全ての点群データをグローバル座標系で容易に統合することができる。
尚、上記実施例に於いて、着地台13を既知点に設置したが、任意の点に設置し、設置後既知化してもよい。例えば、第1センタリング部材21の全周面に反射シートを貼付け、前記第1センタリング部材21をターゲットとして他の光波測量機、例えばトータルステーションにより前記着地台13の設置点の座標を測定してもよい。或は、前記UAV2にGNSS装置を取付け、前記UAV2が前記着地台13に着地した時の、グローバル座標をGNSS装置から取得してもよい。尚、前記着地装置3の所定部分について充分な反射測距光が得られれば、前記反射シートは省略してもよい。
尚、所定位置からの点群データの取得する場合、例えば構造物の外形形状を測定する場合等では、グローバル3次元座標は必要ないので、前記着地装置3は水平姿勢で所定位置に設置し、該所定位置を基準とする3次元データが取得されればよい。
尚、前記遠隔操縦機4をデータコレクタとして使用し、取得したデータの座標変換、統合処理等のデータ処理については、別途PC等の演算処理装置で実行してもよい。
上記した様に、本実施例では、着地位置に着地台13を設置することで、UAV2の飛行姿勢が不安定でも、確実に前記着地台13に水平姿勢で着地させることができる。
又、UAV2が着地台13で安定に支持された状態で、2次元走査による点群データを取得でき、UAV2が方向検出器、水平角検出器、姿勢検出器を具備しなくても、3次元座標を有する点群データを取得でき、更に着地台13を複数箇所設置することでレーザスキャナのデータ取得範囲を超える広範囲の、又死角が存在する場所での点群データの取得が可能となる。
1 測量システム
2 UAV
3 着地装置
4 遠隔操縦機
5 飛行体
6 レーザスキャナ
7 着陸棒
8 飛行体カメラ
10 飛行体通信部
13 着地台
14 シャフト
14a 先端部材
15 ガイド球
15a 凹部
21 第1センタリング部材
22 第2センタリング部材
22a テーパ孔
27 制御装置
28 演算制御部
29 記憶部
32 飛行制御部
34 スキャナ制御部
41 端末演算処理部
43 端末通信部
45 表示部

Claims (8)

  1. 飛行体に設けられ鉛直下方に延出する着陸棒と自立可能な着地台とを含む飛行体の着地装置であって、前記着陸棒は、シャフトと該シャフトに回転自在且つ摺動自在に設けられたガイド球と前記シャフトの下端に回転自在に設けられた倒立円錐形の先端部材とを有し、該先端部材は前記ガイド球の下面に形成された凹部に収納可能となっており、前記着地台は、上部に第1センタリング部材を有し、下部に第2センタリング部材を有し、前記第1センタリング部材と前記第2センタリング部材は同一鉛直線上に設けられ、前記第1センタリング部材は、上部の大径孔と下部の小径孔からなる第一通孔を有し、前記第2センタリング部材は、上方に向って拡大するテーパ孔と該テーパ孔の下端に連通する細径孔からなる第二通孔を有し、前記着陸棒の下降により、前記ガイド球が前記大径孔に案内されて該大径孔に嵌合し、前記着陸棒の更なる下降で前記シャフトが前記ガイド球を摺動して下方に延出し、前記先端部材が前記テーパ孔に案内され、前記先端部材と前記テーパ孔とが契合し、前記着陸棒が前記第1センタリング部材と前記第2センタリング部材により位置決め、固定される様構成された飛行体の着地装置。
  2. 請求項1の飛行体の着地装置と、遠隔操縦可能な飛行装置と、前記飛行装置と無線通信可能な遠隔操縦機とを有する測量システムであって、前記飛行装置は、複数で且つ偶数のプロペラフレームに設けられたプロペラユニットと、前記飛行装置の上面に設けられ、水平軸心を中心に測距光を回転照射して点群データを取得するレーザスキャナと、前記遠隔操縦機と無線通信可能であり、前記プロペラユニットの駆動、前記レーザスキャナの駆動を制御可能な制御装置と、前記飛行装置の下面に設けられ、前記第1センタリング部材の上面に検出光を射出し、上面からの反射検出光を検出して前記着地装置に対する回転角を検出する回転角検出器とを具備し、前記飛行装置が前記着地装置に着地した状態で、前記遠隔操縦機により前記制御装置を介し、前記レーザスキャナを駆動させると共に前記プロペラユニットを駆動させ前記飛行装置を水平回転させ、点群データを取得し、前記制御装置は、取得される点群データと前記回転角検出器が検出する回転角とを関連付けて前記着地装置の設置位置を基準とする3次元データを取得する様構成した測量システム。
  3. 前記着地装置は、既知のグローバル3次元座標を有する設置点に設置され、前記制御装置は、前記グローバル3次元座標に基づき前記点群データをグローバル3次元座標系に座標変換する様構成された請求項2に記載の測量システム。
  4. 前記着地装置を複数設置点に設置し、前記飛行装置を前記着地装置に順次着地させ、各着地装置に於いて、点群データを取得し、前記制御装置は取得した複数の点群データをグローバル3次元座標系に統合する様構成した請求項3に記載の測量システム。
  5. 更に、光波測量機を有し、該光波測量機により前記着地装置を測定し、該着地装置の設置点を既知化する様構成した請求項3又は請求項4に記載の測量システム。
  6. 前記飛行装置はGNSS装置を搭載し、前記飛行装置が前記着地装置に着地した状態で、GNSS装置によりグローバル3次元座標を取得し、該着地装置の設置点を既知化する様構成した請求項3又は請求項4に記載の測量システム。
  7. 更に、演算処理装置を有し、取得した点群データの座標変換、点群データの統合処理を含むデータ処理を前記演算処理装置で実行する様構成された請求項3又は請求項4に記載の測量システム。
  8. 請求項4の測量システムに於いて、前記レーザスキャナのデータ取得範囲を超える広範囲の測定領域、或は死角の存在する測定領域のグローバル3次元座標系の点群データを取得する測定方法。
JP2021044812A 2021-03-18 2021-03-18 飛行体の着地装置及び測量システム及び測定方法 Pending JP2022143988A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021044812A JP2022143988A (ja) 2021-03-18 2021-03-18 飛行体の着地装置及び測量システム及び測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021044812A JP2022143988A (ja) 2021-03-18 2021-03-18 飛行体の着地装置及び測量システム及び測定方法

Publications (1)

Publication Number Publication Date
JP2022143988A true JP2022143988A (ja) 2022-10-03

Family

ID=83453913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044812A Pending JP2022143988A (ja) 2021-03-18 2021-03-18 飛行体の着地装置及び測量システム及び測定方法

Country Status (1)

Country Link
JP (1) JP2022143988A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022168177A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168175A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168181A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168184A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168180A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168176A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168182A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168186A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168185A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168183A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168178A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168179A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168174A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168187A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168188A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022171778A (ja) * 2021-03-19 2022-11-11 株式会社三洋物産 遊技機
JP2022171779A (ja) * 2021-03-19 2022-11-11 株式会社三洋物産 遊技機

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022168177A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168175A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168181A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168184A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168180A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168176A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168182A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168186A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168185A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168183A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168178A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168179A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168174A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168187A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022168188A (ja) * 2021-03-01 2022-11-04 株式会社三洋物産 遊技機
JP2022171778A (ja) * 2021-03-19 2022-11-11 株式会社三洋物産 遊技機
JP2022171779A (ja) * 2021-03-19 2022-11-11 株式会社三洋物産 遊技機

Similar Documents

Publication Publication Date Title
JP2022143988A (ja) 飛行体の着地装置及び測量システム及び測定方法
US10324183B2 (en) UAV measuring apparatus and UAV measuring system
US10767991B2 (en) Laser scanner
US9773420B2 (en) Measuring system
US10983196B2 (en) Laser scanner and surveying system
JP6693765B2 (ja) 飛行体追尾方法及び飛行体誘導システム
CA2831682C (en) Measuring system for determining 3d coordinates of an object surface
EP2818958B1 (en) Flying vehicle guiding system and associated guiding method
JP6122591B2 (ja) 写真測量用カメラ及び航空写真装置
US11460299B2 (en) Survey system
US20190385322A1 (en) Three-dimensional shape identification method, aerial vehicle, program and recording medium
US20180147998A1 (en) Aerial Photogrammetric Device And Aerial Photogrammetric Method
JP2019109154A (ja) 測量装置
JP2022143989A (ja) 飛行体の角度検出装置及び測量システム
KR20170083379A (ko) 라이다 시스템을 포함하는 비행체
JP6577083B2 (ja) 測定システム
US20220099442A1 (en) Surveying System
JP2018138922A (ja) 測定システム
JP2023140509A (ja) 測量システム
JP7096022B2 (ja) Uavを用いた標点マーキングシステム
JP2022067500A (ja) 測量システム
JP2019219206A (ja) 測定システム
KR102631884B1 (ko) 촬영이미지를 편집하여 고정밀의 영상이미지를 획득할 수 있는 항공촬영시스템
JP2022147973A (ja) 飛行体の姿勢検出装置及び姿勢制御システム
JP2023048409A (ja) 測量システム