JP2022142609A - Method for treating incineration main ash - Google Patents

Method for treating incineration main ash Download PDF

Info

Publication number
JP2022142609A
JP2022142609A JP2021042850A JP2021042850A JP2022142609A JP 2022142609 A JP2022142609 A JP 2022142609A JP 2021042850 A JP2021042850 A JP 2021042850A JP 2021042850 A JP2021042850 A JP 2021042850A JP 2022142609 A JP2022142609 A JP 2022142609A
Authority
JP
Japan
Prior art keywords
bottom ash
products
raw materials
recovered
incinerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021042850A
Other languages
Japanese (ja)
Inventor
智典 竹本
Tomonori Takemoto
洸 瀧澤
Akira Takizawa
恭宗 武藤
Yasumune Muto
知久 吉川
Tomohisa Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2021042850A priority Critical patent/JP2022142609A/en
Publication of JP2022142609A publication Critical patent/JP2022142609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide an efficient method for treating incineration main ash.SOLUTION: A method for treating incineration main ash includes: a first process of adding water to incineration main ash having 10 mm or smaller of particle size; a second process of dehydrating the incineration main ash to which water has been added through centrifugal separation; a third process of separating the dehydrated incineration main ash into heavy products and light products through sorting through specific gravity and recovering the light products as cement raw materials; and a fourth process of separating the heavy products sorted in the third process into non-magnetic products and magnetic products through sorting through magnetic force, recovering the non-magnetic products as nonferrous refining raw materials and recovering the magnetic products as electric furnace and blast furnace raw materials.SELECTED DRAWING: Figure 1

Description

本発明は、焼却主灰の処理方法に関する。 The present invention relates to a method for treating incineration bottom ash.

都市ごみ等の焼却炉の炉床からは焼却主灰が排出され、排出された焼却主灰は一般廃棄物として管理型処分場にそのまま埋立処分されている。しかし、近年、最終埋立処分場の残余容量が減少しているため、焼却主灰の有効利用が種々検討されている。 Incineration bottom ash is discharged from the hearth of an incinerator for municipal waste, etc., and the discharged incineration bottom ash is landfilled as it is in a controlled disposal site as general waste. However, in recent years, since the remaining capacity of final landfill disposal sites has been decreasing, various studies have been made on effective utilization of incineration bottom ash.

例えば、焼却主灰の処理方法として、最大粒径5mm以下の焼却主灰を渦電流選別により導体と不導体とに分離した後、導体を比重差選別により高比重物と低比重物とに分離し、高比重物として貴金属を回収し、低比重物としてアルミニウムを回収することが提案されている(特許文献1)。また、焼却主灰に水を添加してスラリー化した後、ごみ焼却灰スラリーを粗粒子を含むスラリーと、微粒子を含むスラリーに分離し、粗粒子を含むスラリーを湿式比重選別して貴金属を回収し 、微粒子を含むスラリーを脱塩した後、セメント原料として資源化することが提案されている(特許文献2)。 For example, as a method of processing incineration bottom ash, after incineration bottom ash with a maximum particle size of 5 mm or less is separated into conductors and nonconductors by eddy current sorting, the conductors are separated into high specific gravity substances and low specific gravity substances by specific gravity difference separation. However, it has been proposed to recover precious metals as high specific gravity substances and recover aluminum as low specific gravity substances (Patent Document 1). In addition, after adding water to incinerator bottom ash to make slurry, the incineration ash slurry is separated into slurry containing coarse particles and slurry containing fine particles, and the slurry containing coarse particles is wet specific gravity sorted to recover precious metals. However, after desalting the slurry containing fine particles, it has been proposed to recycle it as a raw material for cement (Patent Document 2).

特開2018-58059号公報JP 2018-58059 A 特開2020-110739号公報JP 2020-110739 A

しかしながら、焼却主灰は多くの水分を含み、湿潤状態にあるため、焼却主灰を処理するうえで、次の課題がある。即ち、焼却主灰を湿潤状態のまま物理選別に供すると、焼却主灰の表面に水分が滲み出すため、焼却主灰同士が一体化して団粒化し、装置等への付着、閉塞等を起こして正常な運転が困難となる。この対策として、例えば、乾燥機による熱エネルギーや、混和材の添加による水和熱エネルギーを焼却主灰に付与して水分を除去することが考えられるが、熱エネルギーを利用した方法はエネルギー消費量が膨大で高コストとなり、また混合材を利用した方法は水分を除去するのに多大な時間を要し、単位時間当たりの焼却主灰の処理能力が大きく低下し、また処理時間の短縮するために混合材を増量すると、高コストになる。更に、焼却主灰をそのまま遠心分離機で脱水して水分を低減する方法も考えられるが、焼却主灰が金属やスラグ等の粗粒を含むため、遠心分離機の摩耗やろ布の損傷が激しく脱水処理が困難である。
本発明の課題は、焼却主灰の効率的な処理方法を提供することにある。
However, since bottom ash contains a lot of water and is in a moist state, there are the following problems in processing the bottom ash. That is, if the incinerator bottom ash is subjected to physical sorting in a wet state, water seeps out on the surface of the incineration bottom ash, so the incineration bottom ash is united with each other and aggregated, causing adhesion to equipment etc., clogging, etc. normal driving becomes difficult. As a countermeasure, for example, it is conceivable to apply heat energy from a dryer or hydration heat energy by adding an admixture to the incinerated bottom ash to remove moisture, but the method using heat energy does not consume much energy. is huge and expensive, and the method using mixed materials requires a lot of time to remove moisture, which greatly reduces the processing capacity of incineration bottom ash per unit time and shortens the processing time. If the amount of the mixed material is increased, the cost becomes high. Furthermore, a method of dehydrating the incinerator bottom ash as it is with a centrifuge to reduce the water content is also conceivable, but since the incinerator bottom ash contains coarse particles such as metals and slag, the wear of the centrifuge and the damage to the filter cloth are severe. Dehydration is difficult.
An object of the present invention is to provide an efficient method for treating incinerated bottom ash.

当該技術分野において、遠心分離機は、上記において説明したとおり、焼却主灰の脱水を目的に通常使用されているが、本発明者らは、焼却主灰を遠心分離機に投入する前に、敢えて焼却主灰に加水することで、遠心分離機への供給が容易になるだけでなく、遠心分離により粗粒と微粒の分離が促進されるため、焼却主灰から有価物を効率的に選別回収できることを見出した。 In the technical field, a centrifuge is usually used for the purpose of dehydrating incinerator bottom ash, as described above, but the present inventors, before putting the incinerator bottom ash into the centrifuge, Adding water to incinerator bottom ash not only makes it easier to supply to the centrifugal separator, but also promotes the separation of coarse particles and fine particles by centrifugation, so valuables can be efficiently sorted out from incinerator bottom ash. I found that it can be recovered.

すなわち、本発明は、次の〔1〕~〔6〕を提供するものである。
〔1〕粒径10mm以下の焼却主灰に加水する第1の工程と、
加水後の焼却主灰を遠心分離により脱水する第2の工程と、
脱水後の焼却主灰を比重選別により重産物と軽産物とに分離し、軽産物をセメント原料として回収する第3の工程と、
第3の工程で選別された重産物を磁力選別により非磁着物と磁着物とに分離し、非磁着物を非鉄精錬原料として回収し、かつ磁着物を電炉・高炉原料として回収する第4の工程
を備える、
焼却主灰の処理方法。
〔2〕第1の工程において、焼却主灰に対して1質量倍以上の水を加水する、前記〔1〕記載の焼却主灰の処理方法。
〔3〕第2の工程において、加水後の焼却主灰を篩選別し、篩上を遠心分離により脱水する、前記〔1〕又は〔2〕記載の焼却主灰の処理方法。
〔4〕篩選別を篩目が1mm以下の篩で行う、前記〔3〕記載の焼却主灰の処理方法。
〔5〕加水後の焼却主灰を遠心分離により分離したスラリーを湿式比重選別により重産物と軽産物とに分離し、重産物を非鉄精錬原料として回収し、かつ軽産物をセメント原料として回収する、前記〔1〕~〔4〕のいずれか一に記載の焼却主灰の処理方法。
〔6〕加水後の焼却主灰を篩選別して分離した篩下を湿式比重選別により重産物と軽産物とに分離し、重産物を非鉄精錬原料として回収し、かつ軽産物をセメント原料として回収する、前記〔1〕~〔5〕のいずれか一に記載の焼却主灰の処理方法。
〔7〕第1の工程前に、焼却主灰から粒径10mm以下の焼却主灰を選別する準備工程を有する、前記〔1〕~〔6〕のいずれか一に記載の焼却主灰の処理方法。
That is, the present invention provides the following [1] to [6].
[1] A first step of adding water to incinerated bottom ash having a particle size of 10 mm or less;
A second step of dehydrating the incinerated bottom ash after adding water by centrifugation;
A third step of separating the dehydrated incineration bottom ash into heavy products and light products by gravity sorting, and recovering the light products as raw materials for cement;
The heavy products sorted in the third step are separated into non-magnetic substances and magnetic substances by magnetic separation, the non-magnetic substances are recovered as raw materials for non-ferrous refining, and the magnetic substances are recovered as raw materials for electric furnaces and blast furnaces. Equipped with a process,
How to dispose of bottom ash from incineration.
[2] The method for treating incinerated bottom ash according to [1] above, wherein in the first step, water is added to the incinerated bottom ash in an amount of 1 or more times by mass.
[3] The method for treating incinerated bottom ash according to [1] or [2] above, wherein in the second step, the incinerated bottom ash after hydration is screened and the sieve top ash is dehydrated by centrifugation.
[4] The method for treating incinerated bottom ash according to [3] above, wherein the sieve selection is performed with a sieve having a sieve mesh of 1 mm or less.
[5] Separating the slurry obtained by centrifuging the incinerated bottom ash after hydration into heavy products and light products by wet specific gravity sorting, recovering the heavy products as raw materials for non-ferrous refining, and recovering the light products as raw materials for cement. , The method for treating incinerated bottom ash according to any one of [1] to [4].
[6] The bottom ash obtained by sieving and separating the incinerated bottom ash after hydration is separated into heavy products and light products by wet specific gravity separation, and the heavy products are recovered as raw materials for nonferrous smelting, and the light products are recovered as raw materials for cement. , The method for treating incinerated bottom ash according to any one of [1] to [5].
[7] Processing of incineration bottom ash according to any one of [1] to [6] above, which has a preparatory step of sorting incineration bottom ash having a particle size of 10 mm or less from incineration bottom ash before the first step. Method.

本発明によれば、焼却主灰から有価物を効率的に選別回収することができる。 ADVANTAGE OF THE INVENTION According to this invention, valuables can be efficiently sorted and collected from incineration bottom ash.

本発明の焼却主灰の処理方法の一例を示すフローチャートである。BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows an example of the processing method of the incineration bottom ash of this invention.

本発明の焼却主灰の処理方法は、第1の工程、第2の工程、第3の工程及び第4の工程を備えるものである。以下、各工程について詳細に説明するが、本発明の焼却主灰の処理方法の一例を図1に示す。 The method for treating incinerated bottom ash of the present invention comprises a first step, a second step, a third step and a fourth step. Although each step will be described in detail below, an example of the method for treating incinerated bottom ash according to the present invention is shown in FIG.

〔第1の工程〕
第1の工程は、粒径10mm以下の焼却主灰に加水する工程である。
焼却主灰は、多くの水分を含有する湿灰であり、18%から35%の高い水分を含有する場合がある。そのため、焼却主灰を処理する際には、焼却主灰から水分を除去してハンドリング性を向上させることが通常であるが、本発明者らは敢えて焼却主灰に加水することで、意外にも、焼却主灰に含まれる有価物の選別が容易になることを見出した。即ち、湿潤状態の焼却主灰は、物理選別を行う際の装置の振動等により団粒化し、粗大化することがある。そして、粗大化した焼却主灰は、装置内で閉塞を生じやすいため処理効率の低下を招くが、加水した焼却主灰は粗大化しないため、処理装置への供給が容易であり、また遠心分離により粗粒と微粒の分離を促進できることを見出した。ここで、本明細書において「焼却主灰」とは、都市ゴミや産業廃棄物を焼却炉で焼却した際に炉底に溜まる焼却残渣(ボトムアッシュ)をいう。したがって、本発明に係る「焼却主灰」には、焼却した際の排ガス中の煤塵である焼却飛灰(フライアッシュ)は包含されない。なお、産業廃棄物としては、例えば、廃自動車、廃家電、自動販売機、OA機器等のシュレッダーダスト、建築廃プラスチック、農業廃プラスチック、漁業廃プラスチック、海洋廃プラスチック等の廃プラスチックを挙げることができる。
[First step]
The first step is a step of adding water to incineration bottom ash having a particle size of 10 mm or less.
Incineration bottom ash is wet ash with a high moisture content and can have a moisture content as high as 18% to 35%. Therefore, when processing the incineration bottom ash, it is normal to remove moisture from the incineration bottom ash to improve handling properties, but the inventors dared to add water to the incineration bottom ash. also found that sorting of valuables contained in incinerated bottom ash becomes easy. That is, the wet incineration bottom ash may aggregate and become coarse due to the vibration of the device during physical separation. Coarse incineration bottom ash tends to cause clogging in the device, which leads to a decrease in processing efficiency, but water-added incineration bottom ash does not coarsen, so it is easy to supply to the processing device and is centrifuged. It was found that the separation of coarse and fine particles can be promoted by Here, in this specification, "incineration bottom ash" refers to incineration residue (bottom ash) that accumulates at the bottom of an incinerator when municipal garbage or industrial waste is incinerated. Therefore, the "incineration bottom ash" according to the present invention does not include incineration fly ash, which is dust in the exhaust gas at the time of incineration. Examples of industrial wastes include waste plastics such as waste automobiles, waste home appliances, vending machines, shredder dust from OA equipment, construction waste plastics, agricultural waste plastics, fishery waste plastics, and marine waste plastics. can.

先ず、焼却主灰の粒度を調整し、第1の工程で使用する焼却主灰を準備する。
粒径の調整は、例えば、破砕機や分級機を用いて行うことが可能であり、これらを組み合わせてもよい。破砕機としては、例えば、ジョークラッシャー、インパクトクラッシャー、ハンマークラッシャー、ロールクラッシャー、ロータリークラッシャーが挙げられる。なお、破砕機には、焼却主灰の粒度を調整するために、所望する篩目のスクリーンを装着するか、あるいはスクリーンを装着しない場合には、固定歯、回転歯、内壁等を所望するクリアランスに調整すればよい。また、分級機としては、例えば、リップルフロー型やローヘッド型等の振動篩、トロンメル等の回転式篩、スパイラル分級機等の湿式分級機が挙げられ、所望する篩目を用いればよい。
First, the particle size of the incinerated bottom ash is adjusted, and the incinerated bottom ash used in the first step is prepared.
The particle size can be adjusted using, for example, a crusher or a classifier, or a combination thereof. Examples of crushers include jaw crushers, impact crushers, hammer crushers, roll crushers, and rotary crushers. In addition, in order to adjust the particle size of the incinerated bottom ash, the crusher is equipped with a screen with a desired sieve mesh. should be adjusted to Examples of classifiers include vibrating sieves such as ripple flow type and low head type, rotary sieves such as trommels, and wet classifiers such as spiral classifiers, and a desired sieve mesh may be used.

粒度調整後の焼却主灰は、粒径が10mm以下であるが、装置内部の摩耗・破損の防止の観点から、8mm以下が好ましく、7mm以下がより好ましく、6mm以下が更に好ましい。なお、焼却主灰の粒径の下限値は特に限定されないが、篩い目の目詰まり防止の観点から、0.3mm以上が好ましく、0.5mm以上がより好ましく、1mm以上が更に好ましい。 The particle size of the incinerated main ash after particle size adjustment is 10 mm or less, but from the viewpoint of preventing wear and damage inside the device, it is preferably 8 mm or less, more preferably 7 mm or less, and even more preferably 6 mm or less. Although the lower limit of the particle size of the incinerated bottom ash is not particularly limited, it is preferably 0.3 mm or more, more preferably 0.5 mm or more, and still more preferably 1 mm or more from the viewpoint of preventing clogging of the sieve mesh.

次に、粒度調整した焼却主灰に加水する。
加水方法は一般的な方法であればいずれの方法も採用でき、特に限定されないが、例えば、遠心分離機に焼却主灰を投入する際に加水する方法の他に、焼却主灰を撹拌槽内に収容し、該焼却主灰に水を添加又は噴霧し撹拌する方法、コンベヤの入り口、コンベヤ上、又は搬送の乗り継ぎ箇所等において焼却主灰に水を添加又は噴霧する方法を挙げることができる。とりわけ、攪拌槽内で焼却主灰と水を攪拌すると、灰の塊の解砕や、粗粒に付着した微粒を剥離することができるため、遠心分離機内での粗粒と微粒の分離が容易となる。撹拌機は、横型筒状ドラムを回転させる構造の装置(掻き上げ用のバーが内側に装着された容器、解泥や粗粒からの微粒の剥離を促すためにロッドやボールを入れる又は突起や羽根を有するシャフトが挿入された構造の容器等)等の連続的に投入、排出が可能な装置の他に、コンクリートの攪拌に使用される1軸、2軸のバッチ式のミキサーを使用してもよい。叩き洗いの効果、連続処理が可能な点を踏まえると、横型筒状ドラムを使用するとより効果的である。なお、焼却主灰への加水は、間欠的に行っても、連続的に行ってもよい。
Next, water is added to the incinerated bottom ash whose particle size has been adjusted.
Any method can be adopted as long as it is a general method for adding water, and there is no particular limitation. A method of adding or spraying water to the incineration bottom ash and stirring it, and a method of adding or spraying water to the incineration bottom ash at the entrance of the conveyor, on the conveyor, or at the transfer point of transportation. In particular, when incinerator bottom ash and water are stirred in a stirring tank, it is possible to crush ash clumps and separate fine particles adhering to coarse particles, making it easy to separate coarse particles and fine particles in the centrifuge. becomes. The agitator is a device with a structure that rotates a horizontal cylindrical drum (container with a raking bar attached to the inside, rods and balls are inserted to promote disaggregation and separation of fine particles from coarse particles, or protrusions and In addition to equipment capable of continuously charging and discharging, such as a container with a structure in which a shaft with blades is inserted, a batch type mixer with 1 or 2 shafts used for stirring concrete is used. good too. Considering the effect of beating washing and the fact that continuous treatment is possible, it is more effective to use a horizontal cylindrical drum. The addition of water to the incinerated bottom ash may be performed intermittently or continuously.

水としては、例えば、JIS A 5303付属書Cに規定される上水道水、該上水道水以外の水(例えば、河川水、湖沼水、井戸水、地下水、工業用水)を挙げることができる。また、水は、冷却水、常温水及び温水のいずれでもよく、特に限定されない。 Examples of water include tap water defined in JIS A 5303 Annex C and water other than tap water (eg, river water, lake water, well water, ground water, industrial water). Also, the water may be cooling water, room temperature water, or warm water, and is not particularly limited.

加水量は、焼却主灰に対して、1質量倍以上が好ましく、2質量倍以上がより好ましく、3質量倍以上が更に好ましい。焼却主灰への加水量が少な過ぎると、焼却主灰の流動性が低下するため、次工程において閉塞等によりハンドリング性が低下しやすくなる。他方、加水量が多過ぎると、作業効率が低下するだけでなく、高コストになるため、加水量は、焼却主灰に対して、20質量倍以下が好ましく、15質量倍以下がより好ましく、10質量倍以下が更に好ましい。 The amount of water added is preferably at least 1-fold by mass, more preferably at least 2-fold by mass, and even more preferably at least 3-fold by mass relative to the incinerated bottom ash. If the amount of water added to the incinerated bottom ash is too small, the fluidity of the incinerated bottom ash will decrease, and the handling property will tend to decrease due to clogging or the like in the next step. On the other hand, if the amount of water added is too large, not only does the work efficiency decrease, but also the cost increases. 10 times or less by mass is more preferable.

また、本工程においては、加水後の焼却主灰を篩選別し、篩上を次工程に供してもよい。これにより、粗粒と微粒の分離が遠心分離によってより一層促進されるため、焼却主灰から有価物の選別回収がより容易になる。
篩選別には、例えば、上記において説明した振動篩、回転式篩、湿式分級機を使用することができるが、これらに限定されない。
篩選別の篩目は、粗粒と微粒の分離のより一層の促進、目詰まり防止の観点から、0.5~1mmが好ましく、0.3~0.5mmがより好ましく、0.3mmが更に好ましい。
なお、加水後の焼却主灰を篩により選別された篩上は、改めて加水して流動性を改善しておくことがハンドリング性の観点から好ましい。加水量は、焼却主灰に加水したときと同等の流動性を有すればよく、適宜選択することができる。
Moreover, in this step, the incinerated bottom ash after adding water may be sieved and the sieved portion may be subjected to the next step. As a result, separation of coarse particles and fine particles is further promoted by centrifugal separation, making it easier to sort and recover valuables from incinerated bottom ash.
For sieving, for example, the vibrating sieves, rotary sieves, and wet classifiers described above can be used, but are not limited to these.
The sieve mesh for sieve selection is preferably 0.5 to 1 mm, more preferably 0.3 to 0.5 mm, more preferably 0.3 mm from the viewpoint of further promoting separation of coarse particles and fine particles and preventing clogging. preferable.
In addition, it is preferable from the viewpoint of handling property that the sieved bottom ash after being filtered by the sieve is watered again to improve fluidity. The amount of water added may be selected appropriately as long as it has the same fluidity as when water is added to the incinerated bottom ash.

〔第2の工程〕
第2の工程は、第1の工程後の焼却主灰を遠心分離により脱水する工程である。遠心分離により水と灰とに分離できるが、水分を多く含む微粒の灰(Ca、S、Clが多い)が水側に移行するため、Si、Al、Fe、Cu、Znなどが微粒分よりも多い粗粒主体の灰を良好な水分量で脱水物として回収することができる。また、脱水物は、水分が18%未満と低く、また微粒が少なくなっているため、熱エネルギーなどを利用することなく、次工程に供することができ、容易に有価物の回収が可能となる。
[Second step]
The second step is a step of dehydrating the incinerated bottom ash after the first step by centrifugation. Water and ash can be separated by centrifugation, but since fine ash containing a large amount of water (a large amount of Ca, S, and Cl) moves to the water side, Si, Al, Fe, Cu, Zn, etc. It is possible to recover the ash, which is mainly composed of coarse particles with a large amount of water, as a dehydrated product with a good water content. In addition, since the dehydrated product has a low water content of less than 18% and a small number of fine particles, it can be supplied to the next process without using thermal energy, etc., and valuable materials can be easily recovered. .

遠心分離機は、遠心沈降機でも、遠心脱水機でもよいが、スクリーンの目から水を通過させることで灰と水を分離できる遠心脱水機の方が、水側により多くの微粒分の灰を移行させることができるため、灰の水分をより低下させることができる。また、本工程は、複数回行うと、水分低減効果は増大する。 The centrifuge can be either a centrifugal sedimentation machine or a centrifugal dehydrator, but a centrifugal dehydrator, which can separate ash and water by passing water through the mesh of the screen, will collect more fine ash on the water side. Since it can be transferred, the moisture content of the ash can be further reduced. Moreover, when this step is performed a plurality of times, the water content reduction effect increases.

遠心脱水機には円筒式バスケット型、円錐式バスケット型等の形式が存在するが、特に限定されない。
遠心脱水機のろ材としては、例えば、ろ布、スクリーンを挙げることができる。中でも、孔径0.05mm以上のスクリーンを使用すると、効率よく脱水できる。ろ布の材質としては、例えば、ポリプロピレン、ポリエチレンが挙げられ、またスクリーンの材質としては、例えば、ステンレス、ハステロイを挙げることができる。
遠心ろ過における遠心力は、通常100~2000Gであるが、脱水効率の観点から、200~1000Gが好ましく、200~800Gが更に好ましい。
The centrifugal dehydrator includes types such as a cylindrical basket type and a conical basket type, but is not particularly limited.
Examples of filter media for the centrifugal dehydrator include filter cloth and screens. Among them, a screen with a pore size of 0.05 mm or more can be used for efficient dehydration. Examples of the material of the filter cloth include polypropylene and polyethylene, and examples of the material of the screen include stainless steel and Hastelloy.
The centrifugal force in centrifugal filtration is usually 100 to 2000G, preferably 200 to 1000G, more preferably 200 to 800G, from the viewpoint of dehydration efficiency.

遠心沈降機にも直胴型、デカンタ型、ディスク型等の形式が存在するが、特に限定されない。
遠心沈降における遠心力は、通常500~4000Gであるが、脱水効率の観点から、1000~3000Gが好ましく、1500~2500Gが更に好ましい。
The centrifugal sedimentation machine also has a straight body type, a decanter type, a disk type, and the like, but is not particularly limited.
The centrifugal force for centrifugal sedimentation is usually 500 to 4000G, preferably 1000 to 3000G, more preferably 1500 to 2500G, from the viewpoint of dehydration efficiency.

本工程は、2回以上行っても構わない。この場合、回収した脱水物について、第1の工程と同様の加水を行った後、再度本工程を行えばよい。これにより、1回の脱水で除去しきれなかった微粒子を更に除去できるだけなく、水分量をより一層低減することができる。
なお、本工程のスラリーには、微粒子が多く含まれることがある。そのため、本発明においては、スラリーから固形物を回収する工程を有することができる。脱水処理は、例えば、遠心分離機を使用することが可能であり、遠心沈降機が好適である。脱水処理は、複数回行っても構わない。
This step may be performed twice or more. In this case, this step may be performed again after adding water to the recovered dehydrated product in the same manner as in the first step. As a result, it is possible not only to further remove fine particles that could not be removed by one dehydration, but also to further reduce the water content.
Note that the slurry in this step may contain a large amount of fine particles. Therefore, in the present invention, it is possible to have a step of recovering solids from the slurry. For the dehydration treatment, for example, a centrifugal separator can be used, and a centrifugal sedimentation machine is preferred. The dehydration treatment may be performed multiple times.

本工程後、遠心分離機から脱水物を回収するが、回収された脱水物は、エアーを吹きかけて更に水分量を低減させる表面改質工程に供することができる。また、本工程後、表面改質工程に代えて、あるいは表面改質工程とともに、回収した脱水物について篩い選別して2以上の粒群に分けた後、粒群毎に次工程に供することもできる。 After this step, the dehydrated matter is recovered from the centrifuge, and the recovered dehydrated matter can be subjected to a surface modification step in which air is blown to further reduce the water content. Further, after this step, instead of the surface modification step, or together with the surface modification step, the collected dehydrated matter may be sieved and separated into two or more grain groups, and each grain group may be subjected to the next step. can.

〔第3の工程〕
第3の工程は、脱水後の焼却主灰を比重選別により重産物と軽産物とに分離し、軽産物をセメント原料として回収する工程である。
比重選別機は、公知の比重選別機を用いることが可能であり、乾式及び湿式のいずれでも構わないが、乾式のテーブル式比重選別機が好ましく、エアテーブルが更に好ましい。
比重選別において、例えば、エアテーブルを用いる場合、振動式テーブルの上面に供給された脱水後の焼却主灰は、振動式テーブルを通過する空気流によって振動式テーブルの上面から浮上した状態となり、振動式テーブルの傾斜方向に付与された振動により、比重の大きい重産物が下層に、比重の小さい軽産物が上層に移動し、下層の重産物は振動式テーブルの上面から摩擦力と振動力とを受けて斜め上方へ移動し、上層の軽産物は振動式テーブルの上面から摩擦力と振動力とを受けずに斜め下方へ押し流され、振動式テーブルから重産物と軽産物が別々に排出される。そして、重産物は次工程に供され、軽産物はセメント原料として回収される。後掲の実施例に示されるように、軽産物はカルシウム分に富むため、セメント原料として再利用することができる。
[Third step]
The third step is a step of separating the dehydrated incineration bottom ash into heavy products and light products by specific gravity sorting, and recovering the light products as raw materials for cement.
A known gravity sorter can be used as the gravity sorter, and either a dry type or a wet type can be used, but a dry table type gravity sorter is preferable, and an air table is more preferable.
In specific gravity sorting, for example, when an air table is used, the dehydrated incineration bottom ash supplied to the upper surface of the vibrating table is in a state of floating from the upper surface of the vibrating table due to the air flow passing through the vibrating table, and vibrates. Heavy products with high specific gravity move to the lower layer and light products with low specific gravity move to the upper layer due to the vibration imparted in the tilting direction of the table. It is received and moved diagonally upward, and the light product in the upper layer is pushed diagonally downward from the upper surface of the vibrating table without receiving the frictional force and vibration force, and the heavy product and the light product are discharged separately from the vibrating table. . The heavy products are then supplied to the next process, and the light products are recovered as raw materials for cement. As shown in the examples below, the light product is rich in calcium and can be reused as a raw material for cement.

また、本工程において、加水後の焼却主灰を篩選別し、篩上を遠心分離により脱水した脱水物を比重選別する場合には、当該脱水物は水分量が十分に低下しているため、比重選別機で処理することで容易に重産物を回収できる。この重産物は、特に貴金属が濃縮している粒群であり、Au、Ag、Cu、Fe等の有価金属を濃縮回収可能であり、またCr、Pb等のセメント忌避成分も重産物中に回収できる。なお、当該脱水物は、上記したように、水分量が十分に低下しているため、そのままでも比重選別できるが、湿潤した粒子表面を乾燥させてから、比重選別した方が粒子同士の付着や比重選別機のデッキ上での居着き抑制効果があるため、コンベヤ上でブロアを行う、または風力選別機で処理を行ってもよい。 In addition, in this process, when the incinerated bottom ash after adding water is sieved and the dehydrated matter obtained by dehydrating the sieve by centrifugation is gravity-selected, the water content of the dehydrated matter is sufficiently reduced, Heavy products can be easily recovered by processing with a gravity sorter. This heavy product is a grain group in which precious metals are particularly concentrated, and valuable metals such as Au, Ag, Cu, and Fe can be concentrated and recovered, and cement-repellent components such as Cr and Pb are also recovered in the heavy product. can. In addition, as described above, the dehydrated product has a sufficiently reduced water content, so it can be gravity sorted as it is, but it is better to dry the wet particle surfaces and then carry out the gravity sorting. Since it has an effect of suppressing stagnation on the deck of the specific gravity sorter, it may be treated with a blower on the conveyor or with a wind sorter.

〔第4の工程〕
第3の工程で選別された重産物を磁力選別により非磁着物と磁着物とに分離し、非磁着物を非鉄精錬原料として回収し、かつ磁着物を電炉・高炉原料として回収する工程である。これにより、有価金属の再利用が可能になる。
磁力選別には、公知の磁力選別機を用いることが可能であり、例えば、ドラム式、プーリー式及び吊下げ式のいずれでもよく、特に限定されない。
磁力選別では、例えば、内側に永久磁石が配置されたドラム上に重産物を供給し、重産物に含まれる磁着物がドラム表面に吸着され、ドラムの回転により運ばれ、磁着物排出口から排出される。他方、重産物に含まれる非磁着物は、ドラムの回転によりドラム表面より離反・落下し、非磁着物排出口から排出される。そして、非磁着物は非鉄精錬原料として回収され、磁着物は電炉・高炉原料として回収される。後掲の実施例に示されるように、非磁着物は、Au、Ag、Cu、Fe等の有価金属に富むため、非鉄精錬原料として再利用することができる。また、磁着物は、ステンレス、鉄等に富むため、電炉・高炉原料として再利用することができる。
[Fourth step]
In this step, the heavy products sorted in the third step are separated into non-magnetic substances and magnetic substances by magnetic separation, the non-magnetic substances are recovered as raw materials for non-ferrous refining, and the magnetic substances are recovered as raw materials for electric furnaces and blast furnaces. . This enables reuse of valuable metals.
A known magnetic force sorter can be used for the magnetic force sorting, and for example, any of a drum type, a pulley type, and a hanging type may be used, and there is no particular limitation.
In magnetic separation, for example, heavy products are supplied onto a drum with a permanent magnet placed inside, and magnetic substances contained in the heavy products are attracted to the surface of the drum, carried by the rotation of the drum, and discharged from the magnetic substance discharge port. be done. On the other hand, the non-magnetic substances contained in the heavy product separate and fall from the drum surface due to the rotation of the drum, and are discharged from the non-magnetic substance discharging port. The non-magnetic substances are recovered as raw materials for non-ferrous refining, and the magnetic substances are recovered as raw materials for electric furnaces and blast furnaces. As shown in the examples below, non-magnetic substances are rich in valuable metals such as Au, Ag, Cu, and Fe, so they can be reused as raw materials for non-ferrous refining. In addition, since magnetic deposits are rich in stainless steel, iron, etc., they can be reused as raw materials for electric furnaces and blast furnaces.

磁力選別機の表面磁束密度は、非磁着物と磁着物との分離促進の観点から、700~10000ガウスが好ましく、1000~7500ガウスがより好ましく、1500~5000ガウスが更に好ましい。 The surface magnetic flux density of the magnetic force sorter is preferably 700 to 10,000 gauss, more preferably 1,000 to 7,500 gauss, and still more preferably 1,500 to 5,000 gauss, from the viewpoint of promoting separation between non-magnetic and magnetic substances.

このようにして焼却主灰を処理することで、焼却主灰から有価物を効率的に選別回収できる。 By treating the incineration bottom ash in this manner, valuables can be efficiently sorted and recovered from the incineration bottom ash.

以上、本発明をその実施形態に基づいて詳細に説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、第1の工程において脱水後の焼却主灰を篩選別して分離された篩下、及び第2の工程の遠心分離により分離されたスラリーには、焼却主灰由来の微粒子が多く含まれているため、それらを回収してもよい。より具体的には、第1の工程において脱水後の焼却主灰を篩選別して分離された篩下、及び第2の工程の遠心分離により分離されたスラリーから選択される1以上を湿式比重選別により重産物と軽産物とに分離し、重産物を非鉄精錬原料として回収し、かつ軽産物をセメント原料として回収することができる。 Although the present invention has been described in detail based on the embodiments, the present invention is not limited to the above embodiments. Various modifications are possible for the present invention without departing from the gist thereof. For example, the under-sieves separated by sieving the dehydrated incineration bottom ash in the first step, and the slurry separated by centrifugation in the second step contain many fine particles derived from the incineration bottom ash. so you can collect them. More specifically, one or more selected from the under-sieves separated by sieving the incineration bottom ash after dehydration in the first step, and the slurry separated by centrifugation in the second step by wet specific gravity sorting. It can be separated into heavy products and light products, the heavy products recovered as non-ferrous smelting feedstock, and the light products recovered as cement raw material.

以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。 EXAMPLES The embodiments of the present invention will now be described more specifically with reference to Examples. However, the present invention is not limited to the following examples.

1.Au、Ag、Fe、Crの分析
JIS M 8100番から8200番の鉱石の分析方法に準拠して分析を行った。
1. Analysis of Au, Ag, Fe, and Cr The analysis was performed according to the ore analysis method of JIS M 8100 to 8200.

2.S、CaO、SiO2、Al、Cu、Pb、Clの分析
蛍光X線分析装置(リガク製、ZSX Primus II)を用いてファンダメンタルパラメータ―法で分析した。
2. Analysis of S, CaO, SiO 2 , Al, Cu, Pb, and Cl Analyzed by the fundamental parameter method using a fluorescent X-ray analyzer (ZSX Primus II, manufactured by Rigaku).

実施例1
(準備工程)
工場の既存設備で選別された焼却主灰を、篩い目25mmの篩いで篩い分けした。次いで、篩い下の焼却主灰を、円筒振動篩い(興和工業所製、KF-1000-3D、スクリーン10mm)で篩い分け、篩い下50.0kgを採取した。篩い下の水分量は、25.0mass%であった。
(第1の工程)
篩い下50kgに対して、150L(3倍量)の水を加えて、十分に攪拌して、均一なスラリーを得た。
(第2の工程)
スラリーを遠心脱水機(コトブキ技研工業製、N452K、スクリーン0.3mm、遠心加速度300G)に供給して、脱水処理を行い、脱水物を41.5kg回収した。脱水物の水分量は、16.5mass%であった。
(第3の工程)
脱水物41.5kgを乾式比重選別機(原田産業製 SHB-4)に供給して、比重選別処理を行い、重産物を2 .0kg、軽産物を39.5kg回収した。
(第4の工程)
第3の工程で回収した重産物をドラム型磁力選別機(日本マグネティックス製、RENS-φ318×350L、3000ガウス)に供給して、磁力選別処理を行い、非磁着物を0.95kg、磁着物を1.05kg回収した。
Example 1
(Preparation process)
The incinerated bottom ash sorted by the existing equipment of the factory was sieved with a sieve having a sieve mesh of 25 mm. Next, the incinerated bottom ash under the sieve was sieved with a cylindrical vibrating sieve (KF-1000-3D, manufactured by Kowa Kogyosho Co., Ltd., screen 10 mm), and 50.0 kg of the sieved bottom ash was collected. The moisture content under the sieve was 25.0 mass%.
(First step)
150 L (three times the amount) of water was added to 50 kg of the sieved material, and the mixture was sufficiently stirred to obtain a uniform slurry.
(Second step)
The slurry was supplied to a centrifugal dehydrator (manufactured by Kotobuki Giken, N452K, screen 0.3 mm, centrifugal acceleration 300 G) for dehydration, and 41.5 kg of dehydrated matter was recovered. The water content of the dehydrated product was 16.5 mass%.
(Third step)
41.5 kg of dehydrated matter is supplied to a dry specific gravity sorter (SHB-4 manufactured by Harada Sangyo Co., Ltd.) and subjected to specific gravity sorting treatment, and the heavy product is separated into 2.5 kg. 0 kg and 39.5 kg of light products were recovered.
(Fourth step)
The heavy product collected in the third step is supplied to a drum-type magnetic sorter (manufactured by Nippon Magnetics, RENS-φ318 x 350 L, 3000 gauss) and magnetically sorted. 1.05 kg of kimono was collected.

実施例2
(第1の工程)
準備工程、第1の工程及び第2の工程を実施例1と同様の条件で行って得られた脱水物に対して実施例1と同様の条件で再度加水し、十分に攪拌して、均一なスラリーを得た。
(第2の工程)
スラリーを、遠心脱水機を用いて実施例1と同様の条件で脱水処理を行い、脱水物を回収した。脱水物の水分量は、13.3mass%であった。
(第3の工程)
脱水物について乾式比重選別機を用いて実施例1と同様の条件で比重選別処理を行い、重産物と、軽産物を回収した。
(第4の工程)
重産物についてドラム型磁力選別機を用いて実施例1と同様の条件で磁力選別処理を行い、非磁着物と、磁着物を回収した。
Example 2
(First step)
The dehydrated product obtained by performing the preparation step, the first step, and the second step under the same conditions as in Example 1 was added with water again under the same conditions as in Example 1, and thoroughly stirred to obtain a uniform A slurry was obtained.
(Second step)
The slurry was dehydrated using a centrifugal dehydrator under the same conditions as in Example 1, and the dehydrated matter was recovered. The water content of the dehydrated product was 13.3 mass%.
(Third step)
The dehydrated matter was subjected to gravity sorting treatment using a dry gravity sorter under the same conditions as in Example 1, and heavy products and light products were recovered.
(Fourth step)
Heavy products were magnetically sorted using a drum-type magnetic sorter under the same conditions as in Example 1, and non-magnetic and magnetic substances were collected.

実施例3
(準備工程)
篩い目25mmの篩いで篩い分けした篩い下について実施例1と同様の操作を行い、篩い下を採取した。篩い下の水分量は、25.0mass%であった。
(第1の工程)
篩い下について実施例1と同様の操作を行い、均一なスラリーを得た。
(第2の工程)
スラリーを遠心沈降機(CMS製、LCSS-M300-22型、遠心加速度2000G)に供給して脱水処理を行い、脱水物を回収した。脱水物の水分量は、17.8mass%であった。
(第3の工程)
脱水物について乾式比重選別機を用いて実施例1と同様の条件で比重選別処理を行い、重産物と、軽産物を回収した。
(第4の工程)
重産物についてドラム型磁力選別機を用いて実施例1と同様の条件で磁力選別処理を行い、非磁着物と、磁着物を回収した。
Example 3
(Preparation process)
The same operation as in Example 1 was performed on the under-sieves sieved with a sieve having a sieve opening of 25 mm, and the under-sieves were collected. The moisture content under the sieve was 25.0 mass%.
(First step)
The same operation as in Example 1 was performed for the under-sieve to obtain a uniform slurry.
(Second step)
The slurry was supplied to a centrifugal sedimentator (LCSS-M300-22 type, manufactured by CMS, centrifugal acceleration 2000 G) for dehydration, and the dehydrated matter was recovered. The water content of the dehydrated product was 17.8 mass%.
(Third step)
The dehydrated matter was subjected to gravity sorting treatment using a dry gravity sorter under the same conditions as in Example 1, and heavy products and light products were recovered.
(Fourth step)
Heavy products were magnetically sorted using a drum type magnetic sorter under the same conditions as in Example 1, and non-magnetic and magnetic substances were collected.

実施例4
(第1の工程)
準備工程、第1の工程及び第2の工程を実施例3と同様の条件で行って得られた脱水物に対して実施例3と同様の条件で再度加水し、十分に攪拌して、均一なスラリーを得た。(第2の工程)
スラリーを、遠心沈降機を用いて実施例3と同様の条件で脱水処理を行い、脱水物を回収した。脱水物の水分量は、16.9mass%であった。
(第3の工程)
脱水物について乾式比重選別機を用いて実施例1と同様の条件で比重選別処理を行い、重産物と、軽産物を回収した。
(第4の工程)
重産物についてドラム型磁力選別機を用いて実施例1と同様の条件で磁力選別処理を行い、非磁着物と、磁着物を回収した。
Example 4
(First step)
The dehydrated product obtained by performing the preparation step, the first step, and the second step under the same conditions as in Example 3 was added with water again under the same conditions as in Example 3, and thoroughly stirred to obtain a uniform A slurry was obtained. (Second step)
The slurry was dehydrated using a centrifugal settler under the same conditions as in Example 3, and the dehydrated matter was recovered. The water content of the dehydrated product was 16.9 mass%.
(Third step)
The dehydrated matter was subjected to gravity sorting treatment using a dry gravity sorter under the same conditions as in Example 1, and heavy products and light products were recovered.
(Fourth step)
Heavy products were magnetically sorted using a drum-type magnetic sorter under the same conditions as in Example 1, and non-magnetic and magnetic substances were recovered.

実施例5
(準備工程)
篩い目25mmの篩いで篩い分けした篩い下を、スクリーン6mmを装着した円筒振動篩いで篩い分けしたこと以外は、実施例1と同様の操作により篩い下を採取した。篩い下の水分量は、30.0mass%であった。
(第1の工程)
篩い下について実施例1と同様の操作を行い、均一なスラリーを得た。
(第2の工程)
スラリーを、スクリーン0.4mmを装着した遠心脱水機に供給し、遠心加速度400Gにて脱水処理を行い、脱水物を回収した。脱水物の水分量は、17.3mass%であった。
(第3の工程)
脱水物について乾式比重選別機を用いて実施例1と同様の条件で比重選別処理を行い、重産物と、軽産物を回収した。
(第4の工程)
重産物についてドラム型磁力選別機を用いて実施例1と同様の条件で磁力選別処理を行い、非磁着物と、磁着物を回収した。
Example 5
(Preparation process)
The under-sieves were collected by the same operation as in Example 1, except that the under-sieves obtained by sieving with a sieve with a mesh size of 25 mm were sieved with a cylindrical vibrating sieve equipped with a screen of 6 mm. The moisture content under the sieve was 30.0 mass%.
(First step)
The same operation as in Example 1 was performed for the under-sieve to obtain a uniform slurry.
(Second step)
The slurry was supplied to a centrifugal dehydrator equipped with a screen of 0.4 mm, subjected to dehydration treatment at a centrifugal acceleration of 400 G, and dehydrated matter was recovered. The water content of the dehydrated product was 17.3 mass%.
(Third step)
The dehydrated matter was subjected to gravity sorting treatment using a dry gravity sorter under the same conditions as in Example 1, and heavy products and light products were recovered.
(Fourth step)
Heavy products were magnetically sorted using a drum-type magnetic sorter under the same conditions as in Example 1, and non-magnetic and magnetic substances were recovered.

実施例6
(準備工程)
篩い目25mmの篩いで篩い分けした篩い下を、実施例5と同様の操作により篩い分けを行い、篩い下を採取した。篩い下の水分量は、30.0mass%であった。
(第1の工程)
篩い下に対して50L(1倍量)の水を加えたこと以外は、実施例1と同様の操作により均一なスラリーを得た。
(第2の工程)
スラリーを、スクリーン0.4mmを装着した遠心脱水機に供給し、遠心加速度700Gにて脱水処理を行い、脱水物を回収した。脱水物の水分量は、17.6mass%であった。
(第3の工程)
脱水物について乾式比重選別機を用いて実施例1と同様の条件で比重選別処理を行い、重産物と、軽産物を回収した。
(第4の工程)
重産物についてドラム型磁力選別機を用いて実施例1と同様の条件で磁力選別処理を行い、非磁着物と、磁着物を回収した。
Example 6
(Preparation process)
The under-sieves obtained by sieving with a sieve having a mesh size of 25 mm were sieved in the same manner as in Example 5, and the under-sieves were collected. The moisture content under the sieve was 30.0 mass%.
(First step)
A uniform slurry was obtained by the same operation as in Example 1, except that 50 L (one volume) of water was added to the under-sieve.
(Second step)
The slurry was supplied to a centrifugal dehydrator equipped with a screen of 0.4 mm, subjected to dehydration treatment at a centrifugal acceleration of 700 G, and dehydrated matter was recovered. The water content of the dehydrated product was 17.6 mass%.
(Third step)
The dehydrated matter was subjected to gravity sorting treatment using a dry gravity sorter under the same conditions as in Example 1, and heavy products and light products were recovered.
(Fourth step)
Heavy products were magnetically sorted using a drum-type magnetic sorter under the same conditions as in Example 1, and non-magnetic and magnetic substances were collected.

実施例7
(準備工程)
篩目25mmの篩下の焼却主灰について実施例1と同様の操作を行って得られたスラリーを、篩目0.3mmの篩いで篩い分けし、篩い上を採取した。篩い上の水分量は、35.0mass%であった。
(第1の工程)
篩い上について実施例6と同様の操作を行い、均一なスラリーを得た。
(第2の工程)
スラリーを、スクリーン0.3mmを装着した遠心脱水機に供給し、遠心加速度400Gにて脱水処理を行い、脱水物を回収した。脱水物の水分量は、12.1mass%であった。
(第3の工程)
脱水物について乾式比重選別機を用いて実施例1と同様の条件で比重選別処理を行い、重産物と、軽産物を回収した。
(第4の工程)
重産物についてドラム型磁力選別機を用いて実施例1と同様の条件で磁力選別処理を行い、非磁着物と、磁着物を回収した。
Example 7
(Preparation process)
The slurry obtained by performing the same operation as in Example 1 on the incinerated bottom ash under the sieve with a sieve opening of 25 mm was sieved with a sieve with a sieve opening of 0.3 mm, and the sieve top was collected. The moisture content on the sieve was 35.0 mass%.
(First step)
The same operation as in Example 6 was performed on the sieve to obtain a uniform slurry.
(Second step)
The slurry was supplied to a centrifugal dehydrator equipped with a screen of 0.3 mm, subjected to dehydration treatment at a centrifugal acceleration of 400 G, and dehydrated matter was recovered. The water content of the dehydrated product was 12.1 mass%.
(Third step)
The dehydrated matter was subjected to gravity sorting treatment using a dry gravity sorter under the same conditions as in Example 1, and heavy products and light products were recovered.
(Fourth step)
Heavy products were magnetically sorted using a drum type magnetic sorter under the same conditions as in Example 1, and non-magnetic and magnetic substances were collected.

比較例1
(準備工程)
篩い目25mmの篩いで篩い分けした篩い下を、スクリーン15mmを装着した円筒振動篩いで篩い分けたこと以外は、実施例1と同様の操作により篩い下を採取した。篩い下の水分量は、24.5mass%であった。
(第1の工程)
篩い下について実施例1と同様の操作を行い、均一なスラリーを得た。
(第2の工程)
スラリーについて遠心脱水機を用いて実施例1と同様の条件で脱水処理を試みたが、脱水品を排出することができず、以降の実施を断念した。
Comparative example 1
(Preparation process)
The under-sieves were collected by the same operation as in Example 1, except that the under-sieves obtained by sieving with a sieve with a mesh size of 25 mm were sieved with a cylindrical vibrating sieve equipped with a screen of 15 mm. The moisture content under the sieve was 24.5 mass%.
(First step)
The same operation as in Example 1 was performed for the under-sieve to obtain a uniform slurry.
(Second step)
An attempt was made to dehydrate the slurry using a centrifugal dehydrator under the same conditions as in Example 1, but the dehydrated product could not be discharged, and subsequent implementation was abandoned.

比較例2
(準備工程)
篩い目25mmの篩いで篩い分けした篩い下について、比較例1と同様の操作を行い、篩い下を採取した。篩い下の水分量は、24.5mass%であった。
(第1の工程)
篩い下について実施例1と同様の操作を行い、均一なスラリーを得た。
(第2の工程)
スラリーについて遠心沈降機を用いて実施例3と同様の条件で脱水処理を試みたが、脱水品を排出することができず、以降の実施を断念した。
Comparative example 2
(Preparation process)
The same operation as in Comparative Example 1 was performed on the under-sieves sieved with a sieve having a sieve opening of 25 mm, and the under-sieves were collected. The moisture content under the sieve was 24.5 mass%.
(First step)
The same operation as in Example 1 was performed for the under-sieve to obtain a uniform slurry.
(Second step)
An attempt was made to dehydrate the slurry using a centrifugal settler under the same conditions as in Example 3, but the dehydrated product could not be discharged, and subsequent implementation was abandoned.

比較例3
(準備工程)
篩い目25mmの篩いで篩い分けした篩い下について実施例1と同様の操作を行い、篩い下を採取した。篩い下の水分量は、25.0mass%であった。
(第1の工程)
篩い下に対して25L(0.5倍量)の水を加えたこと以外は、実施例1と同様の操作を行い、スラリーを得た。
(第2の工程)
スラリーを遠心脱水機に供給することができず、以降の実施を断念した。
Comparative example 3
(Preparation process)
The same operation as in Example 1 was performed on the under-sieves sieved with a sieve having a sieve opening of 25 mm, and the under-sieves were collected. The moisture content under the sieve was 25.0 mass%.
(First step)
A slurry was obtained by performing the same operation as in Example 1, except that 25 L (0.5 times the amount) of water was added to the under-sieve.
(Second step)
The slurry could not be supplied to the centrifugal dehydrator, and the subsequent implementation was abandoned.

各実施例及び比較例における処理条件を表1に示す。また、各実施例及び比較例において、第3の工程で得られた軽産物(セメント原料)、並びに第4の工程で得られた非磁着物(非鉄精錬原料)及び磁着物(電炉・高炉原料)の分析結果を表2、3に示す。 Table 1 shows the treatment conditions in each example and comparative example. In addition, in each example and comparative example, light products (cement raw materials) obtained in the third step, and non-magnetic substances (non-ferrous refining raw materials) and magnetic substances (electric furnace / blast furnace raw materials) obtained in the fourth step ) are shown in Tables 2 and 3.

Figure 2022142609000002
Figure 2022142609000002

Figure 2022142609000003
Figure 2022142609000003

Figure 2022142609000004
Figure 2022142609000004

比較例1、2は、粗粒の噛み込みなどにより異音が発生して遠心分離機の損傷が起きる虞があり、また遠心脱水機又は遠心沈降機からスラリーを排出することができず、連続処理が困難となった。
また、比較例3は、スラリーに流動性がないため、スラリーを遠心脱水機に供給することができず、連続処理が困難となった。
これに対し、実施例1~7では、スラリーが流動性を有するため、スラリーを遠心分離機に供給することも、排出することも可能であった。また、脱水後のスラリーを比重選別に供することで、軽産物としてセメント原料を容易に回収することが可能であり、重産物を磁力選別に供することで、非磁着物として非鉄精錬原料を、磁着物として電炉・高炉原料を回収することができた。
In Comparative Examples 1 and 2, there is a risk of damage to the centrifugal separator due to the generation of abnormal noise due to the bite of coarse particles, and the slurry cannot be discharged from the centrifugal dehydrator or centrifugal sedimentation machine. processing became difficult.
In Comparative Example 3, since the slurry had no fluidity, the slurry could not be supplied to the centrifugal dehydrator, making continuous treatment difficult.
In contrast, in Examples 1 to 7, since the slurry had fluidity, it was possible to supply the slurry to the centrifuge and to discharge the slurry. In addition, by subjecting the slurry after dehydration to specific gravity separation, it is possible to easily recover cement raw materials as light products. We were able to recover raw materials for electric furnaces and blast furnaces as kimonos.

Claims (7)

粒径10mm以下の焼却主灰に加水する第1の工程と、
加水後の焼却主灰を遠心分離により脱水する第2の工程と、
脱水後の焼却主灰を比重選別により重産物と軽産物とに分離し、軽産物をセメント原料として回収する第3の工程と、
第3の工程で選別された重産物を磁力選別により非磁着物と磁着物とに分離し、非磁着物を非鉄精錬原料として回収し、かつ磁着物を電炉・高炉原料として回収する第4の工程
を備える、
焼却主灰の処理方法。
A first step of adding water to incinerated bottom ash having a particle size of 10 mm or less;
A second step of dehydrating the incinerated bottom ash after adding water by centrifugation;
A third step of separating the dehydrated incineration bottom ash into heavy products and light products by gravity sorting, and recovering the light products as raw materials for cement;
The heavy products sorted in the third step are separated into non-magnetic substances and magnetic substances by magnetic separation, the non-magnetic substances are recovered as raw materials for non-ferrous refining, and the magnetic substances are recovered as raw materials for electric furnaces and blast furnaces. Equipped with a process,
How to dispose of bottom ash from incineration.
第1の工程において、焼却主灰に対して1質量倍以上の水を加水する、請求項1記載の焼却主灰の処理方法。 2. The method for treating incinerated bottom ash according to claim 1, wherein in the first step, water is added to the incinerated bottom ash in an amount of 1 mass-fold or more. 第2の工程において、加水後の焼却主灰を篩選別し、篩上を遠心分離により脱水する、請求項1又は2記載の焼却主灰の処理方法。 3. The method for treating incinerated bottom ash according to claim 1 or 2, wherein in the second step, the incinerated bottom ash after hydration is sieved, and the sieved bottom ash is dehydrated by centrifugal separation. 篩選別を篩目が1mm以下の篩で行う、請求項3記載の焼却主灰の処理方法。 The method for treating incinerated bottom ash according to claim 3, wherein the sieve selection is performed with a sieve having a sieve mesh of 1 mm or less. 加水後の焼却主灰を遠心分離により分離したスラリーを湿式比重選別により重産物と軽産物とに分離し、重産物を非鉄精錬原料として回収し、かつ軽産物をセメント原料として回収する、請求項1~4のいずれか1項に記載の焼却主灰の処理方法。 A slurry obtained by separating incinerated bottom ash after adding water by centrifugation is separated into heavy products and light products by wet specific gravity sorting, and the heavy products are recovered as raw materials for non-ferrous refining, and the light products are recovered as raw materials for cement. The method for treating incinerated bottom ash according to any one of 1 to 4. 加水後の焼却主灰を篩選別して分離した篩下を湿式比重選別により重産物と軽産物とに分離し、重産物を非鉄精錬原料として回収し、かつ軽産物をセメント原料として回収する、請求項1~5のいずれか1項に記載の焼却主灰の処理方法。 The bottom ash obtained by sieving and separating the incinerated bottom ash after hydration is separated into heavy products and light products by wet specific gravity separation, the heavy products are recovered as raw materials for non-ferrous refining, and the light products are recovered as raw materials for cement. The method for treating incinerated bottom ash according to any one of 1 to 5. 第1の工程前に、焼却主灰から粒径10mm以下の焼却主灰を選別する準備工程を有する、請求項1~6のいずれか1項に記載の焼却主灰の処理方法。 The method for treating incinerated bottom ash according to any one of claims 1 to 6, comprising a preparatory step of selecting incinerated bottom ash having a particle size of 10 mm or less from the incinerated bottom ash before the first step.
JP2021042850A 2021-03-16 2021-03-16 Method for treating incineration main ash Pending JP2022142609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021042850A JP2022142609A (en) 2021-03-16 2021-03-16 Method for treating incineration main ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021042850A JP2022142609A (en) 2021-03-16 2021-03-16 Method for treating incineration main ash

Publications (1)

Publication Number Publication Date
JP2022142609A true JP2022142609A (en) 2022-09-30

Family

ID=83426461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021042850A Pending JP2022142609A (en) 2021-03-16 2021-03-16 Method for treating incineration main ash

Country Status (1)

Country Link
JP (1) JP2022142609A (en)

Similar Documents

Publication Publication Date Title
JP5923039B2 (en) Soil purification method
US20150209829A1 (en) Extraction process of clay, silica and iron ore by dry concentration
JP5058203B2 (en) Agricultural plastic product sorting and recycling plant
JPS62294140A (en) Treatment of slag produced in iron making plant
CN111346732B (en) Novel household garbage incinerator slag sorting process
JP7084883B2 (en) Waste incineration ash resource recycling method and resource recycling equipment
JP2018034143A (en) Shredder dust recycling method
CN109513521A (en) A kind of ore-dressing technique recycling iron from asbestos tailings
WO2018061545A1 (en) Incinerated-ash treatment device and treatment method
JP2011173031A (en) Method of treating board base paper with stuck plaster
JP2000005702A (en) Method and device for recovering metal from solid waste
JP5712656B2 (en) Incineration ash cleaning method and cement raw material
JP2022142609A (en) Method for treating incineration main ash
KR100506369B1 (en) a device for selection and crushing/fine crush of wastes construction
CN116889969A (en) Household garbage slag sorting process
JP3233907B2 (en) How to treat shredder dust dry matter
TW202317271A (en) Process for treating fines stream derived from waste processing facilities
JP7349924B2 (en) How to recover metal from plasterboard waste
JP5052720B2 (en) Incineration ash treatment method
JP5409269B2 (en) Dust recovery method in scrap shredder equipment
JP7143255B2 (en) Incineration bottom ash processing equipment
JP7090564B2 (en) Waste incineration ash resource recycling method and resource recycling equipment
CN111940125B (en) Method and system for recovering precious metals in low-grade gold tailings
KR200302005Y1 (en) a device for selection and crushing/fine crush of wastes construction
JP2022042573A (en) Method of producing solid fuel with reduced chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240105