JP2022141094A - High-strength aluminum alloy extruded material and manufacturing method therefor - Google Patents

High-strength aluminum alloy extruded material and manufacturing method therefor Download PDF

Info

Publication number
JP2022141094A
JP2022141094A JP2021041235A JP2021041235A JP2022141094A JP 2022141094 A JP2022141094 A JP 2022141094A JP 2021041235 A JP2021041235 A JP 2021041235A JP 2021041235 A JP2021041235 A JP 2021041235A JP 2022141094 A JP2022141094 A JP 2022141094A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
extruded material
less
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021041235A
Other languages
Japanese (ja)
Other versions
JP7119153B1 (en
Inventor
美鈴 圓井
Misuzu Marui
隆広 志鎌
Takahiro Shikama
伸二 吉原
Shinji Yoshihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2021041235A priority Critical patent/JP7119153B1/en
Priority to CN202280019315.3A priority patent/CN116917515A/en
Priority to KR1020237030468A priority patent/KR20230142779A/en
Priority to PCT/JP2022/009204 priority patent/WO2022196381A1/en
Priority to EP22771135.5A priority patent/EP4286552A1/en
Application granted granted Critical
Publication of JP7119153B1 publication Critical patent/JP7119153B1/en
Publication of JP2022141094A publication Critical patent/JP2022141094A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Abstract

To provide an 7000-series aluminum alloy extruded material having high strength and high SCC resistance and a manufacturing method therefor.SOLUTION: This aluminum alloy extruded material comprises: one or more components selected from the group consisting of 7.5 to 9.2 mass% of Zn, 1.3 to 2.0 mass% of Mg, 0.1 to 0.7 mass% of Cu, 0.30 mass% or less of Mn, 0.25 mass% or less of Cr, and 0.25 mass% or less of Zr, these components totaling 0.1 to 0.5 mass%; and 0.005 to 0.20 mass% of Ti, with the remainder being Al and inevitable impurities. The average interval between grain boundary precipitates is 0.8 to 1.4 μm, the average particle length of the grain boundary precipitates is 0.3 to 0.5 μm, and the yield strength is 440 N/mm2 or greater.SELECTED DRAWING: Figure 1

Description

本開示は、高強度アルミニウム合金押出材およびその製造方法に関する。 The present disclosure relates to high-strength aluminum alloy extruded materials and methods of manufacturing the same.

高強度の7000系アルミニウム合金では、腐食環境下で継続的に引張応力が付与されている箇所において生じる割れ、すなわちSCC(応力腐食割れ)が問題となっている。SCCは、一旦クラックが生じるとその進展が早く、短時間で破断に至ることから、強く忌避されている。SCCは一般に高強度材であるほど生じやすい。SCCの問題がネックとなって、7000系アルミニウム合金の採用が見送られることもある。 High-strength 7000-series aluminum alloys have a problem of cracking, ie, SCC (stress corrosion cracking), which occurs at locations where tensile stress is continuously applied in a corrosive environment. SCC is strongly avoided because once a crack occurs, it progresses quickly and breaks in a short period of time. SCC is generally more likely to occur in high-strength materials. Due to the problem of SCC, the use of 7000 series aluminum alloys is sometimes postponed.

このため、従来から耐SCC性向上の取り組みが行われてきた。
特許文献1には、質量%で表したZn含有量を[Zn]、同Mg含有量を[Mg]としたとき、5≦[Zn]≦7、[Zn]+4.7[Mg]≦14を満たし、Mg含有量をMgZnの化学量論比より過剰にした7000系アルミニウム合金押出材が開示されている。このアルミニウム合金押出材は、前記範囲のZn、Mgのほか、Cu:0.1~0.6質量%、Ti:0.005~0.05質量%、さらにMn:0.1~0.3質量%、Cr:0.05~0.2質量%、Zr:0.05~0.2質量%の1種以上を含む。このアルミニウム合金押出材は、空冷によるダイクエンチ(ダイを用いて、押出直後の押出材をオンラインで強制冷却すること。プレス焼き入れともいう)で製造され、時効処理後に高い強度と優れた耐SCC性を示し、ドアビームおよびバンパーレインフォース等の自動車用部材用素材として好適に用いることができる。
For this reason, conventional efforts have been made to improve the SCC resistance.
Patent Document 1 discloses that 5 ≤ [Zn] ≤ 7 and [Zn] + 4.7 [Mg] ≤ 14, where [Zn] is the Zn content expressed in mass% and [Mg] is the Mg content. and a Mg content in excess of the stoichiometric ratio of MgZn2 . In addition to Zn and Mg in the above ranges, this aluminum alloy extruded material has Cu: 0.1 to 0.6 mass%, Ti: 0.005 to 0.05 mass%, and Mn: 0.1 to 0.3 % by mass, Cr: 0.05 to 0.2 mass %, Zr: 0.05 to 0.2 mass %. This aluminum alloy extruded material is manufactured by air-cooling die quenching (on-line forced cooling of the extruded material immediately after extrusion using a die, also called press quenching), and has high strength and excellent SCC resistance after aging treatment. and can be suitably used as a material for automotive members such as door beams and bumper reinforcements.

特許文献2には、Zn:5.5~9.0質量%、Mg:1.0~2.0質量%、Cu:0.1~1.0質量%、Ti:0.005~0.2質量%、Zr、Cr、Mn等の1種以上を0.1~0.5質量%含む7000系アルミニウム合金押出材が記載されている。このアルミニウム合金押出材は、粒界析出物(MgZn)の平均長さが5μm以下、長さ5μm超の粒界析出物の個数が粒界の長さ100μmあたり3個以下に規制されている。このアルミニウム合金押出材は、水冷によるダイクエンチで製造され、時効処理後に高い強度と優れたエネルギー吸収特性を有し、ドアビームおよびバンパーレインフォース等の自動車用部材用素材として好適に用いることができる。また、特許文献2には、Zr、Cr、Mn等が、7000系アルミニウム合金押出材の結晶組織を繊維状組織とし、耐SCC性を向上させる作用があることが記載されている。 In Patent Document 2, Zn: 5.5 to 9.0% by mass, Mg: 1.0 to 2.0% by mass, Cu: 0.1 to 1.0% by mass, Ti: 0.005 to 0.00% by mass. A 7000 series aluminum alloy extruded material containing 2% by mass and 0.1 to 0.5% by mass of one or more of Zr, Cr, Mn, etc. is described. In this aluminum alloy extruded material, the average length of grain boundary precipitates (MgZn 2 ) is 5 μm or less, and the number of grain boundary precipitates with a length of more than 5 μm is regulated to 3 or less per 100 μm of grain boundary length. . This aluminum alloy extruded material is produced by die quenching by water cooling, has high strength and excellent energy absorption properties after aging treatment, and can be suitably used as a material for automotive members such as door beams and bumper reinforcements. Further, Patent Document 2 describes that Zr, Cr, Mn, etc. have the effect of making the crystal structure of the 7000 series aluminum alloy extruded material into a fibrous structure and improving the SCC resistance.

特開2011-144396号公報JP 2011-144396 A 特開2015-221924号公報JP 2015-221924 A

アルミニウム合金押出材に求められる耐SCC性は近年より厳しくなっている。このため、引用文献1および2に記載の7000系アルミニウム合金押出材でも耐SCC性の要求に応えることができない場合があり、より高い耐SCC性を有する高強度7000系アルミニウム合金押出材が求められている。 The SCC resistance required for aluminum alloy extruded materials has become more severe in recent years. For this reason, even the 7000 series aluminum alloy extruded materials described in Cited Documents 1 and 2 may not be able to meet the requirements for SCC resistance, and a high strength 7000 series aluminum alloy extruded material having higher SCC resistance is required. ing.

本開示は、このような要求に応えるために為されたものであり、高い強度と高い耐SCC性を有する7000系アルミニウム合金押出材およびその製造方法を提供することを目的とする。 The present disclosure has been made to meet such demands, and aims to provide a 7000 series aluminum alloy extruded material having high strength and high SCC resistance, and a method for producing the same.

本発明の態様1は、
Zn:7.5~9.2質量%、
Mg:1.3~2.0質量%、
Cu:0.1~0.7質量%、
Mn:0.30質量%以下、Cr:0.25質量%以下およびZr:0.25質量%以下からなる群から選択される1種または2種以上を合計で0.1~0.5質量%、
Ti:0.005~0.20質量%、
を含み、残部がAlおよび不可避不純物からなり、
粒界析出物の平均間隔が0.8~1.4μmであり、
粒界析出物の平均粒子長が0.3~0.5μmであり、
440N/mm以上の耐力を有するアルミニウム合金押出材である。
Aspect 1 of the present invention is
Zn: 7.5 to 9.2% by mass,
Mg: 1.3 to 2.0% by mass,
Cu: 0.1 to 0.7% by mass,
One or more selected from the group consisting of Mn: 0.30% by mass or less, Cr: 0.25% by mass or less, and Zr: 0.25% by mass or less, totaling 0.1 to 0.5 mass %,
Ti: 0.005 to 0.20% by mass,
containing, the balance consisting of Al and inevitable impurities,
The average spacing of grain boundary precipitates is 0.8 to 1.4 μm,
The average grain length of grain boundary precipitates is 0.3 to 0.5 μm,
An aluminum alloy extruded material having a yield strength of 440 N/mm 2 or more.

本発明の態様2は、粒界析出物の前記平均間隔が1.2μm以下である態様1に記載のアルミニウム合金押出材である。 Aspect 2 of the present invention is the aluminum alloy extruded material according to Aspect 1, wherein the average spacing of grain boundary precipitates is 1.2 μm or less.

本発明の態様3は、
Zn:7.5~9.2質量%、
Mg:1.3~2.0質量%、
Cu:0.1~0.7質量%、
Mn:0.30質量%以下、Cr:0.25質量%以下、Zr:0.25質量%以下からなる群から選択される1種または2種以上を合計で0.1~0.5質量%、
Ti:0.005~0.20質量%、
を含み、残部がAlおよび不可避不純物であるアルミニウム合金に均熱処理を行う工程と、
前記均熱処理を行った後に熱間押出加工を行う工程と、
前記押出加工後の冷却時に400℃から300℃の間を100℃/分以上、600℃/分以下の平均冷却速度で冷却する工程と、
前記冷却後に人工時効処理を行う工程と、
を含むアルミニウム合金押出材の製造方法である。
Aspect 3 of the present invention is
Zn: 7.5 to 9.2% by mass,
Mg: 1.3 to 2.0% by mass,
Cu: 0.1 to 0.7% by mass,
Mn: 0.30% by mass or less, Cr: 0.25% by mass or less, Zr: 0.25% by mass or less, one or more selected from the group consisting of 0.1 to 0.5 mass in total %,
Ti: 0.005 to 0.20% by mass,
A step of soaking an aluminum alloy in which the balance is Al and unavoidable impurities;
A step of performing hot extrusion after performing the soaking;
A step of cooling between 400 ° C. and 300 ° C. at an average cooling rate of 100 ° C./min or more and 600 ° C./min or less when cooling after the extrusion process;
A step of performing artificial aging treatment after the cooling;
A method for producing an aluminum alloy extruded material containing

本発明の態様4は、前記押出加工後の冷却をダイクエンチにより行う請求項3に記載のアルミニウム合金押出材の製造方法である。 A fourth aspect of the present invention is the method for producing an aluminum alloy extruded material according to claim 3, wherein the cooling after the extrusion is performed by die quenching.

本発明の1つの実施形態では、高い強度と高い耐SCC性を有する7000系アルミニウム合金押出材およびその製造方法を提供することができる。 One embodiment of the present invention can provide a 7000 series aluminum alloy extruded material having high strength and high SCC resistance and a method for producing the same.

本発明の実施形態に係る7000系アルミニウム合金押出材の粒界析出物の観察結果の例を示すSEM(走査型電子顕微鏡)写真である。1 is a SEM (scanning electron microscope) photograph showing an example of observation results of grain boundary precipitates in a 7000 series aluminum alloy extruded material according to an embodiment of the present invention.

本発明者らは様々な角度から検討をした。そして、所定の成分を有する7000系アルミニウム合金押出材において、粒界析出物の平均間隔を0.8~1.4μmとし、粒界析出物の平均粒子長を0.3~0.5μmとすることで、耐力が440N/mm以上と高強度であっても高い耐SCC特性を得ることができることを見出した。 The inventors have studied from various angles. Then, in the 7000 series aluminum alloy extruded material having predetermined components, the average spacing of grain boundary precipitates is 0.8 to 1.4 μm, and the average grain length of grain boundary precipitates is 0.3 to 0.5 μm. As a result, it has been found that high SCC resistance can be obtained even with a high yield strength of 440 N/mm 2 or more.

また、このようなアルミニウム合金押出材は、所定の組成を有するアルミニウム合金を用いて、(a)均熱処理を行うこと、(b)均熱処理後に熱間押出加工を行うこと、(c)押出加工後の冷却時に400℃から300℃の間を100℃/分以上、600℃/分以下の平均冷却速度で冷却すること、(d)冷却後に人工時効処理を行うこと、を含むことで製造可能であることを見出した。
以下に、本発明の実施形態の詳細を示す。
In addition, such an aluminum alloy extruded material is obtained by using an aluminum alloy having a predetermined composition, (a) performing soaking, (b) performing hot extrusion after soaking, and (c) extruding. Cooling between 400 ° C. and 300 ° C. at an average cooling rate of 100 ° C./min or more and 600 ° C./min or less during subsequent cooling, (d) performing artificial aging treatment after cooling. I found that
Details of embodiments of the present invention are given below.

<1.アルミニウム合金組成>
本発明の実施形態に係る7000系アルミニウム合金押出材は、Zn:7.5~9.2質量%と、Mg:1.3~2.0質量%と、Cu:0.1~0.7質量%と、Mn:0.30質量%以下、Cr:0.25質量%以下およびZr:0.25質量%以下からなる群から選択される1種または2種以上を合計で0.1~0.5質量%と、Ti:0.005~0.20質量%とを含有する。
以下、各元素について詳述する。
<1. Aluminum alloy composition>
The 7000 series aluminum alloy extruded material according to the embodiment of the present invention has Zn: 7.5 to 9.2 mass%, Mg: 1.3 to 2.0 mass%, and Cu: 0.1 to 0.7. % by mass, and one or more selected from the group consisting of Mn: 0.30 mass % or less, Cr: 0.25 mass % or less, and Zr: 0.25 mass % or less, in a total amount of 0.1 to 0.5% by mass and Ti: 0.005 to 0.20% by mass.
Each element will be described in detail below.

(Zn:7.5~9.2質量%)
ZnはMgとともにMgZnを形成し、7000系アルミニウム合金押出材の強度を向上させる。7000系アルミニウム合金押出材において時効処理(人工時効処理)後に耐力(0.2%耐力)等に代表される強度を高くするには、Zn含有量は7.5質量%以上が必要である。一方、Zn含有量が9.2質量%を超えると、材料強度が向上する一方で、粒界析出物(MgZn)の平均間隔が小さくなる傾向があり、耐SCC性の低下が懸念される。
従って、耐SCC性を確保しつつ所定の強度を得るためにZn含有量は7.5~9.2質量%の範囲内とする。Zn含有量の下限値は好ましくは7.7質量%、より好ましくは8.0質量%、さらに好ましくは8.1質量%であり、上限値は好ましくは9.0質量%、更に好ましくは8.8質量%である。
(Zn: 7.5 to 9.2% by mass)
Zn forms MgZn2 with Mg and improves the strength of the 7000 series aluminum alloy extruded material. In order to increase the strength represented by proof stress (0.2% proof stress) etc. after aging treatment (artificial aging treatment) in the 7000 series aluminum alloy extruded material, the Zn content must be 7.5% by mass or more. On the other hand, when the Zn content exceeds 9.2% by mass, the material strength is improved, but the average spacing of grain boundary precipitates (MgZn 2 ) tends to be small, and there is concern about a decrease in SCC resistance. .
Therefore, the Zn content should be in the range of 7.5 to 9.2% by mass in order to obtain a predetermined strength while ensuring SCC resistance. The lower limit of the Zn content is preferably 7.7% by mass, more preferably 8.0% by mass, still more preferably 8.1% by mass, and the upper limit is preferably 9.0% by mass, more preferably 8.0% by mass. 0.8 mass %.

(Mg:1.3~2.0質量%)
MgはZnとともにMgZnを形成し、7000系アルミニウム合金押出材の強度を向上させる。7000系アルミニウム合金押出材において時効処理(人工時効処理)後に耐力に代表される強度を高くするには、Mg含有量は1.3質量%以上が必要である。一方、Mg含有量が2.0質量%を超えると、粒界析出物(MgZn)の平均間隔が小さくなる傾向があり、耐SCC性の低下が懸念される。また、変形抵抗の増加により押出性を低下させる。従って、Mg含有量は1.3~2.0質量%の範囲内とする。Mg含有量の下限値は好ましくは1.4質量%、上限値は好ましくは1.8質量%である。
(Mg: 1.3 to 2.0% by mass)
Mg forms MgZn2 with Zn and improves the strength of the 7000 series aluminum alloy extruded material. In order to increase the strength represented by proof stress after aging treatment (artificial aging treatment) in the 7000 series aluminum alloy extruded material, the Mg content must be 1.3% by mass or more. On the other hand, when the Mg content exceeds 2.0% by mass, the average spacing of grain boundary precipitates (MgZn 2 ) tends to become small, and there is concern about a decrease in SCC resistance. In addition, the increase in deformation resistance reduces extrudability. Therefore, the Mg content should be within the range of 1.3 to 2.0% by mass. The lower limit of the Mg content is preferably 1.4% by mass, and the upper limit is preferably 1.8% by mass.

(Cu:0.1~0.7質量%)
Cuは粒界析出物(MgZn)に固溶することで、粒界析出物とPFZ(無析出帯)との電位差を小さくし、腐食環境下で粒界析出物の優先溶解を抑制し、これにより7000系アルミニウム合金押出材の耐SCC性を改善する。しかし、Cu含有量が0.1質量%未満ではその効果が小さい。一方、Cu含有量が0.7質量%を超えると変形抵抗の増加により押出性を低下させ、押出材の溶接割れ性も悪化させる。従って、Cu含有量は0.1~0.7質量%とする。Cu含有量の下限値は好ましくは0.2質量%、上限値は好ましくは0.5質量%である。
(Cu: 0.1 to 0.7% by mass)
Cu dissolves in grain boundary precipitates (MgZn 2 ), thereby reducing the potential difference between the grain boundary precipitates and the PFZ (precipitation-free zone), suppressing the preferential dissolution of the grain boundary precipitates in a corrosive environment, This improves the SCC resistance of the 7000 series aluminum alloy extruded material. However, if the Cu content is less than 0.1% by mass, the effect is small. On the other hand, if the Cu content exceeds 0.7% by mass, the extrudability is lowered due to an increase in deformation resistance, and the weld cracking resistance of the extruded material is also deteriorated. Therefore, the Cu content should be 0.1 to 0.7% by mass. The lower limit of the Cu content is preferably 0.2% by mass, and the upper limit is preferably 0.5% by mass.

(Mn:0.30質量%以下、Cr:0.25質量%以下およびZr:0.25質量%以下からなる群から選択される1種または2種以上を合計で0.1~0.5質量%)
Mn、CrおよびZrは、均熱処理の際にアルミニウム合金中に微細に析出し、結晶粒界をピン留めして再結晶を抑制し、7000系アルミニウム合金押出材の結晶粒を微細化して繊維状組織とする作用がある。また、結晶粒を微細化することにより、7000系アルミニウム合金押出材の耐SCC性を向上させる効果がある。Mn、CrおよびZrの1種以上として、(1)3元素のうちいずれか1種のみ、(2)3元素のうち2種の組み合わせ(MnとCr、MnとZrもしくはCrとZr)、または(3)3元素全てが考えられ、前記(1)~(3)のいずれを選択してもよい。
(Mn: 0.30% by mass or less, Cr: 0.25% by mass or less, and Zr: 0.25% by mass or less, one or more selected from the group consisting of 0.1 to 0.5% in total mass%)
Mn, Cr, and Zr precipitate finely in the aluminum alloy during soaking, pin the grain boundaries to suppress recrystallization, and refine the crystal grains of the 7000 series aluminum alloy extruded material to form a fibrous structure. It has an organizational effect. Further, by refining the crystal grains, there is an effect of improving the SCC resistance of the 7000 series aluminum alloy extruded material. As one or more of Mn, Cr and Zr, (1) any one of the three elements alone, (2) a combination of two of the three elements (Mn and Cr, Mn and Zr or Cr and Zr), or (3) All three elements are considered, and any one of the above (1) to (3) may be selected.

しかし、Mn、CrおよびZrの含有量がそれぞれ0.3質量%、0.25質量%、0.25質量%を超える、または合計含有量が0.5質量%を超えると、押出性が悪くなり、また、押出材の焼き入れ感受性が高くなる。一方、Mn、CrおよびZrの合計量が0.1質量%未満だと所望の効果を得られない虞がある。従って、Mn、CrおよびZrそれぞれの含有量は、Mn:0.3質量%以下、Cr:0.25質量%以下、Zr:0.25質量%以下の範囲内とし、Mn、CrおよびZrの合計を0.1~0.5質量%の範囲内とする。
このうちZrは、MnおよびCrに比べて7000系アルミニウム合金押出材の焼き入れ感受性を高くする作用が小さいことから、0.1~0.25質量%の範囲で優先的に添加し、必要に応じて補完的にMnおよびCrの1つまたは両方を添加することが好ましい。Zr含有量の好ましい下限値は0.12質量%、より好ましい下限値は0.14質量%であり、好ましい上限値は0.23質量%、より好ましい上限値は0.20質量%である。Cr含有量の好ましい上限値は0.1質量%、より好ましい上限値は0.06質量%である。Mn含有量の好ましい上限値は0.1質量%、より好ましい上限値は0.06質量%である。
However, when the contents of Mn, Cr and Zr exceed 0.3% by mass, 0.25% by mass and 0.25% by mass respectively, or the total content exceeds 0.5% by mass, the extrudability is poor. In addition, the quenching sensitivity of the extruded material increases. On the other hand, if the total amount of Mn, Cr and Zr is less than 0.1% by mass, the desired effect may not be obtained. Therefore, the content of each of Mn, Cr and Zr is within the ranges of Mn: 0.3% by mass or less, Cr: 0.25% by mass or less, and Zr: 0.25% by mass or less. The total is within the range of 0.1 to 0.5% by mass.
Of these, Zr has a smaller effect of increasing the quenching sensitivity of the 7000 series aluminum alloy extruded material than Mn and Cr, so it is preferentially added in the range of 0.1 to 0.25% by mass, and if necessary It is preferred to add one or both of Mn and Cr complementary accordingly. A preferable lower limit of the Zr content is 0.12% by mass, a more preferable lower limit is 0.14% by mass, and a preferable upper limit is 0.23% by mass, and a more preferable upper limit is 0.20% by mass. A preferable upper limit of the Cr content is 0.1% by mass, and a more preferable upper limit is 0.06% by mass. A preferable upper limit of the Mn content is 0.1% by mass, and a more preferable upper limit is 0.06% by mass.

(Ti:0.005~0.20質量%)
Tiは、溶湯中にAlTiを形成し、鋳塊の結晶粒を微細化する効果がある。しかし、Ti含有量が0.005質量%未満ではその効果が小さい。一方、Ti含有量が0.20質量%を超えると鋳塊中に粗大晶出物が生成し、7000系アルミニウム合金押出材の靱性を低下させる。従って、Ti含有量は0.005~0.20質量%とする。Ti含有量は、好ましくは下限値が0.01質量%、上限値が0.05質量%である。
(Ti: 0.005 to 0.20% by mass)
Ti has the effect of forming Al 3 Ti in the molten metal and refining the crystal grains of the ingot. However, if the Ti content is less than 0.005% by mass, the effect is small. On the other hand, when the Ti content exceeds 0.20% by mass, coarse crystallized substances are formed in the ingot, which lowers the toughness of the 7000 series aluminum alloy extruded material. Therefore, the Ti content should be 0.005 to 0.20% by mass. The Ti content preferably has a lower limit of 0.01% by mass and an upper limit of 0.05% by mass.

基本成分は上記のとおりであり、本発明の好ましい実施形態の1つでは、残部はAlおよび不可避不純物である。
FeおよびSiは、7000系アルミニウム合金押出材の主要な不可避不純物である。Feの含有量が多過ぎると、7000系アルミニウム合金押出材の伸びおよび疲労強度などの諸特性が低下するため、Fe含有量は、例えば0.30質量%以下に規制されることが好ましい。Si含有量が多過ぎると、7000系アルミニウム合金押出材の伸びおよび疲労強度などの諸特性が低下し、また、押出時の焼き付きが発生しやすくなるので、Si含有量は、例えば0.15質量%以下に規制されることが好ましい。
FeおよびSi以外の不可避不純物は、例えば7000系アルミニウム合金押出材の通常の不可避不純物の許容範囲である、不可避不純物元素は、それぞれ元素が0.05質量%以下、FeとSiを除く不可避不純物全体で0.15質量%以下に規制されることが好ましい。なお、不純物のうちBについては、Tiの添加に伴いアルミニウム合金中にTi含有量の1/5程度の量で混入するが、含有量は好ましくは0.02質量%以下、より好ましくは0.01質量%以下である。
The basic components are as described above, with the balance being Al and incidental impurities in one preferred embodiment of the invention.
Fe and Si are major unavoidable impurities in 7000 series aluminum alloy extruded materials. If the Fe content is too high, various properties such as the elongation and fatigue strength of the 7000-series aluminum alloy extruded material are degraded. If the Si content is too high, various properties such as the elongation and fatigue strength of the 7000 series aluminum alloy extruded material will decrease, and seizure during extrusion will likely occur. % or less.
Unavoidable impurities other than Fe and Si are, for example, the allowable range of ordinary unavoidable impurities of 7000 series aluminum alloy extruded materials. Unavoidable impurity elements each contain 0.05% by mass or less, and all unavoidable impurities excluding Fe and Si is preferably regulated to 0.15% by mass or less. Among the impurities, B is mixed into the aluminum alloy in an amount of about 1/5 of the Ti content due to the addition of Ti. 01% by mass or less.

(その他の選択的元素)
さらに、本発明の別の好ましい実施形態では、本発明の実施形態に係る作用を損なわない範囲で必要に応じて上述した以外の元素を添加してよい。含有される成分に応じてアルミニウム合金の特性を更に改善することができる。
(other selective elements)
Furthermore, in another preferred embodiment of the present invention, elements other than those described above may be added as necessary within a range that does not impair the effects of the embodiments of the present invention. The properties of the aluminum alloy can be further improved depending on the components contained.

そのような選択的元素の例として、Sc、Sr、Sn、Ag、CaおよびMoからなる群から選択される1つ以上を挙げることができる。それぞれの元素の好ましい含有量とその理由を以下に示す。
Sc:0.05~0.5質量%
この範囲内のScを含有することで結晶粒微細化の効果を得ることができる。
Sr:0.05~0.5質量%
この範囲内のSrを含有することで機械的性質向上の効果を得ることができる。
Sn:0.05~0.5質量%
この範囲内のSnを含有することで機械的性質向上の効果を得ることができる。
Ag:0.05~0.5質量%
この範囲内のAgを含有することで機械的性質向上および耐SCC性改善の効果を得ることができる。
Ca:0.05~0.5質量%
この範囲内のCaを含有することで機械的性質向上および耐SCC性改善の効果を得ることができる。
Mo:0.05~0.5質量%
この範囲内のMoを含有することで機械的性質向上および耐SCC性改善の効果を得ることができる。
Examples of such selective elements can include one or more selected from the group consisting of Sc, Sr, Sn, Ag, Ca and Mo. The preferable content of each element and the reason thereof are shown below.
Sc: 0.05 to 0.5% by mass
By containing Sc within this range, the effect of grain refinement can be obtained.
Sr: 0.05 to 0.5% by mass
By containing Sr within this range, the effect of improving mechanical properties can be obtained.
Sn: 0.05 to 0.5% by mass
By containing Sn within this range, the effect of improving mechanical properties can be obtained.
Ag: 0.05 to 0.5% by mass
By containing Ag within this range, effects of improving mechanical properties and improving SCC resistance can be obtained.
Ca: 0.05 to 0.5% by mass
By containing Ca within this range, the effect of improving mechanical properties and improving SCC resistance can be obtained.
Mo: 0.05 to 0.5% by mass
By containing Mo within this range, effects of improving mechanical properties and improving SCC resistance can be obtained.

<2.粒界析出物の平均間隔および平均粒子長>
7000系アルミニウム合金を熱間で押出加工し、ダイクエンチ等により冷却すると、ZnとMgの含有量および冷却速度に応じて、冷却途中で結晶粒内および結晶粒界に析出物(MgZn)が析出する。冷却中において、粒界に析出するMgZnは粒内に析出するMgZnと比べサイズが大きい。
ただし、冷却速度が十分大きい場合(例えば水冷やミスト冷却)、冷却途中での析出を抑制できる。続いて、ダイクエンチ後の7000系アルミニウム合金押出材(質別:T1)に時効処理(人工時効処理)(質別:T5)を施すと、アルミニウム合金中に固溶していたZnとMgがMgZnとして結晶粒内および結晶粒界に微細に析出する。この時効処理において、ダイクエンチの冷却途中で析出したMgZnのサイズおよび分布形態は大きくは変化しない。
なお、質別T1とは、ダイクエンチ後に自然時効した状態を意味し、質別T5とは、続いて時効処理をした状態を意味する。
<2. Average spacing and average grain length of grain boundary precipitates>
When a 7000 series aluminum alloy is hot extruded and cooled by die quenching or the like, precipitates (MgZn 2 ) precipitate in crystal grains and grain boundaries during cooling, depending on the contents of Zn and Mg and the cooling rate. do. During cooling, the MgZn 2 precipitated at the grain boundaries is larger in size than the MgZn 2 precipitated inside the grains.
However, if the cooling rate is sufficiently high (for example, water cooling or mist cooling), precipitation during cooling can be suppressed. Subsequently, when the 7000 series aluminum alloy extruded material (temper: T1) after die quenching is subjected to aging treatment (artificial aging treatment) (temper: T5), Zn and Mg dissolved in the aluminum alloy become MgZn. As 2 , it is finely precipitated in grains and grain boundaries. In this aging treatment, the size and distribution of MgZn2 precipitated during cooling after die quenching do not change significantly.
Temper T1 means a state in which natural aging is performed after die quenching, and temper T5 means a state in which aging treatment is subsequently performed.

7000系アルミニウム合金押出材が腐食環境下に置かれてMgZnが溶解し、同時に材料に継続的な引張応力が存在する場合に、主として結晶粒界を通って割れが材料内を進展し、この割れがSCCとして観察される。これは、ダイクエンチの冷却途中および時効処理中に析出した長さ1μm以下レベルの細かい粒界析出物(MgZn)が溶解して生じた穴が、割れの伝達経路になるためである。 When a 7000 series aluminum alloy extruded material is placed in a corrosive environment to dissolve MgZn2 and at the same time a continuous tensile stress exists in the material, cracks propagate through the material mainly through the grain boundaries, and this Cracks are observed as SCC. This is because holes formed by the dissolution of fine grain boundary precipitates (MgZn 2 ) having a length of 1 μm or less precipitated during die quench cooling and aging treatment serve as propagation paths for cracks.

SCCは、粒界析出物(MgZn)が結晶粒界に沿って密に分布しているほど(隣接する粒界析出物の平均間隔が小さいほど)生じやすい。
一方で、粒界析出物の平均間隔を大きくすると、サイズ(平均粒子長)が大きくなり、人工時効処理を行っても十分な強度(耐力)を得ることができない。本願発明者らは、粒界析出物の平均間隔と平均粒子長を、それそれ、適切な範囲とすることで高い強度と高い耐SCC性を両立できることを見出したのである。
SCC is more likely to occur as the grain boundary precipitates (MgZn 2 ) are densely distributed along the grain boundaries (the smaller the average distance between adjacent grain boundary precipitates).
On the other hand, if the average spacing of grain boundary precipitates is increased, the size (average grain length) increases, and sufficient strength (proof stress) cannot be obtained even if artificial aging treatment is performed. The inventors of the present application have found that both high strength and high SCC resistance can be achieved by setting the average spacing and average grain length of intergranular precipitates within appropriate ranges.

本発明の実施形態では、7000系アルミニウム合金押出材の粒界析出物は、平均間隔を0.8~1.4μmとし、平均粒子長が0.3~0.5μmとする。粒界析出物の平均間隔は、ZnとMgの合計含有量が多いほど小さくなる。また、粒界析出物の平均間隔は、ダイクエンチ等による冷却速度が大きいほど小さくなる。そして、粒界析出物の平均間隔が小さいほど、粒界析出物のサイズ(平均粒子長)が小さくなる傾向が見られる。このため、上述のようにZn含有量とMg含有量を適正な範囲とするとともに、後述するように熱間押出加工後の冷却速度を適正な範囲に管理することで粒界析出物の平均間隔と平均粒子長の両方を適切な範囲内に制御できる。
一つの好ましい実施形態では、粒界析出物の平均間隔の上限は1.2μm以下である。これにより、高い耐SCC性を維持しながら、より高い強度を得ることができる。
なお、「粒界析出物の粒子長」とは、粒界析出物の結晶粒界に沿った方向の長さを意味する。
また、粒界析出物の平均間隔および平均粒子長は、後述の実施例で詳しく説明するようにSEM観察により求めることができる。
In an embodiment of the present invention, grain boundary precipitates in the 7000 series aluminum alloy extruded material have an average spacing of 0.8 to 1.4 μm and an average grain length of 0.3 to 0.5 μm. The average spacing of grain boundary precipitates becomes smaller as the total content of Zn and Mg increases. Further, the average interval of grain boundary precipitates becomes smaller as the cooling rate by die quenching or the like increases. There is a tendency that the smaller the average spacing of grain boundary precipitates, the smaller the size (average grain length) of grain boundary precipitates. For this reason, as described above, the Zn content and Mg content are set in appropriate ranges, and the cooling rate after hot extrusion is controlled in an appropriate range as described later. and average particle length can be controlled within appropriate ranges.
In one preferred embodiment, the upper limit of the average spacing of grain boundary precipitates is 1.2 μm or less. Thereby, higher strength can be obtained while maintaining high SCC resistance.
The term "grain length of grain boundary precipitates" means the length of the grain boundary precipitates in the direction along the grain boundary.
Also, the average spacing and average grain length of grain boundary precipitates can be determined by SEM observation as described in detail in Examples below.

<3.耐力>
上述のように、粒界析出物の平均粒子長が過大とならないようにすることで、高強度化を図ることができる。本発明の実施形態に係る7000系アルミニウム合金押出材では耐力は440N/mm以上である。
<3. Strength>
As described above, high strength can be achieved by preventing the average grain length of grain boundary precipitates from becoming excessively large. The 7000 series aluminum alloy extruded material according to the embodiment of the present invention has a yield strength of 440 N/mm 2 or more.

<4.製造方法>
本発明の実施形態に係る7000系アルミニウム合金押出材は、所定の組成を有するアルミニウム合金を用いて、(a)均熱処理を行うこと、(b)均熱処理後に熱間押出加工を行うこと、(c)押出加工後の冷却時に400℃から300℃の間を100℃/分以上、600℃/分以下の平均冷却速度で冷却すること、(d)冷却後に人工時効処理を行うことで製造できる。
以下に、本発明の実施形態に係る製造方法の詳細を示す。
<4. Manufacturing method>
The 7000 series aluminum alloy extruded material according to the embodiment of the present invention is obtained by using an aluminum alloy having a predetermined composition, (a) performing soaking, (b) performing hot extrusion after soaking, ( c) Cooling between 400 ° C. and 300 ° C. at an average cooling rate of 100 ° C./min or more and 600 ° C./min or less when cooling after extrusion, (d) Can be manufactured by performing artificial aging treatment after cooling. .
Details of the manufacturing method according to the embodiment of the present invention are shown below.

(a)均質化処理
上述の所定の組成を有する7000系アルミニウム合金に均熱処理を施す。
均熱処理を行う7000系アルミニウム合金の形態として、鋳塊およびビレットを例示できる。均質化処理の条件は、熱間押出加工が可能となる任意の条件を選択してよい。
(a) Homogenization Treatment The 7000 series aluminum alloy having the above-described predetermined composition is subjected to soaking treatment.
An ingot and a billet can be exemplified as the form of the 7000 series aluminum alloy to be soaked. Any conditions that enable hot extrusion processing may be selected as the conditions for the homogenization treatment.

耐SCC性を向上させる手段として、Fe系晶出物中の平均Cu含有量を低減できる好ましい実施形態として、7000系アルミニウム合金の均質化処理を高温長時間の条件で行うことが挙げられる。490~550℃の温度で4時間以上の均質化処理を行うことで、Fe系晶出物中に高濃度で存在していたCuがAl母材に拡散し、Fe系晶出物中のCu含有量が低下する。Fe系晶出物中の平均Cu含有量を低減するには、均質化処理温度は高いほど好ましい。しかし、均質化処理温度が高過ぎると再結晶を抑制する元素(Zr、Cr、Mn)の粒界に対するピン止め作用が低下し、押出材組織の粗大化が生じるおそれがある。従って、均質化処理の温度は500~540℃の範囲が好ましく、510~530℃の範囲がより好ましい。また、均質化処理の時間は、Fe系晶出物中の平均Cu含有量を低減するには長いほど好ましいが、長過ぎると押出材組織の粗大化が生じるおそれがある。従って、均質化処理の時間は10時間以下が好ましい。Fe系晶出物中のCu含有量を十分低下させるためには、従来から7000系アルミニウム合金で一般に行われている均質化処理条件(470℃×6時間)よりも上述のより高い温度の条件の方が好ましい。均質化処理後の冷却は、特に限定的ではないが、例えば100~200℃/時間の範囲内の冷却速度で行ってよい。
なおここで記載した均質化処理の時間は、当該温度での保持時間を意味する。
As a means for improving the SCC resistance, as a preferred embodiment capable of reducing the average Cu content in the Fe-based crystallized substances, a homogenization treatment of the 7000-series aluminum alloy is performed under high-temperature conditions for a long time. By performing a homogenization treatment at a temperature of 490 to 550 ° C. for 4 hours or more, Cu, which was present in a high concentration in the Fe-based crystallized substances, diffuses into the Al base material, and Cu in the Fe-based crystallized substances content decreases. In order to reduce the average Cu content in the Fe-based crystallized substances, the homogenization temperature is preferably as high as possible. However, if the homogenization temperature is too high, the grain boundary pinning action of the elements (Zr, Cr, Mn) that suppress recrystallization may be reduced, and the structure of the extruded material may become coarse. Therefore, the homogenization temperature is preferably in the range of 500 to 540°C, more preferably in the range of 510 to 530°C. Further, the homogenization time is preferably as long as possible in order to reduce the average Cu content in the Fe-based crystallized substances, but if it is too long, the structure of the extruded material may become coarse. Therefore, the homogenization time is preferably 10 hours or less. In order to sufficiently reduce the Cu content in the Fe-based crystallized product, the above-described higher temperature conditions than the homogenization treatment conditions (470 ° C. x 6 hours) that have been generally performed for 7000-series aluminum alloys. is preferred. Cooling after homogenization treatment is not particularly limited, but may be performed at a cooling rate within the range of 100 to 200° C./hour, for example.
The homogenization time described here means the holding time at the temperature.

(b)熱間押出加工
例えばビレットまたは鋳塊等の形態を有する、均質化処理を行った後の7000系アルミニウム合金に熱間押出加工を行う。
熱間押出加工の条件は、所望の形状に加工できる任意の条件で行ってよい。
好ましい押出条件として、ビレット温度(押出温度)450~510℃、押出速度2~15m/分を例示できる。
熱間押出加工のための加熱は、均質化処理後冷却した7000系アルミニウム合金を再加熱することにより行ってよい。
(b) Hot Extrusion After homogenization, the 7000 series aluminum alloy in the form of, for example, a billet or an ingot is subjected to hot extrusion.
The conditions for hot extrusion processing may be any conditions that allow processing into a desired shape.
Preferred extrusion conditions include a billet temperature (extrusion temperature) of 450-510° C. and an extrusion speed of 2-15 m/min.
Heating for hot extrusion processing may be performed by reheating the 7000 series aluminum alloy that has been cooled after the homogenization treatment.

(c)押出加工後の冷却
押出加工を行った7000系アルミニウム合金を冷却する。冷却は、押出加工直後に行ってもよく、また押出加工後所定の温度で保持(例えば、再溶体化処理等)した後に行ってもよい。冷却は任意の方法で行ってよいが、MgZnが最も析出しやすい温度範囲である400℃から300℃の間を100℃/分以上、600℃/分以下の平均速度で冷却する。これにより、得られる7000系アルミニウム合金の粒界析出物の平均間隔を0.8~1.4μmとし、平均粒子長を0.3~0.5μmとすることができる。平均冷却速度が100℃/分未満であると、冷却中のMgZnの析出量が多くなって、続く時効処理の効果が不十分となり耐力が十分向上しない。一方、平均冷却速度が600℃/分を超えると、微細な粒界析出物が多く形成され、粒界析出物の平均間隔が過小となり、耐SCC性が低下する。
(c) Cooling after Extrusion The extruded 7000 series aluminum alloy is cooled. Cooling may be performed immediately after extrusion, or may be performed after holding at a predetermined temperature (for example, re-solution treatment, etc.) after extrusion. Cooling may be performed by any method, but cooling is performed at an average rate of 100° C./min or more and 600° C./min or less between 400° C. and 300° C., which is the temperature range where MgZn 2 is most likely to precipitate. As a result, the obtained 7000 series aluminum alloy can have an average spacing of grain boundary precipitates of 0.8 to 1.4 μm and an average grain length of 0.3 to 0.5 μm. If the average cooling rate is less than 100°C/min, the amount of precipitation of MgZn2 increases during cooling, the effect of subsequent aging treatment becomes insufficient, and yield strength is not sufficiently improved. On the other hand, when the average cooling rate exceeds 600° C./min, many fine grain boundary precipitates are formed, the average spacing of the grain boundary precipitates becomes too small, and the SCC resistance deteriorates.

400℃から300℃の間の平均冷却速度は、好ましくは100℃/分~500℃/分であり、より好ましくは100℃/分~400℃/分である。
また、好ましくは、400~200℃の範囲においても平均冷却速度が100℃/分以上、600℃/分以下である。
The average cooling rate between 400°C and 300°C is preferably between 100°C/min and 500°C/min, more preferably between 100°C/min and 400°C/min.
Also, preferably, the average cooling rate is 100°C/min or more and 600°C/min or less even in the range of 400 to 200°C.

好ましい冷却方法として、ダイクエンチを挙げることできる。ダイクエンチを行う際のダイの冷却は水冷、空冷または放冷等の任意の方法でよい。空冷が比較的容易に400~300℃の間の平均冷却速度100~600℃/分を達成できることから好ましい。
なお、冷却速度は、アルミニウム合金押出材に熱電対等の接触型温度計を接触させて測定してもよい。また、簡便な方法として非接触型の温度計を用いてアルミニウム合金押出材の表面温度を測定してもよい。さらに温度測定が困難な場合等は適宜シミュレーションを用いて求めてもよい。
A preferred cooling method is die quenching. Cooling of the die during die quenching may be performed by any method such as water cooling, air cooling, or air cooling. Air cooling is preferred as it is relatively easy to achieve an average cooling rate of 100-600°C/min between 400-300°C.
The cooling rate may be measured by bringing a contact thermometer such as a thermocouple into contact with the extruded aluminum alloy material. Alternatively, as a simple method, a non-contact thermometer may be used to measure the surface temperature of the aluminum alloy extruded material. Furthermore, if it is difficult to measure the temperature, it may be obtained by appropriately using a simulation.

(d)人工時効処理
熱間押出加工後の冷却を行った7000系アルミニウム合金押出材に人工時効処理を行う。この処理を行うことにより耐力を440N/mm以上とすることができる。人工時効処理の条件は、耐力を440N/mm以上とできる限り任意の条件であってよい。
好ましい人工時効処理条件として、65~95℃の温度で2~6時間保持した後、120~170℃の温度で6~15時間保持する、二段時効処理を例示できる。
(d) Artificial Aging Treatment The 7000 series aluminum alloy extruded material that has been cooled after hot extrusion is subjected to artificial aging treatment. By performing this treatment, the proof stress can be made 440 N/mm 2 or more. The conditions for the artificial aging treatment may be any conditions as long as the proof stress can be 440 N/mm 2 or more.
As a preferable artificial aging treatment condition, a two-stage aging treatment can be exemplified in which the temperature is kept at 65 to 95° C. for 2 to 6 hours, and then the temperature is kept at 120 to 170° C. for 6 to 15 hours.

以上のように本発明の実施形態に係る7000系アルミニウム合金押出材の製造方法を説明したが、本発明の実施形態に係る7000系アルミニウム合金押出材の所望の特性を理解した当業者が試行錯誤を行い、本発明の実施形態に係る所望の特性を有する7000系アルミニウム合金押出材を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。 As described above, the method for manufacturing the 7000 series aluminum alloy extruded material according to the embodiment of the present invention has been described. and produce 7000 series aluminum alloy extrusions having the desired properties according to embodiments of the present invention, other than the production methods described above.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can be implemented with appropriate modifications within the scope that can match the spirit described above and below. subsumed in

以下に説明する方法によりサンプルNo.1~6を得た。
半連続鋳造を行って得られた直径194mmの7000系アルミニウム合金ビレットに520℃×6時間の均質化処理を行った後、室温まで冷却した。冷却方法は、ファン空冷とした。表1にサンプルNo.1~6の合金組成を示す。
Sample no. 1-6 were obtained.
A 7000 series aluminum alloy billet having a diameter of 194 mm obtained by semi-continuous casting was homogenized at 520°C for 6 hours and then cooled to room temperature. The cooling method was fan air cooling. Table 1 shows sample numbers. 1 to 6 alloy compositions are shown.

続いて、これらのビレットサンプルを再加熱し、押出温度500℃、押出速度5m/分で熱間押出成形し、押出直後からファン空冷を施した。各押出材の断面形状は高さ15mm×幅120mm×厚さ3mmの中空押出材である。各押出材サンプルを470℃で1時間保持して再溶体化し、ダイクエンチを模擬して、サンプルNo.1~4はファン空冷、サンプルNo.5は放冷、サンプルNo.6は水冷(シャワー冷却)にて室温まで冷却した。 Subsequently, these billet samples were reheated, subjected to hot extrusion molding at an extrusion temperature of 500° C. and an extrusion speed of 5 m/min, and subjected to fan air cooling immediately after extrusion. Each extruded material is a hollow extruded material having a cross-sectional shape of 15 mm high×120 mm wide×3 mm thick. Each extrudate sample was held at 470° C. for 1 hour to re-solubilize to simulate a die quench, and sample no. 1 to 4 are fan-cooled, sample No. Sample No. 5 is allowed to cool. 6 was cooled to room temperature by water cooling (shower cooling).

表1に、押出材の400℃から300℃の間の平均冷却速度を示す。冷却速度は、押出材サンプルに設けた穴に挿入した熱電対により測定した。押出材サンプルが400℃から300℃に達するまでの時間(t分)を求め、冷却速度を(400-300)/t(℃/分)として算出した。算出された冷却速度は押出材内部の温度であるが、アルミニウム合金は熱伝導性に優れるため、押出材の表面と内部の温度差は小さいため、どちらで測定してもよい。 Table 1 shows the average cooling rate of the extruded material between 400°C and 300°C. The cooling rate was measured by a thermocouple inserted into a hole provided in the extruded material sample. The time (t minutes) required for the extruded material sample to reach 300° C. from 400° C. was determined, and the cooling rate was calculated as (400-300)/t (° C./minute). The calculated cooling rate is the temperature inside the extruded material, but since the aluminum alloy has excellent thermal conductivity, the temperature difference between the surface and the inside of the extruded material is small, so the temperature may be measured by either method.

Figure 2022141094000002
Figure 2022141094000002

冷却後の押出材サンプルに対し、2段階の人工時効処理(1段目:90℃×3時間→2段目:140℃×8時間)を行った。
人工時効処理後の押出材サンプルを用い、詳細を下記に示す方法で粒界析出物の平均間隔および平均粒子長を測定した。また、これらサンプルの特性の評価として、詳細を下記に示す方法で耐力およびSCC臨界応力を測定した。測定結果を表2に示す。
The extruded material sample after cooling was subjected to two stages of artificial aging treatment (first stage: 90°C x 3 hours → second stage: 140°C x 8 hours).
Using an extruded material sample after artificial aging treatment, the average spacing and average particle length of grain boundary precipitates were measured by the method detailed below. In addition, as evaluation of the properties of these samples, yield strength and SCC critical stress were measured by the methods detailed below. Table 2 shows the measurement results.

Figure 2022141094000003
Figure 2022141094000003

(粒界析出物の平均粒子間隔および平均粒子長)
押出材サンプルの上面から供試材を切り出し、押出方向に垂直な面の押出材表層から100μmの箇所をSEM(走査型電子顕微鏡)で観察し、結晶粒界に存在する析出物(MgZn)の析出形態を観察した。
より具体的には、それぞれのサンプルを観察し代表的と思われる結晶粒界部分を選定し、その部分の視野内(視野:12.7μm×9.6μm)で観察される結晶粒界に存在する粒界析出物を測定した。測定した粒界析出物の粒子長(結晶粒界に沿った方向の長さ)の合計を、粒界析出物の個数で除して、得られた値を粒界析出物の平均粒子長とした。また、結晶粒界の長さ(測定した範囲に存在する結晶粒界の総延長)から前記粒子長の合計を差し引いた値を、粒界析出物の個数で除して、得られた値を粒界析出物の平均間隔とした。
図1は粒界析出物の観察結果の例として示す、サンプルNo.3のSEM写真である。白く見える粒界析出物(MgZn)が結晶粒界に沿って形成されているのがわかる。
(Average particle spacing and average particle length of grain boundary precipitates)
A test material is cut out from the upper surface of the extruded material sample, and a point of 100 μm from the surface of the extruded material on the surface perpendicular to the extrusion direction is observed with a SEM (scanning electron microscope). Precipitates present at the grain boundaries (MgZn 2 ) was observed.
More specifically, each sample is observed to select a representative grain boundary portion, and the crystal grain boundary observed within the field of view of that portion (field of view: 12.7 μm × 9.6 μm) grain boundary precipitates were measured. The total grain length of the grain boundary precipitates measured (the length in the direction along the grain boundary) is divided by the number of grain boundary precipitates, and the obtained value is the average grain length of the grain boundary precipitates. did. Further, the value obtained by subtracting the total grain length from the grain boundary length (total extension of the grain boundaries existing in the measured range) by the number of grain boundary precipitates is calculated as It was taken as the average interval of grain boundary precipitates.
FIG. 1 shows an example of observation results of grain boundary precipitates of sample No. 3 is an SEM photograph. It can be seen that white-looking grain boundary precipitates (MgZn 2 ) are formed along the grain boundaries.

(耐力)
各押出材サンプルの上面から押出方向に平行にJIS13号B試験片を機械加工により採取した。各押出材サンプルから2個ずつ試験片を採取した。この試験片を用いてJISZ2241の規定に準拠して引張試験を行い、耐力(0.2%耐力)を測定した。クロスヘッドスピードは耐力値に達するまで5.0mm/分とし、その後、10.0mm/分とした。表1に記載したNo.1~6の耐力値は、2個の試験片で測定された耐力値の平均値とした。耐力値は440N/mm以上を合格と評価した。
(proof strength)
A JIS No. 13B test piece was machined parallel to the direction of extrusion from the upper surface of each extruded material sample. Two specimens were taken from each extruded sample. Using this test piece, a tensile test was performed in accordance with JISZ2241 to measure yield strength (0.2% yield strength). The crosshead speed was 5.0 mm/min until the yield strength value was reached and then 10.0 mm/min. No. described in Table 1. Yield strength values of 1 to 6 were average values of yield strength values measured on two test pieces. Yield strength values of 440 N/mm 2 or more were evaluated as acceptable.

(SCC臨界応力)
クロム酸促進法によるSCC試験を行った。押出材サンプルの上面から押出方向に対して垂直方向に溶着部を避けて幅10mm×長さ50mmのSCC試験片を機械加工で採取した。それぞれのサンプルについて、試験片は各負荷応力で2個ずつとした。SCC試験は板曲げ試験(JISH8711:2001)の3点負荷方式を採用して種々の引張応力を負荷した。荷重負荷は定ひずみ方式(3点支持ビーム法)により付与した。より詳細には3点曲げジグのボルトを締めることにより試験片の外表面に引張応力を発生させ、その引張応力値を試験片の外表面に接着した歪みゲージによって測定した。
SCC試験に用いる腐食液はCr酸水溶液(蒸留水1リットル当たりNaCl:3g、KCr:30g、CrO:36g)とし、SCCを促進させるため、試験の間、温度を90℃以上に保持した。応力を負荷した状態で試験片(各負荷応力について2個ずつ)を腐食液中に浸漬し、2時間ごとに取出して目視により割れ発生の有無を観察し、割れの発生がない試験片については再浸漬を行った。この手順をSCC試験開始後16時間まで繰り返した。2個の試験片が共に試験終了まで割れの発生がない最大負荷応力を、その試験片のSCC臨界応力と評価した。SCC臨界応力は100N/mm以上を合格と評価した。
(SCC critical stress)
SCC testing was performed by the chromic acid accelerated method. An SCC test piece having a width of 10 mm and a length of 50 mm was machined from the upper surface of the extruded material sample in the direction perpendicular to the extrusion direction, avoiding the welded portion. For each sample, two specimens were prepared for each applied stress. In the SCC test, various tensile stresses were applied by adopting the three-point loading method of the plate bending test (JISH8711:2001). Loading was applied by a constant strain method (three-point support beam method). More specifically, a tensile stress was generated on the outer surface of the test piece by tightening the bolts of the three-point bending jig, and the tensile stress value was measured with a strain gauge adhered to the outer surface of the test piece.
The etchant used in the SCC test was a Cr acid aqueous solution (NaCl: 3 g, K 2 Cr 2 O 7 : 30 g, CrO 3 : 36 g per liter of distilled water), and the temperature was kept at 90°C during the test to promote SCC. held above. A test piece (two for each applied stress) is immersed in the corrosive solution while stress is applied, and is taken out every 2 hours to visually observe the presence or absence of cracks. Re-immersion was performed. This procedure was repeated until 16 hours after the start of the SCC test. The maximum load stress at which no cracks occurred in both test pieces until the end of the test was evaluated as the SCC critical stress of the test piece. An SCC critical stress of 100 N/mm 2 or more was evaluated as acceptable.

表1および表2に示すように、本発明の実施形態が規定する組成を有し、押出材の400~300℃間の平均冷却速度が100~600℃/分の範囲内であったサンプルNo.1~3は、粒界析出物の平均間隔が0.8~1.4μmの範囲内であり、且つ平均粒子長が0.3~0.5μmの範囲内あった。そして、サンプルNo.1~3は、440N/mm以上の耐力を有し、且つ100N/mm以上のSCC臨界応力を有した。 As shown in Tables 1 and 2, sample No. having a composition specified by the embodiments of the present invention and having an average cooling rate between 400 and 300° C. of the extruded material within the range of 100 to 600° C./min . In Nos. 1 to 3, the average spacing of grain boundary precipitates was within the range of 0.8 to 1.4 μm, and the average grain length was within the range of 0.3 to 0.5 μm. And sample no. 1 to 3 had a proof stress of 440 N/mm 2 or more and an SCC critical stress of 100 N/mm 2 or more.

一方、本発明の実施形態に規定する組成範囲から外れた、または熱間押出加工後の平均冷却速度が100~600℃/分の範囲から外れたサンプルNo.4~6は、耐力が440N/mm未満またはSCC臨界応力が100N/mm未満であった。
より詳細には、サンプルNo.4は、Zn含有量が不足するため、耐力が低かった。
サンプルNo.5は、粒界析出物の平均間隔および平均粒子が本発明の実施形態が規定する範囲よりも大きく、SCC臨界応力が高かったがしかし、冷却速度が過小であったため、耐力が低かった。
サンプルNo.6は、平均冷却速度が過大であったため、粒界析出物の平均間隔が過小であり、平均粒子長も過小であり、その結果、SCC臨界応力が低かった。
On the other hand, Sample No. outside the composition range specified in the embodiment of the present invention or having an average cooling rate after hot extrusion outside the range of 100 to 600° C./min. 4-6 had a yield strength of less than 440 N/mm 2 or an SCC critical stress of less than 100 N/mm 2 .
More specifically, sample no. No. 4 had a low yield strength due to an insufficient Zn content.
Sample no. In No. 5, the average spacing and average grain size of intergranular precipitates were larger than the ranges defined by the embodiments of the present invention, and the SCC critical stress was high. However, the cooling rate was too low, so the yield strength was low.
Sample no. In No. 6, the average cooling rate was too high, the average spacing of grain boundary precipitates was too small, and the average grain length was also too small, resulting in a low SCC critical stress.

Claims (4)

Zn:7.5~9.2質量%、
Mg:1.3~2.0質量%、
Cu:0.1~0.7質量%、
Mn:0.30質量%以下、Cr:0.25質量%以下およびZr:0.25質量%以下からなる群から選択される1種または2種以上を合計で0.1~0.5質量%、
Ti:0.005~0.20質量%、
を含み、残部がAlおよび不可避不純物からなり、
粒界析出物の平均間隔が0.8~1.4μmであり、
粒界析出物の平均粒子長が0.3~0.5μmであり、
440N/mm以上の耐力を有するアルミニウム合金押出材。
Zn: 7.5 to 9.2% by mass,
Mg: 1.3 to 2.0% by mass,
Cu: 0.1 to 0.7% by mass,
One or more selected from the group consisting of Mn: 0.30% by mass or less, Cr: 0.25% by mass or less, and Zr: 0.25% by mass or less, totaling 0.1 to 0.5 mass %,
Ti: 0.005 to 0.20% by mass,
containing, the balance consisting of Al and inevitable impurities,
The average spacing of grain boundary precipitates is 0.8 to 1.4 μm,
The average grain length of grain boundary precipitates is 0.3 to 0.5 μm,
An aluminum alloy extruded material having a yield strength of 440 N/mm 2 or more.
粒界析出物の前記平均間隔が1.2μm以下である請求項1に記載のアルミニウム合金押出材。 2. The aluminum alloy extruded material according to claim 1, wherein said average spacing of grain boundary precipitates is 1.2 [mu]m or less. Zn:7.5~9.2質量%、
Mg:1.3~2.0質量%、
Cu:0.1~0.7質量%、
Mn:0.30質量%以下、Cr:0.25質量%以下、Zr:0.25質量%以下からなる群から選択される1種または2種以上を合計で0.1~0.5質量%、
Ti:0.005~0.20質量%、
を含み、残部がAlおよび不可避不純物であるアルミニウム合金に均熱処理を行う工程と、
前記均熱処理を行った後に熱間押出加工を行う工程と、
前記押出加工後の冷却時に400℃から300℃の間を100℃/分以上、600℃/分以下の平均冷却速度で冷却する工程と、
前記冷却後に人工時効処理を行う工程と、
を含むアルミニウム合金押出材の製造方法。
Zn: 7.5 to 9.2% by mass,
Mg: 1.3 to 2.0% by mass,
Cu: 0.1 to 0.7% by mass,
Mn: 0.30% by mass or less, Cr: 0.25% by mass or less, Zr: 0.25% by mass or less, one or more selected from the group consisting of 0.1 to 0.5 mass in total %,
Ti: 0.005 to 0.20% by mass,
A step of soaking an aluminum alloy in which the balance is Al and unavoidable impurities;
A step of performing hot extrusion after performing the soaking;
A step of cooling between 400 ° C. and 300 ° C. at an average cooling rate of 100 ° C./min or more and 600 ° C./min or less when cooling after the extrusion process;
A step of performing artificial aging treatment after the cooling;
A method for producing an aluminum alloy extrusion comprising:
前記押出加工後の冷却をダイクエンチにより行う請求項3に記載のアルミニウム合金押出材の製造方法。 4. The method for producing an aluminum alloy extruded material according to claim 3, wherein the cooling after the extrusion is performed by die quenching.
JP2021041235A 2021-03-15 2021-03-15 High-strength aluminum alloy extruded material and manufacturing method thereof Active JP7119153B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021041235A JP7119153B1 (en) 2021-03-15 2021-03-15 High-strength aluminum alloy extruded material and manufacturing method thereof
CN202280019315.3A CN116917515A (en) 2021-03-15 2022-03-03 High-strength aluminum alloy extrusion material and manufacturing method thereof
KR1020237030468A KR20230142779A (en) 2021-03-15 2022-03-03 High-strength aluminum alloy extrusion material and manufacturing method thereof
PCT/JP2022/009204 WO2022196381A1 (en) 2021-03-15 2022-03-03 High-strength aluminum alloy extruded material and manufaturing method therefor
EP22771135.5A EP4286552A1 (en) 2021-03-15 2022-03-03 High-strength aluminum alloy extruded material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021041235A JP7119153B1 (en) 2021-03-15 2021-03-15 High-strength aluminum alloy extruded material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP7119153B1 JP7119153B1 (en) 2022-08-16
JP2022141094A true JP2022141094A (en) 2022-09-29

Family

ID=82849867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021041235A Active JP7119153B1 (en) 2021-03-15 2021-03-15 High-strength aluminum alloy extruded material and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP4286552A1 (en)
JP (1) JP7119153B1 (en)
KR (1) KR20230142779A (en)
CN (1) CN116917515A (en)
WO (1) WO2022196381A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036107A (en) * 2011-08-10 2013-02-21 Sumitomo Light Metal Ind Ltd Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME
JP2020164980A (en) * 2020-01-22 2020-10-08 株式会社神戸製鋼所 Automobile door beam made of extruded aluminum alloy material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204793B2 (en) 2010-01-12 2013-06-05 株式会社神戸製鋼所 High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP6193808B2 (en) 2014-05-22 2017-09-06 株式会社神戸製鋼所 Aluminum alloy extruded material and method for producing the same
JP2021041235A (en) 2020-12-09 2021-03-18 サミー株式会社 Pachinko game machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036107A (en) * 2011-08-10 2013-02-21 Sumitomo Light Metal Ind Ltd Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME
JP2020164980A (en) * 2020-01-22 2020-10-08 株式会社神戸製鋼所 Automobile door beam made of extruded aluminum alloy material

Also Published As

Publication number Publication date
CN116917515A (en) 2023-10-20
WO2022196381A1 (en) 2022-09-22
EP4286552A1 (en) 2023-12-06
WO2022196381A8 (en) 2023-07-27
KR20230142779A (en) 2023-10-11
JP7119153B1 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
CA2700250C (en) Al-cu-li alloy product suitable for aerospace application
US8298357B2 (en) High-strength aluminum alloy extruded product exhibiting excellent corrosion resistance and method of manufacturing same
RU2413025C2 (en) Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product
US11136658B2 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
US20120312427A1 (en) High-strength aluminum alloy product and method of producing the same
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
JP5385025B2 (en) Aluminum alloy wire rod for high-strength bolt excellent in formability and manufacturing method thereof, high-strength flange bolt and manufacturing method thereof
US20100047114A1 (en) Al-Mg-Si ALUMININUM ALLOY EXTRUDED PRODUCT EXHIBITING EXCELLENT FATIGUE STRENGTH AND IMPACT FRACTURE RESISTANCE
US11306379B2 (en) Thick products made of 7XXX alloy and manufacturing process
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
KR20210046733A (en) 7XXX-Series Aluminum Alloy Products
KR102565183B1 (en) 7xxx-series aluminum alloy products
US20150376742A1 (en) Aluminum alloy sheet for structural material
JP2000119786A (en) Aluminum alloy forging material for high speed motion part
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
JP2021110042A (en) Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
US20020014290A1 (en) Al-si-mg aluminum alloy aircraft structural component production method
CN108291279B (en) Aluminum alloy material and method for producing same
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
JP7119153B1 (en) High-strength aluminum alloy extruded material and manufacturing method thereof
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R151 Written notification of patent or utility model registration

Ref document number: 7119153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151