JP2013036107A - Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME - Google Patents

Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2013036107A
JP2013036107A JP2011174707A JP2011174707A JP2013036107A JP 2013036107 A JP2013036107 A JP 2013036107A JP 2011174707 A JP2011174707 A JP 2011174707A JP 2011174707 A JP2011174707 A JP 2011174707A JP 2013036107 A JP2013036107 A JP 2013036107A
Authority
JP
Japan
Prior art keywords
less
toughness
alloy
extruded material
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011174707A
Other languages
Japanese (ja)
Inventor
Tadashi Minoda
正 箕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2011174707A priority Critical patent/JP2013036107A/en
Publication of JP2013036107A publication Critical patent/JP2013036107A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Zn-Mg alloy extruded member which is excellent in toughness and can be suitably used as a member of a motorcycle.SOLUTION: The Al-Zn-Mg alloy extruded member contains 7.0 to 9.5% Zn, 1.0 to 3.0% Mg, less than 0.5% Cu, and 0.05 to 0.30% Zr and also contains one or more of 0.70% or less Mn and 0.50% or less Cr, with the balance consisting of Al and inevitable impurities, wherein a Mn-containing compound or a Cr-containing compound having a grain size of 20 nm or more and 200 nm or less is dispersed in the matrix crystal grains in an amount of 7 pieces/μmor more.

Description

本発明は、靭性に優れたAl−Zn−Mg合金押出材およびその製造方法に関する。   The present invention relates to an Al—Zn—Mg alloy extruded material excellent in toughness and a method for producing the same.

自動二輪車は、軽量性が重要であるため、材料としては高強度7000系アルミニウム合金が多用されている。特にモトクロスやエンデューロなどのオフロード系の競技車はジャンプを行うため、素材には強度と共に高い靭性が求められ、ハンドルバーやリムなどには1.0%を超えるCuを添加したAl−Zn−Mg−Cu合金が多用されている。これらの合金は500MPaを超える高い引張強さを有するが、その反面生産性が悪く、コストが高くなるため、生産性に優れた高強度かつ高靭性合金の開発が要望されている。   Since motorcycles are light in weight, high-strength 7000 series aluminum alloys are frequently used as materials. In particular, off-road race cars such as motocross and enduro perform jumps, so the materials are required to have high strength and toughness. Al-Zn- with more than 1.0% Cu added to handlebars and rims. Mg-Cu alloys are frequently used. These alloys have a high tensile strength exceeding 500 MPa, but on the other hand, the productivity is poor and the cost is high. Therefore, development of a high strength and high toughness alloy excellent in productivity is demanded.

一般に、Cu含有量が0.5%未満のAl−Zn−Mg合金は、Al−Zn−Mg−Cu合金に比べて押出加工性に優れることが知られており、その代表合金であるJIS A 7N01合金はフレームなどの溶接構造体などに使用されている。しかしながら、その強度はT6調質でも430MPa程度であり、ハンドルバーやリムなどに用いるには強度が十分でないという問題がある。また、一般にはZn量、Mg量が多いほど強度が高くなることが知られているが、靭性が低下するため、強度と靭性の両立が大きな課題となっている。   In general, it is known that an Al—Zn—Mg alloy having a Cu content of less than 0.5% is superior in extrudability compared to an Al—Zn—Mg—Cu alloy. 7N01 alloy is used for welded structures such as frames. However, the strength is about 430 MPa even in T6 tempering, and there is a problem that the strength is not sufficient for use in handlebars, rims and the like. In general, it is known that the greater the Zn content and the Mg content, the higher the strength. However, since the toughness is lowered, the compatibility of strength and toughness is a major issue.

高強度で耐応力腐食割れ性に優れたハイドロフォーム成形用アルミニウム合金押出材として、Zn:6.0〜9.0%、Mg:0.8〜2.0%、Cu:0.6〜2.0%、Mn:0.1〜0.5%、Cr:0.1〜0.3%、Zr:0.1〜0.3%を含有し、残部Alおよび不可避的不純物からなり、不可避的不純物のうちSiが0.05%以下に制限され、望ましくはMgとCuの合計含有量が3.6%以下の組成を有し、ポートホール押出により押出成形され、表面再結晶層の厚さが70μm以下であるアルミニウム合金押出管が提案されているが、このものにおいては、ポートホール押出は可能であるが、Cu:0.6〜2.0%を含有するため融点が低く押出加工性に劣り、また靭性については何ら考慮されていない(特許文献1)。   As an aluminum alloy extruded material for hydroform molding having high strength and excellent stress corrosion cracking resistance, Zn: 6.0 to 9.0%, Mg: 0.8 to 2.0%, Cu: 0.6 to 2 0.0%, Mn: 0.1-0.5%, Cr: 0.1-0.3%, Zr: 0.1-0.3%, consisting of the balance Al and unavoidable impurities, unavoidable Of the general impurities, Si is limited to 0.05% or less, preferably the total content of Mg and Cu is 3.6% or less, extruded by porthole extrusion, and the thickness of the surface recrystallized layer An aluminum alloy extruded tube with a thickness of 70 μm or less has been proposed. In this case, port hole extrusion is possible, but since Cu contains 0.6 to 2.0%, the melting point is low and extrusion processing is performed. It is inferior in toughness and no consideration is given to toughness (Patent Literature) ).

圧壊特性に優れるアルミニウム合金押出材として、Mg:0.5〜1.8%、Zn:4.0〜8.0%、Ti:0.005〜0.3%、Cu:0.05〜0.6%を含有し、さらにMn:0.1〜0.7%、Cr:0.03〜0.3%、Zr:0.05〜0.25%のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物からなる組成を有し、繊維状組織をそなえ、JIS5号引張試験片で引張試験を行った場合の破断面の肉厚減少率が20%以上の特性を有するものも提案されているが、このものにおいても、全体的に強度が十分ではなく、引張強さが500MPaを超えるものでは押出性や耐SCC性が劣るという問題点がある(特許文献2)。   As an aluminum alloy extruded material having excellent crushing properties, Mg: 0.5 to 1.8%, Zn: 4.0 to 8.0%, Ti: 0.005 to 0.3%, Cu: 0.05 to 0 0.6%, Mn: 0.1-0.7%, Cr: 0.03-0.3%, Zr: 0.05-0.25% of one or more It has a composition composed of the balance Al and inevitable impurities, has a fibrous structure, and has a characteristic that the thickness reduction rate of the fractured surface when a tensile test is performed with a JIS No. 5 tensile test piece is 20% or more. Although this also has been proposed, there is a problem that even in this case, the strength is not sufficient as a whole, and when the tensile strength exceeds 500 MPa, the extrudability and the SCC resistance are inferior (Patent Document 2).

特開2010−196089号公報JP 2010-196089 A 特開2008−274441号公報JP 2008-274441 A

本発明は、生産性に優れ、かつ高強度で高靭性をそなえたAl−Zn−Mg合金押出材を得るために、Al−Zn−Mg合金の組成、合金マトリックスの結晶粒内に分散する化合物の性状と衝撃特性の関係について試験、検討を重ねた結果としてなされたものであり、その目的は、靭性に優れ、自動二輪車の材料として好適に使用し得るAl−Zn−Mg合金押出材およびその製造方法を提供することにある。   In order to obtain an Al—Zn—Mg alloy extruded material having excellent productivity, high strength and high toughness, the present invention provides a composition of Al—Zn—Mg alloy and a compound dispersed in crystal grains of the alloy matrix. As a result of repeated tests and examinations on the relationship between the properties and impact properties of the steel, the purpose thereof is an extruded Al-Zn-Mg alloy that is excellent in toughness and can be suitably used as a motorcycle material, and its It is to provide a manufacturing method.

上記の目的を達成するための請求項1による靭性に優れたAl−Zn−Mg合金押出材は、Zn:7.0〜9.5%(質量%、以下同じ)、Mg:1.0〜3.0%、Cu:0.5%未満、Zr:0.05〜0.30%を含有し、さらにMn:0.70%以下およびCr:0.50%以下の1種または2種を含有し、残部Alおよび不可避不純物からなるAl−Zn−Mg合金の押出材であって、マトリックスの結晶粒内に20nm以上200nm以下の大きさのMn含有化合物あるいはCr含有化合物が7個/μm以上分散していることを特徴とする。 The Al—Zn—Mg alloy extruded material with excellent toughness according to claim 1 for achieving the above object is Zn: 7.0 to 9.5% (mass%, the same applies hereinafter), Mg: 1.0 to 3.0%, Cu: less than 0.5%, Zr: 0.05 to 0.30%, Mn: 0.70% or less and Cr: 0.50% or less contained, an extruded material of Al-Zn-Mg alloy and the balance Al and inevitable impurities, Mn-containing compound of the following size 200nm or 20nm in crystal grains of the matrix or Cr-containing compound is 7 / [mu] m 2 It is characterized by being dispersed as described above.

請求項2による靭性に優れたAl−Zn−Mg合金押出材は、請求項1において、前記アルミニウム合金押出材が、さらにTi:0.15%以下、B:50ppm以下のうちの1種または2種を含有することを特徴とする。   The extruded Al-Zn-Mg alloy material having excellent toughness according to claim 2 is the aluminum alloy extruded material according to claim 1, wherein the aluminum alloy extruded material is Ti: 0.15% or less and B: 50 ppm or less. It contains seeds.

請求項3による靭性に優れたAl−Zn−Mg合金押出材は、請求項1または2において、JIS Z 2202に規定される深さ2mmのUノッチ試験片を用いたシャルピー衝撃値が、(−2.3×[Zn%]−8.1×[Mg%]+42)(J/cm)以上であることを特徴とする。 The Al—Zn—Mg alloy extruded material with excellent toughness according to claim 3 has a Charpy impact value using a U-notch test piece having a depth of 2 mm as defined in JIS Z 2202 in (1) or (2). 2.3 × [Zn%] − 8.1 × [Mg%] + 42) (J / cm 2 ) or more.

請求項4による靭性に優れたAl−Zn−Mg合金押出材の製造方法は、請求項1〜3のいずれかに記載のAl−Zn−Mg合金押出材を製造する方法であって、請求項1または2記載の組成を有するAl−Zn−Mg合金を溶解し、凝固過程における溶湯保持温度から640℃の間の平均冷却速度が0.10℃/秒以上になるよう制御してビレットに造塊し、得られたビレットを420℃以上550℃以下の温度で2時間以上50時間以下の時間均質化処理した後、熱間押出および調質処理を行うことを特徴とする。   The method for producing an Al-Zn-Mg alloy extruded material having excellent toughness according to claim 4 is a method for producing an Al-Zn-Mg alloy extruded material according to any one of claims 1 to 3, wherein The Al—Zn—Mg alloy having the composition described in 1 or 2 is melted, and the billet is manufactured by controlling the average cooling rate between the molten metal holding temperature and the 640 ° C. in the solidification process to be 0.10 ° C./second or more. It is characterized in that after the agglomeration is performed, the obtained billet is homogenized at a temperature of 420 ° C. or higher and 550 ° C. or lower for a period of 2 hours or more and 50 hours or less, and then subjected to hot extrusion and tempering.

本発明によれば、マトリックスの結晶粒内に20nm以上200nm以下の大きさのMn含有化合物あるいはCr含有化合物を7個/μm以上分散させることにより、JIS Z 2202に規定される深さ2mmのUノッチ試験片を用いたシャルピー衝撃値が、(−2.3×[Zn%]−8.1×[Mg%]+42)(J/cm)以上となり、靭性に優れたAl−Zn−Mg合金押出材を得ることができる。当該Al−Zn−Mg合金押出材は、自動二輪車の材料として好適に使用することができる。 According to the present invention, a Mn-containing compound or a Cr-containing compound having a size of 20 nm or more and 200 nm or less is dispersed in a crystal grain of the matrix by 7 pieces / μm 2 or more, and a depth of 2 mm as defined in JIS Z 2202 is achieved. The Charpy impact value using the U-notch test piece was (−2.3 × [Zn%] − 8.1 × [Mg%] + 42) (J / cm 2 ) or more, and Al—Zn— excellent in toughness A Mg alloy extruded material can be obtained. The Al—Zn—Mg alloy extruded material can be suitably used as a motorcycle material.

本発明による靭性に優れたAl−Zn−Mg合金押出材の合金元素の意義および限定理由について説明すると、Znは、Mg原子と結合して強度を向上するよう機能する元素であり、好ましい含有量は7.0〜9.5%の範囲である。下限未満では強度が不十分になり、上限を超えると耐SCC(応力腐食割れ)性が低下する。Znのさらに好ましい含有範囲は7.5〜9.5%、最も好ましい含有範囲は7.5〜9.0%である。   Explaining the significance and reason for limitation of the alloy element of the Al-Zn-Mg alloy extrudate excellent in toughness according to the present invention, Zn is an element that functions to improve the strength by bonding with Mg atoms, and the preferred content Is in the range of 7.0 to 9.5%. If it is less than the lower limit, the strength becomes insufficient, and if it exceeds the upper limit, the SCC (stress corrosion cracking) resistance decreases. The more preferable content range of Zn is 7.5 to 9.5%, and the most preferable content range is 7.5 to 9.0%.

Mgは、Znと結合して強度を向上するよう機能する元素であり、好ましい含有量は1.0〜3.0%の範囲である。下限未満では強度が不十分になり、上限を超えると耐SCC性が低下する。Znのさらに好ましい含有範囲は1.2〜2.7%、最も好ましい含有範囲は1.4〜2.4%である。   Mg is an element that functions to combine with Zn to improve the strength, and the preferred content is in the range of 1.0 to 3.0%. If it is less than the lower limit, the strength becomes insufficient, and if it exceeds the upper limit, the SCC resistance decreases. The more preferable content range of Zn is 1.2 to 2.7%, and the most preferable content range is 1.4 to 2.4%.

Cuは、耐SCC性を向上するよう機能する元素であり、好ましい含有量は0.5%未満の範囲である。Cuを含有しないと耐SCC性が低下する。また、上限を超えて含有されると、押出圧力が著しく上昇して限界押出速度が低下し、また、押詰りが発生し易くなるとともに、押出で割れが発生し易くなる。   Cu is an element that functions to improve the SCC resistance, and the preferred content is less than 0.5%. If Cu is not contained, the SCC resistance is lowered. On the other hand, when the content exceeds the upper limit, the extrusion pressure is remarkably increased, the limit extrusion speed is lowered, clogging is likely to occur, and cracking is likely to occur during extrusion.

Zrは、押出材のミクロ組織を繊維状にすることにより、強度および耐SCC性を向上するよう機能する元素であり、好ましい含有量は0.05〜0.30%の範囲である。下限未満では押出材のミクロ組織が再結晶組織になり、強度と耐SCC性が低下する。上限を超えて含有されると、鋳造時に粗大晶出物を生成し靭性の低下を招く。Zrのさらに好ましい含有範囲は0.10〜0.20%である。   Zr is an element that functions to improve strength and SCC resistance by making the microstructure of the extruded material into a fibrous form, and the preferred content is in the range of 0.05 to 0.30%. If it is less than the lower limit, the microstructure of the extruded material becomes a recrystallized structure, and the strength and the SCC resistance are lowered. If the content exceeds the upper limit, a coarse crystallized product is generated at the time of casting, resulting in a decrease in toughness. A more preferable content range of Zr is 0.10 to 0.20%.

MnおよびCrは、後述する鋳造条件と均質化処理条件との組合せによって、押出材マトリックスの結晶粒内に化合物を生成し、靭性を向上するよう機能する。好ましい含有量は、Mn:0.70%以下、Cr:0.50%以下の範囲である。Mn、Crのうち1種でも含有しない場合、押出材内部の結晶粒内に、20nm以上200nm以下の大きさのMn含有化合物あるいはCr含有化合物が存在しなくなり、靭性が低下する。それぞれ上限を超えて含有されると、鋳造時に粗大晶出物を生成し、靭性の低下を招く。MnおよびCrのさらに好ましい含有範囲は、Mn:0.50%以下、Cr:0.30%以下である。   Mn and Cr function to produce a compound in the crystal grains of the extruded material matrix and improve toughness by a combination of casting conditions and homogenization conditions described later. Preferable content is the range of Mn: 0.70% or less and Cr: 0.50% or less. When even one of Mn and Cr is not contained, the Mn-containing compound or Cr-containing compound having a size of 20 nm or more and 200 nm or less does not exist in the crystal grains inside the extruded material, and the toughness is lowered. When each content exceeds the upper limit, a coarse crystallized product is generated at the time of casting, resulting in a decrease in toughness. More preferable content ranges of Mn and Cr are Mn: 0.50% or less and Cr: 0.30% or less.

TiおよびBは鋳造組織を微細化し、アルミニウム合金押出材の製造過程において、鋳造時の割れを抑制するよう機能する。好ましい含有量は、Ti:0.15%以下、B:50ppm以下の範囲である。それぞれ上限を超えて含有されると、粗大な金属間化合物が増加して靭性が低下する。TiおよびBのさらに好ましい含有範囲は、Ti:0.10%以下、B:20ppm以下である。なお、上記のCu:0.5%未満、Mn:0.70%以下、Cr:0.50%以下、Ti:0.15%以下、B:50ppm以下の含有量には0%を含まないことは勿論である。   Ti and B function to refine the cast structure and suppress cracking during casting in the manufacturing process of the aluminum alloy extruded material. Preferable content is the range of Ti: 0.15% or less, B: 50 ppm or less. When it contains exceeding each upper limit, a coarse intermetallic compound will increase and toughness will fall. More preferable content ranges of Ti and B are Ti: 0.10% or less and B: 20 ppm or less. In addition, Cu: less than 0.5%, Mn: 0.70% or less, Cr: 0.50% or less, Ti: 0.15% or less, B: 50 ppm or less, the content does not include 0% Of course.

不可避不純物としてFeおよびSiが含有される。FeおよびSiは、その含有量が多いほど、鋳造時にAl−Fe−Si系晶出物を生成し、最終製品の靭性を低下させるため、極力少ない方が好ましいが、純度の高い地金を使用するとコストが上昇するので、コストと靭性とのバランスを考慮すると、許容されるFeおよびSiの含有量は、Fe:0.4%以下、Si:0.3%以下の範囲である。   Fe and Si are contained as inevitable impurities. Fe and Si, as the content increases, produce Al-Fe-Si-based crystallized product during casting and reduce the toughness of the final product. Then, since the cost increases, considering the balance between cost and toughness, the allowable Fe and Si contents are in the range of Fe: 0.4% or less and Si: 0.3% or less.

本発明による靭性に優れたAl−Zn−Mg合金押出材においては、マトリックスの結晶粒内に20nm以上200nm以下の大きさのMn含有化合物あるいはCr含有化合物が7個/μm以上分散していることが好ましい。Mn含有化合物あるいはCr含有化合物が分散することにより、衝撃変形の際の亀裂伝播が抑制され、靭性が向上する。20nm以上200nm以下の大きさのMn含有化合物あるいはCr含有化合物の数が7個/μm未満の場合には、亀裂伝播を抑制する効果が小さくなり、靭性が低下する。 In the Al-Zn-Mg alloy extruded material having excellent toughness according to the present invention, Mn-containing compounds or Cr-containing compounds having a size of 20 nm or more and 200 nm or less are dispersed in the crystal grains of the matrix at 7 particles / μm 2 or more. It is preferable. Dispersion of the Mn-containing compound or the Cr-containing compound suppresses crack propagation during impact deformation and improves toughness. When the number of Mn-containing compounds or Cr-containing compounds having a size of 20 nm or more and 200 nm or less is less than 7 / μm 2 , the effect of suppressing crack propagation is reduced and the toughness is reduced.

また、本発明において、靭性はシャルピー衝撃試験により評価されるが、本発明によるAl−Zn−Mg合金押出材は、JIS Z 2202に規定される深さ2mmのUノッチ試験片を用いたシャルピー衝撃値が、(−2.3×[Zn%]−8.1×[Mg%]+42)(J/cm)以上であることが好ましい。この場合、シャルピー衝撃試験の方向は、最も靭性の低い方向で行われる。例えば長方形断面の押出材の場合、試験片の長さ方向が押出材の幅方向に平行になるようにし、さらに衝撃試験の亀裂進展方向が押出材の厚さ方向になるように試験を行うと、シャルピー衝撃値は最も低くなる。シャルピー衝撃値が下限未満の場合には、二輪車部品などに用いた場合に、靭性が不足する場合がある。 In the present invention, the toughness is evaluated by a Charpy impact test. The Al-Zn-Mg alloy extruded material according to the present invention is a Charpy impact using a U-notch test piece having a depth of 2 mm as defined in JIS Z2202. The value is preferably (−2.3 × [Zn%] − 8.1 × [Mg%] + 42) (J / cm 2 ) or more. In this case, the direction of the Charpy impact test is performed in the direction with the lowest toughness. For example, in the case of an extruded material with a rectangular cross section, if the test is performed so that the length direction of the test piece is parallel to the width direction of the extruded material, and the crack propagation direction of the impact test is the thickness direction of the extruded material The Charpy impact value is the lowest. When the Charpy impact value is less than the lower limit, the toughness may be insufficient when used for motorcycle parts.

本発明による靭性に優れたAl−Zn−Mg合金押出材の製造方法について説明する。
まず、前記の組成を有するAl−Zn−Mg合金を溶解し、凝固過程における溶湯保持温度から640℃の間の平均冷却速度が0.10℃/秒以上になるよう制御してビレットに造塊する。溶湯保持温度から640℃の間の平均冷却速度が下限未満の場合、粗大晶出物が生成することがあり、押出材の靭性の低下を招く。さらに押出材内部の結晶粒内に分散するMn含有化合物あるいはCr含有化合物が7個/μm未満になることがあり、靭性の低下を招く。溶湯保持温度から640℃の間のさらに好ましい平均冷却速度は0.15℃/秒以上、最も好ましい平均冷却速度は0.20℃/秒以上である。
The manufacturing method of the Al-Zn-Mg alloy extrusion material excellent in toughness by this invention is demonstrated.
First, an Al—Zn—Mg alloy having the above composition is melted, and the billet is agglomerated by controlling the average cooling rate between the molten metal holding temperature and the 640 ° C. in the solidification process to be 0.10 ° C./second or more. To do. When the average cooling rate between the molten metal holding temperature and 640 ° C. is less than the lower limit, a coarse crystallized product may be generated, resulting in a decrease in toughness of the extruded material. Furthermore, the Mn-containing compound or Cr-containing compound dispersed in the crystal grains inside the extruded material may be less than 7 / μm 2 , leading to a decrease in toughness. The more preferable average cooling rate between the molten metal holding temperature and 640 ° C. is 0.15 ° C./second or more, and the most preferable average cooling rate is 0.20 ° C./second or more.

つぎに、得られたビレットを420℃以上550℃以下の温度で2時間以上50時間以下の時間均質化処理した後、熱間押出および調質処理を行う。均質化処理の保持温度または保持時間が下限未満の場合には、押出材内部の結晶粒内に分散するMn含有化合物あるいはCr含有化合物の大きさが20nm未満になり、靭性の低下を招く。保持温度または保持時間が上限を超えると、押出材内部の結晶粒内に分散するMn含有化合物あるいはCr含有化合物の大きさが200nmを超え、靭性の低下を招く。   Next, after the obtained billet is homogenized at a temperature of 420 ° C. or higher and 550 ° C. or lower for 2 hours or longer and 50 hours or shorter, hot extrusion and tempering are performed. When the holding temperature or holding time of the homogenization treatment is less than the lower limit, the size of the Mn-containing compound or the Cr-containing compound dispersed in the crystal grains inside the extruded material becomes less than 20 nm, leading to a decrease in toughness. When the holding temperature or holding time exceeds the upper limit, the size of the Mn-containing compound or Cr-containing compound dispersed in the crystal grains inside the extruded material exceeds 200 nm, leading to a decrease in toughness.

均質化処理後、熱間押出および調質処理を行う。調質処理とは、用途に合わせてT5、T6、T7などの質別に適宜調質することを言う。調質処理は、基本的には、溶体化処理、焼入れ、人工時効処理により構成される熱処理であり、溶体化処理温度は400℃以上の温度で行うのが好ましく、焼入れは100℃以下までの平均冷却速度を1℃/秒以上として行うのが好ましい。また、押出工程でプレス焼入れを行うことにより、溶体化処理および焼入れを省略することもでき、プレス焼入れも調質処理に含まれる。人工時効処理は、100℃以上170℃以下の温度で行うのが好ましく、保持時間は、それぞれの人工時効処理温度でT5およびT6の場合はピーク強度、T7の場合は過時効になるよう適宜設定される。   After homogenization, hot extrusion and tempering are performed. The tempering process refers to appropriately tempering according to the quality such as T5, T6, T7, etc. according to the application. The tempering treatment is basically a heat treatment composed of solution treatment, quenching, and artificial aging treatment, and the solution treatment temperature is preferably 400 ° C or higher, and the quenching is performed up to 100 ° C or less. The average cooling rate is preferably 1 ° C./second or more. Further, by performing press quenching in the extrusion process, solution treatment and quenching can be omitted, and press quenching is also included in the tempering process. The artificial aging treatment is preferably performed at a temperature of 100 ° C. or more and 170 ° C. or less, and the holding time is appropriately set so that the peak aging is performed at each artificial aging treatment temperature at T5 and T6, and the overaging is performed at T7. Is done.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施形態を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one Embodiment of this invention, and this invention is not limited to these.

実施例1
表1に示す組成を有するアルミニウム合金(合金A〜M)を溶解し、半連続鋳造法によりビレット(直径400mm)に造塊した。このとき、鋳造時の溶湯保持温度を700℃とし、鋳造速度を1mm/sとすることにより、ビレット中心部における640℃までの平均冷却速度を0.20℃/秒に制御した。
Example 1
Aluminum alloys (alloys A to M) having the compositions shown in Table 1 were melted and formed into billets (diameter 400 mm) by a semi-continuous casting method. At this time, the melt holding temperature at the time of casting was set to 700 ° C., and the casting speed was set to 1 mm / s, whereby the average cooling rate up to 640 ° C. at the billet center was controlled to 0.20 ° C./sec.

各ビレットについて、450℃の温度で10時間の均質化処理を行った後、室温まで冷却し、再度400℃の温度まで加熱して、厚さ20mm、幅80mmの断面長方形状に熱間押出を行い、室温まで冷却した。得られた押出材について、450℃の温度で1時間の溶体化処理を行った後、室温の水中に焼入れし、さらに150℃の温度で6時間の人工時効処理を行い、試験材1〜13を得た。   Each billet was homogenized for 10 hours at a temperature of 450 ° C., then cooled to room temperature, heated again to a temperature of 400 ° C., and hot extruded into a rectangular cross section having a thickness of 20 mm and a width of 80 mm. And cooled to room temperature. The obtained extruded material was subjected to a solution treatment for 1 hour at a temperature of 450 ° C., then quenched in water at room temperature, and further subjected to an artificial aging treatment for 6 hours at a temperature of 150 ° C. Got.

試験材1〜13について、以下に示す条件で結晶粒内の化合物数、シャルピー衝撃値、引張耐力、SCC試験での割れの有無の調査を行った。結果を表2に示す。   About the test materials 1-13, the number of compounds in a crystal grain, the Charpy impact value, the tensile strength, and the presence or absence of the crack in a SCC test were investigated on the conditions shown below. The results are shown in Table 2.

結晶粒内の化合物数:試験材の幅および厚さ中央部から厚さ約1mm、幅約5mm、長さ約5mmの試験片を切断、採取し、耐水研磨紙で約40μmの厚さまで研磨を行った後、ツインジェット研磨法により透過電子顕微鏡(TEM)組織観察用試験片を得た。各試験片について、TEMにて20000倍の組織観察を行い、EDXでMn含有化合物あるいはCr含有化合物を確認した後、組織写真をそれぞれ5枚撮影し、結晶粒内の20nm以上200nm以下大きさのMn含有化合物あるいはCr含有化合物の個数を測定し、観察視野面積で除した。   Number of compounds in crystal grains: Test pieces with a thickness of about 1 mm, a width of about 5 mm, and a length of about 5 mm are cut from the center of the width and thickness of the test material, collected, and polished to a thickness of about 40 μm with water-resistant abrasive paper. Then, a transmission electron microscope (TEM) structure observation specimen was obtained by a twin jet polishing method. For each test piece, the structure was observed 20000 times with a TEM, and after confirming the Mn-containing compound or the Cr-containing compound with EDX, five structure photographs were taken, and the size of the crystal grains was 20 nm or more and 200 nm or less. The number of Mn-containing compounds or Cr-containing compounds was measured and divided by the observation visual field area.

シャルピー衝撃値:JIS Z 2202に準拠した深さ2mmのUノッチを有する厚さ10mm、幅10mm、長さ55mmのシャルピー衝撃試験片を成形し、JIS Z 2242に準拠して、常温でシャルピー衝撃試験を行い、衝撃値を測定した。このとき、シャルピー衝撃試験片の長さ方向(55mm)が押出材の幅方向に平行になり、Uノッチの深さ方向が押出材の厚さ方向に平行になるよう、押出材の中央部からシャルピー衝撃試験片を採取した。   Charpy impact value: A Charpy impact test piece having a thickness of 10 mm, a width of 10 mm, and a length of 55 mm having a U-notch of 2 mm in depth according to JIS Z 2202 is molded, and a Charpy impact test at room temperature in accordance with JIS Z 2242. The impact value was measured. At this time, from the central part of the extruded material, the length direction (55 mm) of the Charpy impact test piece is parallel to the width direction of the extruded material, and the depth direction of the U notch is parallel to the thickness direction of the extruded material. Charpy impact test specimens were collected.

引張耐力:試験材の幅および厚さ中央部から、引張試験方向が押出方向に平行になるように、JIS Z 2201に記載の14A号試験片を作製し、JIS Z 2241に準拠して室温で引張試験を行い、公称ひずみ0.2%における引張耐力を測定した。このとき、引張試験片の平行部の直径は6mmとした。引張耐力500MPa以上を合格の基準とした。   Tensile strength: No. 14A test piece described in JIS Z 2201 is prepared from the width and thickness center of the test material so that the tensile test direction is parallel to the extrusion direction, and at room temperature in accordance with JIS Z 2241. A tensile test was performed to measure the tensile strength at a nominal strain of 0.2%. At this time, the diameter of the parallel part of the tensile test piece was 6 mm. A tensile strength of 500 MPa or more was used as a criterion for acceptance.

SCC試験での割れの有無:試験材の幅および厚さ中央部から、JIS H 8711の附属書5に記載のCリング試験片を作製した。このとき、外径を19.05mm、厚さを1.50mmとし、Cリング試験片の長さ方向が押出材の長さ方向に平行になり、Cリング試験片のスリットの位置がJIS H 8711付属書5図1の厚板の図と一致する向きでCリング試験片を作製した。それぞれ、引張試験で得られた耐力の90%の引張応力が負荷されるよう、Cリング試験片をネジで締め込み、電食が起こらないよう、Cリング試験片とネジの接触部をビニール樹脂塗料で被覆し、3.5%の塩水交互浸せきによるSCC試験を行った。SCC試験はJIS H 8711に準拠し、30日の試験を行った後、割れの有無を拡大鏡で検査した。   Presence / absence of crack in SCC test: A C-ring test piece described in Appendix 5 of JIS H 8711 was prepared from the width and thickness of the test material. At this time, the outer diameter is 19.05 mm, the thickness is 1.50 mm, the length direction of the C-ring test piece is parallel to the length direction of the extruded material, and the slit position of the C-ring test piece is JIS H 8711. Appendix 5 A C-ring test piece was prepared in a direction consistent with the plan view of the plank of FIG. C-ring test piece is tightened with screws so that 90% of tensile strength of the yield strength obtained in the tensile test is applied, and the contact part between C-ring test piece and screw is vinyl resin so that no electric corrosion occurs. The SCC test was performed by coating with paint and alternating immersion with 3.5% salt water. The SCC test was based on JIS H 8711, and after a 30-day test, the presence or absence of cracks was examined with a magnifying glass.

Figure 2013036107
Figure 2013036107

Figure 2013036107
Figure 2013036107

表2にみられるように、本発明に従う試験材1〜13はいずれも、結晶粒内の化合物数が7個/μm以上、シャルピー衝撃値が(−2.3×[Zn%]−8.1×[Mg%]+42)(J/cm)以上であり、SCC試験においても割れの発生は認められなかった。また、引張耐力は500MPa以上の高い値を示した。 As seen in Table 2, all of the test materials 1 to 13 according to the present invention have a compound number of 7 / μm 2 or more in crystal grains and a Charpy impact value of (−2.3 × [Zn%] − 8. 0.1 × [Mg%] + 42) (J / cm 2 ) or more, and no cracks were observed in the SCC test. Moreover, the tensile yield strength showed a high value of 500 MPa or more.

実施例2
表1に示すアルミニウム合金Dを溶解し、半連続鋳造法によりビレット(直径400mm)に造塊した。このとき、鋳造時の溶湯保持温度を700℃とし、鋳造速度およびビレット中心部における640℃までの平均冷却速度を表3に示す条件とした。
Example 2
Aluminum alloy D shown in Table 1 was melted and formed into billets (diameter 400 mm) by a semi-continuous casting method. At this time, the molten metal holding temperature at the time of casting was set to 700 ° C., and the casting rate and the average cooling rate up to 640 ° C. at the billet center were set as the conditions shown in Table 3.

各ビレットについて、表3に示す条件で均質化処理を行った後、室温まで冷却し、再度400℃の温度まで加熱して、厚さ20mm、幅80mmの断面長方形状に熱間押出を行い、室温まで冷却した。得られた押出材について、450℃の温度で1時間の溶体化処理を行った後、室温の水中に焼入れし、さらに150℃の温度で6時間の人工時効処理を行い、試験材14〜17を得た。   For each billet, after homogenization treatment was performed under the conditions shown in Table 3, it was cooled to room temperature, heated again to a temperature of 400 ° C., and subjected to hot extrusion into a rectangular cross section having a thickness of 20 mm and a width of 80 mm. Cooled to room temperature. The obtained extruded material was subjected to a solution treatment at a temperature of 450 ° C. for 1 hour, then quenched in water at room temperature, and further subjected to an artificial aging treatment at a temperature of 150 ° C. for 6 hours to obtain test materials 14 to 17 Got.

Figure 2013036107
Figure 2013036107

Figure 2013036107
Figure 2013036107

試験材14〜17について、実施例1と同一条件で結晶粒内の化合物数、シャルピー衝撃値、引張耐力、SCC試験での割れの有無の調査を行った。結果を表4に示す。   About the test materials 14-17, the number of compounds in a crystal grain, the Charpy impact value, the tensile strength, and the presence or absence of the crack in a SCC test were investigated on the same conditions as Example 1. The results are shown in Table 4.

表4にみられるように、試験材14〜17はいずれも、結晶粒内の化合物数が7個/μm以上、シャルピー衝撃値が(−2.3×[Zn%]−8.1×[Mg%]+42)(J/cm)以上であり、SCC試験においても割れの発生は認められなかった。また、引張耐力は500MPa以上の高い値を示した。 As can be seen from Table 4, in each of the test materials 14 to 17, the number of compounds in crystal grains was 7 / μm 2 or more, and the Charpy impact value was (−2.3 × [Zn%] − 8.1 ×. [Mg%] + 42) (J / cm 2 ) or more, and no cracks were observed in the SCC test. Moreover, the tensile yield strength showed a high value of 500 MPa or more.

比較例1
表5に示す組成を有するアルミニウム合金(合金N〜Y)を溶解し、半連続鋳造法によりビレット(直径400mm)に造塊した。このとき、鋳造時の溶湯保持温度を700℃とし、鋳造速度を1mm/sとすることにより、ビレット中心部における640℃までの平均冷却速度を0.20℃/秒に制御した。なお、表5において、本発明の条件を外れたものには下線を付した。
Comparative Example 1
Aluminum alloys (alloys N to Y) having the compositions shown in Table 5 were melted and formed into billets (diameter 400 mm) by a semi-continuous casting method. At this time, the melt holding temperature at the time of casting was set to 700 ° C., and the casting speed was set to 1 mm / s, whereby the average cooling rate up to 640 ° C. at the billet center was controlled to 0.20 ° C./sec. In Table 5, those outside the conditions of the present invention are underlined.

各ビレットについて、450℃の温度で10時間の均質化処理を行った後、室温まで冷却し、再度400℃の温度まで加熱して、厚さ20mm、幅80mmの断面長方形状に熱間押出を行い、室温まで冷却した。得られた押出材について、450℃の温度で1時間の溶体化処理を行った後、室温の水中に焼入れし、さらに150℃の温度で6時間の人工時効処理を行い、試験材18〜29を得た。   Each billet was homogenized for 10 hours at a temperature of 450 ° C., then cooled to room temperature, heated again to a temperature of 400 ° C., and hot extruded into a rectangular cross section having a thickness of 20 mm and a width of 80 mm. And cooled to room temperature. The obtained extruded material was subjected to a solution treatment for 1 hour at a temperature of 450 ° C., then quenched in water at room temperature, and further subjected to an artificial aging treatment at a temperature of 150 ° C. for 6 hours. Got.

試験材18〜29について、実施例1と同一条件で結晶粒内の化合物数、シャルピー衝撃値、引張耐力、SCC試験での割れの有無の調査を行った。結果を表6に示す。表6において、本発明の条件を外れたものには下線を付した。   About the test materials 18-29, the number of compounds in a crystal grain, the Charpy impact value, the tensile strength, and the presence or absence of the crack in a SCC test were investigated on the same conditions as Example 1. The results are shown in Table 6. In Table 6, those outside the conditions of the present invention are underlined.

Figure 2013036107
Figure 2013036107

Figure 2013036107
Figure 2013036107

表6にみられるように、試験材18はZn量が下限未満のため強度が低かった。試験材19はZn量が上限を超えたためSCC試験で割れが発生した。試験材20はMg量が下限未満のため強度が低かった。試験材21はMg量が上限を超えたためSCC試験で割れが発生した。試験材22はCuを添加しなかったためSCC試験で割れが発生した。試験材23はCu量が上限を超えたため押出加工で割れが発生し、試験片が作製できなかった。   As seen in Table 6, the strength of the test material 18 was low because the Zn content was less than the lower limit. Since the amount of Zn exceeded the upper limit, the test material 19 was cracked in the SCC test. The test material 20 had low strength because the Mg content was less than the lower limit. Since the amount of Mg exceeded the upper limit, the test material 21 was cracked in the SCC test. Since the test material 22 did not add Cu, cracks occurred in the SCC test. Since the amount of Cu exceeded the upper limit, the test material 23 was cracked by extrusion, and a test piece could not be produced.

試験材24はZr量が下限未満のため押出材が再結晶組織になり、強度が低く、SCC試験で割れが発生した。試験材25はZr量が上限を超えたため粗大晶出物が生成し、靭性が低下した。試験材26はMn、Crをどちらも含有しなかったため結晶粒内の化合物数が下限未満になり、靭性が低下した。試験材27はMn量が上限を超え、試験材28はCr量が上限を超え、試験材29はTiおよびB量が上限を超えたため、いずれも粗大晶出物が生成し、靭性が低下した。   Since the test material 24 had a Zr amount less than the lower limit, the extruded material had a recrystallized structure, the strength was low, and cracks occurred in the SCC test. In the test material 25, the amount of Zr exceeded the upper limit, so a coarse crystallized product was generated, and the toughness was lowered. Since the test material 26 contained neither Mn nor Cr, the number of compounds in the crystal grains became less than the lower limit, and the toughness was lowered. Since the test material 27 exceeded the upper limit in the amount of Mn, the test material 28 exceeded the upper limit in the amount of Cr, and the test material 29 exceeded the upper limits in the amounts of Ti and B, both produced coarse crystallized products and decreased toughness. .

比較例2
表1に示すアルミニウム合金Dを溶解し、半連続鋳造法によりビレット(直径400mm)に造塊した。このとき、鋳造時の溶湯保持温度を700℃とし、鋳造速度およびビレット中心部における640℃までの平均冷却速度を表7に示す条件とした。
Comparative Example 2
Aluminum alloy D shown in Table 1 was melted and formed into billets (diameter 400 mm) by a semi-continuous casting method. At this time, the molten metal holding temperature at the time of casting was set to 700 ° C., and the casting rate and the average cooling rate up to 640 ° C. at the billet center were set as the conditions shown in Table 7.

各ビレットについて、表7に示す条件で均質化処理を行った後、室温まで冷却し、再度400℃の温度まで加熱して、厚さ20mm、幅80mmの断面長方形状に熱間押出を行い、室温まで冷却した。得られた押出材について、450℃の温度で1時間の溶体化処理を行った後、室温の水中に焼入れし、さらに150℃の温度で6時間の人工時効処理を行い、試験材30〜34を得た。なお、表7において、本発明の条件を外れたものには下線を付した。   For each billet, after homogenizing under the conditions shown in Table 7, cooled to room temperature, heated again to a temperature of 400 ° C., hot extruded into a cross-sectional rectangular shape with a thickness of 20 mm and a width of 80 mm, Cooled to room temperature. The obtained extruded material was subjected to a solution treatment for 1 hour at a temperature of 450 ° C., then quenched in water at room temperature, and further subjected to an artificial aging treatment for 6 hours at a temperature of 150 ° C. Got. In Table 7, those outside the conditions of the present invention are underlined.

試験材30〜34について、実施例1と同一条件で結晶粒内の化合物数、シャルピー衝撃値、引張耐力、SCC試験での割れの有無の調査を行った。結果を表8に示す。表8において、本発明の条件を外れたものには下線を付した。   For the test materials 30 to 34, the number of compounds in crystal grains, the Charpy impact value, the tensile strength, and the presence or absence of cracks in the SCC test were examined under the same conditions as in Example 1. The results are shown in Table 8. In Table 8, those outside the conditions of the present invention are underlined.

Figure 2013036107
Figure 2013036107

Figure 2013036107
Figure 2013036107

表8に示すように、試験材30は溶湯保持温度から640℃の間の平均冷却速度が下限未満のため粗大晶出物が生成し、結晶粒内の化合物数が下限未満になり、靭性が低かった。試験材31は均質化処理温度が下限未満のため、試験材32は均質化処理温度が上限を超えたため、試験材33は均質化処理時間が下限未満のため、試験材34は均質化処理時間が上限を超えたため、いずれも結晶粒内の20nm以上、200nm以下の大きさのMnあるいはCrを含有する化合物数が下限未満になり、靭性が低下した。   As shown in Table 8, since the average cooling rate between the molten metal holding temperature and 640 ° C. is less than the lower limit, the test material 30 produces coarse crystals, and the number of compounds in the crystal grains is less than the lower limit, and the toughness is reduced. It was low. Since the test material 31 has a homogenization treatment temperature below the lower limit and the test material 32 has an upper homogenization temperature, the test material 33 has a homogenization treatment time less than the lower limit, so the test material 34 has a homogenization treatment time. As a result, the number of compounds containing Mn or Cr having a size of 20 nm or more and 200 nm or less in the crystal grains became less than the lower limit, and the toughness decreased.

Claims (4)

Zn:7.0〜9.5%(質量%、以下同じ)、Mg:1.0〜3.0%、Cu:0.5%未満、Zr:0.05〜0.30%を含有し、さらにMn:0.70%以下およびCr:0.50%以下の1種または2種を含有し、残部Alおよび不可避不純物からなるAl−Zn−Mg合金の押出材であって、マトリックスの結晶粒内に20nm以上200nm以下の大きさのMn含有化合物あるいはCr含有化合物が7個/μm以上分散していることを特徴とする靭性に優れたAl−Zn−Mg合金押出材。 Zn: 7.0 to 9.5% (mass%, the same shall apply hereinafter), Mg: 1.0 to 3.0%, Cu: less than 0.5%, Zr: 0.05 to 0.30% Further, an extruded material of an Al—Zn—Mg alloy containing one or two of Mn: 0.70% or less and Cr: 0.50% or less, the balance being Al and inevitable impurities, An Al-Zn-Mg alloy extruded material with excellent toughness, characterized in that Mn-containing compounds or Cr-containing compounds having a size of 20 nm or more and 200 nm or less are dispersed in grains within 7 grains / μm 2 or more. 前記アルミニウム合金押出材が、さらにTi:0.15%以下、B:50ppm以下のうちの1種または2種を含有することを特徴とする請求項1記載の靭性に優れたAl−Zn−Mg合金押出材。 2. The Al—Zn—Mg excellent in toughness according to claim 1, wherein the aluminum alloy extruded material further contains one or two of Ti: 0.15% or less and B: 50 ppm or less. Alloy extruded material. JIS Z 2202に規定される深さ2mmのUノッチ試験片を用いたシャルピー衝撃値が、(−2.3×[Zn%]−8.1×[Mg%]+42)(J/cm)以上であることを特徴とする請求項1または2記載の靭性に優れたAl−Zn−Mg合金押出材。 The Charpy impact value using a U-notch specimen having a depth of 2 mm as defined in JIS Z 2202 is (−2.3 × [Zn%] − 8.1 × [Mg%] + 42) (J / cm 2 ) It is the above, The Al-Zn-Mg alloy extrusion material excellent in toughness of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜3のいずれかに記載のAl−Zn−Mg合金押出材を製造する方法であって、請求項1または2記載の組成を有するAl−Zn−Mg合金を溶解し、凝固過程における溶湯保持温度から640℃の間の平均冷却速度が0.10℃/秒以上になるよう制御してビレットに造塊し、得られたビレットを420℃以上550℃以下の温度で2時間以上50時間以下の時間均質化処理した後、熱間押出および調質処理を行うことを特徴とする靭性に優れたAl−Zn−Mg合金押出材の製造方法。 A method for producing the extruded material of Al-Zn-Mg alloy according to any one of claims 1 to 3, wherein the Al-Zn-Mg alloy having the composition according to claim 1 or 2 is melted and in a solidification process. The billet is agglomerated by controlling the average cooling rate between the molten metal holding temperature and 640 ° C. to be 0.10 ° C./second or more, and the obtained billet is at a temperature of 420 ° C. or higher and 550 ° C. or lower for 2 hours or more 50 A method for producing an extruded material of Al-Zn-Mg alloy excellent in toughness, characterized by performing hot extrusion and tempering treatment after homogenization treatment for a time equal to or less than the time.
JP2011174707A 2011-08-10 2011-08-10 Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME Withdrawn JP2013036107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174707A JP2013036107A (en) 2011-08-10 2011-08-10 Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174707A JP2013036107A (en) 2011-08-10 2011-08-10 Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2013036107A true JP2013036107A (en) 2013-02-21

Family

ID=47885975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174707A Withdrawn JP2013036107A (en) 2011-08-10 2011-08-10 Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2013036107A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006490A1 (en) * 2015-07-08 2017-01-12 日本軽金属株式会社 Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP2019039042A (en) * 2017-08-25 2019-03-14 アイシン軽金属株式会社 Aluminum alloy for extrusion molding and method for producing extrusion material using the same
JP2019137906A (en) * 2018-02-15 2019-08-22 昭和電工株式会社 MANUFACTURING METHOD OF Al-Zn-Mg-BASED ALLOY CASTING MATERIAL
CN110592445A (en) * 2019-08-27 2019-12-20 江苏大学 720-doped 740MPa cold extrusion Al-Zn-Mg-Cu-Ti aluminum alloy and preparation method thereof
CN114540677A (en) * 2022-01-21 2022-05-27 山东南山铝业股份有限公司 High-strength Al-Zn-Mg-Sn-Mn aluminum alloy and processing method thereof
JP7119153B1 (en) 2021-03-15 2022-08-16 株式会社神戸製鋼所 High-strength aluminum alloy extruded material and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006490A1 (en) * 2015-07-08 2017-01-12 日本軽金属株式会社 Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP2019039042A (en) * 2017-08-25 2019-03-14 アイシン軽金属株式会社 Aluminum alloy for extrusion molding and method for producing extrusion material using the same
JP7018274B2 (en) 2017-08-25 2022-02-10 アイシン軽金属株式会社 Aluminum alloy for extrusion molding and method for manufacturing extruded material using it
JP2019137906A (en) * 2018-02-15 2019-08-22 昭和電工株式会社 MANUFACTURING METHOD OF Al-Zn-Mg-BASED ALLOY CASTING MATERIAL
CN110592445A (en) * 2019-08-27 2019-12-20 江苏大学 720-doped 740MPa cold extrusion Al-Zn-Mg-Cu-Ti aluminum alloy and preparation method thereof
CN110592445B (en) * 2019-08-27 2021-06-22 江苏大学 720-doped 740MPa cold extrusion Al-Zn-Mg-Cu-Ti aluminum alloy and preparation method thereof
JP7119153B1 (en) 2021-03-15 2022-08-16 株式会社神戸製鋼所 High-strength aluminum alloy extruded material and manufacturing method thereof
WO2022196381A1 (en) * 2021-03-15 2022-09-22 株式会社神戸製鋼所 High-strength aluminum alloy extruded material and manufaturing method therefor
JP2022141094A (en) * 2021-03-15 2022-09-29 株式会社神戸製鋼所 High-strength aluminum alloy extruded material and manufacturing method therefor
CN114540677A (en) * 2022-01-21 2022-05-27 山东南山铝业股份有限公司 High-strength Al-Zn-Mg-Sn-Mn aluminum alloy and processing method thereof

Similar Documents

Publication Publication Date Title
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
WO2011122263A1 (en) Aluminium alloy forging and method of manufacture for same
TWI507532B (en) High strength aluminum magnesium silicon alloy and its manufacturing process
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
KR20120123711A (en) Aluminum alloy material for storage container for high-pressure hydrogen gas
CN104018038A (en) Aluminium alloy used for automobile anti-collision beam, and manufacturing method for product thereof
JP2013036107A (en) Al-Zn-Mg ALLOY EXTRUDED MEMBER EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCING THE SAME
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
CA2950075C (en) Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP7152977B2 (en) aluminum alloy
JP3552577B2 (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same
WO2016132994A1 (en) Aluminum alloy worked material, and manufacturing method thereof
JP6329430B2 (en) High yield strength Al-Zn aluminum alloy extruded material with excellent bendability
JP5846684B2 (en) Method for producing aluminum alloy material excellent in bending workability
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JP2006316303A (en) Aluminum alloy extruded material for high temperature forming, and high temperature formed product
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JP5435371B2 (en) Aluminum alloy ingot for plastic working
JP2022513644A (en) Aluminum extruded alloy
JP4017105B2 (en) Aluminum alloy cast bar with excellent machinability and hot workability

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104