JP2022139905A - Gasket member and manufacturing method for gasket member - Google Patents

Gasket member and manufacturing method for gasket member Download PDF

Info

Publication number
JP2022139905A
JP2022139905A JP2021040484A JP2021040484A JP2022139905A JP 2022139905 A JP2022139905 A JP 2022139905A JP 2021040484 A JP2021040484 A JP 2021040484A JP 2021040484 A JP2021040484 A JP 2021040484A JP 2022139905 A JP2022139905 A JP 2022139905A
Authority
JP
Japan
Prior art keywords
gasket member
battery
water absorption
absorption layer
low water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021040484A
Other languages
Japanese (ja)
Inventor
拓也 鈴木
Takuya Suzuki
繁之 國谷
Shigeyuki Kuniya
大輔 藤波
Daisuke Fujinami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2021040484A priority Critical patent/JP2022139905A/en
Publication of JP2022139905A publication Critical patent/JP2022139905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

To provide a gasket member capable of suppressing the risk of liquid leakage inside a battery.SOLUTION: A gasket member for a cylindrical battery seals an opening of a battery can. The gasket member includes a cylindrical support portion that supports a collector rod provided inside the battery can, an outer peripheral portion that is supported by the battery can, and an annular intermediate portion formed between the support portion and the outer peripheral portion on the support portion side. Further, the gasket member includes a cushioning portion that is formed between the intermediate portion and the outer peripheral portion and allows the outer peripheral portion to be elastically deformable with respect to the intermediate portion, and a low water absorption layer formed on the flat surface of the annular intermediate portion.SELECTED DRAWING: Figure 2

Description

本発明は、ガスケット部材及びガスケット部材の製造方法に関する。 The present invention relates to a gasket member and a method for manufacturing the gasket member.

筒型電池では、円筒状の電池缶と、電池缶内に格納する正極材料と、電池缶内に格納する負極材料と、正極材料と負極材料との間を隔離する、円筒状のセパレータ部材と、電池缶の負極端子側の開口を封口するガスケット部材とを有する。 A cylindrical battery includes a cylindrical battery can, a positive electrode material stored in the battery can, a negative electrode material stored in the battery can, and a cylindrical separator member separating the positive electrode material and the negative electrode material. and a gasket member for sealing the opening of the battery can on the side of the negative electrode terminal.

ガスケット部材は、電池缶の内部に設けられた集電棒を支持する筒状の支持部と、電池缶に支持される外周部と、支持部の外周に沿って形成された環状の安全弁と、安全弁と外周部との間の安全弁側に形成された環状の中間部とを有する。更に、ガスケット部材は、中間部と外周部との間に形成され、外周部記中間部に対して弾性変可能にする緩衝部とを有する。安全弁は、電池缶の内部ガスの圧力で破断される肉薄部分である。また、ガスケット部材は、ナイロン等の材質で形成されている。 The gasket member includes a cylindrical support portion that supports a collector rod provided inside the battery can, an outer peripheral portion that is supported by the battery can, an annular safety valve formed along the outer periphery of the support portion, and a safety valve. and an annular intermediate portion formed on the side of the safety valve between and the outer peripheral portion. Further, the gasket member has a cushioning portion formed between the intermediate portion and the outer peripheral portion and elastically deformable with respect to the outer peripheral portion and the intermediate portion. The safety valve is a thin portion that is broken by the pressure of the gas inside the battery can. Moreover, the gasket member is made of a material such as nylon.

特表2010-534399号公報Japanese Patent Publication No. 2010-534399

アルカリ電池等の筒型電池では、例えば、水酸化カリウム水溶液を電解液として用いており、カリウムの潮解性によって水分を取り込む性質がある。従って、ナイロン等の材質で形成されたガスケット部材は、外部から水分が電池内部に透過し、その水分量が多くなると、電池内圧が上昇して液漏れリスクが発生する場合がある。 Cylindrical batteries such as alkaline batteries use, for example, a potassium hydroxide aqueous solution as an electrolyte, and have the property of absorbing moisture due to the deliquescence of potassium. Therefore, if the gasket member made of a material such as nylon allows water to permeate into the battery from the outside, and the amount of water increases, the internal pressure of the battery increases and the risk of liquid leakage may occur.

しかしながら、ガスケット部材の全体に水分透過率が低い材料を使用した場合には、加工時の緩衝によって破損し、安全弁の働きに影響を与えるおそれがある。また、電池の保存環境下では、ガスケット部材が脆化して電池内圧が上昇した場合、安全弁ではなく、中間部の平坦面が割れて電池内部の固形物が流出する液漏れ発生のリスクが高まる。 However, if a material with a low moisture permeability is used for the entire gasket member, it may be damaged due to cushioning during processing, which may affect the function of the safety valve. In addition, under the storage environment of the battery, if the gasket member becomes brittle and the internal pressure of the battery rises, the flat surface of the middle part will crack instead of the safety valve, increasing the risk of liquid leakage in which solids inside the battery flow out.

開示の技術は、上記に鑑みてなされたものであって、電池内部の液漏れ発生のリスクを抑制できるガスケット部材等を提供することを目的とする。 The disclosed technology has been made in view of the above, and an object thereof is to provide a gasket member or the like capable of suppressing the risk of liquid leakage occurring inside the battery.

本願の開示するガスケット部材の一態様は、電池缶の開口を封口する、筒型電池用のガスケット部材である。ガスケット部材は、電池缶の内部に設けられた集電棒を支持する筒状の支持部と、電池缶に支持される外周部と、支持部と外周部との間の支持部側に形成された環状の中間部とを有する。更に、ガスケット部材は、中間部と外周部との間に形成され、外周部を中間部に対して弾性変形可能にする緩衝部と、環状の中間部の平坦面に形成された低吸水層とを有する。 One aspect of the gasket member disclosed in the present application is a gasket member for a cylindrical battery that seals an opening of a battery can. The gasket member is formed on a cylindrical support portion that supports a collector rod provided inside the battery can, an outer peripheral portion that is supported by the battery can, and a support portion side between the support portion and the outer peripheral portion. and an annular middle portion. Further, the gasket member includes a cushioning portion formed between the intermediate portion and the outer peripheral portion to allow the outer peripheral portion to be elastically deformable with respect to the intermediate portion, and a low water absorption layer formed on the flat surface of the annular intermediate portion. have

本願の開示するガスケット部材の一態様によれば、電池内部の液漏れ発生のリスクを抑制できる。 According to one aspect of the gasket member disclosed in the present application, the risk of liquid leakage inside the battery can be suppressed.

図1は、実施例の筒型電池を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a cylindrical battery of an embodiment. 図2は、実施例の筒型電池の要部を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing the essential parts of the cylindrical battery of the example. 図3は、加締め前のガスケット部材を示す断面図である。FIG. 3 is a cross-sectional view showing the gasket member before crimping.

以下に、本願の開示するガスケット部材等の実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示するガスケット部材が限定されるものではない。 Hereinafter, embodiments of the gasket member and the like disclosed in the present application will be described in detail based on the drawings. The gasket member disclosed in the present application is not limited to the following examples.

(筒型電池の構成)
図1は、実施例の筒型電池1を示す縦断面図である。図1に示すように、実施例の筒型電池1は、例えば、水溶液系一次電池、いわゆる乾電池である。筒型電池1は、開口3aを有する円筒状の電池缶3と、集電棒4と、正極材料5と、負極材料6と、正極材料5と負極材料6とを仕切るセパレータ部材7と、電池缶3の開口3aを封止するガスケット部材8とを備える。また、筒型電池1は、電極端子として、電池缶3の一端に形成された正極端子11と、電池缶3の他端に配置された負極端子12とを有する。
(Structure of Cylindrical Battery)
FIG. 1 is a longitudinal sectional view showing a cylindrical battery 1 of an embodiment. As shown in FIG. 1, the cylindrical battery 1 of the embodiment is, for example, an aqueous primary battery, a so-called dry battery. A cylindrical battery 1 includes a cylindrical battery can 3 having an opening 3a, a collector rod 4, a positive electrode material 5, a negative electrode material 6, a separator member 7 for partitioning the positive electrode material 5 and the negative electrode material 6, and a battery can. and a gasket member 8 for sealing the opening 3a of 3. The cylindrical battery 1 also has a positive electrode terminal 11 formed at one end of the battery can 3 and a negative electrode terminal 12 disposed at the other end of the battery can 3 as electrode terminals.

電池缶3の一端には、正極端子11が一体に形成されている。電池缶3の他端には、電池缶3の外周に沿ってビーディング加工されたくびれ部(ビーディング部)3bが形成されている。電池缶3のくびれ部3bには、開口3aを塞ぐように負極端子12及びガスケット部材8が設けられている。集電棒4は、電池缶3の内部の中央に配置されている。集電棒4は、基端部がガスケット部材8に支持されており、先端部が正極端子11側に向かって延びている。集電棒4は、例えば、真鍮等で形成する。 A positive electrode terminal 11 is integrally formed at one end of the battery can 3 . At the other end of the battery can 3, a beaded portion (beading portion) 3b is formed along the outer circumference of the battery can 3. As shown in FIG. A negative electrode terminal 12 and a gasket member 8 are provided in the constricted portion 3b of the battery can 3 so as to block the opening 3a. The collector bar 4 is arranged in the center of the battery can 3 . The collector rod 4 has a base end supported by a gasket member 8 and a tip end extending toward the positive electrode terminal 11 side. The collector bar 4 is made of, for example, brass.

負極材料6は、電池缶3の内部における集電棒4の周囲に設けられた円筒状の材料であり、セパレータ部材7の内側に装填されている。また、負極材料6は、例えば、亜鉛を主成分とするゲル状の負極合剤が用いられる。正極材料5は、電池缶3内に、その内周面に沿って装填されている。そして、正極材料5は、電池缶3の内部に収容された負極材料6の外周側に、セパレータ部材7を挟んで設けられている。正極材料5としては、例えば、リング状の正極合剤が用いられており、集電棒4の軸方向に沿って複数のリング状の正極合剤が積層されて配置されている。セパレータ部材7は、例えば、不織布等によって円筒状に形成されており、正極材料5の内側、かつ、集電棒4の軸方向に沿って配置されている。 The negative electrode material 6 is a cylindrical material provided around the collector rod 4 inside the battery can 3 and loaded inside the separator member 7 . Further, as the negative electrode material 6, for example, a gel-like negative electrode mixture containing zinc as a main component is used. The positive electrode material 5 is loaded inside the battery can 3 along its inner peripheral surface. The positive electrode material 5 is provided on the outer peripheral side of the negative electrode material 6 housed inside the battery can 3 with the separator member 7 interposed therebetween. A ring-shaped positive electrode mixture, for example, is used as the positive electrode material 5 , and a plurality of ring-shaped positive electrode mixtures are stacked and arranged along the axial direction of the current collector rod 4 . The separator member 7 is formed of, for example, a nonwoven fabric or the like in a cylindrical shape, and is arranged inside the positive electrode material 5 and along the axial direction of the current collector rod 4 .

(ガスケット部材の構成)
図2は、実施例の筒型電池1の要部を示す縦断面図である。図3は、加締め前のガスケット部材8を示す断面図である。図2に示すように、筒型電池1のガスケット部材8は、集電棒4の一端部を支持する円筒状の支持部15と、支持部15の外周に沿って形成された環状の安全弁16と、電池缶3の開口3aに支持される環状の外周部17とを有する。また、ガスケット部材8は、安全弁16と外周部17との間の安全弁16側に形成された環状の中間部18と、中間部18と外周部17との間に形成され、外周部17を中間部18に対して弾性変形可能にする緩衝部19とを有する。また、ガスケット部材8は、中間部18の平坦面20の内、電池缶3の負極端子12側の平坦面20に形成された、環状の低吸水層21を有する。
(Structure of gasket member)
FIG. 2 is a vertical cross-sectional view showing the essential parts of the cylindrical battery 1 of the embodiment. FIG. 3 is a cross-sectional view showing the gasket member 8 before crimping. As shown in FIG. 2, the gasket member 8 of the tubular battery 1 includes a cylindrical support portion 15 that supports one end of the current collector rod 4, and an annular safety valve 16 formed along the outer periphery of the support portion 15. , and an annular outer peripheral portion 17 supported by the opening 3 a of the battery can 3 . In addition, the gasket member 8 includes an annular intermediate portion 18 formed on the side of the safety valve 16 between the safety valve 16 and the outer peripheral portion 17, and an annular intermediate portion 18 formed between the intermediate portion 18 and the outer peripheral portion 17. and a cushioning portion 19 that is elastically deformable with respect to the portion 18 . The gasket member 8 also has an annular low water absorption layer 21 formed on the flat surface 20 of the intermediate portion 18 on the negative electrode terminal 12 side of the battery can 3 .

支持部15は、集電棒4が通される支持穴15aを有しており、図2に示すように、集電棒4が負極端子12に接するように支持穴15aに支持されている。外周部17は、電池缶3のくびれ部3b近傍と負極端子12の外周部との間に加締めで挟み込まれることで、ガスケット部材8が電池缶3に支持されている。 The support portion 15 has a support hole 15a through which the collector rod 4 is passed, and as shown in FIG. The gasket member 8 is supported by the battery can 3 by crimping the outer peripheral portion 17 between the vicinity of the constricted portion 3 b of the battery can 3 and the outer peripheral portion of the negative electrode terminal 12 .

中間部18には、図2に示すように、セパレータ部材7の端部が突き当てられており、負極材料6が収容された空間が、セパレータ部材7によって塞がれている。安全弁16は、電池缶3の内部ガスの圧力で破断される溝状の肉薄部分である。 As shown in FIG. 2 , the end of the separator member 7 is abutted against the intermediate portion 18 , and the space containing the negative electrode material 6 is blocked by the separator member 7 . The safety valve 16 is a groove-shaped thin portion that is broken by the pressure of the internal gas of the battery can 3 .

緩衝部19は、中間部18と外周部17との間に形成されており、セパレータ部材7の外周側に配置されている。緩衝部19は、集電棒4の軸方向において外周部17から延びると共に、折り返して中間部18に連結されることで、底部19aを有するひだ状の突形状である。 The buffer portion 19 is formed between the intermediate portion 18 and the outer peripheral portion 17 and arranged on the outer peripheral side of the separator member 7 . The cushioning portion 19 extends from the outer peripheral portion 17 in the axial direction of the current collecting rod 4 and is folded back to be connected to the intermediate portion 18, thereby forming a fold-like protrusion having a bottom portion 19a.

ガスケット部材8の緩衝部19は、横締め方式で、電池缶3のくびれ部3b近傍と負極端子12の外周部との間にガスケット部材8の外周部17が挟み込まれることで、外周部17を中間部18に対して、図3の状態から図2の状態に弾性変形する。つまり、ガスケット部材8は、電池缶3の開口3aの封口後に直径方向に撓むことになる。 The buffer portion 19 of the gasket member 8 is laterally tightened, and the outer peripheral portion 17 of the gasket member 8 is sandwiched between the vicinity of the constricted portion 3b of the battery can 3 and the outer peripheral portion of the negative electrode terminal 12, so that the outer peripheral portion 17 is clamped. The intermediate portion 18 is elastically deformed from the state shown in FIG. 3 to the state shown in FIG. That is, the gasket member 8 is bent in the diameter direction after the opening 3a of the battery can 3 is sealed.

中間部18の平坦面20上に形成された低吸水層21は、例えば、吸水率0.6%(24hr飽和)以下の硬質樹脂で形成された層である。更に、低吸水層21は、例えば、ロックウェル硬さがR120以上を有する硬質層である。更に、低吸水層21の厚みは、例えば、0.3mm~1.0mmである。低吸水層21は、電池缶3の外部からの水分の透過を抑えることで電池缶3の内部への水分の透過を低減し、水分侵入による電池缶3の内圧上昇を低減しながら、ガスケット部材8の脆化による液漏れの発生を抑制できる。 The low water absorption layer 21 formed on the flat surface 20 of the intermediate portion 18 is, for example, a layer made of a hard resin having a water absorption of 0.6% (saturated for 24 hours) or less. Further, the low water absorption layer 21 is, for example, a hard layer having a Rockwell hardness of R120 or higher. Furthermore, the thickness of the low water absorption layer 21 is, for example, 0.3 mm to 1.0 mm. The low water absorption layer 21 suppresses the permeation of moisture from the outside of the battery can 3 to reduce the permeation of moisture into the battery can 3, and reduces the increase in the internal pressure of the battery can 3 due to the intrusion of moisture. The occurrence of liquid leakage due to embrittlement of 8 can be suppressed.

そこで、出願人は、ガスケット部材8の中間部18の平坦面20上に各種材質の低吸水層21を形成した場合のガスケット部材8における水分透過、吸水率、脆化、安全弁16の弁作動を検証した。(表1)は、各種検証結果を表にまとめたものである。 Therefore, the applicant investigated the water permeation, water absorption rate, embrittlement, and valve operation of the safety valve 16 in the gasket member 8 when the low water absorption layer 21 made of various materials was formed on the flat surface 20 of the intermediate portion 18 of the gasket member 8. verified. (Table 1) summarizes various verification results in a table.

Figure 2022139905000002
Figure 2022139905000002

先ず、6.12ナイロン材質のガスケット部材8の平坦面20には、0.5mmの厚さのPAI(ポリアミドイミド)を被覆したLR6用ガスケットを準備した。そして、平坦面20に形成する低吸水層の材質としては、例えば、ロックウェル硬さ(ASTM規格D785に基づく測定)がナイロンよりも高く、吸水率(ASTM規格D570に基づく測定)が低い樹脂を選定した。その樹脂としては、例えば、PEEK(ポリエーテルエチルケトン)、PAI(ポリアミドイミド)やPI(ポリイミド)を使用した。 First, on the flat surface 20 of the gasket member 8 made of 6.12 nylon, an LR6 gasket coated with PAI (polyamide-imide) having a thickness of 0.5 mm was prepared. As the material of the low water absorption layer formed on the flat surface 20, for example, a resin having a Rockwell hardness (measured based on ASTM standard D785) higher than nylon and a water absorption rate (measured based on ASTM standard D570) is low. selected. As the resin, for example, PEEK (polyether ethyl ketone), PAI (polyamideimide), or PI (polyimide) was used.

そして、各条件のガスケット部材につき、試験1~3を実施し、その試験結果を検証した。試験1は、水分透過(n=20)の試験である。60℃90%R.H.の環境下で100日保存し、透過水分量が30mg以下の場合に○(適合)、透過水分量が31~99mgの場合に△、透過水分量100mg以上の場合に×(不適合)と判定した。試験1の試験結果は、水分透過の試験結果である。 Then, Tests 1 to 3 were performed on the gasket member under each condition, and the test results were verified. Test 1 is a test of moisture permeation (n=20). Stored in an environment of 60°C and 90% R.H. for 100 days, ○ (suitable) when permeated water content is 30 mg or less, △ when permeated water content is 31 to 99 mg, and 100 mg or more It was judged as × (not suitable). The test result of Test 1 is the test result of water permeation.

また、試験2は、脆化(n=20)の試験である。60℃90%R.H.の環境下で100日保存し、JIS C 8514に基づく誤使用充電試験において、安全弁16のみが作動した場合に○、平坦面20の破断が5%~50%の場合に△、平坦面20の破断が55%~100%の場合又は電池缶3内部の固形物が流出した場合に×と判定した。試験2の試験結果は、脆化の試験結果である。 Also, Test 2 is a test of embrittlement (n=20). Stored in an environment of 60°C and 90% R.H. for 100 days, and in the misuse charging test based on JIS C 8514, ○ when only the safety valve 16 was operated, and the breakage of the flat surface 20 was 5% to 50%. It was judged as Δ when the flat surface 20 was ruptured by 55% to 100% or when solid matter inside the battery can 3 flowed out. The test result of test 2 is the embrittlement test result.

また、試験3は、安全弁16の弁作動(n=20)の弁作動圧測定試験である。安全弁16が正常に作動した場合を○、安全弁16が正常に作動しなかった場合を×と判定した。試験3の試験結果は、弁動作の試験結果である。 Test 3 is a valve actuation pressure measurement test of the valve actuation of the safety valve 16 (n=20). A case where the safety valve 16 operated normally was evaluated as ◯, and a case where the safety valve 16 did not operate normally was evaluated as x. The test results of test 3 are the valve operation test results.

先ず、従来例のガスケット部材は、平坦面20上に低吸水層21がない場合とする。この場合、従来のガスケット部材における水分透過の試験結果は×、吸水率は0.60%、脆化の試験結果は△、弁作動の試験結果は〇である。 First, the conventional gasket member does not have the low water absorption layer 21 on the flat surface 20 . In this case, the test result of water permeation in the conventional gasket member is ×, the water absorption rate is 0.60%, the embrittlement test result is Δ, and the valve actuation test result is ◯.

実施例1のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPEEK、低吸水層21の厚みを0.5mm、低吸水層21のロックウェル硬さをR120とする。この場合、実施例1のガスケット部材8における水分透過の試験結果は〇、吸水率は0.50%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 1, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PEEK, the thickness of the low water absorption layer 21 is 0.5 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R120. In this case, the water permeation test result of the gasket member 8 of Example 1 is ◯, the water absorption rate is 0.50%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例2のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPI、低吸水層21の厚みを0.5mm、低吸水層21のロックウェル硬さをR126とする。この場合、実施例2のガスケット部材8における水分透過の試験結果は〇、吸水率は0.40%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 2, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PI, the thickness of the low water absorption layer 21 is 0.5 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R126. In this case, the water permeation test result of the gasket member 8 of Example 2 is ◯, the water absorption rate is 0.40%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

比較例1のガスケット部材は、その平坦面に低吸水層を形成し、低吸水層の材質をPAI、低吸水層の厚みを0.1mm、低吸水層のロックウェル硬さをR127とする。この場合、比較例1のガスケット部材における水分透過の試験結果は×、吸水率は0.60%、脆化の試験結果は△、弁作動の試験結果は〇である。 In the gasket member of Comparative Example 1, a low water absorption layer is formed on the flat surface, the material of the low water absorption layer is PAI, the thickness of the low water absorption layer is 0.1 mm, and the Rockwell hardness of the low water absorption layer is R127. In this case, the gasket member of Comparative Example 1 had a moisture permeation test result of x, a water absorption rate of 0.60%, an embrittlement test result of Δ, and a valve actuation test result of ◯.

比較例2のガスケット部材は、その平坦面に低吸水層を形成し、低吸水層の材質をPAI、低吸水層の厚みを0.2mm、低吸水層のロックウェル硬さをR127とする。この場合、比較例2のガスケット部材における水分透過の試験結果は△、吸水率は0.55%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member of Comparative Example 2, a low water absorption layer is formed on the flat surface, the material of the low water absorption layer is PAI, the thickness of the low water absorption layer is 0.2 mm, and the Rockwell hardness of the low water absorption layer is R127. In this case, the gasket member of Comparative Example 2 had a water permeation test result of Δ, a water absorption rate of 0.55%, an embrittlement test result of ◯, and a valve actuation test result of ◯.

実施例4のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを0.3mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例4のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 4, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 0.3 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 4 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例5のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを0.4mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例5のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 5, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 0.4 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 5 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例3のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを0.5mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例3のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 3, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 0.5 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 3 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例6のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを0.6mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例6のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 6, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 0.6 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 6 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例7のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを0.7mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例7のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 7, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 0.7 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 7 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例8のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを0.8mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例8のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 8, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 0.8 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 8 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例9のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを0.9mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例9のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 9, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 0.9 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 9 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

実施例10のガスケット部材8は、その平坦面20に低吸水層21を形成し、低吸水層21の材質をPAI、低吸水層21の厚みを1.0mm、低吸水層21のロックウェル硬さをR127とする。この場合、実施例10のガスケット部材8における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、弁作動の試験結果は〇である。 In the gasket member 8 of Example 10, the low water absorption layer 21 is formed on the flat surface 20, the material of the low water absorption layer 21 is PAI, the thickness of the low water absorption layer 21 is 1.0 mm, and the low water absorption layer 21 is made of Rockwell hardness. Let the height be R127. In this case, the water permeation test result of the gasket member 8 of Example 10 is ◯, the water absorption rate is 0.33%, the embrittlement test result is ◯, and the valve actuation test result is ◯.

比較例3のガスケット部材は、その平坦面に低吸水層を形成し、低吸水層の材質をPAI、低吸水層の厚みを1.1mm、低吸水層のロックウェル硬さをR127とする。この場合、比較例3のガスケット部材における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、低吸水層の厚みが厚すぎるため、弁作動の試験結果は×である。 In the gasket member of Comparative Example 3, a low water absorption layer is formed on the flat surface, the material of the low water absorption layer is PAI, the thickness of the low water absorption layer is 1.1 mm, and the Rockwell hardness of the low water absorption layer is R127. In this case, the test result of moisture permeation in the gasket member of Comparative Example 3 is ◯, the water absorption rate is 0.33%, the test result of embrittlement is ◯, and the thickness of the low water absorption layer is too thick, so the test result of valve operation is x.

比較例4のガスケット部材は、その平坦面に低吸水層を形成し、低吸水層の材質をPAI、低吸水層の厚みを1.2mm、低吸水層のロックウェル硬さをR127とする。この場合、比較例4のガスケット部材における水分透過の試験結果は〇、吸水率は0.33%、脆化の試験結果は〇、低吸水層の厚みが厚すぎるため、弁作動の試験結果は×である。 In the gasket member of Comparative Example 4, a low water absorption layer is formed on the flat surface, the material of the low water absorption layer is PAI, the thickness of the low water absorption layer is 1.2 mm, and the Rockwell hardness of the low water absorption layer is R127. In this case, the test result of water permeation in the gasket member of Comparative Example 4 is ◯, the water absorption rate is 0.33%, the test result of embrittlement is ◯, and the thickness of the low water absorption layer is too thick, so the test result of valve operation is x.

今回選定した樹脂では低吸水層21を1.1mm以上に厚くした場合、平坦面20での緩衝ができなくなり、安全弁16が正常に作動しなくなった。しかしながら、低吸水層21を例えば、0.3mm~1.0mmの厚さに設定した場合、水分透過、脆化及び弁作動の何れの試験でも良好な検証結果が得られた。 With the resin selected this time, when the low water absorption layer 21 was thickened to 1.1 mm or more, the flat surface 20 could not buffer, and the safety valve 16 did not operate normally. However, when the low water absorption layer 21 was set to have a thickness of, for example, 0.3 mm to 1.0 mm, good verification results were obtained in all tests of moisture permeation, embrittlement and valve actuation.

(ガスケット部材の製造工程)
ガスケット部材8の製造工程について工程順に説明する。
(1)電池缶3の内部に設けられた集電棒4を支持する円筒状の支持部15と、電池缶3に支持される外周部17と、支持部15と外周部17との間の支持部15側に形成された環状の中間部18と、中間部18と外周部17との間に形成され、外周部17を中間部18に対して弾性変形可能にする緩衝部19とを有するガスケット部材8を6.12ナイロンで形成する。
(2)ガスケット部材8の中間部18の平坦面20上に硬化樹脂で低吸水層21を形成する。
(Manufacturing process of gasket member)
A manufacturing process of the gasket member 8 will be described in order of process.
(1) A cylindrical support portion 15 that supports the collector rod 4 provided inside the battery can 3, an outer peripheral portion 17 that is supported by the battery can 3, and support between the support portion 15 and the outer peripheral portion 17. A gasket having an annular intermediate portion 18 formed on the portion 15 side and a cushioning portion 19 formed between the intermediate portion 18 and the outer peripheral portion 17 to allow the outer peripheral portion 17 to be elastically deformable with respect to the intermediate portion 18. Member 8 is formed from 6.12 nylon.
(2) A low water absorption layer 21 is formed from a cured resin on the flat surface 20 of the intermediate portion 18 of the gasket member 8 .

その結果、中間部18の平坦面20上に低吸水層21を形成したガスケット部材8が製造されることになる。 As a result, the gasket member 8 having the low water absorption layer 21 formed on the flat surface 20 of the intermediate portion 18 is manufactured.

(筒型電池1の製造工程)
以上のように構成された筒型電池1の製造工程について、工程順に説明する。
(1)例えば、電解二酸化マンガン、黒鉛、バインダー、水酸化カリウム溶液を用いて、正極材料5としての正極合剤を作り、正極合剤をリング状に成型する。
(2)亜鉛合金粉、電解液等を用いて、負極材料6としてのゲル状の負極合剤を作る。
(3)電池缶3の内部に、リング状の正極合剤を収容する。
(4)電池缶3の端部にビーディング加工によってくびれ部3bを形成し、ガスケット部材8と電池缶3との接触面にシール剤を塗布する。
(5)電池缶3に収容した正極合剤の内側にセパレータ部材7を挿入する。
(6)セパレータ部材7に水酸化カリウム電解液を含浸させる。
(7)電池缶3に設けられたセパレータ部材7の内側に負極端子12側の開口3aからゲル状の負極合剤を注入する。
(8)ガスケット部材8、集電棒4、負極端子12を組み付けた集電体を作る。
(9)集電体を電池缶3の開口3aに組み付けて、電池缶3の開口3aに対して集電体のガスケット部材8をガスケット部材8の直径方向である横方向から加締めることで、ガスケット部材8で開口3aを封口する。
(Manufacturing process of cylindrical battery 1)
Manufacturing steps of the cylindrical battery 1 configured as described above will be described in order of steps.
(1) For example, electrolytic manganese dioxide, graphite, a binder, and a potassium hydroxide solution are used to prepare a positive electrode mixture as the positive electrode material 5, and the positive electrode mixture is formed into a ring shape.
(2) A gel-like negative electrode mixture as the negative electrode material 6 is prepared using a zinc alloy powder, an electrolytic solution, and the like.
(3) A ring-shaped positive electrode mixture is accommodated inside the battery can 3 .
(4) A constricted portion 3 b is formed at the end of the battery can 3 by beading, and a sealant is applied to the contact surface between the gasket member 8 and the battery can 3 .
(5) The separator member 7 is inserted inside the positive electrode mixture accommodated in the battery can 3 .
(6) The separator member 7 is impregnated with a potassium hydroxide electrolyte.
(7) A gel-like negative electrode mixture is injected into the separator member 7 provided in the battery can 3 through the opening 3a on the negative electrode terminal 12 side.
(8) A collector is made by assembling the gasket member 8, the collector rod 4, and the negative electrode terminal 12 together.
(9) By assembling the current collector into the opening 3a of the battery can 3 and crimping the gasket member 8 of the current collector against the opening 3a of the battery can 3 from the lateral direction, which is the diameter direction of the gasket member 8, The gasket member 8 seals the opening 3a.

(実施例の効果)
本実施例の筒型電池1では、環状の中間部18の平坦面20に形成された低吸水層21を有するガスケット部材8で電池缶3の開口3aを封口する。その結果、電池缶3の外部からの水分の透過を抑えることで電池缶3の内部への水分の透過を低減する。更に、水分透過による電池缶3の内圧上昇を低減しながら、ガスケット部材8の脆化による電池内部の液漏れの発生を抑制できる。
(Effect of Example)
In the tubular battery 1 of this embodiment, the opening 3 a of the battery can 3 is sealed with the gasket member 8 having the low water absorption layer 21 formed on the flat surface 20 of the annular intermediate portion 18 . As a result, the permeation of moisture from the outside of the battery can 3 is suppressed, thereby reducing the permeation of moisture into the interior of the battery can 3 . Furthermore, it is possible to suppress the leakage of liquid inside the battery due to embrittlement of the gasket member 8 while reducing the increase in the internal pressure of the battery can 3 due to permeation of moisture.

1 筒型電池
3 電池缶
3a 開口
4 集電棒
8 ガスケット部材
15 支持部
16 安全弁
17 外周部
18 中間部
19 緩衝部
20 平坦面
21 低吸水層
REFERENCE SIGNS LIST 1 Cylindrical battery 3 Battery can 3a Opening 4 Current collector 8 Gasket member 15 Supporting part 16 Safety valve 17 Peripheral part 18 Intermediate part 19 Buffer part 20 Flat surface 21 Low water absorption layer

Claims (7)

電池缶の開口を封口する、筒型電池用のガスケット部材であって、
前記電池缶の内部に設けられた集電棒を支持する筒状の支持部と、
前記電池缶に支持される外周部と、
前記支持部と前記外周部との間の前記支持部側に形成された環状の中間部と、
前記中間部と前記外周部との間に形成され、前記外周部を前記中間部に対して弾性変形可能にする緩衝部と、
前記環状の中間部の平坦面に形成された低吸水層と、
を有することを特徴とするガスケット部材。
A gasket member for a cylindrical battery that seals an opening of a battery can,
a cylindrical support that supports a collector rod provided inside the battery can;
an outer peripheral portion supported by the battery can;
an annular intermediate portion formed on the support portion side between the support portion and the outer peripheral portion;
a cushioning portion formed between the intermediate portion and the outer peripheral portion, the buffer portion allowing the outer peripheral portion to be elastically deformable with respect to the intermediate portion;
a low water absorption layer formed on the flat surface of the annular intermediate portion;
A gasket member comprising:
前記低吸水層は、
前記環状の中間部の平坦面の内、前記電池缶の負極端子側の平坦面に形成されたことを特徴とする請求項1に記載のガスケット部材。
The low water absorption layer is
2. The gasket member according to claim 1, wherein the gasket member is formed on the flat surface of the annular intermediate portion on the negative terminal side of the battery can.
前記低吸水層は、
吸水率0.6%(24hr飽和)以下の材質を使用した層であることを特徴とする請求項1又は2に記載のガスケット部材。
The low water absorption layer is
3. The gasket member according to claim 1, wherein the layer is made of a material having a water absorption rate of 0.6% (saturated for 24 hours) or less.
前記低吸水層は、
ロックウェル硬さがR120以上を有する硬質層であることを特徴とする請求項1~3の何れか一つに記載のガスケット部材。
The low water absorption layer is
The gasket member according to any one of claims 1 to 3, wherein the hard layer has a Rockwell hardness of R120 or more.
前記平坦面に形成された前記低吸水層の厚みは、
0.3mm~1.0mmであることを特徴とする請求項1~4の何れか一つに記載のガスケット部材。
The thickness of the low water absorption layer formed on the flat surface is
The gasket member according to any one of claims 1 to 4, characterized in that it has a thickness of 0.3 mm to 1.0 mm.
前記ガスケット部材の材質は、
6.12ナイロンであることを特徴とする請求項1~5の何れか一つに記載のガスケット部材。
The material of the gasket member is
The gasket member according to any one of claims 1 to 5, characterized in that it is made of 6.12 nylon.
電池缶の開口を封口する、筒型電池用のガスケット部材の製造方法であって、
前記電池缶の内部に設けられた集電棒を支持する筒状の支持部と、前記電池缶に支持される外周部と、前記支持部と前記外周部との間の前記支持部側に形成された環状の中間部と、前記中間部と前記外周部との間に形成され、前記外周部を前記中間部に対して弾性変形可能にする緩衝部とを有する前記ガスケット部材をナイロンで形成し、
前記ガスケット部材の前記中間部の平坦面上に硬化樹脂で低吸水層を形成する
工程を有することを特徴とするガスケット部材の製造方法。
A method for manufacturing a gasket member for a cylindrical battery that seals an opening of a battery can, comprising:
A cylindrical support portion that supports a collector rod provided inside the battery can, an outer peripheral portion supported by the battery can, and a support portion side formed between the support portion and the outer peripheral portion the gasket member having an annular intermediate portion and a cushioning portion formed between the intermediate portion and the outer peripheral portion to allow the outer peripheral portion to be elastically deformable with respect to the intermediate portion;
A method of manufacturing a gasket member, comprising: forming a low water absorption layer with a cured resin on the flat surface of the intermediate portion of the gasket member.
JP2021040484A 2021-03-12 2021-03-12 Gasket member and manufacturing method for gasket member Pending JP2022139905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021040484A JP2022139905A (en) 2021-03-12 2021-03-12 Gasket member and manufacturing method for gasket member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021040484A JP2022139905A (en) 2021-03-12 2021-03-12 Gasket member and manufacturing method for gasket member

Publications (1)

Publication Number Publication Date
JP2022139905A true JP2022139905A (en) 2022-09-26

Family

ID=83399777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021040484A Pending JP2022139905A (en) 2021-03-12 2021-03-12 Gasket member and manufacturing method for gasket member

Country Status (1)

Country Link
JP (1) JP2022139905A (en)

Similar Documents

Publication Publication Date Title
US8859139B2 (en) Alkaline storage battery
JP6017873B2 (en) Sealed battery
US7074516B2 (en) Vent for cylindrical electrochemical batteries
JP4959657B2 (en) Sealing device and sealed container
US3042734A (en) Alkaline cell closure
EP1914819A1 (en) Alkaline battery
JP2009230991A (en) Cylindrical cell and manufacturing method of cylindrical cell
JP2022139905A (en) Gasket member and manufacturing method for gasket member
JP4951207B2 (en) Cylindrical sealed battery
JP2008192321A (en) Cylindrical storage battery, and its manufacturing method
JP3987862B2 (en) Power storage device
JP5779453B2 (en) Alkaline battery
US20230187746A1 (en) Cylindrical battery
JP2007172859A (en) Button type alkaline battery and its manufacturing method
JP2012146766A (en) Sealing plate
EP0037122A1 (en) A cylindrical battery
JP2022098100A (en) Evaluation method of gasket member and gasket member
JP2008108603A (en) Cylindrical alkaline battery
JP2023172029A (en) Battery and gasket
JP2023127980A (en) Battery and battery manufacturing method
WO2009110540A1 (en) Bobbin type lithium battery
JP2009146846A (en) Air-zinc battery
JP7187205B2 (en) cylindrical battery
JP2022018320A (en) Alkaline battery
JPH0415581B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240213