JP2022136032A - Novel fluorinated aromatic ester compound and gelator containing the same - Google Patents

Novel fluorinated aromatic ester compound and gelator containing the same Download PDF

Info

Publication number
JP2022136032A
JP2022136032A JP2022032844A JP2022032844A JP2022136032A JP 2022136032 A JP2022136032 A JP 2022136032A JP 2022032844 A JP2022032844 A JP 2022032844A JP 2022032844 A JP2022032844 A JP 2022032844A JP 2022136032 A JP2022136032 A JP 2022136032A
Authority
JP
Japan
Prior art keywords
group
compound
added
gel
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022032844A
Other languages
Japanese (ja)
Inventor
浩明 岡本
Hiroaki Okamoto
由紀 森田
Yuki Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Publication of JP2022136032A publication Critical patent/JP2022136032A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

To provide a novel compound able to serve as a gelator that is of a low-molecular-weight type not having a hydrogen-bondable functional group in each molecule, and can gelate a wide range of organic solvents at low concentration.SOLUTION: A compound according to one embodiment of the present invention is a fluorinated aromatic ester compound represented by the following formula (I) (where Ar is a substituted or unsubstituted divalent aromatic group, y is 0, 1 or 2, m and n independently represent an integer of 1-20, p and q independently represent an integer of 0-6, and r represents an integer of 1-3).SELECTED DRAWING: None

Description

特許法第30条第2項適用申請有り (1)令和3年11月8日に2021年日本化学会中国四国支部大会高知大会実行委員会が発行した「2021年日本化学会中国四国支部大会高知大会 講演要旨集」にて「含フッ素低分子量ゲル化剤で形成したLiイオン液体ゲル電解質のゲル物性および電気化学特性」及び「ペルフルオロアルキル基を有するビフェニル誘導体を用いたゲルの物性評価」について公開 (2)令和3年11月13日に、2021年日本化学会中国四国支部大会 高知大会オンライン開催方式のポスター発表にて「含フッ素低分子量ゲル化剤で形成したLiイオン液体ゲル電解質のゲル物性および電気化学特性」及び「ペルフルオロアルキル基を有するビフェニル誘導体を用いたゲルの物性評価」について公開There is an application for application of Article 30, Paragraph 2 of the Patent Act. "Gel Physical Properties and Electrochemical Properties of Li-Ion Liquid Gel Electrolytes Formed with Fluorine-Containing Low-Molecular-Weight Gelling Agents" and "Evaluation of Physical Properties of Gels Using Biphenyl Derivatives Having Perfluoroalkyl Groups" in Kochi Conference Abstracts (2) On November 13, 2021, at the 2021 Chugoku-Shikoku Branch Meeting of the Chemical Society of Japan in Kochi, a poster presentation of the online holding method, "Li-ion liquid gel electrolyte formed with fluorine-containing low-molecular-weight gelling agent "Physical Properties and Electrochemical Properties of Gels" and "Evaluation of Physical Properties of Gels Using Biphenyl Derivatives Having Perfluoroalkyl Groups"

本発明は、新規なフッ素含有芳香族エステル化合物、特に、パーフルオロアルキル基を有する芳香族エステル化合物及びそれを含有するゲル化剤に関する。 TECHNICAL FIELD The present invention relates to a novel fluorine-containing aromatic ester compound, particularly an aromatic ester compound having a perfluoroalkyl group and a gelling agent containing the same.

各種産業分野(例えば、塗料、化粧品、医薬医療、石油流出処理、電子・光学分野、環境分野など)において、有機液体状物質を固化、すなわちゼリー状に固めたり、又は、増粘したりする目的でゲル化剤が用いられている。 In various industrial fields (e.g., paints, cosmetics, pharmaceuticals and medical care, oil spill treatment, electronic/optical fields, environmental fields, etc.), the purpose of solidifying organic liquid substances, that is, solidifying them into jelly or increasing their viscosity. gelling agents are used in

従来有機液体を固定化するには、低分子量もしくは高分子量の有機ゲル化剤が用いられてきた。これらの有機ゲル化剤の多くは分子内に水素結合性官能基(例えば,アミノ基,アミド基,尿素など)を持つ低分子量化合物群もしくは三次元的なネットワーク構造を持つ高分子化合物群が知られている。後者に比べ、前者の開発は比較的遅いものの、ジアルキルウレア誘導体(特許文献1)、ペルフルオロアルキル誘導体[非特許文献1、特許文献2]が知られている。しかし、これらの化合物はゲル化する溶媒の種類が少ない、化合物の安定性に難がある、高濃度の支持電解質を含む有機電解液のゲル化などの問題点があった。一方、本発明と分子構造が類似した化合物として特許文献3が知られているが、これらの化合物は、非線形光学材料としての物性のみで、ゲル化に関する記載はない。
本発明者らは、低濃度で各種の有機溶媒をゲル化し得るゲル化剤の開発を進め、特にフルオロアルカン誘導体を提案してきた。
特許文献4~7には以下のフルオロアルカン誘導体が記載されている。
(特許文献4)
CmF2m+1-(CH2)y-CHX-CnH2n-O-Ar-O-R
(式中、Xは水素原子又はハロゲン原子であり、Xが水素原子のときyは0であり、Xがハロゲン原子のときyは0又は1である。Arは置換又は無置換の炭素数5~30の2価の芳香族基、Rは飽和又は不飽和の炭素数1~20の1価の炭化水素基、mは6~12の自然数、nは1~4の自然数である。)
(特許文献5)
R2-L1-Ar1-X1-R1
(式(1)中、Ar1は、置換若しくは無置換の核原子数6~30の2価の芳香族基を示し、R1はパーフルオロアルキル基を有する飽和又は不飽和の炭素数2~22の1価の炭化水素基を示し、X1は酸素原子、硫黄原子又は-SO2-で表される基を示し、R2は特定の1価の基を示し、L1は、R2の種類により-COO-で表される基又は-OCO-で表される基を示す。)
(特許文献6)
R-X-Ar1-O-R1-O-Ar2-Y
(式中、Ar1及びAr2は、それぞれ独立に、置換若しくは無置換の核原子数6~30の2価の芳香族基を示し、R1は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1~20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2~22の1価の炭化水素基を示し、Xは-S-又は-SO2-で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2~20の1価のアルコキシル基又はフッ素原子を示す。)
(特許文献7)
CmF2m+1R1-SO2-Z-O-R2-O-Z-SO2-R3CnF2n+1
(式中、複数のZはそれぞれ独立に、置換又は無置換の核原子数5~30の2価の芳香族炭化水素基を示し、R1及びR3はそれぞれ独立に、単結合又は飽和若しくは不飽和の炭素数1~10の2価の炭化水素基を示し、R2は、置換又は無置換の炭素数2~18の2価の炭化水素基2つ以上と、酸素及び/又は硫黄原子1つ以上とを有する2価の基を示し、m及びnはそれぞれ独立に、2~18の自然数を示す。)
Conventionally, low-molecular-weight or high-molecular-weight organic gelling agents have been used to immobilize organic liquids. Many of these organic gelators are known to be low-molecular-weight compounds with hydrogen-bonding functional groups (e.g., amino groups, amide groups, urea, etc.) or high-molecular-weight compounds with a three-dimensional network structure. It is Although the development of the former is relatively slow compared to the latter, dialkyl urea derivatives (Patent Document 1) and perfluoroalkyl derivatives [Non-Patent Document 1, Patent Document 2] are known. However, these compounds have problems such as limited types of gelling solvents, difficulty in compound stability, and gelation of organic electrolytes containing high-concentration supporting electrolytes. On the other hand, although Patent Document 3 is known as a compound having a molecular structure similar to that of the present invention, these compounds only have physical properties as nonlinear optical materials, and there is no description of gelation.
The present inventors have advanced the development of gelling agents capable of gelling various organic solvents at low concentrations, and have particularly proposed fluoroalkane derivatives.
Patent Documents 4 to 7 describe the following fluoroalkane derivatives.
(Patent Document 4)
CmF2m+1-(CH2)y-CHX-CnH2n-O-Ar-OR
(Wherein, X is a hydrogen atom or a halogen atom, y is 0 when X is a hydrogen atom, and y is 0 or 1 when X is a halogen atom. Ar is a substituted or unsubstituted C5 ~30 divalent aromatic group, R is a saturated or unsaturated monovalent hydrocarbon group having 1 to 20 carbon atoms, m is a natural number of 6 to 12, and n is a natural number of 1 to 4.)
(Patent document 5)
R2-L1-Ar1-X1-R1
(In the formula (1), Ar represents a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R represents a saturated or unsaturated C 2 to 22 aromatic group having a perfluoroalkyl group. represents a monovalent hydrocarbon group, X represents an oxygen atom, a sulfur atom or a group represented by -SO2-, R2 represents a specific monovalent group, L1 is -COO- depending on the type of R2; represents a group represented by or -OCO-.)
(Patent document 6)
RX-Ar1-O-R1-O-Ar2-Y
(In the formula, Ar1 and Ar2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R1 may have an oxygen atom or a sulfur atom in the chain. represents a good saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms, R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group, and X represents a group represented by -S- or -SO2-, and Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom.)
(Patent Document 7)
CmF2m+1R1-SO2-ZO-R2-O-Z-SO2-R3CnF2n+1
(Wherein, each of a plurality of Z independently represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 5 to 30 nuclear atoms, and each of R1 and R3 independently represents a single bond or a saturated or unsaturated represents a divalent hydrocarbon group having 1 to 10 carbon atoms, and R is two or more substituted or unsubstituted divalent hydrocarbon groups having 2 to 18 carbon atoms and one or more oxygen and/or sulfur atoms. and m and n each independently represent a natural number of 2 to 18.)

特開平8-231942号公報JP-A-8-231942 特開2007‐191626号公報JP-A-2007-191626 WO1991/008198パンフレットWO1991/008198 pamphlet 特開2019‐081836号公報JP 2019-081836 A 特開2016-175873号公報JP 2016-175873 A 特開2016-064990号公報JP 2016-064990 A 特開2011-246422号公報JP 2011-246422 A

J. Fluorine Chem. 111, 47-58 (2001)J. Fluorine Chem. 111, 47-58 (2001)

本発明は、分子内に水素結合性官能基を有しない低分子量型であって、低濃度で、有機電解液やイオン液体を含む幅広い有機溶媒をゲル化できるゲル化剤となり得る新規な化合物を提供することを課題とする。 The present invention provides a novel compound that is a low-molecular-weight type that does not have a hydrogen-bonding functional group in the molecule and that can be a gelling agent capable of gelling a wide range of organic solvents including organic electrolytes and ionic liquids at low concentrations. The task is to provide

本発明者らは、上記課題を解決すべく鋭意検討した結果、パーフルオロアルキル鎖を有する芳香族エステル化合物が、上記課題を解決できることを見いだし、本発明を完成するに至った。 As a result of intensive studies aimed at solving the above problems, the present inventors have found that an aromatic ester compound having a perfluoroalkyl chain can solve the above problems, and have completed the present invention.

すなわち、本発明は、以下に示す態様を含む。
[1]下記式(1)で表されるフッ素含有芳香族エステル化合物。
That is, the present invention includes the aspects shown below.
[1] A fluorine-containing aromatic ester compound represented by the following formula (1).

Figure 2022136032000001
Figure 2022136032000001

(式中、
Arは、置換又は無置換の2価の芳香族基を示し、
yは、0、1又は2を示し、
m及びnは、それぞれ独立に、1~20のいずれかの整数を示し、
p及びqは、それぞれ独立に、0~6のいずれかの整数を示し、
rは1~3のいずれかの整数を示す)
[2]式(I)におけるArが置換又は無置換のフェニレン基、ナフチレン基又はビフェニレン基である[1]に記載のフッ素含有芳香族エステル化合物。
[3][1]又は[2]に記載のフッ素含有芳香族エステル化合物を含有するゲル化剤。[4][3]に記載のゲル化剤及び有機溶媒を含有するゲル状組成物。
[5]有機溶媒がイオン液体である[4]に記載のゲル状組成物。
(In the formula,
Ar represents a substituted or unsubstituted divalent aromatic group,
y represents 0, 1 or 2,
m and n are each independently an integer from 1 to 20,
p and q each independently represent any integer from 0 to 6,
r represents any integer from 1 to 3)
[2] The fluorine-containing aromatic ester compound according to [1], wherein Ar in formula (I) is a substituted or unsubstituted phenylene group, naphthylene group or biphenylene group.
[3] A gelling agent containing the fluorine-containing aromatic ester compound according to [1] or [2]. [4] A gel composition containing the gelling agent according to [3] and an organic solvent.
[5] The gel composition according to [4], wherein the organic solvent is an ionic liquid.

本発明のフッ素含有芳香族エステル化合物は、活性水素(プロトン)を持つプロトン性有機溶媒(アルコール性溶媒)や非プロトン性有機溶媒などの多様な有機溶媒をゲル化することができる。
さらに、塩基性有機溶媒(N,N-diethylaniline)やイオン液体をゲル化することができる。特に、従来技術では困難であったプロトン性イオン液体をゲル化することができる。
The fluorine-containing aromatic ester compound of the present invention can gel various organic solvents such as protic organic solvents (alcoholic solvents) having active hydrogen (protons) and aprotic organic solvents.
Furthermore, basic organic solvents (N,N-diethylaniline) and ionic liquids can be gelled. In particular, protic ionic liquids, which have been difficult to gel with conventional techniques, can be gelled.

本発明の化合物(2-6-6)と溶媒(PC及び[EMIM][FSA])とのゲル(●及び■)、及び本発明の化合物(2-6-6)と溶媒及び支持電解質(1M LiClO4/PC及び1 molkg-1 LiFSA / [EMIM][FSA])とのゲル(〇及び□)について、ゾルへの相転移温度と化合物濃度との関係を示す図である。Gels (● and ■) of the compound (2-6-6) of the present invention and solvents (PC and [EMIM][FSA]), and compound (2-6-6) of the present invention and solvents and supporting electrolytes ( 1M LiClOFour/pc and 1molkg-1LiFSA/ [EMIM][FSA]) and gels (○ and □) show the relationship between the phase transition temperature to sol and the compound concentration. 本発明の化合物(1-6-6及び2-6-6)と1-オクタノールとのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す図である。FIG. 2 is a diagram showing the relationship between the phase transition temperature to sol and the compound concentration for gels of compounds (1-6-6 and 2-6-6) of the present invention and 1-octanol. 本発明の化合物(2-6-6、3-6-6、4-6-6及び5-6-6)とプロピレンカーボネートとのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す図である。図中の数字は、化合物番号を示す。For gels of the compounds (2-6-6, 3-6-6, 4-6-6 and 5-6-6) of the present invention and propylene carbonate, the relationship between the phase transition temperature to sol and the compound concentration was determined. FIG. 4 is a diagram showing; Numbers in the figure indicate compound numbers. 本発明の化合物(1-6-6、2-6-6、3-6-6、4-6-6及び5-6-6)とイオン液体[BMIM][TFSA]とのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す図である。図中の数字は、化合物番号を示す。For gels of compounds of the present invention (1-6-6, 2-6-6, 3-6-6, 4-6-6 and 5-6-6) and ionic liquids [BMIM] [TFSA], sol It is a figure which shows the relationship between the phase transition temperature to and compound density|concentration. Numbers in the figure indicate compound numbers. 本発明の化合物(2-6-6、3-6-6及び4-6-6)と1M LiFSA / EC:PC:DEC とのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す図である。図中の数字は、化合物番号を示す。For gels of the compounds of the present invention (2-6-6, 3-6-6 and 4-6-6) and 1M LiFSA / EC:PC:DEC, the relationship between the phase transition temperature to sol and the compound concentration was examined. FIG. 4 is a diagram showing; Numbers in the figure indicate compound numbers. 本発明の化合物(3-6-6)及び比較例(compound K-8)について、剪断速度と粘度との関係を示す図である。右図が本発明の化合物(3-6-6)であり、左図が比較例(compound K-8)である。FIG. 2 is a graph showing the relationship between shear rate and viscosity for compound (3-6-6) of the present invention and comparative example (compound K-8). The right figure is the compound (3-6-6) of the present invention, and the left figure is a comparative example (compound K-8).

(フッ素含有芳香族エステル化合物)
本発明のフッ素含有芳香族エステル化合物は、下記式(1)で表される化合物である。
(Fluorine-containing aromatic ester compound)
The fluorine-containing aromatic ester compound of the present invention is a compound represented by the following formula (1).

Figure 2022136032000002
Figure 2022136032000002

上記式中、
Arは、置換又は無置換の2価の芳香族基を示し、
yは、0、1又は2を示し、
m及びnは、それぞれ独立に、1~20のいずれかの整数を示し、
p及びqは、それぞれ独立に、0~6のいずれかの整数を示し、
rは1~3のいずれかの整数を示す。
In the above formula,
Ar represents a substituted or unsubstituted divalent aromatic group,
y represents 0, 1 or 2,
m and n are each independently an integer from 1 to 20,
p and q each independently represent any integer from 0 to 6,
r represents an integer of 1 to 3;

Arの「置換又は無置換の2価の芳香族基」の「2価の芳香族基」は、具体的には「C3~10の芳香族基」を表す。ここで、「C3~10」は、芳香族基を構成する炭素数を表し、芳香族性を満たすために、酸素原子、窒素原子、イオウ原子等の炭素以外の原子を含んで2価の芳香族基を形成していてもよい。芳香族基としては、単環及び多環のいずれであってもよく、多環芳香族基は、少なくとも一つの環が芳香環であれば、残りの環が飽和脂環又は不飽和脂環のいずれであってもよい。芳香族基には、芳香族炭化水素基及び芳香族複素環基を含む。具体的には、フェニレン基、ナフチレン基、アントラニレン基、フェナントリレン基、アズレニレン基、ピレニレン基、クリセニレン基、フルオレニレン基、フルオランテニレン基、インデニレン基、インダニレン基、テトラリニレン基等の2価芳香族炭化水素基、ピロリレン基、フリレン基、チエニレン基、イミダゾレン基、ピラゾレン基、オキサゾレン基、イソオキサゾレン基、チアゾレン基、イソチアゾレン基、インドニレン基、イソインドリニレン基、インドリジニレン基、ベンツイミダゾレン基、カルバゾレン基等の2価5員環芳香族複素環基、ピリジレン基、ピラジニレン基、ピリミジレン基、ピリダジレン基、トリアジレン基、キノリレン基、イソキノリレン基、キノキサリレン基、シノリレン基、キナゾリレン基、フタラジレン基、アクリジレン基、ナフタジレン基、フェナジレン基等の2価6員環芳香族複素環基などが挙げられる。
また、多環芳香族基には、上記のように芳香族環同士が縮合している基以外に、ビフェニレン基のように芳香環同士が直接結合している基も包含する。
好ましくは、芳香族炭化水素基、より好ましくは、フェニレン基、ナフチレン基又はビフェニレン基、特に好ましくはフェニレン基が挙げられる。
The "divalent aromatic group" of the "substituted or unsubstituted divalent aromatic group" of Ar specifically represents a "C3-10 aromatic group". Here, "C3-10" represents the number of carbon atoms constituting the aromatic group, and in order to satisfy the aromaticity, a divalent aromatic group containing atoms other than carbon such as oxygen atoms, nitrogen atoms, sulfur atoms may form a family group. The aromatic group may be either monocyclic or polycyclic, and the polycyclic aromatic group has at least one aromatic ring and the remaining rings are saturated or unsaturated alicyclics. Either can be used. Aromatic groups include aromatic hydrocarbon groups and aromatic heterocyclic groups. Specifically, bivalent aromatic hydrocarbons such as phenylene group, naphthylene group, anthranylene group, phenanthrylene group, azulenylene group, pyrenylene group, chrysenylene group, fluorenylene group, fluorantenylene group, indenylene group, indanylene group, and tetralinylene group. pyrrolylene group, furylene group, thienylene group, imidazolene group, pyrazolene group, oxazolene group, isoxazolene group, thiazolene group, isothiazolene group, indolylene group, isoindolinylene group, indolizinylene group, benzimidazolene group, carbazolene group, etc. A divalent five-membered aromatic heterocyclic group, a pyridylene group, a pyrazinylene group, a pyrimidylene group, a pyridazylene group, a triazylene group, a quinolylene group, an isoquinolylene group, a quinoxalylen group, a cinolylene group, a quinazolylene group, a phthalazylene group, an acridylene group, and a naphthalylene group. , a bivalent 6-membered aromatic heterocyclic group such as a phenadylene group.
The polycyclic aromatic group also includes a group in which the aromatic rings are directly bonded together, such as a biphenylene group, in addition to the groups in which the aromatic rings are condensed as described above.
An aromatic hydrocarbon group is preferred, a phenylene group, a naphthylene group or a biphenylene group is more preferred, and a phenylene group is particularly preferred.

2価の芳香族基の有する置換基としては、本発明の効果を有する限りにおいて特に制限されない。「置換基」となり得る基の具体例としては、以下の基を挙げることができる。 The substituent of the divalent aromatic group is not particularly limited as long as the effects of the present invention are achieved. Specific examples of groups that can be "substituents" include the following groups.

メチル基、エチル基などのC1~6アルキル基;
ビニル基、1-プロペニル基などのC2~6アルケニル基;
エチニル基、1-プロピニル基などのC2~6アルキニル基;
シクロプロピル基、シクロブチル基などのC3~8シクロアルキル基;
フェニル基、ナフチル基などのC6~10アリール基;
フルオロ基、クロロ基、ブロモ基、イオド基などのハロゲノ基;
フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、パーフルオロプロピル基、2,2,2-トリフルオロ-1-トリフルオロメチルエチル基、パーフルオロイソプロピル基、4-フルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、クロロメチル基、ブロモメチル基、ジクロロメチル基、ジブロモメチル基、トリクロロメチル基、トリブロモメチル基、1-クロロエチル基、2,2,2-トリクロロエチル基、4-クロロブチル基、パークロロヘキシル基、2,4,6-トリクロロヘキシル基などのC1~6ハロアルキル基などが挙げられる。
C1-6 alkyl groups such as a methyl group and an ethyl group;
C2-6 alkenyl groups such as a vinyl group and a 1-propenyl group;
C2-6 alkynyl groups such as an ethynyl group and a 1-propynyl group;
C3-8 cycloalkyl groups such as cyclopropyl group and cyclobutyl group;
C6-10 aryl group such as phenyl group and naphthyl group;
Halogeno groups such as fluoro, chloro, bromo and iodo groups;
fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3- pentafluoropropyl group, perfluoropropyl group, 2,2,2-trifluoro-1-trifluoromethylethyl group, perfluoroisopropyl group, 4-fluorobutyl group, 2,2,3,3,4,4, 4-heptafluorobutyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, chloromethyl group, bromomethyl group, dichloromethyl group, dibromomethyl group, trichloromethyl group, tribromomethyl group, 1-chloroethyl group , 2,2,2-trichloroethyl group, 4-chlorobutyl group, perchlorohexyl group, 2,4,6-trichlorohexyl group and other C1-6 haloalkyl groups.

式(I)中のC2m+1(CH及び(CH2n+1における、m及びnは、それぞれ独立に、1~20のいずれかの整数を表し、p及びqは、それぞれ独立に0~6のいずれかの整数を表す。 m and n in C m F 2m+1 (CH 2 ) p and (CH 2 ) q C n F 2n+1 in formula (I) each independently represent an integer of 1 to 20, p and q each independently represents an integer of 0 to 6.

2m+1(CH及び(CH2n+1で表される基としては、具体的には、パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロ-n-ブチル基、1H,1H-パーフルオロ-n-ブチル基、パーフルオロ-n-ペンチル基、パーフルオロ-n-ヘキシル基、1H,1H,-パーフルオロ-n-ペンチル基、1H,1H,2H,2H-パーフルオロ-n-ヘキシル基、1H,1H,2H,2H,3H,3H-パーフルオロ-n-ヘプチル基、1H,1H,2H,2H-パーフルオロ-n-オクチル基、1H,1H,2H,2H-パーフルオロ-n-ノニル基、1H,1H,2H,2H,3H,3H-パーフルオロ-n-ノニル基、1H,1H,2H,2H-パーフルオロ-n-デシル基、1H,1H,2H,2H,3H,3H-パーフルオロ-n-ドデシル基、等が挙げられる。 Specific examples of groups represented by C m F 2m+1 (CH 2 ) p and (CH 2 ) q C n F 2n+1 include a perfluoromethyl group, a perfluoroethyl group, a perfluoro-n-propyl group, perfluoro-n-butyl group, 1H,1H-perfluoro-n-butyl group, perfluoro-n-pentyl group, perfluoro-n-hexyl group, 1H,1H,-perfluoro-n-pentyl group, 1H , 1H,2H,2H-perfluoro-n-hexyl group, 1H,1H,2H,2H,3H,3H-perfluoro-n-heptyl group, 1H,1H,2H,2H-perfluoro-n-octyl group , 1H,1H,2H,2H-perfluoro-n-nonyl group, 1H,1H,2H,2H,3H,3H-perfluoro-n-nonyl group, 1H,1H,2H,2H-perfluoro-n- decyl group, 1H, 1H, 2H, 2H, 3H, 3H-perfluoro-n-dodecyl group, and the like.

式(I)で表されるフッ素含有芳香族エステル化合物として、Arが芳香族炭化水素基の場合について、たとえば、以下に示す化合物が挙げられる。
表1中、各記号は以下のものを表す。
Ph:1,4-フェニレン基、
BiPh:4,4’-ビフェニレン基、
NaPh:2,6-ナフチレン基
Examples of fluorine-containing aromatic ester compounds represented by formula (I) include compounds shown below when Ar is an aromatic hydrocarbon group.
In Table 1, each symbol represents the following.
Ph: 1,4-phenylene group,
BiPh: 4,4'-biphenylene group,
NaPh: 2,6-naphthylene group

Figure 2022136032000003
Figure 2022136032000003

(式(I)で表されるフッ素含有芳香族エステル化合物の製法)
式(I)で表されるフッ素含有芳香族エステル化合物の製法は特に限定されるものでないが、例えば、下記のスキーム又はそれに準じたスキームによって合成することができる。
(Method for Producing Fluorine-Containing Aromatic Ester Compound Represented by Formula (I))
The method for producing the fluorine-containing aromatic ester compound represented by formula (I) is not particularly limited.

Figure 2022136032000004
Figure 2022136032000004

Figure 2022136032000005
Figure 2022136032000005

上記反応式中、Ar、m、n、p、q、r及びyは、式(I)中の定義と同じである。
Rは、メチル基、エチル基等のアルキル基を示し、Xはヨウ素原子などのハロゲノ基を示す。
工程1においては、まず、チオールカルボン酸化合物(1)を、硫酸などの酸触媒等の存在下で、メタノール等のアルコールと反応させてチオールカルボン酸エステル化合物(2)を得る。次いで、チオールカルボン酸エステル化合物(2)を、アセトン、3-ペンタノン、シクロヘキサノンなどのケトン系溶媒などの溶媒中、KCOなどのアルカリ金属化合物の存在下、C2n+1(CHXで表されるフルオロアルキルハロゲン化物と反応させてチオエーテル化した後、メタノール、エタノールなどのアルコール系溶媒などの溶媒中、水酸化ナトリウムなどのアルカリ金属水酸化物の存在下で、エステル基を加水分解してチオフェニル化合物(3)を得る。
さらに、酢酸などの触媒の存在下で、過酸化水素などの酸化剤により酸化し、スルフィニル化合物(4-1)又はスルホニル化合物(4-2)を得る。
In the above reaction formula, Ar, m, n, p, q, r and y are defined as in formula (I).
R represents an alkyl group such as a methyl group or an ethyl group, and X represents a halogeno group such as an iodine atom.
In step 1, first, thiolcarboxylic acid compound (1) is reacted with alcohol such as methanol in the presence of an acid catalyst such as sulfuric acid to obtain thiolcarboxylic acid ester compound (2). Then, the thiol carboxylic acid ester compound (2) is reacted with C n F 2n+1 (CH 2 ) in the presence of an alkali metal compound such as K 2 CO 3 in a solvent such as a ketone solvent such as acetone, 3-pentanone, or cyclohexanone. q After thioetherification by reacting with a fluoroalkyl halide represented by X, the ester group is converted in a solvent such as an alcoholic solvent such as methanol or ethanol in the presence of an alkali metal hydroxide such as sodium hydroxide. Hydrolysis gives the thiophenyl compound (3).
Furthermore, it is oxidized with an oxidizing agent such as hydrogen peroxide in the presence of a catalyst such as acetic acid to obtain a sulfinyl compound (4-1) or a sulfonyl compound (4-2).

工程2では、工程1において得られたチオフェニル化合物(3)、スルフィニル化合物(4-1)又はスルホニル化合物(4-2)(これらをまとめて、化合物(5)という)を、まず、塩化チオニルなどの塩素化剤を用いて塩素化し、次いで、無水ピリジン、トルエンなどの溶媒中で、C2m+1(CHOHで表されるフルオロアルキルアルコールと反応させてエステル化して、目的化合物であるフッ素含有芳香族エステル化合物(6)を得る。 In step 2, the thiophenyl compound (3), sulfinyl compound (4-1) or sulfonyl compound (4-2) obtained in step 1 (collectively referred to as compound (5)) is first treated with thionyl chloride, etc. and then reacted with a fluoroalkyl alcohol represented by C m F 2m+1 (CH 2 ) p OH in a solvent such as anhydrous pyridine or toluene to esterify the target compound. A certain fluorine-containing aromatic ester compound (6) is obtained.

(ゲル化剤及びゲル状組成物)
本発明の式(I)で表される化合物は、有機溶媒をゲル化するゲル化剤として用いることができる。本発明の化合物(I)は、多様な有機溶媒を少量の添加によりゲル化又は固化できる点で有利である。また、本発明のゲル状組成物は、1種又は2種以上の化合物(I)と有機溶媒とを含有する。
本発明のゲル状組成物には、リチウムイオン二次電池の電解液や燃料電池の電解液としてのゲル電解質も含まれる。
(Gelling agent and gel composition)
The compound represented by formula (I) of the present invention can be used as a gelling agent for gelling an organic solvent. Compound (I) of the present invention is advantageous in that it can be gelled or solidified by adding a small amount of various organic solvents. Moreover, the gel composition of the present invention contains one or more compounds (I) and an organic solvent.
The gel composition of the present invention also includes gel electrolytes as electrolytes for lithium ion secondary batteries and electrolytes for fuel cells.

本発明のゲル状組成物に含まれる有機溶媒は、有機溶媒であれば特に限定されず、室温で液体である有機溶媒が好ましく挙げられる。 The organic solvent contained in the gel composition of the present invention is not particularly limited as long as it is an organic solvent, and organic solvents that are liquid at room temperature are preferred.

(有機溶媒)
そのような有機溶媒としては、例えば、
メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、γ-ブチロラクトン、γ-バレロラクトン、ε-カプロラクトン等のエステル類;
アセトン、ジエチルケトン、メチルエチルケトン、3-ペンタノン等のケトン類;
ペンタン、ヘキサン、オクタン、シクロヘキサン、パーフルオロデカリン、ベンゼン、トルエン、キシレン、フルオロベンゼン、ヘキサフルオロベンゼン等のフッ素原子を有してもよい炭化水素類;
ジエチルエーテル、1,2-ジメトキシエタン、1,4-ジオキサン、クラウンエーテル類;グライム類;
テトラヒドロフラン、フルオロアルキルエーテル等のエーテル類;
N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド等のアミド類;
エチレンジアミン、N,N-ジエチルアニリン、ピリジン、パーフルオロトリブチルアミン等のフッ素原子を有していてもよいアミン類;
プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類;
アセトニトリル、プロピオニトリル、アジポニトリル、メトキシアセトニトリル等のニトリル類;
N-メチルピロリドン(NMP)等のラクタム類;
スルフォラン等のスルホン類;
ジメチルスルホキシド等のスルホキシド類;
シリコンオイル、石油等の工業オイル類、食用油などが挙げられる。
(organic solvent)
Examples of such organic solvents include
alcohols such as methanol, ethanol, isopropanol, butanol and octanol; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, γ-butyrolactone, γ-valerolactone and ε-caprolactone;
Ketones such as acetone, diethyl ketone, methyl ethyl ketone, 3-pentanone;
Hydrocarbons optionally having a fluorine atom such as pentane, hexane, octane, cyclohexane, perfluorodecalin, benzene, toluene, xylene, fluorobenzene, hexafluorobenzene;
diethyl ether, 1,2-dimethoxyethane, 1,4-dioxane, crown ethers; glymes;
Ethers such as tetrahydrofuran and fluoroalkyl ether;
Amides such as N,N-dimethylacetamide, N,N-dimethylformamide, N,N-diethylformamide;
amines optionally having a fluorine atom such as ethylenediamine, N,N-diethylaniline, pyridine, perfluorotributylamine;
Carbonates such as propylene carbonate, ethylene carbonate, vinylene carbonate, fluoroethylene carbonate, diethyl carbonate, ethylmethyl carbonate;
Nitriles such as acetonitrile, propionitrile, adiponitrile, methoxyacetonitrile;
Lactams such as N-methylpyrrolidone (NMP);
sulfones such as sulfolane;
Sulfoxides such as dimethylsulfoxide;
Silicon oil, industrial oils such as petroleum, and edible oils.

(イオン液体)
また、有機溶媒としてイオン液体を用いることもできる。イオン液体は、溶融した塩を指すが、より具体的には、室温付近で液体状になるイオン塩を示す。イオン液体は、イオンだけから構成される液体であり、イオン液体を構成するカチオンは、特定のカチオンに限定されない。当該カチオンとして、窒素をイオン中心とするもの、リンをイオン中心とするもの、硫黄をイオン中心とするもの、窒素と硫黄をイオン中心とするもの等が挙げられる。
(ionic liquid)
Moreover, an ionic liquid can also be used as an organic solvent. An ionic liquid refers to a molten salt, and more specifically refers to an ionic salt that becomes liquid near room temperature. An ionic liquid is a liquid composed only of ions, and the cations that constitute the ionic liquid are not limited to specific cations. Examples of the cation include those with nitrogen as the ion center, those with phosphorus as the ion center, those with sulfur as the ion center, and those with nitrogen and sulfur as the ion center.

窒素をイオン中心とするカチオンとしては、イミダゾリウムカチオン、アンモニウムカチオン、ピリジニウムカチオン、キノリニウムカチオン、ピロリジニウムカチオン、ピペラジニウムカチオン、ピペラジニウムカチオン、モルホリニウムカチオン、ピリダジニウムカチオン、ピリミジニウムカチオン、ピラジニウムカチオン、ピラゾリウムカチオン、チアゾリウムカチオン、オキサゾリウムカチオン、トリアゾリウムカチオン、グアニジウムカチオン、4-アザ-1-アゾニア-ビシクロ-[2,2,2]オクタニウム等があげられ、これらのカチオンは、任意の位置にアルキル基に代表される置換基を有していてもよく、置換基の数は複数でもよい。 Examples of cations centered on nitrogen include imidazolium cations, ammonium cations, pyridinium cations, quinolinium cations, pyrrolidinium cations, piperazinium cations, piperazinium cations, morpholinium cations, and pyridazinium cations. , pyrimidinium cation, pyrazinium cation, pyrazolium cation, thiazolium cation, oxazolium cation, triazolium cation, guanidinium cation, 4-aza-1-azonia-bicyclo-[2,2 , 2] octanium and the like, and these cations may have a substituent represented by an alkyl group at any position, and the number of substituents may be plural.

イミダゾリウムカチオンとしては、1-メチルイミダゾリウム、1-エチルイミダゾリウム、1-プロピルイミダゾリウム、1-ブチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム[BMIM]、1-エチル-3メチルイミダゾリウム[EMIM]、1-アリル-3-メチルイミダゾリウム、1,3-ジアリルイミダゾリウム、1-ベンジル-3-メチルイミダゾリウム、1-メチル-3-オクチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム1-ブチル-2,3-ジメチルイミダゾリウム、1,2-ジメチル-3-プロピルイミダゾリウム等の1,2,3-トリアルキルイミダゾリウム、1-シアノプロピル-3-メチルイミダゾリウム、1,3-ビスシアノメチルイミダゾリウム、1,3-ビス(3-シアノプロピル)イミダゾリウム、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウム、1-メトキシエチル-3-メチルイミダゾリウム、1-[2-(2-メトキシエトキシ)-エチル]-3-メチルイミダゾリウム、1,3-ジエトキシイミダゾリウム、1,3-ジメトキシイミダゾリウム、1,3-ジヒドロキシイミダゾリウム、1-メチル-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルイミダゾリウム、1-メチル-3-[(トリエトキシシリル)プロピル]イミダゾリウム等が挙げられる。 The imidazolium cations include 1-methylimidazolium, 1-ethylimidazolium, 1-propylimidazolium, 1-butylimidazolium, 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-methylimidazolium. lithium [EMIM], 1-allyl-3-methylimidazolium, 1,3-diallylimidazolium, 1-benzyl-3-methylimidazolium, 1-methyl-3-octylimidazolium, 1-ethyl-2,3 -dimethylimidazolium 1-butyl-2,3-dimethylimidazolium, 1,2,3-trialkylimidazolium such as 1,2-dimethyl-3-propylimidazolium, 1-cyanopropyl-3-methylimidazolium , 1,3-biscyanomethylimidazolium, 1,3-bis(3-cyanopropyl)imidazolium, 1-(2-hydroxyethyl)-3-methylimidazolium, 1-methoxyethyl-3-methylimidazolium , 1-[2-(2-methoxyethoxy)-ethyl]-3-methylimidazolium, 1,3-diethoxyimidazolium, 1,3-dimethoxyimidazolium, 1,3-dihydroxyimidazolium, 1-methyl -3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylimidazolium, 1-methyl-3-[(triethoxysilyl)propyl ] and imidazolium.

アンモニウムカチオンとしては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、ジエチルメチルアンモニウム[dema]、テトラへキシ
ルアンモニウム、トリヘキシルテトラデシルアンモニウム、(2-ヒドロキシエチル)トリメチルアンモニウム、N,N-ジエチル-N-(2-メトキシエチル)-N-メチルアンモニウム[DEME]、トリス(2-ヒドロキシエチル)メチルアンモニウム、N,N-トリメチル-N-プロピルアンモニウム[TMPA]、トリメチル(1H,1H,2H,2H-ヘプタデカフルオロデシル)アンモニウム、トリメチル-(4-ビニルベンジル)アンモニウム、トリブチル-(4-ビニルベンジル)アンモニウム、2-(メタクリロイルオキシ)エチルトリメチルアンモニウム、ベンジルジメチル(オクチル)アンモニウム、N,N-ジメチル-N-(2-フェノキシエチル)-1-ドデシルアンモニウム等が挙げられる。
Ammonium cations include tetramethylammonium, tetraethylammonium, tetrabutylammonium, diethylmethylammonium [dema], tetrahexylammonium, trihexyltetradecylammonium, (2-hydroxyethyl)trimethylammonium, N,N-diethyl-N -(2-methoxyethyl)-N-methylammonium [DEME], tris(2-hydroxyethyl)methylammonium, N,N-trimethyl-N-propylammonium [TMPA], trimethyl (1H,1H,2H,2H- heptadecafluorodecyl)ammonium, trimethyl-(4-vinylbenzyl)ammonium, tributyl-(4-vinylbenzyl)ammonium, 2-(methacryloyloxy)ethyltrimethylammonium, benzyldimethyl(octyl)ammonium, N,N-dimethyl- and N-(2-phenoxyethyl)-1-dodecylammonium.

ピリジニウムカチオンとしては、1-エチルピリジニウム、1-ブチルピリジニウム、1-(3-ヒドロキシプロピル)ピリジニウム、1-エチル-3-メチルピリジニウム、1-ブチル-3-メチルピリジニウム、1-ブチル-4-メチルピリジニウム、1-(3-シアノプロピル)ピリジニウム等が挙げられる。 Pyridinium cations include 1-ethylpyridinium, 1-butylpyridinium, 1-(3-hydroxypropyl)pyridinium, 1-ethyl-3-methylpyridinium, 1-butyl-3-methylpyridinium, 1-butyl-4-methyl pyridinium, 1-(3-cyanopropyl)pyridinium and the like.

ピロリジニウムカチオンとしては、1-メチル-1-プロピルピロリジニウム[P13]、1-ブチル-1-メチルピロリジニウム、1-(2-ヒドロキシエチル)-1-メチルピロリジニウム、1-エチル-1-メチルピロリジニウム等が挙げられる。 Examples of pyrrolidinium cations include 1-methyl-1-propylpyrrolidinium [P13], 1-butyl-1-methylpyrrolidinium, 1-(2-hydroxyethyl)-1-methylpyrrolidinium, 1- and ethyl-1-methylpyrrolidinium.

ピペリジニウムカチオンとしては、1-メチル-1プロピルピペリジニウム、1-ブチル-1-メチルピペリジニウム、1-(2-ヒドロキシエチル)-1-メチルピペリジニウム、1-エチル-1-メチルピペリジニウム等が挙げられる。 Piperidinium cations include 1-methyl-1-propylpiperidinium, 1-butyl-1-methylpiperidinium, 1-(2-hydroxyethyl)-1-methylpiperidinium, 1-ethyl-1- methyl piperidinium and the like.

リンをイオン中心とするカチオンは、一般的にホスホニウムカチオンと呼ばれ、具体的には、テトラブチルホスホニウム、テトラヘキシルホスホニウム、トリヘキシルテトラデシルホスホニウム、トリフェニルメチルホスホニウム、(2-シアノエチル)トリエチルホスホニウム、(3-クロロプロピル)トリオクチルホスホニウム、トリブチル(4-ビニルベンジル)ホスホニウム、トリイソブチルメチルホスホニウム、トリエチルメチルホスホニウム、トリブチルメチルホスホニウム、トリブチルヘキサデシルホスホニウム、3-(トリフェニルホスホニオ)プロパン-1-スルホン酸等が挙げられる。 Cations having phosphorus as an ion center are generally called phosphonium cations, and specific examples include tetrabutylphosphonium, tetrahexylphosphonium, trihexyltetradecylphosphonium, triphenylmethylphosphonium, (2-cyanoethyl)triethylphosphonium, (3-chloropropyl)trioctylphosphonium, tributyl(4-vinylbenzyl)phosphonium, triisobutylmethylphosphonium, triethylmethylphosphonium, tributylmethylphosphonium, tributylhexadecylphosphonium, 3-(triphenylphosphonio)propane-1-sulfone acids and the like.

硫黄をイオン中心とするカチオンは、一般的にスルホニウムカチオンと呼ばれ、具体的には、トリエチルスルホニウム、トリブチルスルホニウム、1-エチルテトラヒドロチオフェニウム、1-ブチルテトラヒドロチオフェニウム等が挙げられる。 A cation having sulfur as an ion center is generally called a sulfonium cation, and specific examples thereof include triethylsulfonium, tributylsulfonium, 1-ethyltetrahydrothiophenium, and 1-butyltetrahydrothiophenium.

カチオンの対となるアニオンとしては、フルオライド、クロライド、ブロマイド、アイオダイド、ジシアナミド、ビス(フルオロスルホニル)アミド[FSA]、ビス(トリフルオロメチルスルホニル)アミド[TFSA]、ビス(トリフルオロエチルスルホニル)アミド、ビス(ペンタフルオロエチルスルホニル)アミド、ビス(ノナフルオロブチルスルホニル)アミド、テトラフルオロボレート[BF]、ビス(トリフルオロメチル)ジフルオロボレート、(トリフルオロメチル)トリフルオロボレート、テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート、メタンスルホネート、ブチルスルホネート、トリフルオロメタンスルホネート、テトラフルオロエタンスルホネート、ノナフルオロブタンスルホネート、ベンゼンスルホネート、p-トルエンスルホネート、2,4,6-トリメチルベンゼンスルホネート、スチレンスルホネート、パーフルオロオクタンスルホネート、ヘプタデカフルオロオクタンスルホネート、3-スルホプロピルメタクリレート、3-スルホプロピルアクリレート、メチルスルフェート、エチルスルフェート、オクチルスルフェート、ジエチレングリコールモノメチルエーテルスルフェート、ハイドロジェンスルフェート、ヘキサフルオロホスフェート[PF]、トリス(トリフルオロメチル)トリフルオロホスフェート、トリス(ペンタフルオロエチル)トリフルオロホスフェート、ジハイドロジェンホスフェート、ジブチルホスフェート、ジエチルホスフェート、ジメチルホスフェート、ビス(2,4,4-トリメチルペンチル)ホスフィネート、メチルホスホネート、メチルメチルホスホネート、フォルメート、アセテート、プロピオネート、ブチレート、トリフルオロアセテート、ヒドロキシアセテート、パーフルオロノナノエート、デカノエート、マンデレート、チオサリチレート、ベンゾエート、サリチレート、フルオロハイドロジェネート、ラクテート、グリシネート、アラニネート、ロイシネート、バリネート、トリフルオロメタンスルホニルロイシネート、トリフルオロメタンスルホニルバリネート、ナイトレート、パークロレート、フェノキシド、チオシアネート、トリス(トリフルオロメタンスルホニル)メチド、アセスルファメート、サッカリネート、ピラゾレート、イミダゾレート、チアゾレート、トリアゾレート、テトラゾレート、インダゾレート、ベンゾチアゾレート、ヘキサフルオロアスタチネート、ヘキサフルオロアンチモネート、チオシアネート、テトラクロロアルミネート、テトラクロロフェレート[FeCl]、カルボネート、メチルカルボネート、カルバメート等が挙げられる。
これらの有機溶媒は1種を単独で又は2種以上を組み合わせて用いられる。
Examples of anions that serve as pairs of cations include fluoride, chloride, bromide, iodide, dicyanamide, bis(fluorosulfonyl)amide [FSA], bis(trifluoromethylsulfonyl)amide [TFSA], bis(trifluoroethylsulfonyl)amide, bis(pentafluoroethylsulfonyl)amide, bis(nonafluorobutylsulfonyl)amide, tetrafluoroborate [BF 4 ], bis(trifluoromethyl)difluoroborate, (trifluoromethyl)trifluoroborate, tetrakis[3,5- Bis(trifluoromethyl)phenyl]borate, methanesulfonate, butylsulfonate, trifluoromethanesulfonate, tetrafluoroethanesulfonate, nonafluorobutanesulfonate, benzenesulfonate, p-toluenesulfonate, 2,4,6-trimethylbenzenesulfonate, styrenesulfonate , perfluorooctane sulfonate, heptadecafluorooctane sulfonate, 3-sulfopropyl methacrylate, 3-sulfopropyl acrylate, methyl sulfate, ethyl sulfate, octyl sulfate, diethylene glycol monomethyl ether sulfate, hydrogen sulfate, hexafluorophosphate [PF 6 ], tris(trifluoromethyl)trifluorophosphate, tris(pentafluoroethyl)trifluorophosphate, dihydrogenphosphate, dibutylphosphate, diethylphosphate, dimethylphosphate, bis(2,4,4-trimethylpentyl) Phosphinate, methylphosphonate, methylmethylphosphonate, formate, acetate, propionate, butyrate, trifluoroacetate, hydroxyacetate, perfluorononanoate, decanoate, mandelate, thiosalicylate, benzoate, salicylate, fluorohydrogenate, lactate, glycinate, alaninate, Leucinate, Valinate, Trifluoromethanesulfonyl Leucinate, Trifluoromethanesulfonyl Valinate, Nitrate, Perchlorate, Phenoxide, Thiocyanate, Tris(trifluoromethanesulfonyl)methide, Acesulfamate, Saccharinate, Pyrazolate, Imidazolate, Thiazolate, Triazolate, Tetrazole indazolate, benzothiazolate, hexafluoroastatinate, hexafluoroantimonate, thiocyanate, tetrachloroaluminate, tetrachloroferrate [FeCl 4 ], carbonate, methyl carbonate, carbamate and the like.
These organic solvents are used singly or in combination of two or more.

イオン液体はプロトン性イオン液体と、非プロトン性イオン液体に分類される。プロトン性イオン液体は、酸と塩基から形成されたイオン液体であり、プロトンが酸から塩基に移動して共役塩基と共役酸を形成する。非プロトン性イオン液体は、プロトン性イオン液体に分類されないものをいう。
非プロトン性イオン液体の例としては、たとえば、[BMIM] [TFSA](1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド)、[EMIM][FSA](1-エチル-3メチルイミダゾリウムビス(フルオロスルホニル)アミド)などが挙げられる
プロトン性イオン液体の例としては、[dema][TfO](ジエチルメチルアンモニウムトリフルオロメタンスルホナート)、[dema][TFSA](ジエチルメチルアンモニウムビス(トリフルオロメチルスルホニル)アミド)、[N,N-diethylaniline][TFSA]などが挙げられる。
Ionic liquids are classified into protic ionic liquids and aprotic ionic liquids. A protic ionic liquid is an ionic liquid formed from an acid and a base, in which protons migrate from the acid to the base to form a conjugate base and a conjugate acid. Aprotic ionic liquids refer to liquids that are not classified as protic ionic liquids.
Examples of aprotic ionic liquids include, for example, [BMIM] [TFSA] (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide), [EMIM] [FSA] (1-ethyl-3 methylimidazolium bis(fluorosulfonyl)amide), etc. Examples of protic ionic liquids include [dema][TfO] (diethylmethylammonium trifluoromethanesulfonate), [dema][TFSA] (diethylmethylammonium bis (trifluoromethylsulfonyl)amide), [N,N-diethylaniline] [TFSA] and the like.

(ゲル電解質)
本発明のゲル化剤は、有機電解液に適した高誘電率溶媒、例えば、プロピレンカーボネートをゲル化できる。本発明のゲル化剤により高誘電率溶媒をゲル化して生成したゲルは、ゲル電解質として使用できる。このゲル電解質は、リチウムイオン電池に利用できる。そして、色素増感型太陽電池や燃料電池などのゲル電解質にも利用できる。
電解質は、電解液において、通常の非水電解質として用いられているものであるが、リチウムイオン二次電池及に用いられる場合、支持電解質としてリチウム塩が用いられる。リチウム塩の具体例としては、以下に限定されないが、例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO2k+1〔kは1~8の整数〕、LiN(SO2k+1〔kは1~8の整数〕、LiPFn(C2k+16-n〔nは1~5の整数、kは1~8の整数〕、LiBF((C2k+14-n〔nは1~3の整数、kは1~8の整数〕、LiB(Cで表されるリチウムビス(オキサレート)ボレート、LiBF(C)で表されるリチウムジフルオロ(オキサレート)ボレート、LiPF(C)で表されるリチウムテトラフルオロ(オキサレート)ホスフェート、LiPO、LiPOFが挙げられる。
これらのリチウム塩は1種を単独で又は2種以上を組み合わせて用いられる。
(gel electrolyte)
The gelling agent of the present invention can gel high dielectric constant solvents suitable for organic electrolytes, such as propylene carbonate. A gel produced by gelling a high dielectric constant solvent with the gelling agent of the present invention can be used as a gel electrolyte. This gel electrolyte can be used in lithium ion batteries. It can also be used as a gel electrolyte for dye-sensitized solar cells and fuel cells.
The electrolyte is one that is used as a normal non-aqueous electrolyte in the electrolytic solution, but when it is used in a lithium ion secondary battery, a lithium salt is used as a supporting electrolyte. Specific examples of the lithium salt include, but are not limited to, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F 2k+1 [k is an integer of 1 to 8], LiN (SO 2 C k F 2k+1 ) 2 [k is an integer of 1 to 8], LiPFn(C k F 2k+1 ) 6-n [n is an integer of 1 to 5, k is an integer of 1 to 8], LiBF n ( (C k F 2k+1 ) 4-n [n is an integer of 1 to 3, k is an integer of 1 to 8], lithium bis(oxalate)borate represented by LiB(C 2 O 4 ) 2 , LiBF 2 (C 2 O 4 ), lithium tetrafluoro(oxalate) phosphate represented by LiPF 4 (C 2 O 4 ), LiPO 2 F 2 and Li 2 PO 3 F.
These lithium salts are used individually by 1 type or in combination of 2 or more types.

(ゲル状組成物の調製)
本発明のゲル状組成物は、その全量に対して式(I)で表される化合物を0.05~10.0質量%含有すると好ましく、0.1~8.0質量%含有するとより好ましく、0.3~5.0質量%含有するとさらに好ましい。この含有量が上記下限値以上であることにより、式(I)で表される化合物がゲル化剤としてより十分に機能する傾向にあり、上記上限値以下であることにより、経済性及びハンドリング性がさらに向上する傾向にあると共に、ゲル化剤が不純物となるのを一層抑制し、有機溶媒が有する性能の低下をさらに防止することができる。同様の観点から、本発明のゲル状組成物は、その全量に対して有機溶媒を90~99.95質量%含有すると好ましく、92~99.9質量%含有するとより好ましく、95~99.7質量%含有するとさらに好ましい。
(Preparation of gel composition)
The gel composition of the present invention preferably contains 0.05 to 10.0% by mass, more preferably 0.1 to 8.0% by mass, of the compound represented by formula (I) with respect to the total amount. , more preferably 0.3 to 5.0% by mass. When the content is at least the above lower limit, the compound represented by the formula (I) tends to function more adequately as a gelling agent, and when it is at most the above upper limit, economy and handling are improved. tends to be further improved, the gelling agent can be further suppressed from becoming an impurity, and the deterioration of the performance of the organic solvent can be further prevented. From the same point of view, the gel composition of the present invention preferably contains 90 to 99.95% by mass of an organic solvent, more preferably 92 to 99.9% by mass, and more preferably 95 to 99.7% by mass of the total amount of the organic solvent. It is more preferable to contain it in mass %.

本発明のゲル状組成物は、式(I)で表される化合物と有機溶媒に加えて、式(I)で表される化合物のゲル化剤としての機能を阻害しない範囲において他の成分を含有してもよい。そのような成分としては、例えば、式(I)で表される化合物以外のゲル化剤、凝固剤、増粘剤、安定剤、酸化防止剤、乳化剤、潤滑剤及び安全性向上添加剤などが挙げられる。 The gel composition of the present invention contains, in addition to the compound represented by formula (I) and an organic solvent, other components as long as they do not inhibit the function of the compound represented by formula (I) as a gelling agent. may contain. Examples of such components include gelling agents, coagulants, thickeners, stabilizers, antioxidants, emulsifiers, lubricants, and safety-enhancing additives other than the compound represented by formula (I). mentioned.

本発明のゲル状組成物の調製法は特に限定されないが、例えば、有機溶媒、式(I)で表される化合物及びその他の添加剤などを加熱しながら混合して均一な混合液にした後に当該混合液を降温することで調製できる。各成分の混合順は特に問わないが、あらかじめ有機溶媒と添加剤とからなる溶液を調製した後に、ゲル化剤を混合すると、より容易に均一な混合液になるため、好ましい。 The method for preparing the gel composition of the present invention is not particularly limited. It can be prepared by lowering the temperature of the mixture. The order in which the components are mixed is not particularly limited, but it is preferable to prepare a solution of an organic solvent and an additive in advance and then mix the solution with the gelling agent, because a uniform mixed solution can be obtained more easily.

以下に、実施例により本発明をより詳細に説明するが、本発明の技術範囲は、これらに限定されない。実施例における測定は次の通りとした。
(核磁気共鳴(NMR)スペクトル測定)
H―NMRスペクトル測定は、株式会社日本電子製のJNM-ECA500を使用して行った。測定は室温で行い、測定溶媒をCDClまたはDMSO-dとし、内部標準としてTMS(テトラメチルシラン (tetramethyl silane)またはDMSO-H(2.49ppm)を使用した。解析にはDeltaNMRソフトウェア(日本電子株式会社)を使用した。
(赤外吸収(IR)スペクトル測定)
赤外吸収スペクトル測定は、株式会社島津製作所製のフーリエ変換赤外分光光度計(SHIMADZU IRprestage-21)を使用し、固体試料の一部はKBr錠剤法で、その他の試料はSpecac社製のQuestを取り付けて全反射測定(ATR)法で測定した。測定及び解析にはIR Solution及びLab Solution IRを使用した。
(融点測定)
化合物の融点測定は、株式会社ジェイ・サイエンス製の微量融点測定装置(RFS-10特型)を使用した。
(純度測定)
ゲル化剤の純度測定は、株式会社島津製作所製の高速液体クロマトグラフ(HPLC、紫外可視分光光度計検出器SPD-20A、システムコントローラCBM―20A、カラムオーブンCTO-20A、カラムODS-H、送液ユニットLC-20AT)を使用した。99.7%メタノールを展開溶媒とし、測定波長を290nm、測定温度を42℃、送液速度を1.0mL/minとした。
(シリカゲルカラムクロマトグラフ)
シリカゲルカラムクロマトグラフィーは、蒸留クロロホルムを展開溶媒に使用し、多孔性破断式シリカゲル(ダイソー株式会社IR-60-15173)を担体とした順相シリカゲルカラムクロマトグラフを使用した。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the technical scope of the present invention is not limited to these. Measurements in the examples were as follows.
(Nuclear magnetic resonance (NMR) spectrum measurement)
1 H-NMR spectrum measurement was performed using JNM-ECA500 manufactured by JEOL Ltd. Measurements were performed at room temperature, CDCl 3 or DMSO-d 6 was used as the measurement solvent, and TMS (tetramethyl silane) or DMSO-H (2.49 ppm) was used as the internal standard. Denshi Co., Ltd.) was used.
(Infrared absorption (IR) spectrum measurement)
Infrared absorption spectrum measurement is performed using a Fourier transform infrared spectrophotometer (SHIMADZU IRprestage-21) manufactured by Shimadzu Corporation. was attached and measured by the total reflection measurement (ATR) method. IR Solution and Lab Solution IR were used for measurement and analysis.
(Melting point measurement)
The melting points of the compounds were measured using a micro melting point analyzer (RFS-10 special type) manufactured by J Science Co., Ltd.
(purity measurement)
The purity of the gelling agent was measured using a high-performance liquid chromatograph manufactured by Shimadzu Corporation (HPLC, UV-visible spectrophotometer detector SPD-20A, system controller CBM-20A, column oven CTO-20A, column ODS-H, liquid unit LC-20AT) was used. 99.7% methanol was used as a developing solvent, the measurement wavelength was 290 nm, the measurement temperature was 42° C., and the liquid feeding rate was 1.0 mL/min.
(Silica gel column chromatograph)
For silica gel column chromatography, distilled chloroform was used as a developing solvent, and a normal phase silica gel column chromatograph was used with porous fractured silica gel (Daiso Co., Ltd. IR-60-15173) as a carrier.

[化合物(1―6-6)の合成]
(1) エステル化
[Synthesis of compound (1-6-6)]
(1) Esterification

Figure 2022136032000006
Figure 2022136032000006

1Lナスフラスコ中で、化合物(a)20.2g(131mmol)、メタノール360mL及び触媒として硫酸9mlを添加し3日間還流し、反応終了後、室温放冷し、反応溶液を分液漏斗に移し、そこにシクロペンチルメチルエーテルと水を加えて抽出した。得られた有機層に飽和NaCl水溶液を加えて、再度抽出した。得られた有機層に無水硫酸マグネシウムを加えて乾燥し、ひだ折りろ過で固体を分離した。得られた濾液を減圧濃縮した後、メタノールで再結晶して化合物(b)16.3gを得た(収率:74%、融点:49-52℃、1H-NMR (500 MHz, CDCl3): δ = 3.55 (1H, s), 3.84 (1H, s), 7.23 (2H, d, J=7.9 Hz), 7.83 (2H, d, J=8.5 Hz) ppm、IR (KBr disc): ν(C-O) = 1274 cm-1(C=C) = 1580 cm-1, ν(C=O) = 1720 cm-1, ν(C-H) = 2940 cm-1In a 1 L eggplant flask, 20.2 g (131 mmol) of compound (a), 360 mL of methanol, and 9 mL of sulfuric acid as a catalyst were added and refluxed for 3 days. Cyclopentyl methyl ether and water were added thereto for extraction. A saturated NaCl aqueous solution was added to the obtained organic layer to extract again. Anhydrous magnesium sulfate was added to the obtained organic layer to dry it, and the solid was separated by folding filtration. The obtained filtrate was concentrated under reduced pressure and then recrystallized with methanol to obtain 16.3 g of compound (b) (yield: 74%, melting point: 49-52°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 3.55 (1H, s), 3.84 (1H, s), 7.23 (2H, d, J=7.9 Hz), 7.83 (2H, d, J=8.5 Hz) ppm, IR (KBr disc): ν (CO) = 1274 cm -1 , ν (C=C) = 1580 cm -1 , ν (C=O) = 1720 cm -1 , ν (CH) = 2940 cm -1 )

(2)チオエーテル化

Figure 2022136032000007
(2) Thioetherification
Figure 2022136032000007

1Lナスフラスコ中で、上記(1)で得た化合物(b)16.1g(95.7mmol)及び2-(ぺルフルオロヘキシル)エチルアイオダイド50g(133mmol)を3-ペンタノン400mLに溶解し、そこに炭酸カリウム15gを加えて、2日間還流した。原料の消失を高速液体クロマトグラフィーで確認した後、室温放冷し、ひだ折り濾過を用いて炭酸カリウムを取り除き、得られた溶液を減圧下で濃縮して化合物(c)42.4gを得た(収率:86%、融点:60-62℃、1H-NMR (500 MHz, CDCl3): δ = 2.36 (2H, q, J=7.3 Hz), 3.13-3.16 (2H, m), 3.85(3H, s), 7.26 (2H, d, J=8.5 Hz), 7.91 (2H, d, J=8.5 Hz) ppm、IR (KBr disc): ν(C-F) = 1090-1284 cm-1, ν(C-O) = 1283 cm-1, ν(C=C) = 1600 cm-1, ν(C=O) = 1720 cm-1, ν(C-H) = 2950 cm-1In a 1 L eggplant flask, 16.1 g (95.7 mmol) of the compound (b) obtained in (1) above and 50 g (133 mmol) of 2-(perfluorohexyl)ethyl iodide were dissolved in 400 mL of 3-pentanone, 15 g of potassium carbonate was added thereto and refluxed for 2 days. After confirming the disappearance of the starting materials by high-performance liquid chromatography, the mixture was allowed to cool to room temperature, potassium carbonate was removed using fold filtration, and the resulting solution was concentrated under reduced pressure to obtain 42.4 g of compound (c). (Yield: 86%, melting point: 60-62°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.36 (2H, q, J = 7.3 Hz), 3.13-3.16 (2H, m), 3.85 (3H, s), 7.26 (2H, d, J=8.5 Hz), 7.91 (2H, d, J=8.5 Hz) ppm, IR (KBr disc): ν (CF) = 1090-1284 cm -1 , ν (CO) = 1283 cm -1 , ν (C=C) = 1600 cm -1 , ν (C=O) = 1720 cm -1 , ν (CH) = 2950 cm -1 )

(3)加水分解

Figure 2022136032000008
(3) Hydrolysis
Figure 2022136032000008

1Lのナスフラスコに、上記(2)で得た化合物(c)を15.0g移し、メタノール500mL、10N水酸化ナトリウム水溶液60mLを加えて2時間還流した。反応終了後、反応容器を氷浴で冷却し、そこに12N塩酸を添加して酸性条件にし、1時間氷浴中で撹拌した。析出した固体を吸引濾過で取り出し、水で洗浄し更に乾燥したものをメタノールで再結晶して、化合物(a-S)10.4gを得た。 (収率:71%、融点:161-162℃、1H-NMR (500 MHz, DMSO-d6): δ = 2.56 (2H, q, J=7.3 Hz), 3.34 (2H, m), 7.45 (2H, d, J=8.5 Hz), 7.81 (2H, d, J=8.5 Hz), 12.96 (1H, s) ppm、IR (KBr disc): ν(C-F) = 1090 - 1284 cm-1, ν(C-O) = 1283 cm-1, ν(C=C)= 1600 cm-1, ν(C=O) = 1720cm-1, ν(C-H) = 2950 cm-1, ν(O-H) = 3160 cm-1) 15.0 g of the compound (c) obtained in the above (2) was transferred to a 1 L eggplant flask, 500 mL of methanol and 60 mL of a 10N aqueous sodium hydroxide solution were added, and the mixture was refluxed for 2 hours. After completion of the reaction, the reaction vessel was cooled in an ice bath, 12N hydrochloric acid was added thereto to acidify the mixture, and the mixture was stirred in the ice bath for 1 hour. The precipitated solid was collected by suction filtration, washed with water, dried, and recrystallized with methanol to obtain 10.4 g of compound (aS). (Yield: 71%, Melting point: 161-162°C, 1 H-NMR (500 MHz, DMSO-d 6 ): δ = 2.56 (2H, q, J = 7.3 Hz), 3.34 (2H, m), 7.45 (2H, d, J=8.5 Hz), 7.81 (2H, d, J=8.5 Hz), 12.96 (1H, s) ppm, IR (KBr disc): ν (CF) = 1090 - 1284 cm -1 , ν (CO) = 1283 cm -1 , ν (C=C) = 1600 cm -1 , ν (C=O) = 1720 cm -1 , ν (CH) = 2950 cm -1 , ν (OH) = 3160 cm -1 1 )

(4)エステル化

Figure 2022136032000009
(4) Esterification
Figure 2022136032000009

1Lナスフラスコ中に、上記(3)で得た化合物(a-S)2.00g(4.00mmol)、及び過剰量の塩化チオニルを加え、80℃で45分間撹拌し、次いで、水流式アスピレーターで塩化チオニルを除去した。反応残渣を無水トルエン8mLに溶解した。この溶液に対し、無水ピリジン8mLに溶解させたC13OH 1.46g(4.00mmol)を添加して、80℃で4時間撹拌して反応させた。反応後、溶媒をエバポレーターにて除去し、得られた残渣にエタノールを加えて副生成物であるピリジン塩酸塩を除去し、吸引濾過した後、カラムクロマトグラフィーで精製し、目的化合物(1-6-6)2.32gを得た(収率:68%、融点:74-75℃、1H-NMR (500 MHz, CDCl3): δ = 2.39-2.49 (2H, m), 2.55-2.65 (2H, m), 3.20-3.23 (2H, m), 4.62 (2H, t, J=6.3Hz), 7.33 (2H, d, J=8.6 Hz), 7.97 (2H, dd, J=6.3, 1.7 Hz) ppm、IR (ATR-IR): ν(C-F) = 1080-1230 cm-1, ν(C-O) = 1261-1366 cm-1, ν(C-H) = 1599 cm-1, ν(C=O) = 1716 cm-12.00 g (4.00 mmol) of the compound (aS) obtained in (3) above and an excess amount of thionyl chloride were added to a 1 L eggplant flask, stirred at 80° C. for 45 minutes, and then chlorinated with a water-jet aspirator. Thionyl was removed. The reaction residue was dissolved in 8 mL of anhydrous toluene. To this solution, 1.46 g (4.00 mmol) of C 6 F 13 C 2 H 4 OH dissolved in 8 mL of anhydrous pyridine was added and reacted with stirring at 80° C. for 4 hours. After the reaction, the solvent was removed with an evaporator, ethanol was added to the resulting residue to remove pyridine hydrochloride as a by-product, suction filtration was performed, and the target compound (1-6 -6) 2.32 g was obtained (yield: 68%, melting point: 74-75°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.39-2.49 (2H, m), 2.55-2.65 ( 2H, m), 3.20-3.23 (2H, m), 4.62 (2H, t, J=6.3Hz), 7.33 (2H, d, J=8.6Hz), 7.97 (2H, dd, J=6.3, 1.7Hz ) ppm, IR (ATR-IR): ν (CF) = 1080-1230 cm -1 , ν (CO) = 1261-1366 cm -1 , ν (CH) = 1599 cm -1 , ν (C=O) = 1716 cm -1 )

[化合物(2-6-6)の合成]
実施例1の加水分解工程で得た化合物(a-S)を用いて、以下の工程で化合物(2-6-6)を得た。
[Synthesis of compound (2-6-6)]
Using compound (aS) obtained in the hydrolysis step of Example 1, compound (2-6-6) was obtained in the following steps.

(1)酸化

Figure 2022136032000010
(1) Oxidation
Figure 2022136032000010

300mLナスフラスコに、上記実施例1の(3)で得た化合物(a-S)10.0g(20.0mmol)、35質量%過酸化水素水11.38g、及び酢酸200mLを入れ、3日間還流を行った。反応終了後、室温まで静置し、そこに20質量%亜硫酸水素ナトリウム水溶液を60mL加えて吸引濾過し、化合物(a-SO2)10.6gを得た(収率:99%、融点:268-269℃、1H-NMR (500 MHz, CDCl3): δ = 2.48-2.73 (2H, m), 3.34(2H, s), 8.03 (2H, d, J=8.6 Hz), 8.28 (2H, d, J=8.6 Hz) ppm、IR (KBr disc): ν(C-F) = 1090-1284 cm-1, ν(S=O) = 1120-1363 cm-1, ν(C-O) = 1283 cm-1(C=C) = 1600 cm-1, ν(C=O) = 1720 cm-1, ν(C-H) = 2950 cm-1, ν(O-H) = 3340 cm-110.0 g (20.0 mmol) of the compound (aS) obtained in (3) of Example 1 above, 11.38 g of 35% by mass hydrogen peroxide, and 200 mL of acetic acid were placed in a 300 mL eggplant flask and refluxed for 3 days. gone. After completion of the reaction, the mixture was allowed to stand still to room temperature, and 60 mL of a 20% by mass aqueous solution of sodium hydrogen sulfite was added thereto, followed by suction filtration to obtain 10.6 g of compound (a-SO 2 ) (yield: 99%, melting point: 268). -269°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.48-2.73 (2H, m), 3.34(2H, s), 8.03 (2H, d, J=8.6 Hz), 8.28 (2H, d, J=8.6 Hz) ppm, IR (KBr disc): ν (CF) = 1090-1284 cm -1 , ν (S=O) = 1120-1363 cm -1 , ν (CO) = 1283 cm -1 , ν (C=C) = 1600 cm -1 , ν (C=O) = 1720 cm -1 , ν (CH) = 2950 cm -1 , ν (OH) = 3340 cm -1 )

(2)エステル化

Figure 2022136032000011
(2) Esterification
Figure 2022136032000011

50mLナスフラスコ中に、上記(1)で得た化合物(a-SO2)1.00g(2.00mmol)、及び過剰量の塩化チオニルを加え、80℃で90分間撹拌し、次いで、水流式アスピレーターで塩化チオニルを除去した。反応残渣を無水トルエン8mLに溶解した。この溶液に対し、無水ピリジン8mLに溶解させたC13OH 1.46g(2.00mmol)を添加して、80℃で4時間撹拌して反応させた。反応後、溶媒をエバポレーターにて除去し、得られた残渣にエタノールを加えて副生成物であるピリジン塩酸塩を除去し、吸引濾過した後、カラムクロマトグラフィーで精製し、目的化合物(2-6-6)2.80gを得た(収率:79%、融点:135-137℃、H-NMR (500 MHz, CDCl3): δ = 2.49-2.63 (4H, m), 3.27-3.30 (2H, m), 4.63 (2H, t, J=6.3 Hz), 7.98 (2H, dd, J=6.6, 2.0 Hz), 8.21 (2H, dd, J=6.3, 1.7 Hz) ppm、IR (ATR-IR): ν(C-F)=1085-1228 cm-1, ν(S=O) = 1107-1217 cm-1, ν(C-O) = 1263-1329 cm-1, ν(C=O)= 1720 cm-1In a 50 mL eggplant flask, 1.00 g (2.00 mmol) of the compound (a-SO 2 ) obtained in (1) above and an excess amount of thionyl chloride were added, stirred at 80° C. for 90 minutes, and then Thionyl chloride was removed with an aspirator. The reaction residue was dissolved in 8 mL of anhydrous toluene. To this solution, 1.46 g (2.00 mmol) of C 6 F 13 C 2 H 4 OH dissolved in 8 mL of anhydrous pyridine was added and reacted with stirring at 80° C. for 4 hours. After the reaction, the solvent is removed with an evaporator, ethanol is added to the resulting residue to remove pyridine hydrochloride as a by-product, suction filtration is performed, and the target compound (2-6 -6) 2.80 g was obtained (yield: 79%, melting point: 135-137°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.49-2.63 (4H, m), 3.27-3.30 ( 2H, m), 4.63 (2H, t, J=6.3 Hz), 7.98 (2H, dd, J=6.6, 2.0 Hz), 8.21 (2H, dd, J=6.3, 1.7 Hz) ppm, IR (ATR- IR): ν (CF) =1085-1228 cm -1 , ν (S=O) = 1107-1217 cm -1 , ν (CO) = 1263-1329 cm -1 , ν (C=O) = 1720 cm -1 )

[化合物(1-8-6)の合成] [Synthesis of compound (1-8-6)]

(1)エステル化

Figure 2022136032000012
(1) Esterification
Figure 2022136032000012

1Lナスフラスコに4-mercaptobenzoic acid(20.2 g,131mmol)、メタノール360mL、濃硫酸9mLを加えて3日間還流した。反応終了後、室温放冷し、反応溶液を分液漏斗に移し、そこにシクロペンチルメチルエーテルと水を加えて抽出した。得られた有機層に飽和NaCl水溶液を加えて、再度抽出した。得られた有機層に無水MgSOを加えて乾燥し、ひだ折り濾過で固体を分離した。得られた濾液を減圧濃縮した後、メタノールで再結晶して化合物(A)16.3gを得た。(収率:74%、融点:49 - 52℃、1H-NMR (500 MHz, CDCl3): δ = 3.55 (1H, s), 3.84 (1H, s), 7.23 (2H, d, J=7.9 Hz), 7.83 (2H, d, J=8.5 Hz) ppm、IR (KBr disc): v(C-O) = 1274 cm-1,v(C=C) = 1580 cm-1, v(C=O) = 1720 cm-1, ν(C-H) = 2940 cm-1 4-mercaptobenzoic acid (20.2 g, 131 mmol), 360 mL of methanol and 9 mL of concentrated sulfuric acid were added to a 1 L eggplant flask and refluxed for 3 days. After completion of the reaction, the mixture was allowed to cool to room temperature, the reaction solution was transferred to a separatory funnel, and cyclopentyl methyl ether and water were added thereto for extraction. A saturated NaCl aqueous solution was added to the obtained organic layer, and extracted again. Anhydrous MgSO 4 was added to the resulting organic layer to dry it, and the solids were separated by pleated filtration. The resulting filtrate was concentrated under reduced pressure and then recrystallized with methanol to obtain 16.3 g of compound (A). (Yield: 74%, melting point: 49-52°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 3.55 (1H, s), 3.84 (1H, s), 7.23 (2H, d, J= 7.9 Hz), 7.83 (2H, d, J=8.5 Hz) ppm, IR (KBr disc): v (CO) = 1274 cm -1 , v (C=C) = 1580 cm -1 , v (C=O ) = 1720 cm -1 , ν (CH) = 2940 cm -1 )

(2)チオエーテル化

Figure 2022136032000013
(2) Thioetherification
Figure 2022136032000013

1Lナスフラスコに化合物A(16.1g,95.7mmol)、2-(perfluorohexyl)ethyl iodide(50g,133mmol)、KCO 15g、3-pentanone 400mLを加えて2日間還流した。その後、室温放冷してひだ折り濾過で固体を取り除き、濾液を減圧濃縮して化合物(B-6) 42.4 gを得た。(収率:86%、融点:60 - 62℃、1H-NMR (500 MHz, CDCl3): δ = 2.36 (2H, q, J=7.3 Hz), 3.13-3.16 (2H, m), 3.85(3H, s), 7.26 (2H, d, J=8.5 Hz), 7.91 (2H, d, J=8.5 Hz) ppm、IR (KBr disc): v(C-F) = 1090 - 1284 cm-1, v(C-O)= 1283 cm-1, v(C=C) = 1600 cm-1, v(C=O)= 1720 cm-1, ν(C-H) = 2950 cm-1 ) Compound A (16.1 g, 95.7 mmol), 2-(perfluorohexyl)ethyl iodide (50 g, 133 mmol), K 2 CO 3 15 g, and 3-pentanone 400 mL were added to a 1 L eggplant flask and refluxed for 2 days. Thereafter, the mixture was allowed to cool to room temperature, solids were removed by fold filtration, and the filtrate was concentrated under reduced pressure to obtain 42.4 g of compound (B-6). (Yield: 86%, melting point: 60 - 62°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.36 (2H, q, J = 7.3 Hz), 3.13-3.16 (2H, m), 3.85 (3H, s), 7.26 (2H, d, J=8.5 Hz), 7.91 (2H, d, J=8.5 Hz) ppm, IR (KBr disc): v (CF) = 1090 - 1284 cm -1 , v (CO) = 1283 cm -1 , v (C=C) = 1600 cm -1 , v (C=O) = 1720 cm -1 , ν (CH) = 2950 cm -1 )

(3)加水分解

Figure 2022136032000014
(3) Hydrolysis
Figure 2022136032000014

1Lナスフラスコに化合物(B-6)(15.0g,29.2mmol)、メタノール500mL、10N NaOH水溶液60mLを加えて2時間還流した。反応終了後、反応溶液を2L三角フラスコに移し、そこに氷3個加えて氷浴中で反応溶液を十分に冷却した後、12N HCl水溶液150mLを加えて氷浴中で1時間攪拌した。得られた固体を吸引ろ過し、メタノールで再結晶して化合物(C-6)10.4gを得た。(収率:71 %、融点:161 - 163℃、1H-NMR (500 MHz, DMSO-d6): δ = 2.56 (2H, q, J=7.3 Hz), 3.34 (2H, m), 7.45 (2H, d, J=8.5 Hz), 7.81 (2H, d, J=8.5 Hz), 12.96 (1H, s)ppm、IR (KBr disc): v(C-F) = 1090 - 1284 cm-1, v(C-O)= 1283 cm-1, v(C=C) = 1600cm-1, v(C=O)= 1720 cm-1, ν(C-H) = 2950 cm-1, v(O-H)= 3160 cm-1 Compound (B-6) (15.0 g, 29.2 mmol), 500 mL of methanol, and 60 mL of 10N NaOH aqueous solution were added to a 1 L eggplant flask and refluxed for 2 hours. After completion of the reaction, the reaction solution was transferred to a 2 L Erlenmeyer flask, 3 pieces of ice were added, and the reaction solution was sufficiently cooled in an ice bath. The resulting solid was suction filtered and recrystallized with methanol to obtain 10.4 g of compound (C-6). (Yield: 71 %, melting point: 161 - 163°C, 1 H-NMR (500 MHz, DMSO-d 6 ): δ = 2.56 (2H, q, J = 7.3 Hz), 3.34 (2H, m), 7.45 (2H, d, J=8.5 Hz), 7.81 (2H, d, J=8.5 Hz), 12.96 (1H, s) ppm, IR (KBr disc): v (CF) = 1090 - 1284 cm -1 , v (CO) = 1283 cm -1 , v (C=C) = 1600 cm -1 , v (C=O) = 1720 cm -1 , ν (CH) = 2950 cm -1 , v (OH) = 3160 cm - 1 )

(4)エステル化

Figure 2022136032000015
(4) Esterification
Figure 2022136032000015

50mLナスフラスコに化合物(c-6)(1.0g,2.0mmol)、1H,1H,2H,2H-perfluoro-1-decanol(1.0g,2.0mmol)、1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide Hydrochloride(EDC・HCl,0.63g,3.3mmol)、4-dimethylaminopyridine(DMAP;0.1g,0.81mmol)、Dimethylformamide(DMF)20mLを加え、室温で一晩攪拌した。トルエンと水を加えて有機層を抽出し、その後飽和食塩水で有機層を洗浄した。得られた有機層を無水MgSOで乾燥し、ひだ折り濾過で固体を分離した。得られた濾液を減圧濃縮後、クロロホルム-エタノール混合溶媒で再結晶して目的化合物(1-8-6)1.4gを得た。(収率:73%. 融点:83 - 84℃、1H-NMR (500 MHz, CDCl3): δ = 2.39-2.49 (2H, m), 2.55-2.65 (2H, m), 3.20-3.23 (2H, m), 4.62 (2H, t, J=6.3 Hz), 7.33 (2H, d, J=8.6 Hz), 7.97 (2H, d, J=8.6 Hz) ppm、IR (ATR-IR): ν(C-F) = 1080-1230 cm-1, ν(C-O) = 1261-1366 cm-1, ν(C-H)= 1599 cm-1, ν(C=O) = 1716 cm-1) Compound (c-6) (1.0 g, 2.0 mmol), 1H, 1H, 2H, 2H-perfluoro-1-decanol (1.0 g, 2.0 mmol), 1-(3-Dimethylaminopropyl) were placed in a 50 mL eggplant flask. -3-ethylcarbodiimide Hydrochloride (EDC.HCl, 0.63 g, 3.3 mmol), 4-dimethylaminopyridine (DMAP; 0.1 g, 0.81 mmol), and 20 mL of dimethylformamide (DMF) were added and stirred overnight at room temperature. Toluene and water were added to extract the organic layer, and then the organic layer was washed with saturated brine. The resulting organic layer was dried over anhydrous MgSO4 and the solids separated by pleated filtration. The resulting filtrate was concentrated under reduced pressure and then recrystallized from a chloroform-ethanol mixed solvent to obtain 1.4 g of the target compound (1-8-6). (Yield: 73%. Melting point: 83 - 84°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.39-2.49 (2H, m), 2.55-2.65 (2H, m), 3.20-3.23 ( 2H, m), 4.62 (2H, t, J=6.3 Hz), 7.33 (2H, d, J=8.6 Hz), 7.97 (2H, d, J=8.6 Hz) ppm, IR (ATR-IR): ν (CF) = 1080-1230 cm -1 , ν (CO) = 1261-1366 cm -1 , ν (CH) = 1599 cm -1 , ν (C=O) = 1716 cm -1 )

[化合物(2-6-4)の合成]
実施例3の(1)で得た化合物(A)を用いて、以下の工程で化合物(2-6-4)を得た。
[Synthesis of compound (2-6-4)]
Using compound (A) obtained in (1) of Example 3, compound (2-6-4) was obtained in the following steps.

(1)チオエーテル化

Figure 2022136032000016
(1) Thioetherification
Figure 2022136032000016

1000mLナスフラスコに化合物(A)(9.74g,0.0576mol)を加え3-Pentanone 200mLに溶解した。さらに炭酸カリウム10g、2-(perfluorobutyl)ethyl ionide(21.54g,0.0575mol)を加え、2日還流した。その後室温放冷し、ひだ折ろ紙で溶液をろ過した。ろ液をエバポレーターで濃縮し、室温放冷すると褐色固体が得られた。得られた固体をメタノールで再結晶して化合物(B-4)を16.86g得た。(収率:78%, 融点:45-46℃、1HNMR (500MHz, CDCl3) δ = 1.06 (2H, t, J=7.2 Hz), 3.21 (2H, t, J=8.2 Hz), 3.91 (3H, s), 7.33 (2H, d, J=8.5 Hz), 7.98 (2H, d, J=8.5 Hz) ppm、IR (KBr disc)ν(C-S) =1190cm-1(C-F)=1209cm-1, ν(C-O)=1296cm-1, ν(C-H)=1337cm-1, ν(C=O)=1712cm-1) Compound (A) (9.74 g, 0.0576 mol) was added to a 1000 mL eggplant flask and dissolved in 200 mL of 3-Pentanone. Further, 10 g of potassium carbonate and 2-(perfluorobutyl)ethyl ionide (21.54 g, 0.0575 mol) were added and refluxed for 2 days. After that, the mixture was allowed to cool to room temperature, and the solution was filtered through a folded filter paper. The filtrate was concentrated by an evaporator and allowed to cool to room temperature to obtain a brown solid. The obtained solid was recrystallized with methanol to obtain 16.86 g of compound (B-4). (Yield: 78%, melting point: 45-46°C, 1 HNMR (500 MHz, CDCl 3 ) δ = 1.06 (2H, t, J=7.2 Hz), 3.21 (2H, t, J=8.2 Hz), 3.91 ( 3H, s), 7.33 (2H, d, J=8.5 Hz), 7.98 (2H, d, J=8.5 Hz) ppm, IR (KBr disc)ν (CS) =1190 cm −1(CF) =1209 cm −1 , ν (CO) =1296cm −1 , ν (CH) =1337cm −1 , ν (C=O) =1712cm −1 )

(2)加水分解

Figure 2022136032000017
(2) Hydrolysis
Figure 2022136032000017

1000mLナスフラスコに化合物(B―4)(25g,60.1mmol)加え、メタノール500mLに溶解した。そこに10N NaOH 水溶液60mLを加え、2時間還流した。反応後2000mL三角フラスコに還流後の反応物を移し12N HCl水溶液、氷8個を加え酸性にした。このとき中和熱が発生するため、氷浴中で1時間撹拌した。得られた固体を吸引ろ過し、メタノールを用いて再結晶して化合物(C-4)17.43gを得た。(収率:72%、融点:140 - 141℃、1HNMR (500MHz, DMSO-d6) δ =2.45 (2H, t, J=8.5 Hz), 3.22 (2H, t, J=8.2 Hz), 7.34 (2H, d, J=8.0 Hz), 8.03 (2H, d, J=8.5 Hz) ppm、IR (KBr disc) ν(C-F)=1223cm-1, ν(C=O)=1676cm-1(O-H)=2979cm-1Compound (B-4) (25 g, 60.1 mmol) was added to a 1000 mL eggplant flask and dissolved in 500 mL of methanol. 60 mL of 10N NaOH aqueous solution was added thereto and refluxed for 2 hours. After the reaction, the reactant after refluxing was transferred to a 2000 mL Erlenmeyer flask and acidified by adding 12N HCl aqueous solution and 8 pieces of ice. Since heat of neutralization was generated at this time, the mixture was stirred in an ice bath for 1 hour. The resulting solid was suction filtered and recrystallized using methanol to obtain 17.43 g of compound (C-4). (Yield: 72%, melting point: 140 - 141°C, 1 HNMR (500 MHz, DMSO-d 6 ) δ = 2.45 (2H, t, J = 8.5 Hz), 3.22 (2H, t, J = 8.2 Hz), 7.34 (2H, d, J=8.0 Hz), 8.03 (2H, d, J=8.5 Hz) ppm, IR (KBr disc) ν (CF) =1223 cm −1 , ν (C=O) =1676 cm −1 , ν (OH) =2979 cm -1 )

(3)酸化

Figure 2022136032000018
(3) Oxidation
Figure 2022136032000018

300mLのナスフラスコに化合物(C-4)を10.00g、酢酸200mL、30wt% H11.38gを入れ、三日間還流した。室温放冷し、反応溶液に20wt%の亜硫酸ナトリウム水溶液60mLを加えた後、水洗した。沈殿物を吸引ろ過して化合物(D-4)を10.57g得た。(収率:99%、融点:164-167℃、1H-NMR(500 MHz, DMSO-d6) δ = 2.54-2.65 (2H, m), 3.77 (2H, t, J=8.0 Hz), 8.06 (2H, d,J=8.6Hz), 8.17 (2H, d, J=8.6 Hz) ppm、IR(KBr disc):ν(C-F) = 1270-1190 cm-1, ν(C-O) = 1740 cm-1, ν(C-H) = 2900 cm-1 10.00 g of compound (C-4), 200 mL of acetic acid, 30 wt% H2O.211.38 g was added and refluxed for 3 days. After allowing to cool to room temperature, 60 mL of a 20 wt % sodium sulfite aqueous solution was added to the reaction solution, followed by washing with water. The precipitate was suction filtered to obtain 10.57 g of compound (D-4). (Yield: 99%, Melting point: 164-167°C,1H-NMR (500 MHz, DMSO-d6) δ = 2.54-2.65 (2H, m), 3.77 (2H, t, J=8.0 Hz), 8.06 (2H, d, J=8.6 Hz), 8.17 (2H, d, J=8.6 Hz) ppm, IR (KBr disc): ν(CF) = 1270-1190cm-1, ν(CO) = 1740 cm-1, ν(CH)= 2900cm-1)

(4)エステル化

Figure 2022136032000019
(4) Esterification
Figure 2022136032000019

50mLナスフラスコに化合物(D-4)(0.51g,1.18mmol)、1H,1H,2H,2H-perfluor-1-octanol(0.43g,1.18mmol)、(1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide Hydrochloride,EDC・HCl,0.34g,1.77mmol)、4-dimethylaminopyridine (DMAP;0.5g,4.46mmol)、Dimethylformamide(DMF)20mLを加え、室温で一晩攪拌した。トルエンと水を加えて有機層を抽出し、その後飽和食塩水で有機層を洗浄した。得られた有機層を無水MgSOで乾燥し、ひだ折り濾過で固体を分離した。得られた濾液を減圧濃縮後、クロロホルム-エタノール混合溶媒で再結晶して目的化合物(2-6-4)0.63gを得た。(収率:69%、融点:128 - 129℃、1H-NMR (500 MHz, CDCl3) δ = 2.49-2.63 (4H, m), 3.27-3.30 (2H, m), 4.64 (2H, t, J=6.3 Hz), 7.98 (2H, d, J=8.6 Hz), 8.21 (2H, d, J=8.6 Hz) ppm、IR (ATR-IR): ν(C-F) = 1085-1230 cm-1, ν(S=O) = 1110-1220 cm-1, ν(C-O) = 1260-1330 cm-1, ν(C=O) = 1720 cm-1Compound (D-4) (0.51 g, 1.18 mmol), 1H,1H,2H,2H-perfluor-1-octanol (0.43 g, 1.18 mmol), (1-(3-Dimethylaminopropyl )-3-ethylcarbodiimide Hydrochloride, EDC.HCl, 0.34 g, 1.77 mmol), 4-dimethylaminopyridine (DMAP; 0.5 g, 4.46 mmol), and 20 mL of dimethylformamide (DMF) were added and stirred overnight at room temperature. Toluene and water were added to extract the organic layer, and then the organic layer was washed with saturated brine. The resulting organic layer was dried over anhydrous MgSO4 and the solids separated by pleated filtration. The resulting filtrate was concentrated under reduced pressure and then recrystallized from a chloroform-ethanol mixed solvent to obtain 0.63 g of the target compound (2-6-4). (Yield: 69%, Melting point: 128-129°C, 1 H-NMR (500 MHz, CDCl 3 ) δ = 2.49-2.63 (4H, m), 3.27-3.30 (2H, m), 4.64 (2H, t , J=6.3 Hz), 7.98 (2H, d, J=8.6 Hz), 8.21 (2H, d, J=8.6 Hz) ppm, IR (ATR-IR): ν (CF) = 1085-1230 cm -1 , ν (S=O) = 1110-1220 cm -1 , ν (CO) = 1260-1330 cm -1 , ν (C=O) = 1720 cm -1 )


[化合物3-6-6の合成]
(1)ベンジルエーテル化

Figure 2022136032000020
300mLナスフラスコにMethyl 4-hydroxybenzoate (10g, 66 mmol)、Benzyl bromide (11g, 66mmol)、K2CO330 g、3-pentanone 200 mLを加えて30時間還流した。反応終了後、ひだ折り濾過により固体を取り除き、減圧濃縮して得られた固体をメタノールで再結晶して化合物E 8.0 gを得た。(収率: 73%、融点:108 - 110℃、1H-NMR (500 MHz, CDCl3) δ = 3.80 (3H, s), 5.03 (2H, s), 6.91 (2H, d, J=8.6 Hz), 7.25-7.36 (5H, m), 7.91 (2H, d, J=8.6 Hz) ppm、IR (ATR-IR): v(Me-O)= 1008 - 1242 cm-1, v(Ph-O) = 1028 - 1317 cm-1, v(C=O) = 1709 cm-1, v(C-H of Me) = 2848 cm-1, v(C-H of Ph) = 2954 cm-1
[Synthesis of compound 3-6-6]
(1) Benzyl etherification
Figure 2022136032000020
Methyl 4-hydroxybenzoate (10g, 66 mmol), Benzyl bromide (11g, 66mmol), K2CO330 g of 3-pentanone and 200 mL of 3-pentanone were added and refluxed for 30 hours. After completion of the reaction, the solid was removed by pleat filtration, and the solid obtained by concentration under reduced pressure was recrystallized with methanol to obtain 8.0 g of Compound E. (Yield: 73%, Melting point: 108 - 110°C,1H-NMR (500 MHz, CDCl3) δ = 3.80 (3H, s), 5.03 (2H, s), 6.91 (2H, d, J=8.6 Hz), 7.25-7.36 (5H, m), 7.91 (2H, d, J=8.6 Hz) ppm , IR (ATR-IR): v(Me-O)= 1008 - 1242 cm-1, v(Ph-O) = 1028 - 1317 cm-1, v(C=O)= 1709 cm-1, v(CH of Me) = 2848 cm-1, v(CH of Ph) = 2954 cm-1)

(2)加水分解

Figure 2022136032000021
300mLナスフラスコに化合物E (6.0g, 15mmol)、メタノール150 mL、6N NaOH水溶液50mLを加えて2時間還流した。反応終了後、反応溶液を2L三角フラスコに移し、そこに氷3個加えて氷浴中で反応溶液を十分に冷却した後、12N HCl水溶液150 mLを加えて氷浴中で1時間攪拌した。得られた固体を吸引ろ過した後に水洗して化合物F4.1 gを得た。(収率:72%、融点:193 - 195℃、1H-NMR (500 MHz, DMSO-d6) δ = 5.16 (2H, s), 7.08 (2H, d, J=8.6 Hz), 7.32-7.45 (5H, m), 7.87 (2H, d, J=8.6 Hz) ppm、IR (ATR-IR): ν(C-O) =1273 cm-1, ν(C-H) = 1337 cm-1, ν(C=O) = 1720 cm-1, ν(C=C)= 1597 cm-1, ν(O-H) = 2979 cm-1) (2) Hydrolysis
Figure 2022136032000021
Compound E (6.0 g, 15 mmol), 150 mL of methanol, and 50 mL of 6N NaOH aqueous solution were added to a 300 mL eggplant flask and refluxed for 2 hours. After completion of the reaction, the reaction solution was transferred to a 2 L Erlenmeyer flask, 3 pieces of ice were added, and the reaction solution was sufficiently cooled in an ice bath. The resulting solid was suction filtered and then washed with water to obtain 4.1 g of compound F. (Yield: 72%, Melting point: 193-195 ° C., 1 H-NMR (500 MHz, DMSO-d 6 ) δ = 5.16 (2H, s), 7.08 (2H, d, J = 8.6 Hz), 7.32- 7.45 (5H, m), 7.87 (2H, d, J=8.6 Hz) ppm, IR (ATR-IR): ν (CO) =1273 cm -1 , ν (CH) = 1337 cm -1 , ν (C =O) = 1720 cm -1 , ν (C=C) = 1597 cm -1 , ν (OH) = 2979 cm -1 )

(3)エステル化

Figure 2022136032000022
50 mLナスフラスコに化合物F (2.5g, 11mmol)、2-(perfluorohexyl)ethanol (4.0 g, 11 mmol)、1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-hydrochloride (EDC・HCl, 2.2 g, 11 mmol), dimethylaminopyridine (DMAP, 0.5 g)、N,N-dimethylformamide (DMF, 20 mL)を加えて室温で一晩攪拌した。得られた反応混合物を、トルエンで2回抽出し、有機層を飽和食塩水で洗浄した。得られた有機層をエバポレーターで減圧濃縮して得られた固体をクロロホルム?エタノール混合溶媒で再結晶を行って化合物G 2.8 gを得た。(収率:44%、融点:60 - 61℃、1H-NMR (500 MHz, CDCl3) δ = 2.47-2.57 (2H, m), 4.53 (2H, t, J=6.3 Hz), 5.06 (2H, s), 6.93 (2H, d, J=8.6 Hz), 7.28-7.39 (5H, m), 7.92 (2H, d, J=9.2 Hz) ppm、IR (ATR-IR): ν(C-F) = 1018 - 1282 cm-1, ν(C-O)=1230 cm-1, ν(C-H) = 1319 cm-1, ν(C=C)= 1579 cm-1(C=O) = 1714 cm-1) (3) Esterification
Figure 2022136032000022
Compound F (2.5 g, 11 mmol), 2-(perfluorohexyl)ethanol (4.0 g, 11 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-hydrochloride (EDC・HCl, 2.2 g, 11 mmol), dimethylaminopyridine (DMAP, 0.5 g) and N,N-dimethylformamide (DMF, 20 mL) were added and stirred overnight at room temperature. The resulting reaction mixture was extracted twice with toluene, and the organic layer was washed with saturated brine. The solid obtained by concentrating the obtained organic layer under reduced pressure with an evaporator was recrystallized with a chloroform-ethanol mixed solvent to obtain 2.8 g of compound G. (Yield: 44%, Melting point: 60-61°C, 1 H-NMR (500 MHz, CDCl 3 ) δ = 2.47-2.57 (2H, m), 4.53 (2H, t, J=6.3 Hz), 5.06 ( 2H, s), 6.93 (2H, d, J=8.6 Hz), 7.28-7.39 (5H, m), 7.92 (2H, d, J=9.2 Hz) ppm, IR (ATR-IR): ν (CF) = 1018 - 1282 cm -1 , ν (CO) =1230 cm -1 , ν (CH) = 1319 cm -1 , ν (C=C) = 1579 cm -1 , ν (C=O) = 1714 cm - 1 )

(4)脱ベンジル化

Figure 2022136032000023
1 L水添瓶に化合物G (2.0g, 3.5mmol)、エタノール400mL、トルエン200mLを加え化合物を溶解させた後に5%パラジウム炭素(0.5 g)を加え、反応容器を脱気してH2を注入し激しく撹拌した。H2が反応容器に注入できなくなったら、反応容器を大気開放してパラジウム炭素を濾別し、反応溶液をエバポレーターで減圧濃縮して得られた固体をトルエンで再結晶を行って化合物H 1.3 gを得た。(収率:77%、融点:109 - 110℃、1H-NMR: CDCl3、DMSO-d6ともに不溶のため測定不可、IR (KBr disc.): ν(C-F) = 1010 - 1280 cm-1, ν(C-O) =1230 cm-1, ν(C-H) = 1315 cm-1, ν(C=C) = 1589 cm-1(C=O)= 1678 cm-1(O-H) = 3269 cm-1) (4) Debenzylation
Figure 2022136032000023
Compound G (2.0 g, 3.5 mmol), 400 mL of ethanol, and 200 mL of toluene were added to a 1 L hydrogenation bottle to dissolve the compound. Pour in and stir vigorously. When H 2 could not be injected into the reaction vessel, the reaction vessel was opened to the atmosphere, palladium carbon was filtered off, the reaction solution was concentrated under reduced pressure using an evaporator, and the obtained solid was recrystallized with toluene to obtain 1.3 g of compound H. got (Yield: 77%, melting point: 109 - 110°C, 1 H-NMR: both CDCl 3 and DMSO-d 6 are insoluble and cannot be measured, IR (KBr disc.): ν (CF) = 1010 - 1280 cm - 1 , ν (CO) =1230 cm -1 , ν (CH) = 1315 cm -1 , ν (C=C) = 1589 cm -1 , ν (C=O) = 1678 cm -1 , ν (OH) = 3269 cm -1 )

(5)エステル化

Figure 2022136032000024
50mLナスフラスコに化合物C-6 (0.52g, 1.0mmol)、化合物H (0.50g, 1.0mmol)、EDC・HCl (0.30g, 1.5mmol)、DMAP (0.5g)、DMF (25mL)を加え、塩化カルシウム管を取り付けて室温で一晩撹拌した。得られた反応混合物を、トルエンで2回抽出し、有機層を飽和食塩水で洗浄した。得られた有機層をエバポレーターで減圧濃縮し、展開溶媒をクロロホルムとしたシリカゲルカラムクロマトグラフィーで精製して化合物(3-6-6)0.65 gを得た。(収率:67%、融点:127 - 128℃、1H-NMR (500 MHz, CDCl3): δ = 2.36-2.47 (2H, m), 2.51-2.61 (2H, m), 3.19 (2H, t, J=8.3 Hz), 4.58 (2H, t, J=6.3 Hz), 7.25 (2H, d, J=8.6 Hz), 7.33 (2H, d, J=8.6 Hz), 8.06 (4H, dd, J=8.3, 7.2 Hz) ppm、IR (ATR-IR): ν(C-F) = 1078 - 1230 cm-1, ν(C-O) = 1280 - 1367 cm-1, ν(C-H) = 1608 cm-1) (5) Esterification
Figure 2022136032000024
Compound C-6 (0.52g, 1.0mmol), compound H (0.50g, 1.0mmol), EDC-HCl (0.30g, 1.5mmol), DMAP (0.5g) and DMF (25mL) were added to a 50mL eggplant flask. A calcium chloride tube was attached and stirred overnight at room temperature. The resulting reaction mixture was extracted twice with toluene, and the organic layer was washed with saturated brine. The resulting organic layer was concentrated under reduced pressure using an evaporator and purified by silica gel column chromatography using chloroform as a developing solvent to obtain 0.65 g of compound (3-6-6). (Yield: 67%, melting point: 127 - 128°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.36-2.47 (2H, m), 2.51-2.61 (2H, m), 3.19 (2H, t, J=8.3 Hz), 4.58 (2H, t, J=6.3 Hz), 7.25 (2H, d, J=8.6 Hz), 7.33 (2H, d, J=8.6 Hz), 8.06 (4H, dd, J=8.3, 7.2 Hz) ppm, IR (ATR-IR): ν (CF) = 1078 - 1230 cm -1 , ν (CO) = 1280 - 1367 cm -1 , ν (CH) = 1608 cm -1 )

[化合物4-6-6の合成]
実施例2の酸化工程で得た化合物(a-SO;ただし、ここではD-6という)を用いて、以下の工程で化合物(4-6-6)を得た。

Figure 2022136032000025
50 mLナスフラスコに化合物D-6 (0.65 g, 1.2 mmol)、塩化チオニル10 mLを加えて80℃で90分間加熱撹拌して酸クロリド化した。反応終了後、減圧除去を行い、そこにトルエン8 mLと化合物H(0.59 g, 1.2 mmol)の無水ピリジン(8 mL)溶液を加えて80℃で4時間加熱攪拌した。その後、エバポレーターを用いて減圧濃縮を行い、残渣にエタノールを加えて副生成物であるピリジン塩酸塩を除去し、吸引濾過した後、展開溶媒をクロロホルムとしたシリカゲルカラムクロマトグラフィーで精製して化合物(4-6-6)0.69 gを得た。(収率:58%、融点:168 - 169℃、1H-NMR (500 MHz, CDCl3): δ = 2.57-2.68 (4H, m), 3.36-3.40 (2H, m), 4.65 (2H, t, J=6.4 Hz), 7.34 (2H, d, J=8.6 Hz), 8.11 (2H, d, J=8.6 Hz), 8.15 (2H, d, J=8.6 Hz), 8.44 (2H, d, J=6.9 Hz) ppm、IR (ATR-IR): ν(C-F) = 1087 - 1232 cm-1, ν(C-O) = 1267-1366 cm-1, ν(C-H)= 1599 cm-1) [Synthesis of compound 4-6-6]
Using the compound (a-SO 2 ; referred to as D-6 here) obtained in the oxidation step of Example 2, compound (4-6-6) was obtained in the following steps.
Figure 2022136032000025
Compound D-6 (0.65 g, 1.2 mmol) and 10 mL of thionyl chloride were added to a 50 mL eggplant flask, and the mixture was heated and stirred at 80° C. for 90 minutes for acid chloride formation. After completion of the reaction, the mixture was removed under reduced pressure, 8 mL of toluene and a solution of compound H (0.59 g, 1.2 mmol) in anhydrous pyridine (8 mL) were added thereto, and the mixture was heated and stirred at 80° C. for 4 hours. Thereafter, concentration under reduced pressure is performed using an evaporator, ethanol is added to the residue to remove the by-product pyridine hydrochloride, and after suction filtration, purification is performed by silica gel column chromatography using chloroform as a developing solvent to obtain the compound ( 4-6-6) 0.69 g was obtained. (Yield: 58%, Melting point: 168 - 169°C, 1 H-NMR (500 MHz, CDCl 3 ): δ = 2.57-2.68 (4H, m), 3.36-3.40 (2H, m), 4.65 (2H, t, J = 6.4 Hz), 7.34 (2H, d, J = 8.6 Hz), 8.11 (2H, d, J = 8.6 Hz), 8.15 (2H, d, J = 8.6 Hz), 8.44 (2H, d, J=6.9 Hz) ppm, IR (ATR-IR): ν (CF) = 1087 - 1232 cm -1 , ν (CO) = 1267-1366 cm -1 , ν (CH) = 1599 cm -1 )

実施例1と同様の方法により、以下の化合物(5-6-6)を合成した。(収率:21%、融点:145-148℃)

Figure 2022136032000026
By the same method as in Example 1, the following compound (5-6-6) was synthesized. (Yield: 21%, melting point: 145-148°C)
Figure 2022136032000026

[ゲル化能(最低ゲル化濃度、ゾル-ゲル転移温度)測定]
ミクロチューブ(マルエム社製、11mmφ)に約3.5mg程度のゲル化剤を量り取った。そのゲル化剤に溶媒を適量加えた混合試料をミクロチューブごと加熱して溶解させ、ボルテックスミキサーを用いて激しく撹拌した。放冷した後、溶液の状態を目視で確認した。このとき、サンプル管を逆さまにしたときに固体状態ならば「ゲル」、液体状態ならば「ゾル」とした。ゲルと判断した場合はさらに溶媒を加えて最低ゲル化濃度を決定した。また、ゲル状態からゾル状態に相転移する際の温度を測定し、これを「ゾル-ゲル転移温度」とした。
最低ゲル化濃度について、表2に、ゾル-ゲル転移温度については、図1~図5に示す。なお、表中、「-」は、未測定を表す。
表2中、Gはgel、Iはinsolubleを示す。カッコ内の数値は最低ゲル化濃度(wt%)を示す。また、表2中、最上段の番号1-6-6、2-6-4、2-6-6,3-6-6、4-6-6及び5-6-6は、上記合成例で合成された化合物の番号を示す。
[Gelling ability (minimum gelling concentration, sol-gel transition temperature) measurement]
About 3.5 mg of the gelling agent was weighed into a microtube (manufactured by Maruem Co., Ltd., 11 mmφ). A mixed sample in which an appropriate amount of solvent was added to the gelling agent was heated together with the microtube to dissolve, and vigorously stirred using a vortex mixer. After standing to cool, the state of the solution was visually confirmed. At this time, when the sample tube was turned upside down, if it was in a solid state, it was called "gel", and if it was in a liquid state, it was called "sol". When gel was determined, additional solvent was added to determine the minimum gelling concentration. Also, the temperature at which the phase transition from the gel state to the sol state was measured, and this was defined as the "sol-gel transition temperature".
The minimum gelling concentrations are shown in Table 2, and the sol-gel transition temperatures are shown in Figures 1-5. In the table, "-" represents unmeasured.
In Table 2, G indicates gel and I indicates insoluble. The numbers in parentheses indicate the minimum gelling concentration (wt%). Further, in Table 2, the top numbers 1-6-6, 2-6-4, 2-6-6, 3-6-6, 4-6-6 and 5-6-6 are the above synthesis examples The number of the compound synthesized in is shown.

表2は、各化合物についての最低ゲル化濃度の評価結果を示す。 Table 2 shows the evaluation results of the minimum gelling concentration for each compound.

Figure 2022136032000027
DMSO:dimethyl sulfoxide (高誘電性溶媒)
PC : propylene carbonate (高誘電性溶媒)
1M LiClO4/PC :支持電解質(LiClO4)を含有する高誘電性溶媒
1M LiFSA/EC:PC:DEC:支持電解質(LiFSA)を含有する高誘電性溶媒(EC:PC:DEC=2:1:7 (体積比))
EC = ethylene carbonate
PC = propylene carbonate
DEC = diethyl carbonate
N,N-dimethylaniline: 塩基性有機溶媒
[EMIM][FSA] :1-エチル-3メチルイミダゾリウムビス(フルオロスルホニル)アミド(イオン液体)
1 mol kg-1 LiFSA/[EMIM][FSA] :支持電解質(LiFSA)を含有するイオン液体
[dema][TfO] :ジエチルメチルアンモニウムトリフルオロメタンスルホナート(プロトン性イオン液体)
[N,N-dimethylaniline][TFSA]:プロトン性イオン液体
[BMIM][TFSA] : (1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)アミド)(イオン液体)
[BMIM][FeCl4] :(1-ブチル-3-メチルイミダゾリウムテトラクロロフェレート(イオン液体)
Figure 2022136032000027
DMSO: dimethyl sulfoxide (high dielectric solvent)
PC : propylene carbonate (high dielectric solvent)
1M LiClO 4 /PC : High dielectric solvent containing supporting electrolyte (LiClO 4 )
1M LiFSA/EC:PC:DEC: high dielectric solvent containing supporting electrolyte (LiFSA) (EC:PC:DEC=2:1:7 (volume ratio))
EC = ethylene carbonate
PC = propylene carbonate
DEC = diethyl carbonate
N,N-dimethylaniline: basic organic solvent
[EMIM][FSA] : 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide (ionic liquid)
1 mol kg -1 LiFSA/[EMIM][FSA] : Ionic liquid containing supporting electrolyte (LiFSA)
[dema][TfO] : Diethylmethylammonium trifluoromethanesulfonate (protic ionic liquid)
[N,N-dimethylaniline][TFSA]: protic ionic liquid
[BMIM][TFSA] : (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide) (ionic liquid)
[BMIM][FeCl 4 ] : (1-butyl-3-methylimidazolium tetrachloroferrate (ionic liquid)

図1は、本発明の化合物(2-6-6)と溶媒(PC及び[EMIM][FSA])とのゲル、及び、溶媒と支持電解質(1M LiClO4/PC及び1 mol kg-1 LiFSA / [EMIM][FSA])を含むゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す。
図2は、本発明の化合物(1-6-6及び2-6-6)と1-オクタノールとのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す。
図3は、本発明の化合物(2-6-6、3-6-6、4-6-6及び5-6-6)とプロピレンカーボネートとのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す。
図4は、本発明の化合物(1-6-6、2-6-6、3-6-6、4-6-6及び5-6-6)と[BMIM][TFSA]とのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す。
図5は、本発明の化合物(2-6-6、3-6-6及び4-6-6)と1M LiFSA / EC:PC:DEC とのゲルについて、ゾルへの相転移温度と化合物濃度との関係を示す。
FIG. 1 shows a gel of the compound (2-6-6) of the present invention and a solvent (PC and [EMIM] [FSA]), and a solvent and a supporting electrolyte (1M LiClOFour/PC and 1 mol kg-1LiFSA/ [EMIM][FSA]) shows the relationship between the phase transition temperature to sol and the compound concentration.
FIG. 2 shows the relationship between the phase transition temperature to sol and the compound concentration for gels of the compounds of the present invention (1-6-6 and 2-6-6) and 1-octanol.
FIG. 3 shows the phase transition temperature to sol and the compound concentration for gels of the compounds of the present invention (2-6-6, 3-6-6, 4-6-6 and 5-6-6) and propylene carbonate. indicates a relationship with
FIG. 4 shows gels of compounds of the present invention (1-6-6, 2-6-6, 3-6-6, 4-6-6 and 5-6-6) and [BMIM][TFSA]. , shows the relationship between the phase transition temperature to sol and the compound concentration.
FIG. 5 shows the phase transition temperature to sol and the compound concentration for gels of the compounds of the present invention (2-6-6, 3-6-6 and 4-6-6) and 1M LiFSA / EC:PC:DEC indicates a relationship with

[ゲル電解質の耐久性の測定]
高誘電性混合溶媒(EC/PC/DEC(2:1:7)に、支持電解質LiFSA を1 Mになるように添加してゲル化されていない電解液を調製した。その電解液に、本発明化合物(3-6-6)を添加して混合した後、アルゴン雰囲気下のグローブボックス内でゲル化させ、5重量%濃度のゲル電解質を得た。
比較例として、本発明化合物(3-6-6)の代わりに、compound K-8(化学式は図6中に記載されている)を用いて、同様に5重量%濃度のゲル電解質を得た。
それを株式会社UBM製のRheosol-G1000による定常流粘性測定により、剪断速度による粘度の関係を評価した。
<測定条件>
測定モード せん断速度依存性:2.76×10-2 ~ 143 sec-1
チャック コーンプレート
コーン直径 40 mm
コーン角 2.0°
図6に結果を示す。比較例のゲルは、剪断すると大幅に粘度低下がみられたが、本発明のゲルは、剪断による粘度低下が小さかった。
[Measurement of Durability of Gel Electrolyte]
A non-gelled electrolyte was prepared by adding the supporting electrolyte LiFSA to 1 M to a high dielectric mixed solvent (EC/PC/DEC (2:1:7). After adding and mixing the invention compound (3-6-6), the mixture was gelled in a glove box under an argon atmosphere to obtain a gel electrolyte with a concentration of 5% by weight.
As a comparative example, instead of the compound of the present invention (3-6-6), compound K-8 (the chemical formula is shown in FIG. 6) was used to similarly obtain a gel electrolyte with a concentration of 5% by weight. .
The relationship between viscosity and shear rate was evaluated by steady flow viscosity measurement using Rheosol-G1000 manufactured by UBM Co., Ltd.
<Measurement conditions>
Measurement mode Shear rate dependence: 2.76×10 -2 ~ 143 sec -1
chuck cone plate
Cone diameter 40mm
Cone angle 2.0°
The results are shown in FIG. The gels of the comparative examples showed a large decrease in viscosity upon shearing, whereas the gels of the present invention exhibited a small decrease in viscosity upon shearing.

[イオン伝導度の測定]
1 イオン液体[EMIM][FSA]を使用した電解液の場合
イオン液体[EMIM][FSA]に、支持電解質LiFSA を1 mol kg-1 になるように添加してゲル化されていない電解液を作製した。その電解液に、本発明化合物(2-6-6)を電解液の全体量に対して3重量%の濃度で添加し、95℃に加熱して均一に混合した後、グローブボックス内で、ゲル化する前にガラス繊維ろ紙に染み込ませ、その状態でゲル化させ、3重量%濃度のゲル電解質を得た。作用極及び対極にPtを使用し、ゲル電解質を染み込ませたガラス繊維ろ紙を入れて二極式セルを組み立てた。二極式セルを恒温槽に入れ、-20℃から60℃の温度範囲で10℃刻みで電気化学測定システムを用いて下記測定条件で、インピーダンスを測定した。測定で得られたインピーダンスからイオン伝導度を算出した。その結果を表3に示す。
[測定条件]
・装置 Solartron analytical 1280C
・測定方法 定電位交流インピーダンス測定
> 周波数範囲:20000 - 0.1 Hz
> 印加電圧(交流振幅):10 mVp-p
> 直流電圧: 0V
・測定温度 -20 - 60℃ (ESPEC SU-241)
・セル:宝泉株式会社 HSフラットセル
・作用極:白金、対極:白金
・セパレーター:ガラス繊維濾紙(東洋濾紙株式会社GB-100R)
[Measurement of ionic conductivity]
1 Electrolyte using ionic liquid [EMIM][FSA] Add supporting electrolyte LiFSA to ionic liquid [EMIM][FSA] so that it becomes 1 mol kg -1 to make a non-gelled electrolyte. made. To the electrolytic solution, the compound (2-6-6) of the present invention was added at a concentration of 3% by weight with respect to the total amount of the electrolytic solution, heated to 95° C. and uniformly mixed, then in a glove box, Before gelling, it was impregnated into a glass fiber filter paper and gelled in that state to obtain a gel electrolyte with a concentration of 3% by weight. A bipolar cell was assembled by using Pt for the working and counter electrodes and inserting a glass fiber filter paper impregnated with a gel electrolyte. The bipolar cell was placed in a constant temperature bath, and the impedance was measured in the temperature range from -20°C to 60°C in increments of 10°C using an electrochemical measurement system under the following measurement conditions. The ionic conductivity was calculated from the impedance obtained by the measurement. Table 3 shows the results.
[Measurement condition]
・Equipment Solartron analytical 1280C
・Measurement method Constant potential AC impedance measurement > Frequency range: 20000 - 0.1 Hz
> Applied voltage (AC amplitude): 10 mVp-p
> DC voltage: 0V
・Measurement temperature -20 - 60℃ (ESPEC SU-241)
・Cell: Hosen Co., Ltd. HS Flat Cell ・Working electrode: Platinum, Counter electrode: Platinum ・Separator: Glass fiber filter paper (Toyo Roshi Kaisha, Ltd. GB-100R)

Figure 2022136032000028
Figure 2022136032000028

2.プロトン性イオン液体の場合
プロトン性イオン液体([dema][TfO]及び[N,N-diethylaniline][TFSA])に対して、本発明の化合物(2-6-6及び3-6-6)をプロトン性イオン液体の全体量に対して5重量%の濃度で添加し、95℃に加熱して均一に混合した後、グローブボックス内で、ゲル化する前にガラス繊維ろ紙に染み込ませ、その状態でゲル化させ、5重量%濃度のゲルを得た。作用極及び対極にPtを使用し、ゲル電解質を染み込ませたガラス繊維ろ紙を入れて二極式セルを組み立てた。二極式セルを恒温槽に入れ、0℃から80℃の温度範囲で20℃刻みで電気化学測定システムを用いて、上記1の場合と同様の測定条件で、インピーダンスを測定した。測定で得られたインピーダンスからイオン伝導度を算出した。その結果を表4及び5に示す。
2. In the case of protic ionic liquids Compounds of the present invention (2-6-6 and 3-6-6) for protic ionic liquids ([dema][TfO] and [N,N-diethylaniline][TFSA]) was added at a concentration of 5% by weight with respect to the total amount of protic ionic liquid, heated to 95 ° C. and mixed uniformly, and then impregnated into a glass fiber filter paper before gelation in a glove box. The mixture was gelled in this state to obtain a gel with a concentration of 5% by weight. A bipolar cell was assembled by using Pt for the working and counter electrodes and inserting a glass fiber filter paper impregnated with a gel electrolyte. The bipolar cell was placed in a constant temperature bath, and the impedance was measured in the temperature range of 0° C. to 80° C. in increments of 20° C. using an electrochemical measurement system under the same measurement conditions as in 1 above. The ionic conductivity was calculated from the impedance obtained by the measurement. The results are shown in Tables 4 and 5.

Figure 2022136032000029
Figure 2022136032000029

Figure 2022136032000030
Figure 2022136032000030

なお、比較例として、公知のゲル化剤である次式

Figure 2022136032000031
As a comparative example, the following formula, which is a known gelling agent,
Figure 2022136032000031

で表されるアンモニウム型スルホン酸化ポリイミド(SPI-6)について、プロトン性イオン液体である[dema][TfO]とのゲルのイオン伝導度を測定した測定した例が、安田友洋,渡邉正義,日本イオン交換学会誌,22,58(2011)に記載されている。
ここには、SPI-6を[dema][TfO]に対して20wt%~50wt%になるように加えて得たゲルのイオン電導度を測定した結果のグラフが示されているが、そのグラフから数値を読み取ると、表6に示すように、プロトン性イオン液体に公知のゲル化剤を20%添加したゲル化物よりも本発明のゲル化剤を5%添加したほうがイオン伝導度が1.5倍~5倍程度高い。
Tomohiro Yasuda, Masayoshi Watanabe, Japan It is described in Journal of Ion Exchange Society, 22, 58 (2011).
Here, a graph of the results of measuring the ionic conductivity of a gel obtained by adding SPI-6 to [dema][TfO] in an amount of 20 wt% to 50 wt% is shown. As shown in Table 6, the ionic conductivity of the gel obtained by adding 5% of the gelling agent of the present invention to the protic ionic liquid was 1.0% higher than that of the gel obtained by adding 20% of the known gelling agent to the protic ionic liquid. 5 to 5 times higher.

Figure 2022136032000032
Figure 2022136032000032

[プロトン性イオン液体([N,N-diethylaniline][TFSA])の合成]
100mLナスフラスコにN,N-diethylaniline(6.9g、46.5mmol)を加えて氷浴中で十分に冷却し、そこにビストリフルオロメタンスルホニルアミド(Bis(trifluromethanesulfonyl)amide)13.1g(46.5mmol)を加えて氷浴中で30分攪拌後、さらに室温で7時間撹拌した。反応終了後、クーゲルロールを用いて一晩減圧して[N,N-diethylaniline][TFSA]を17.5g得た(収率87%、m.p.268-269℃)1H-NMR (500 MHz, CDCl3):δ = 1.11 (6H, t, J=6.0 Hz), 3.64 (4H, q, J=6.9 Hz), 7.11 (1H, s), 7.44-7.57 (5H, m) ppm、IR (ATR-IR) :ν(S=O) = 1132-1178 cm-1 ν(C=C) = 1600 cm-1, ν(N-H) = 3125 cm-1
[Synthesis of protic ionic liquid ([N,N-diethylaniline] [TFSA])]
N,N-diethylaniline (6.9 g, 46.5 mmol) was added to a 100 mL eggplant flask and sufficiently cooled in an ice bath. 5 mmol) was added, and the mixture was stirred in an ice bath for 30 minutes, and then stirred at room temperature for 7 hours. After completion of the reaction, the pressure was reduced overnight using a Kugelrohr to obtain 17.5 g of [N,N-diethylaniline][TFSA] (yield 87%, mp 268-269°C) 1 H-NMR (500 MHz, CDCl 3 ): δ = 1.11 (6H, t, J=6.0 Hz), 3.64 (4H, q, J=6.9 Hz), 7.11 (1H, s), 7.44-7.57 (5H, m) ppm, IR (ATR- IR) : ν (S=O) = 1132-1178 cm -1 ν (C=C) = 1600 cm -1 , ν (NH) = 3125 cm -1

本発明のフッ素含有芳香族エステル化合物は、化粧品,医薬医療,食品,塗料,接着剤,汚泥処理等の産業分野でゲル化剤として利用可能であるのみならず、プロトン性イオン液体を含むイオン液体のゲル化が可能である。
さらに、電気化学的安定性に優れ、pH変化による分解がない。加えて、形成したイオン液体ゲルのイオン伝導度は、液体状態とほとんど変わりがない。そのため、高いイオン伝導度と機械的強度が両立した次世代の有機ゲル電解質が構築できる可能性があり、全固体リチウムイオン電池や燃料電池への応用が期待できる。
また、本発明のゲル化剤で生成したイオン液体ゲルは、二酸化炭素を選択的に吸収し、疎水性のイオン液体ゲルであるため水との分離が容易であるため、二酸化炭素分離膜への応用が期待されており、CO再利用を最終目的として酸性ガスや水を除去できる革新的なCO分離材料と応用が可能である。
The fluorine-containing aromatic ester compound of the present invention can be used not only as a gelling agent in industrial fields such as cosmetics, pharmaceuticals, foods, paints, adhesives, and sludge treatment, but also in ionic liquids including protic ionic liquids. can be gelled.
Furthermore, it has excellent electrochemical stability and is free from decomposition due to pH changes. In addition, the ionic conductivity of the formed ionic liquid gel is almost the same as in the liquid state. Therefore, it is possible to construct a next-generation organic gel electrolyte that has both high ionic conductivity and mechanical strength, and it is expected to be applied to all-solid-state lithium-ion batteries and fuel cells.
In addition, the ionic liquid gel produced by the gelling agent of the present invention selectively absorbs carbon dioxide, and since it is a hydrophobic ionic liquid gel, it is easy to separate from water. Applications are expected, and innovative CO 2 separation materials and applications that can remove acid gases and water with the ultimate goal of CO 2 reuse are possible.

Claims (5)

式(I)で表されるフッ素含有芳香族エステル化合物。
Figure 2022136032000033
(式中、
Arは、置換又は無置換の2価の芳香族基を示し、
yは、0、1又は2を示し、
m及びnは、それぞれ独立に、1~20のいずれかの整数を示し、
p及びqは、それぞれ独立に、0~6のいずれかの整数を示し、
rは1~3のいずれかの整数を示す)
A fluorine-containing aromatic ester compound represented by formula (I).
Figure 2022136032000033
(In the formula,
Ar represents a substituted or unsubstituted divalent aromatic group,
y represents 0, 1 or 2,
m and n are each independently an integer from 1 to 20,
p and q each independently represent any integer from 0 to 6,
r represents any integer from 1 to 3)
式(I)におけるArが置換又は無置換のフェニレン基、ナフチレン基又はビフェニレン基であることを特徴とする、請求項1に記載のフッ素含有芳香族エステル化合物。 2. The fluorine-containing aromatic ester compound according to claim 1, wherein Ar in formula (I) is a substituted or unsubstituted phenylene group, naphthylene group or biphenylene group. 請求項1又は2に記載のフッ素含有芳香族エステル化合物を含有するゲル化剤。 A gelling agent containing the fluorine-containing aromatic ester compound according to claim 1 or 2. 請求項3に記載のゲル化剤及び有機溶媒を含有するゲル状組成物。 A gel composition containing the gelling agent according to claim 3 and an organic solvent. 有機溶媒がイオン液体であることを特徴とする、請求項4に記載のゲル状組成物。 5. The gel composition according to claim 4, wherein the organic solvent is an ionic liquid.
JP2022032844A 2021-03-03 2022-03-03 Novel fluorinated aromatic ester compound and gelator containing the same Pending JP2022136032A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033744 2021-03-03
JP2021033744 2021-03-03

Publications (1)

Publication Number Publication Date
JP2022136032A true JP2022136032A (en) 2022-09-15

Family

ID=83232407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022032844A Pending JP2022136032A (en) 2021-03-03 2022-03-03 Novel fluorinated aromatic ester compound and gelator containing the same

Country Status (1)

Country Link
JP (1) JP2022136032A (en)

Similar Documents

Publication Publication Date Title
JP5724042B2 (en) Sulfur-containing additives for electrochemical or optoelectronic devices
Liang et al. New binary room-temperature molten salt electrolyte based on urea and LiTFSI
Pringle et al. The effect of anion fluorination in ionic liquids—physical properties of a range of bis (methanesulfonyl) amide salts
Ignat’ev et al. New ionic liquids with tris (perfluoroalkyl) trifluorophosphate (FAP) anions
Sun et al. Room-temperature molten salts based on the quaternary ammonium ion
US6340716B1 (en) Ionic compounds with delocalized anionic charge, and their use as ion conducting components or as catalysts
JP4693010B2 (en) Hydrophobic ionic liquid
JP4258656B2 (en) Room temperature molten salt, its production method and its use
JP2010534393A (en) Electrolyte preparations for energy accumulators based on ionic liquids
JP5950662B2 (en) Ionic liquid, electrolyte and lithium secondary battery
KR20060105452A (en) Superhigh purity ionic liquid
JP2005139100A (en) Ordinary temperature melted salt
JP3728236B2 (en) Tetrakisfluoroalkylborate and their use as conductive salts
JP4322004B2 (en) Onium salt
Zhou et al. Low-viscous, low-melting, hydrophobic ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethyltrifluoroborate
EP2945956A1 (en) Low symmetry molecules and phosphonium salts, methods of making and devices formed there from
KR20040045916A (en) Zwitterionic Imides
KR102285191B1 (en) Silicon-containing sulfuric acid ester salt
Mei et al. Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties
JP2005104845A (en) Quaternary ammonium ambient-temperature molten salt and manufacturing method
JP5088918B2 (en) Ionic liquid and method for producing the same, and electrolytic capacitor including the ionic liquid
JP2022136032A (en) Novel fluorinated aromatic ester compound and gelator containing the same
US11121422B2 (en) Fluorinated ionic liquids with high oxygen solubility for metal-air batteries
JP2005104846A (en) Quaternary ammonium ambient-temperature molten salt and its manufacturing method
EP2662359A1 (en) Ionic Liquids, Method for manufacturing thereof, and Electrochemical Devices Comprising the Same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220328