JP2022135164A - Conductor joint structure and conductor ultrasonic joint method - Google Patents

Conductor joint structure and conductor ultrasonic joint method Download PDF

Info

Publication number
JP2022135164A
JP2022135164A JP2021034790A JP2021034790A JP2022135164A JP 2022135164 A JP2022135164 A JP 2022135164A JP 2021034790 A JP2021034790 A JP 2021034790A JP 2021034790 A JP2021034790 A JP 2021034790A JP 2022135164 A JP2022135164 A JP 2022135164A
Authority
JP
Japan
Prior art keywords
horn
conductor
anvil
vibration source
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021034790A
Other languages
Japanese (ja)
Inventor
良樹 生沼
Yoshiki Ikunuma
拓郎 山田
Takuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2021034790A priority Critical patent/JP2022135164A/en
Publication of JP2022135164A publication Critical patent/JP2022135164A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

To provide a conductor joint structure and a conductor ultrasonic joint method which enable efficient joint of conductors by ultrasonic joint.SOLUTION: A conductor ultrasonic joint device 1 has an anvil 7, a horn 5 arranged so as to face the anvil 7, and a vibration source 3 which is connected to one end of the horn 5 and imparts vibration to the horn 5. A vertical direction of an aggregation of the conductor 15 is sandwiched between the anvil 7 and the horn 5, and a width direction thereof is sandwiched between a pair of gathers 9. Ultrasonic vibration is imparted to the aggregate through the horn 5 from the vibration source 3 while sandwiching the aggregate between the anvil 7 and the horn 5 from the vertical direction and collectively pressurizing the aggregate in a state where the width direction of the aggregate is sandwiched between the gathers 9 and is restricted. At this time, a height of the anvil 7 on a side distant from the vibration source 3 is set to be higher than a height of the anvil 7 on a side close to the vibration source 3.SELECTED DRAWING: Figure 3

Description

本発明は、複数の電線の導体同士が超音波接合された導体の接合構造及び導体の超音波接合方法に関するものである。 TECHNICAL FIELD The present invention relates to a conductor bonding structure in which conductors of a plurality of electric wires are ultrasonically bonded together, and a conductor ultrasonic bonding method.

自動車等に用いられるワイヤハーネスは、複数本の電線が接合されて用いられる。このような電線同士の接合としては、例えば、複数の電線のそれぞれの絶縁被覆を皮剥ぎして芯線を露出し、各芯線の先端を揃えた状態にして重ね合わせ、この状態で、芯線を挟み込むようにして超音波接合等で芯線同士を接合する方法がある(例えば特許文献1)。 A wire harness used in an automobile or the like is used by joining a plurality of electric wires. For joining such electric wires, for example, the insulation coating of each of a plurality of electric wires is peeled off to expose the core wire, the tips of the core wires are aligned and overlapped, and in this state, the core wires are sandwiched. Thus, there is a method of joining core wires together by ultrasonic joining or the like (for example, Patent Document 1).

国際公開公報2019/225492International Publication 2019/225492

図6(a)は、一般的な超音波接合装置100を示す概略図である。超音波接合装置100は、主に、ホーン105、アンビル107、ギャザー109、振動源103等から構成される。アンビル107と対向して配置されるホーン105は、一端が振動源103に接続される。 FIG. 6A is a schematic diagram showing a general ultrasonic bonding apparatus 100. FIG. The ultrasonic bonding apparatus 100 mainly includes a horn 105, an anvil 107, a gather 109, a vibration source 103, and the like. One end of the horn 105 arranged to face the anvil 107 is connected to the vibration source 103 .

複数の導体111は、アンビル107とホーン105の間に配置される。また、複数の導体111の両側方には、ギャザー109が配置される。なお、導体111は、例えば、複数の素線が撚り合わせられて構成される。 A plurality of conductors 111 are positioned between anvil 107 and horn 105 . Gathers 109 are arranged on both sides of the plurality of conductors 111 . In addition, the conductor 111 is configured by, for example, twisting a plurality of strands.

次に、図6(b)に示すように、アンビル107上に導体111が配置された状態で、ギャザー109で導体111の両側方を挟み込み、上方からホーン105を降下させて導体111を挟み込む。この状態で、ホーン105によって上方から導体111を押圧しながら(図中矢印X)、振動源103によって振動(超音波振動)を発生させ、ホーン105を介して導体111同士に超音波振動(図中矢印Y)を加えることで、導体111同士が接合され、接合部113が形成される。 Next, as shown in FIG. 6B, with the conductor 111 placed on the anvil 107, both sides of the conductor 111 are sandwiched between the gathers 109, and the horn 105 is lowered from above to sandwich the conductor 111. In this state, while the horn 105 presses the conductor 111 from above (arrow X in the figure), vibration (ultrasonic vibration) is generated by the vibration source 103, and the conductors 111 vibrate together via the horn 105. By adding the middle arrow Y), the conductors 111 are joined to form a joint 113 .

しかし、ホーン105によって導体111を押圧すると、ホーン105は、導体111から反力を受ける。ここで、ホーン105は、振動源103に対して片持ち梁状態となるため、この反力によって、ホーン105には振動源103から遠い側が上方に持ち上がるような反り(図中矢印Z)が発生する。なお、図では、説明が容易なように、ホーン105が大きく反り上がる図を示すが、実際には肉眼で分からない程度の場合もある。 However, when the horn 105 presses the conductor 111 , the horn 105 receives a reaction force from the conductor 111 . Here, since the horn 105 is in a cantilever state with respect to the vibration source 103, this reaction force causes the horn 105 to warp (arrow Z in the figure) such that the side far from the vibration source 103 is lifted upward. do. In the drawing, the horn 105 is shown to be greatly warped for ease of explanation, but in some cases, the warping may not be noticeable to the naked eye.

このような反りによれば、振動源103に近い側と遠い側とで、導体111への押圧力の伝達に差が生じる。例えば、振動源103に近い側では、ホーン5の反りの影響が小さく、また、設計通りの押圧力を導体111に伝達することができるが、振動源から遠い側では、導体111に十分な押圧力が伝達されない恐れがある。特に、超音波接合では、導体111同士が互いに押圧された状態で超音波振動を与えることで、超音波振動が導体同士の間で伝播し、両者が一体化するものであるため、押圧力が弱くなると超音波振動が伝播しにくくなり、途端に接合力が低下する。 Such warping causes a difference in the transmission of the pressing force to the conductor 111 between the side closer to the vibration source 103 and the side farther from the vibration source 103 . For example, on the side closer to the vibration source 103, the effect of warping of the horn 5 is small, and the designed pressing force can be transmitted to the conductor 111, but on the side far from the vibration source, the conductor 111 is sufficiently pressed. Pressure may not be transmitted. In particular, in ultrasonic bonding, when the conductors 111 are pressed against each other and ultrasonic vibration is applied, the ultrasonic vibration propagates between the conductors and integrates the two. If it becomes weak, it becomes difficult for ultrasonic vibrations to propagate, and the joining force immediately drops.

図7は、従来の方法で得られた接合部113を示す概念図である。前述したように、ホーン105の反り量は大きくはないため、一見すると、接合部113は略長方形に見えるが、振動源103から遠い側では、導体111が十分に接合されずに、素線こぼれが生じやすい。このため、製造時の歩留まりの悪化の要因となっている。 FIG. 7 is a conceptual diagram showing a joint 113 obtained by a conventional method. As described above, since the warp amount of the horn 105 is not large, the joint 113 looks substantially rectangular at first glance. is likely to occur. For this reason, it becomes a factor of deterioration of the yield at the time of manufacture.

本発明は、このような問題に鑑みてなされたもので、超音波接合によって効率良く導体同士を接合することが可能な導体の接合構造および導体の超音波接合方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a conductor bonding structure and a conductor ultrasonic bonding method capable of efficiently bonding conductors by ultrasonic bonding. .

前述した目的を達するために第1の発明は、複数の電線の導体同士が超音波接合された接合構造であって、電線の軸方向から見た際に、超音波接合方向を導体の接合部の厚み方向とし、これと直交する方向を前記接合部の幅方向とした際に、前記接合部の厚みが、幅方向の一方の側から他方の側に対して傾斜して変化することを特徴とする導体の接合構造である。 In order to achieve the above-described object, a first invention is a joint structure in which conductors of a plurality of electric wires are ultrasonically joined together, wherein the joint of the conductor is in the ultrasonic joining direction when viewed from the axial direction of the electric wire. and the width direction of the joint portion is defined as the direction perpendicular to the thickness direction, the thickness of the joint portion is inclined from one side to the other side in the width direction and changes. It is a joint structure of a conductor that

アルミニウムが主成分の導体からなる電線を少なくとも一本含むことが望ましい。 It is desirable to include at least one wire made of an aluminum-based conductor.

アルミニウムが主成分の導体からなる電線が、他の材質が主成分の導体からなる電線よりも多いことがさらに望ましい。 It is further desirable that the number of electric wires composed of conductors whose main component is aluminum is greater than that of electric wires composed of conductors whose main component is other materials.

前記接合部の前記幅方向の側面に対して、前記厚み方向の上面及び下面のいずれもが垂直ではなくてもよい。 Neither the upper surface nor the lower surface in the thickness direction may be perpendicular to the side surface in the width direction of the joint portion.

第1の発明によれば、電線の軸方向に対して垂直な断面において、超音波接合された接合部が長方形ではなく、幅方向の一方の側から他方の側に対して傾斜して変化するため、厚みの薄い側では、より大きな押圧力を付与することができる。このため、少なくとも厚みの薄い側での素線こぼれを抑制することができる。 According to the first invention, in the cross section perpendicular to the axial direction of the electric wire, the ultrasonically welded joint is not rectangular, but is inclined from one side to the other side in the width direction. Therefore, a larger pressing force can be applied to the thinner side. For this reason, it is possible to suppress strand spillage at least on the thin side.

また、特にアルミニウムが主成分の導体では、導体が容易に変形するため、本発明の効果が大きい。このため、アルミニウムが主成分の導体からなる電線が、他の材質が主成分の導体からなる電線よりも多いことで(例えば、全ての電線がアルミニウムを主成分とした導体で構成される場合)、より大きな効果を得ることができる。 In addition, the effect of the present invention is particularly great in a conductor whose main component is aluminum, because the conductor is easily deformed. For this reason, if the number of conductors whose main component is aluminum is greater than that of conductors whose main component is other materials (for example, if all the wires are composed of conductors whose main component is aluminum), , a greater effect can be obtained.

また、アンビル側とホーン側のいずれもが押圧方向に垂直ではなく、傾斜した面によって超音波接合がなされることで、上面と下面のいずれもが側面に対して略垂直にならないように形成される。このため、一方の厚みの薄い側において、より大きな押圧力を付与することができ、厚みの薄い側での素線こぼれを抑制することができる。 In addition, neither the anvil side nor the horn side is perpendicular to the pressing direction, and the ultrasonic bonding is performed by an inclined surface, so that neither the upper surface nor the lower surface is formed substantially perpendicular to the side surface. be. For this reason, a larger pressing force can be applied to one of the thinner sides, and the spillage of the strands on the thinner side can be suppressed.

第2の発明は、複数の電線の導体同士の超音波接合方法であって、アンビルと、前記アンビルと対向配置されるホーンと、前記ホーンの一端に接続され、前記ホーンに振動を与える振動源と、を用い、複数の電線を集合させた集合体を、前記アンビルと前記ホーンとで挟み込み、加圧しながら振動を与える際に、前記振動源から遠い側の前記アンビルと前記ホーンとの間隔が、前記振動源に近い側の前記アンビルと前記ホーンとの間隔よりも狭いことを特徴とする導体の超音波接合方法である。 A second invention is a method for ultrasonically joining conductors of a plurality of electric wires, comprising an anvil, a horn arranged opposite to the anvil, and a vibration source connected to one end of the horn to vibrate the horn. and, when an assembly in which a plurality of electric wires are assembled is sandwiched between the anvil and the horn and the vibration is applied while applying pressure, the distance between the anvil and the horn on the far side from the vibration source is 2. A method for ultrasonically bonding a conductor, wherein the distance between the anvil closer to the vibration source and the horn is narrower than the distance between the horn and the anvil.

前記振動源から遠い側の前記アンビルの高さが、前記振動源に近い側の前記アンビルの高さよりも高くなるように設定されてもよい。 The height of the anvil farther from the vibration source may be set higher than the height of the anvil closer to the vibration source.

前記振動源から遠い側の前記ホーンの高さが、前記振動源に近い側の前記ホーンの高さよりも低くなるように設定されてもよい。 A height of the horn farther from the vibration source may be set to be lower than a height of the horn closer to the vibration source.

第2の発明によれば、振動源から遠い側のアンビルとホーンとの間隔が、振動源から近い側のアンビルとホーンとの間隔よりも狭いため、振動源から遠い側において、より確実に導体を押圧して超音波接合をすることができる。このため、素線こぼれ等の発生を抑制して、確実に導体同士を接合することができる。 According to the second invention, since the distance between the anvil and the horn on the far side from the vibration source is narrower than the distance between the anvil and the horn on the near side from the vibration source, the conductor is more reliably secured on the side far from the vibration source. can be pressed for ultrasonic bonding. Therefore, it is possible to reliably join the conductors together while suppressing the occurrence of wire spillage or the like.

このような方法としては、振動源から遠い側のアンビルの高さを、振動源に近い側のアンビルの高さよりも高くなるように設定してもよいし、振動源から遠い側のホーンの高さを、振動源に近い側のホーンの高さよりも低くなるように設定してもよい。 As such a method, the height of the anvil on the far side from the vibration source may be set higher than the height of the anvil on the side close to the vibration source, or the height of the horn on the side far from the vibration source may be set. height may be set to be lower than the height of the horn on the side closer to the vibration source.

本発明によれば、超音波接合によって効率良く導体同士を接合することが可能な導体の接合構造および導体の超音波接合方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the joining structure of a conductor and the ultrasonic joining method of a conductor which can join conductors efficiently by ultrasonic joining can be provided.

接合構造10を示す図。The figure which shows the joining structure 10. FIG. (a)は、接合部13を示す図、(b)は、(a)のI部拡大図。(a) is a diagram showing a joint portion 13, and (b) is an enlarged view of the I portion of (a). (a)、(b)は、導体15の接合方法を示す図。(a), (b) is a figure which shows the joining method of the conductor 15. FIG. (a)、(b)は、導体15の他の接合方法を示す図。(a), (b) is a figure which shows the other joining method of the conductor 15. FIG. (a)は、接合部13aを示す図、(b)は、接合部13bを示す図。(a) is a figure which shows the junction part 13a, (b) is a figure which shows the junction part 13b. (a)、(b)は、従来の導体111の接合方法を示す図。(a) and (b) are diagrams showing a conventional bonding method of a conductor 111. FIG. 従来の接合部113を示す概念図。FIG. 2 is a conceptual diagram showing a conventional joint 113;

(第1実施形態)
以下、図面を参照しながら、本発明の第1の実施形態について説明する。図1は、接合構造10を示す概略図である。接合構造10は、複数の電線17の導体15同士が超音波接合されたものである。電線17は、導体15の外周が絶縁被覆で被覆されて構成される。電線17の端部は、所定の範囲の絶縁被覆が除去され、内部の導体15が露出する。導体15は、複数の導体素線が撚り合わせられて構成される。なお、導体15は単線であってもよい。
(First embodiment)
A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a junction structure 10. As shown in FIG. The joint structure 10 is obtained by ultrasonically joining conductors 15 of a plurality of electric wires 17 to each other. The electric wire 17 is configured by covering the outer periphery of the conductor 15 with an insulating coating. A predetermined range of insulation coating is removed from the end of the electric wire 17 to expose the inner conductor 15 . The conductor 15 is configured by twisting a plurality of conductor strands. Note that the conductor 15 may be a single wire.

導体15は、アルミニウム系(アルミニウム又はアルミニウム合金)や銅系(銅又は銅合金)などの材質が適用可能であるが、アルミニウム(いわゆる純アルミニウム系)が主成分の導体15からなる電線17を少なくとも一本含むことが望ましく、さらに、アルミニウムが主成分の導体15からなる電線17が、他の材質(例えば、アルミニウム合金や銅又は銅合金)が主成分の導体15からなる電線17よりも多いことが望ましい。例えば、アルミニウム系の導体15の場合には、銅系の材料と比較して比較的軟らかいが、酸化被膜が強固で振動が伝わりにくいと酸化被膜が除去されず接合不足になりやすい。このため、本実施形態では、アルミニウム(特に純アルミニウム系)の材料に対して特に有効である。 Materials such as aluminum (aluminum or aluminum alloy) or copper (copper or copper alloy) can be applied to the conductor 15. At least the electric wire 17 made of the conductor 15 whose main component is aluminum (so-called pure aluminum) is used. It is desirable to include one wire, and the number of wires 17 composed of conductors 15 mainly composed of aluminum is more than the number of wires 17 composed of conductors 15 mainly composed of other materials (for example, aluminum alloy, copper, or copper alloy). is desirable. For example, in the case of the aluminum-based conductor 15, although it is relatively soft compared to copper-based materials, if the oxide film is strong and vibrations are not easily transmitted, the oxide film is not removed and the joint is likely to be insufficient. Therefore, this embodiment is particularly effective for aluminum (especially pure aluminum-based) materials.

複数の電線17のそれぞれの導体15が、同一方向に向けて配列され、導体15の先端部において、各導体15が互いに超音波接合された接合部13が形成される。すなわち、接合部13において、導体15は一体化される。なお、電線17の方向は、必ずしも全てが同一方向でなくてもよい。 The conductors 15 of the plurality of electric wires 17 are arranged in the same direction, and the joints 13 are formed by ultrasonically joining the conductors 15 to each other at the distal ends of the conductors 15 . That is, the conductor 15 is integrated at the joint 13 . Note that the directions of the electric wires 17 do not necessarily have to be the same.

図2(a)は、電線17(接合部13)を軸方向の先端側から見た図である。ここで、詳細は後述するが、図の上下方向が、超音波接合方向であり、この方向を接合部13の厚み方向とし、これと直交する方向(図中左右方向)を接合部13の幅方向とする。この際に、接合部13の厚みが、幅方向の一方の側から他方の側に対して傾斜して変化する。 FIG. 2(a) is a diagram of the electric wire 17 (joint portion 13) viewed from the distal end side in the axial direction. Here, although the details will be described later, the vertical direction in the figure is the ultrasonic bonding direction, this direction is the thickness direction of the bonding portion 13, and the direction orthogonal to this (horizontal direction in the figure) is the width of the bonding portion 13. direction. At this time, the thickness of the joint portion 13 changes so as to be inclined from one side in the width direction to the other side.

図示した例では、幅方向の一方の側(図中C)から他方の側(図中D)に向けて徐々に(直線的に)厚みが厚くなる。すなわち、接合部13の上下面は平行ではない。なお、接合部13の両側面は互いに略平行である。また、接合部13の上面と側面との角度(図中角度G、H)は、略垂直である。一方、接合部13の下面と側面との角度(図中角度E、F)は、垂直にはならない。すなわち、軸方向に垂直な断面における接合部13の形状は、略台形となる。 In the illustrated example, the thickness gradually (linearly) increases from one side (C in the figure) in the width direction toward the other side (D in the figure). That is, the upper and lower surfaces of the joint 13 are not parallel. Both side surfaces of the joint portion 13 are substantially parallel to each other. Also, the angle between the upper surface and the side surface of the joint portion 13 (angles G and H in the drawing) is substantially vertical. On the other hand, the angle between the bottom surface and the side surface of the joint 13 (angles E and F in the figure) is not perpendicular. That is, the shape of the joint portion 13 in a cross section perpendicular to the axial direction is substantially trapezoidal.

なお、図2(b)は、図2(a)のI部拡大図である。前述したように、接合部13の図中の上下方向が超音波接合方向であるため、上面と下面がアンビルとホーンとの接触面になる。この際、アンビルとホーンには、細かな凹凸面が形成されるため、図2(b)に示すように、上下面には、幅方向に向けて凹凸が形成される。なお、下面側の図示は省略するが、上面と同様の凹凸形状が形成される。このように、表面に型で形成される凹凸形状が形成される対向面が超音波接合方法となる。 In addition, FIG.2(b) is an I section enlarged view of Fig.2 (a). As described above, since the vertical direction of the bonding portion 13 in the drawing is the ultrasonic bonding direction, the upper and lower surfaces are the contact surfaces between the anvil and the horn. At this time, since the anvil and the horn are formed with fine uneven surfaces, unevenness is formed in the width direction on the upper and lower surfaces as shown in FIG. 2(b). Although illustration of the lower surface side is omitted, an uneven shape similar to that of the upper surface is formed. In this way, the ultrasonic bonding method is applied to the facing surface on which the concave-convex shape formed by the mold is formed.

ここで、上下面の凹部の底部は、アンビル又はホーンの接触部における型の押し込みによって形成される。一方、上下面の凸部は、型の凹部へ導体の一部が変形して入り込むことで形成される。このため、上下面の凹部の位置(深さ)は、略一定(直線状)になるが、上下面の凸部の高さは必ずしも一定にはならない。したがって、厚みや上下面の角度の基準は、凹凸形状における凹部を基準とすることが望ましい。 Here, the bottoms of the recesses on the upper and lower surfaces are formed by pressing of the mold at the contact portions of the anvil or horn. On the other hand, the convex portions on the upper and lower surfaces are formed by partially deforming and entering the concave portions of the mold. Therefore, the positions (depths) of the concave portions on the upper and lower surfaces are substantially constant (linear), but the heights of the convex portions on the upper and lower surfaces are not necessarily constant. Therefore, it is desirable that the reference of the thickness and the angle of the upper and lower surfaces is based on the concave portion of the concave-convex shape.

なお、幅方向の厚みの差(D-C)は、幅Wの10%以上であることが望ましい。すなわち、厚みの薄い側の厚みC=D-W×10%程度とすることが望ましい。なお、本実施形態では、厚みの厚い側Dが1.5mm以下である場合に特に有効である。 It is desirable that the thickness difference (DC) in the width direction is 10% or more of the width W. That is, it is desirable that the thickness of the thinner side is C=D−W×10%. Note that this embodiment is particularly effective when the thick side D is 1.5 mm or less.

次に、超音波接合装置を用いた複数の電線17の導体15同士の超音波接合方法について説明する。図3(a)は、導体15同士を超音波接合によって形成するための超音波接合装置1を示す図である。超音波接合装置1は、アンビル7と、アンビル7と対向配置されるホーン5と、ホーン5の一端に接続され、ホーン5に振動を与える振動源3とを有する。 Next, a method for ultrasonically bonding the conductors 15 of the electric wires 17 using an ultrasonic bonding apparatus will be described. FIG. 3(a) is a diagram showing an ultrasonic bonding apparatus 1 for forming conductors 15 by ultrasonic bonding. The ultrasonic bonding apparatus 1 has an anvil 7 , a horn 5 facing the anvil 7 , and a vibration source 3 connected to one end of the horn 5 to vibrate the horn 5 .

まず、複数の電線17の導体15を集合させた集合体を、上下方向に対向するアンビル7とホーン5との間に配置する。また、導体15の集合体の両側にはギャザー9が配置される。すなわち、導体15の集合体は、上下方向をアンビル7とホーン5とで挟まれ、幅方向を一対のギャザー9で挟まれる。 First, an assembly in which conductors 15 of a plurality of electric wires 17 are assembled is arranged between anvil 7 and horn 5 facing each other in the vertical direction. Gathers 9 are arranged on both sides of the aggregate of conductors 15 . That is, the aggregate of the conductors 15 is sandwiched between the anvil 7 and the horn 5 in the vertical direction, and sandwiched between the pair of gathers 9 in the width direction.

次に、集合体の幅方向をギャザー9で挟み込んで規制した状態で、図3(b)に示すように、上下方向からアンビル7とホーン5とで集合体を挟んで一括して加圧しながら(図中矢印A方向)、振動源3からホーン5を介して集合体に超音波振動(図中矢印B方向)を与える。 Next, in a state in which the width direction of the aggregate is sandwiched and regulated by the gathers 9, as shown in FIG. (in the direction of arrow A in the figure), and ultrasonic vibrations (in the direction of arrow B in the figure) are applied to the assembly from the vibration source 3 via the horn 5 .

この際、振動源3から遠い側のアンビル7の高さが、振動源3に近い側のアンビル7の高さよりも高くなるように設定される。すなわち、振動源3から遠い側のアンビル7とホーン5との間隔が、振動源3に近い側のアンビル7とホーン5との間隔よりも狭い。したがって、振動源3から遠い側において、導体の集合体をより確実に加圧することができる。 At this time, the height of the anvil 7 farther from the vibration source 3 is set to be higher than the height of the anvil 7 closer to the vibration source 3 . That is, the distance between the anvil 7 and the horn 5 on the far side from the vibration source 3 is narrower than the distance between the anvil 7 and the horn 5 on the side near the vibration source 3 . Therefore, it is possible to more reliably pressurize the conductor assembly on the side far from the vibration source 3 .

なお、前述したように、ホーン5は、振動源3から遠い側がアンビル7から離れる方向に多少の反りが生じる。しかし、この反りによって生じる幅方向の高低差は、アンビル7に形成される傾斜の高低差以下(より望ましくは、アンビル7に形成される傾斜の高低差よりも小さい)である。このため、ホーン5に多少の反りが形成されても(例えば、図2(a)の角度G、Hが垂直ではなく、図中左下がりの傾斜が形成されても)、振動源3から離れた側の導体15を効率よく圧縮して振動を伝播させることができる。 As described above, the horn 5 is slightly warped in the direction in which the side far from the vibration source 3 is separated from the anvil 7 . However, the height difference in the width direction caused by this warp is equal to or less than the height difference of the slope formed on the anvil 7 (more preferably, it is smaller than the height difference of the slope formed on the anvil 7). Therefore, even if the horn 5 is warped to some extent (for example, even if the angles G and H in FIG. 2(a) are not vertical but are inclined downward to the left in the drawing), the horn 5 is separated from the vibration source 3. Vibration can be propagated by efficiently compressing the conductor 15 on the opposite side.

以上により、導体15同士が接合されて、接合部13を形成することができる。なお、前述したように、このようにして得られた接合部13は、アンビル7とホーン5で挟まれる方向(すなわち超音波接合方向)が、接合部13の厚み方向となり、これと直交する方向(ギャザー9で挟まれる方向)が接合部13の幅方向となる。 As described above, the conductors 15 are joined together to form the joining portion 13 . As described above, in the joint 13 obtained in this way, the direction sandwiched between the anvil 7 and the horn 5 (that is, the ultrasonic welding direction) is the thickness direction of the joint 13, and the direction perpendicular to this direction. (the direction sandwiched by the gathers 9 ) is the width direction of the joint portion 13 .

以上、第1の実施の形態によれば、複数の電線17を超音波接合によって接合する際に、アンビル7の上面に、ホーン5の支持方向(超音波振動方向)に対して、高さが変わるような傾斜面を形成することで、接合部13の幅方向の端部における素線こぼれを抑制することができる。したがって、超音波接合によって効率良く、信頼性の高い導体接合構造を形成することができる。 As described above, according to the first embodiment, when the plurality of electric wires 17 are joined by ultrasonic welding, the upper surface of the anvil 7 has a height with respect to the supporting direction (ultrasonic vibration direction) of the horn 5. By forming an inclined surface that varies, it is possible to suppress strand spillage at the ends of the joint portion 13 in the width direction. Therefore, an efficient and highly reliable conductor bonding structure can be formed by ultrasonic bonding.

なお、接合後の接合部13から、幅方向のいずれの向きが、振動源3に近い側か又は遠い側かを直ちに判別することは困難である。しかし、仮に、幅方向に対して、接合部13の厚みの薄い方が振動源3に近い側となると、ホーン5の反りと相まって、ますます振動源3から遠い側の押圧力が小さくなる。この結果、例えば、アンビル7又はホーン5に形成される凹凸の型形状に対して、押圧力が弱い側では、導体15が型の凹部の内部に十分に入り込まず、上下面の凸高さが低くなる傾向にある。したがって、接合部13の上下面において、凸高さが低くなる側が、振動源3から遠い側であると考えられる。 It is difficult to immediately determine which direction in the width direction is closer to or farther from the vibration source 3 from the joint 13 after joining. However, if the thinner side of the joint 13 is closer to the vibration source 3 in the width direction, combined with the warp of the horn 5, the pressing force on the side farther from the vibration source 3 becomes smaller. As a result, for example, the conductor 15 does not sufficiently enter the concave portion of the mold on the side where the pressing force is weak with respect to the uneven mold shape formed on the anvil 7 or the horn 5, and the height of the convexity of the upper and lower surfaces is increased. tends to be lower. Therefore, in the upper and lower surfaces of the joint portion 13 , the side with the lower convex height is considered to be the side farther from the vibration source 3 .

なお、凸部の高さが幅方向で略一定である場合には、十分な押圧力が全体に付与されたことを意味する。このため、従来であれば、振動源3から遠い側の凸部の高さが低くなる傾向があるのに対し、全体が略均一に押圧されたということは、接合部13の厚みが薄い側が、振動源3から遠い側であったものと考えられる。 In addition, when the height of the convex portion is substantially constant in the width direction, it means that a sufficient pressing force is applied to the whole. For this reason, in the conventional art, the height of the projection on the far side from the vibration source 3 tends to be low, whereas the fact that the entirety is pressed substantially uniformly means that the thin side of the joint 13 has a smaller thickness. , on the far side from the vibration source 3.

また、接合部13の端面を観察すると、元の導体を構成する素線同士の境界(すなわち圧縮後のそれぞれの素線)を把握することができる。ここで、接合部13の厚みが薄い側が振動源3から近い側であると、振動源3から遠い側の押圧力がより小さくなるため、この部位の導体の圧縮量が小さくなる。このため、元の素線が例えば同一径であった場合には、圧縮量が小さい側の圧縮後の素線のサイズが、圧縮量が大きい側の圧縮後の素線のサイズと比較して相対的に大きくなる。したがって、仮に接合部13の厚みが薄い側が振動源3に近い側であったとすると、接合部13の厚みの厚い側の素線の圧縮後のサイズが大きくなる(すなわち圧縮量が小さい)傾向にある。 Further, by observing the end surface of the joint 13, it is possible to grasp the boundary between the strands forming the original conductor (that is, each strand after compression). Here, if the thinner side of the joint portion 13 is closer to the vibration source 3, the pressing force on the side farther from the vibration source 3 is smaller, so the amount of compression of the conductor at this portion is smaller. For this reason, when the original strands have the same diameter, for example, the size of the strand after compression on the side with the smaller amount of compression is compared with the size of the strand after compression on the side with the larger amount of compression. become relatively large. Therefore, if the thinner side of the joint 13 is closer to the vibration source 3, the size of the wire on the thicker side of the joint 13 after compression tends to be large (that is, the amount of compression is small). be.

これに対し、接合部13の幅方向に対して均一に圧縮されれば、素線は略均一に圧縮されるため、幅方向に対する圧縮後の素線サイズが略均一となる。このため、従来であれば、振動源3から遠い側の素線サイズが大きくなる傾向があるのに対し、全体が略均一な素線サイズに圧縮されたということは、接合部13の厚みが薄い側が、振動源3から遠い側であったものと考えられる。 On the other hand, if the wires are uniformly compressed in the width direction of the joint portion 13, the wires are compressed substantially uniformly, so that the size of the wires after compression in the width direction becomes substantially uniform. For this reason, in the conventional art, the wire size on the far side from the vibration source 3 tends to be large. It is considered that the thin side was the side far from the vibration source 3 .

なお、素線のサイズ略が均一とは、例えば、全ての素線の圧縮率が60~85%の範囲であることとする。ここで、圧縮率とは、圧縮前の素線の断面積に対する圧縮後の素線の断面積とする。断面積は例えば断面の画像解析で算出することができる。前述したように、従来の方法では、振動源3から近い側の素線の圧縮率が上記範囲に入っていても、遠い側の素線の圧縮率が85%を超える場合があるのに対し、略均一に圧縮できれば、全ての素線の圧縮率を上記範囲とすることができる。 It should be noted that the substantially uniform size of the wires means that the compressibility of all the wires is in the range of 60 to 85%, for example. Here, the compressibility is defined as the cross-sectional area of the wire after compression relative to the cross-sectional area of the wire before compression. The cross-sectional area can be calculated, for example, by image analysis of the cross section. As described above, in the conventional method, even if the compression rate of the strands closer to the vibration source 3 is within the above range, the compression rate of the strands farther from the vibration source 3 may exceed 85%. If compression can be performed substantially uniformly, the compressibility of all wires can be set within the above range.

(第2実施形態)
次に、第2の実施形態について説明する。図4(a)、図4(b)は、第2の実施形態にかかる超音波接合装置1aによって、導体15を超音波接合する工程を示す概略図である。なお、以下の説明において、第1の実施形態と同一の機能を奏する構成については、図1~図3と同一の符号を付し、重複する説明を省略する。
(Second embodiment)
Next, a second embodiment will be described. FIGS. 4A and 4B are schematic diagrams showing the process of ultrasonically bonding the conductor 15 by the ultrasonic bonding apparatus 1a according to the second embodiment. In the following description, the same reference numerals as those in FIGS. 1 to 3 are given to the structures having the same functions as those in the first embodiment, and overlapping descriptions are omitted.

図4(a)に示すように、第2の実施形態では、アンビル7の上面が平坦(ギャザー9に対して略垂直)に形成され、従来のアンビル7をそのまま使用されるが、振動源3から遠い側のホーン5の高さが、振動源3に近い側のホーン5の高さよりも低くなるように設定される。すなわち、ホーン5の下面(アンビル7との対向面)側が、振動源3から遠い側に行くにつれて、アンビル7に近づくように傾斜面を有する。 As shown in FIG. 4( a ), in the second embodiment, the upper surface of the anvil 7 is flat (substantially perpendicular to the gathers 9 ), and the conventional anvil 7 is used as it is. The height of the horn 5 on the far side from the vibration source 3 is set to be lower than the height of the horn 5 on the side close to the vibration source 3.例文帳に追加That is, the lower surface (the surface facing the anvil 7 ) of the horn 5 has an inclined surface that approaches the anvil 7 as it goes away from the vibration source 3 .

集合体の幅方向をギャザー9で挟み込んで規制した状態で、図4(b)に示すように、上下方向からアンビル7とホーン5とで集合体を挟んで一括して加圧しながら(図中矢印A方向)、振動源3からホーン5を介して集合体に超音波振動(図中矢印B方向)を与える。 In a state in which the width direction of the assembly is sandwiched and regulated by the gathers 9, as shown in FIG. direction of arrow A), and ultrasonic vibration (direction of arrow B in the figure) is applied to the assembly from the vibration source 3 through the horn 5 .

この際、振動源3から遠い側のホーン5の高さが、振動源3に近い側のホーン5の高さよりも低いため、振動源3に遠い側のアンビル7とホーン5との間隔が、振動源3から近い側のアンビル7とホーン5との間隔よりも狭い。したがって、振動源3に遠い側において、導体の集合体をより確実に加圧することができる。 At this time, since the height of the horn 5 on the far side from the vibration source 3 is lower than the height of the horn 5 on the side close to the vibration source 3, the distance between the anvil 7 on the side far from the vibration source 3 and the horn 5 is It is narrower than the interval between the anvil 7 and the horn 5 closer to the vibration source 3. Therefore, it is possible to more reliably pressurize the conductor assembly on the side far from the vibration source 3 .

図5(a)は、得られた接合部13aを示す図である。前述したように、図の上下方向が、超音波接合方向であり、この方向が接合部13aの厚み方向となり、これと直交する方向(図中左右方向)が接合部13aの幅方向となる。接合部13aも、厚みが一定ではなく、幅方向の一方の側から他方の側に対して傾斜して厚みが変化する。 FIG. 5(a) is a diagram showing the obtained joint 13a. As described above, the vertical direction in the drawing is the ultrasonic bonding direction, this direction is the thickness direction of the bonding portion 13a, and the direction orthogonal to this direction (horizontal direction in the drawing) is the width direction of the bonding portion 13a. The thickness of the joint portion 13a is also not constant, and the thickness changes by being inclined from one side in the width direction to the other side.

より詳細には、図示した例では、幅方向の一方の側(振動源3から遠い側であって図中J)から他方の側(振動源3に近い側であって図中K)に向けて徐々に(直線的に)厚みが厚くなる。すなわち、接合部13aの上下面は平行ではない。なお、両側面は互いに略平行であり、下面と側面との角度(図中角度L、M)は、略垂直である。一方、上面と側面との角度(図中角度N、O)は、垂直にはならない。すなわち、軸方向に垂直な断面における接合部13の形状は、略台形となる。 More specifically, in the illustrated example, from one side in the width direction (the side far from the vibration source 3 and J in the drawing) toward the other side (the side near the vibration source 3 and K in the drawing) The thickness gradually (linearly) becomes thicker. That is, the upper and lower surfaces of the joint portion 13a are not parallel. Both side surfaces are substantially parallel to each other, and the angles between the lower surface and the side surfaces (angles L and M in the drawing) are substantially perpendicular. On the other hand, the angle between the top surface and the side surface (angles N and O in the figure) is not perpendicular. That is, the shape of the joint portion 13 in a cross section perpendicular to the axial direction is substantially trapezoidal.

前述したように、ホーン5は、振動源3から遠い側がアンビル7から離れる方向に多少の反りが生じる。しかし、この反りによって生じる幅方向の高低差は、ホーン5に形成される傾斜の高低差以下(より望ましくは、ホーン5に形成される傾斜の高低差よりも小さい)である。このため、ホーン5に多少の反りが形成されても、振動源3から離れた側の導体15を効率よく圧縮して振動を伝播させることができる。 As described above, the horn 5 is slightly warped in the direction away from the anvil 7 on the side far from the vibration source 3 . However, the height difference in the width direction caused by this warp is equal to or less than the height difference of the slope formed on the horn 5 (more preferably, it is smaller than the height difference of the slope formed on the horn 5). Therefore, even if the horn 5 is warped to some extent, the conductor 15 on the side away from the vibration source 3 can be efficiently compressed to propagate the vibration.

なお、本実施形態では、ホーン5を傾斜させたが、さらに、第1の実施形態と同様に、アンビル7にも傾斜面を形成してもよい。図5(b)は、アンビル7とホーン5の両方について、振動源3から遠い側が、互いに近づくように傾斜させて超音波接合を行った接合部13bを示す図である。 Although the horn 5 is inclined in this embodiment, the anvil 7 may also be inclined as in the first embodiment. FIG. 5(b) is a diagram showing the joint 13b in which the anvil 7 and the horn 5 are both inclined so that the sides farther from the vibration source 3 are closer to each other and ultrasonically welded.

この場合、幅方向の一方の側(振動源3から遠い側であって図中P)から他方の側(振動源3に近い側であって図中Q)に向けて徐々に(直線的に)厚みが厚くなる。また、両側面は互いに略平行であり、下面と側面との角度(図中角度R、S)も、上面と側面との角度(図中角度T、U)も、いずれも垂直にはならない。すなわち、幅方向の側面に対して、厚み方向の上面及び下面のいずれもが垂直ではない。 In this case, gradually (linearly ) thickness increases. Both side surfaces are substantially parallel to each other, and neither the angle between the bottom surface and the side surfaces (angles R, S in the figure) nor the angle between the top surface and the side surfaces (angles T, U in the figure) are perpendicular. That is, neither the upper surface nor the lower surface in the thickness direction is perpendicular to the side surface in the width direction.

以上、第2の実施の形態によれば、第1の実施形態と同様の効果を得ることができる。すなわち、接合部13a、13bの幅方向の端部における素線こぼれを抑制することができ、超音波接合によって効率良く、信頼性の高い導体接合構造を形成することができる。 As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained. That is, it is possible to suppress the strands from spilling out at the ends of the joints 13a and 13b in the width direction, and to form an efficient and highly reliable conductor joint structure by ultrasonic joining.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the technical scope of the present invention is not influenced by the above-described embodiments. It is obvious that a person skilled in the art can conceive various modifications or modifications within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. be understood to belong to

たとえば、電線の本数や配置は、導体を構成する素線数などは図示した例には限られない。 For example, the number and arrangement of electric wires are not limited to the example shown in the figure, such as the number of strands constituting a conductor.

1、1a………超音波接合装置
3………振動源
5………ホーン
7………アンビル
9………ギャザー
10………接合構造
13、13a、13b………接合部
15………導体
17………電線
100………超音波接合装置
103………振動源
105………ホーン
107………アンビル
109………ギャザー
111………導体
113………接合部
Reference Signs List 1, 1a... Ultrasonic bonding device 3... Vibration source 5... Horn 7... Anvil 9... Gathers 10... Joining structures 13, 13a, 13b... Joining portion 15... Conductor 17 Electric wire 100 Ultrasonic bonding device 103 Vibration source 105 Horn 107 Anvil 109 Gather 111 Conductor 113 Joint

Claims (7)

複数の電線の導体同士が超音波接合された接合構造であって、
電線の軸方向から見た際に、超音波接合方向を導体の接合部の厚み方向とし、これと直交する方向を前記接合部の幅方向とした際に、前記接合部の厚みが、幅方向の一方の側から他方の側に対して傾斜して変化することを特徴とする導体の接合構造。
A joint structure in which conductors of a plurality of electric wires are ultrasonically joined together,
When viewed from the axial direction of the electric wire, the ultrasonic bonding direction is the thickness direction of the joint of the conductor, and the direction orthogonal to this is the width direction of the joint, and the thickness of the joint is the width direction. A conductor junction structure characterized in that the inclination changes from one side to the other side of the.
アルミニウムが主成分の導体からなる電線を少なくとも一本含むことを特徴とする請求項1記載の導体の接合構造。 2. The conductor joint structure according to claim 1, further comprising at least one electric wire made of a conductor whose main component is aluminum. アルミニウムが主成分の導体からなる電線が、他の材質が主成分の導体からなる電線よりも多いことを特徴とする請求項2記載の導体の接合構造。 3. The conductor joint structure according to claim 2, wherein the number of electric wires composed of conductors whose main component is aluminum is greater than the number of electric wires composed of conductors whose main component is other materials. 前記接合部の前記幅方向の側面に対して、前記厚み方向の上面及び下面のいずれもが垂直ではないことを特徴とする請求項1から請求項3のいずれかに記載の導体の接合構造。 4. The conductor joint structure according to claim 1, wherein neither the upper surface nor the lower surface in the thickness direction is perpendicular to the side surface in the width direction of the joint portion. 複数の電線の導体同士の超音波接合方法であって、
アンビルと、前記アンビルと対向配置されるホーンと、前記ホーンの一端に接続され、前記ホーンに振動を与える振動源と、を用い、
複数の電線を集合させた集合体を、前記アンビルと前記ホーンとで挟み込み、加圧しながら振動を与える際に、前記振動源から遠い側の前記アンビルと前記ホーンとの間隔が、前記振動源に近い側の前記アンビルと前記ホーンとの間隔よりも狭いことを特徴とする導体の超音波接合方法。
An ultrasonic bonding method between conductors of a plurality of electric wires,
Using an anvil, a horn arranged opposite to the anvil, and a vibration source connected to one end of the horn to vibrate the horn,
When an assembly in which a plurality of electric wires are assembled is sandwiched between the anvil and the horn and is subjected to vibration while being pressurized, the distance between the anvil and the horn on the far side from the vibration source is the same as the vibration source. A method for ultrasonically bonding a conductor, wherein the distance between the near side anvil and the horn is narrower than the distance between the anvil and the horn.
前記振動源から遠い側の前記アンビルの高さが、前記振動源に近い側の前記アンビルの高さよりも高くなるように設定されることを特徴とする請求項5記載の導体の超音波接合方法。 6. The ultrasonic bonding method for conductors according to claim 5, wherein the height of the anvil on the far side from the vibration source is set to be higher than the height of the anvil on the side close to the vibration source. . 前記振動源から遠い側の前記ホーンの高さが、前記振動源に近い側の前記ホーンの高さよりも低くなるように設定されることを特徴とする請求項5または請求項6記載の導体の超音波接合方法。 7. The conductor according to claim 5, wherein the height of the horn on the far side from the vibration source is set to be lower than the height of the horn on the side close to the vibration source. Ultrasonic bonding method.
JP2021034790A 2021-03-04 2021-03-04 Conductor joint structure and conductor ultrasonic joint method Pending JP2022135164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021034790A JP2022135164A (en) 2021-03-04 2021-03-04 Conductor joint structure and conductor ultrasonic joint method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021034790A JP2022135164A (en) 2021-03-04 2021-03-04 Conductor joint structure and conductor ultrasonic joint method

Publications (1)

Publication Number Publication Date
JP2022135164A true JP2022135164A (en) 2022-09-15

Family

ID=83231719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021034790A Pending JP2022135164A (en) 2021-03-04 2021-03-04 Conductor joint structure and conductor ultrasonic joint method

Country Status (1)

Country Link
JP (1) JP2022135164A (en)

Similar Documents

Publication Publication Date Title
WO2017145989A1 (en) Joined product of core wire and object to be joined, terminal, ultrasonic joining device, and method for joining core wire and object to be joined
JP5666247B2 (en) Electric wire holding structure and electric wire holding method
CN110021865B (en) Ultrasonic bonding method and bonding device for wire conductor, and wire
JP6574795B2 (en) Manufacturing method of electric wire with terminal
JP2020013633A (en) Terminal-equipped wire and manufacturing method thereof
WO2011114710A1 (en) Ultrasonic welding method and welding section
US10714843B2 (en) Electric wire with terminal and method for manufacturing electric wire with terminal
WO2019039379A1 (en) Method for producing terminal-equipped wire, terminal-equipped wire, and ultrasonic welding device
JP2019093444A (en) Ultrasonic bonding method of conductor of wire, ultrasonic boding device of conductor of wire, and wire
JP2013004406A (en) Manufacturing method of wire with terminal
JP5303259B2 (en) Wire connection method
JP2019096569A (en) Terminal-equipped electric wire, manufacturing method of terminal-equipped electric wire, and electric wire
JP2004220933A (en) Ultrasonic welding device and ultrasonic welding method for electric wire
JP2018069298A (en) Method for joining core wire and joint object, ultrasonic joining device, and joint product of core wire and joint object
CN111937242A (en) Bonded conductor, conductor bonding device, method for manufacturing bonded conductor, and conductor bonding method
JP2022000861A (en) Terminal equipped electric wire, and manufacturing method of terminal equipped electric wire
JP6598525B2 (en) Ultrasonic bonding apparatus and ultrasonic bonding method
JP6128946B2 (en) Electric wire and terminal joining structure and joining method
JP2022135164A (en) Conductor joint structure and conductor ultrasonic joint method
JP2000107872A (en) Horn of ultrasonic welding machine
JP5581413B2 (en) Wire connection method
JP2005297055A (en) Horn for ultrasonic jointing
JP7444671B2 (en) Conductor joining structure and conductor joining method
JP2022136634A (en) Bonding structure for conductors and ultrasonic bonding method for conductors
JP2021072248A (en) Wire harness, and method of producing wire harness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231122