JP2004220933A - Ultrasonic welding device and ultrasonic welding method for electric wire - Google Patents

Ultrasonic welding device and ultrasonic welding method for electric wire Download PDF

Info

Publication number
JP2004220933A
JP2004220933A JP2003007328A JP2003007328A JP2004220933A JP 2004220933 A JP2004220933 A JP 2004220933A JP 2003007328 A JP2003007328 A JP 2003007328A JP 2003007328 A JP2003007328 A JP 2003007328A JP 2004220933 A JP2004220933 A JP 2004220933A
Authority
JP
Japan
Prior art keywords
electric wire
welding
ultrasonic welding
ultrasonic
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007328A
Other languages
Japanese (ja)
Inventor
Yoji Ichikawa
洋司 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2003007328A priority Critical patent/JP2004220933A/en
Publication of JP2004220933A publication Critical patent/JP2004220933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic welding device capable of improving welding strength and tensile strength of a welding part. <P>SOLUTION: The ultrasonic welding device for electric wires forms a welding part by laying a plurality of electric wires between a horn chip part 4 of an ultrasonic horn and an anvil 3 and fusing them by applying compression force and ultrasonic vibration. A welding strength maintaining face 6 on which an indentation 10 is formed, a tensile force maintaining face 7 arranged adjacent to the welding strength maintaining face 6 moving back from the welding strength maintaining face 6 toward an opposite side of the wire compressing direction, and an electric wire diameter restoring face 8 gradually moving back from the tensile force maintaining face 7 toward the opposite side of the wire compressing direction are formed on respective electric wire compressing faces 4a, 3a of both the horn chip part 4 and the anvil 3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の電線を超音波溶接によって接続する電線の超音波溶接装置及び超音波溶接方法に関する。
【0002】
【従来の技術】
導電部材の間を超音波溶接することによって電気的に接続する技術が、例えば特開2002−217229号公報(特許文献1)に示すように提案されている。特開2002−217229号公報(特許文献1)に示す超音波溶接の溶接対象はワイヤと半導体チップであるが、複数の電線間を電気的に接続する場合にも、超音波溶接が用いられている。このような従来の超音波溶接装置を図10〜図15を用いて説明する。
【0003】
図10に示すように、超音波溶接装置100は、超音波ホーン101とアンビル102を備え、超音波ホーン101の先端にはホーンチップ部103が固定されている。このホーンチップ部103とアンビル102との互いに対向する面が電線圧縮面103a、102aとして形成されている。この各電線圧縮面103a、102aには、超音波振動を電線に有効に伝達するための凹凸104が全域に形成されている。
【0004】
次に、超音波溶接の手順を説明する。接続を行う複数の電線Wは、その接続箇所の絶縁外皮110を剥ぎ、芯線111を露出させてホーンチップ部103とアンビル102との間に配置させ、この複数の電線Wの芯線111をホーンチップ部103とアンビル102で挟持する。そして、ホーンチップ部103とアンビル102によって、この複数の電線Wの芯線111に圧縮力Fと超音波振動(V方向)を加える。このとき、超音波エネルギーによって電線Wの芯線111が溶融し、その部分に溶接部105(図11〜図13に示す)が形成される。
【0005】
図11(a)は4本の電線Wに反対方向から2本の電線Wを配置した6本の電線Wの各端部同士を溶接する前の状態であり、図11(b)は上記した方法によって形成された電線Wの溶接部105を示す斜視図である。図12(a)は電線Wの一部の芯線111を露出させて、露出させた箇所に2本の電線Wを溶接する前の状態であり、図12(b)は上記した方法によって形成された電線Wの溶接部を示す斜視図である。図13(a)は4本の電線Wの各端部同士を溶接する前の状態であり、図13(b)は上記した方法によって形成された電線Wの溶接部を示す斜視図である。
【0006】
ところで、超音波溶接による溶接部105は、所定以上の溶接強度と引っ張り強度を有することが要求される。引っ張り強度は、図14(a)、(b)、(c)に示すように、通常一方の電線Wを固定し、他方の電線Wを所定の引っ張り力fで引っ張ることによって行われる。
【0007】
【特許文献1】
特開2002−217229号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記した従来の超音波溶接装置100及びその方法では、溶接部105の溶接強度と引っ張り強度とを共に満足させることができない。
【0009】
つまり、溶接条件(圧縮力、振動の振幅、振動時間等)を強めると、溶接状態が強固になり溶接強度を高めることができる。しかし、電線圧縮面103a、102aの凹凸104の凸部が他の箇所に較べて非常に強い力で芯線を圧縮するため、図15に示すように、溶接部105の表面には電線圧縮面103a、102aの凹凸104の凸部が食い込んだ溝部112が形成される。この溝部112の形成によって芯線111が劣化(芯線111のU字状の塑性変形、芯線111の縮径等)し、引っ張り強度が弱くなる。特に、芯線111を構成する素線111aの径が細いものは、凸部の食い込みによる影響が大きく、引っ張り強度の低下につながり易い。
【0010】
これとは反対に、溶接条件(圧縮力、振動の振幅、振動時間等)を弱めると、電線圧縮面103a、102aの凹凸104の凸部においても芯線を圧縮する力がそれほど強くならないため、凸部の食い込みによる溝部112がほとんど形成されず、引っ張り強度は維持される。しかし、溶接部105の溶接状態が強固にならず、溶接強度が弱くなる可能性がある。
【0011】
そこで、本発明は、上記した課題を解決すべくなされたものであり、溶接部の溶接強度と引っ張り強度とを共に向上させることができる電線の超音波溶接装置及び超音波溶接方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1の発明は、超音波ホーンのホーンチップ部とアンビルとの間に複数の電線を配置し、この複数の電線に圧縮力と超音波振動を加えることによって複数の前記電線の溶融による溶接部を形成する電線の超音波溶接装置であって、前記ホーンチップ部と前記アンビルのいずれか一方の電線圧縮面には、凹凸が形成された溶接強度維持面と、この溶接強度維持面に隣接され、かつ、溶接強度維持面より電線圧縮方向の反対側に後退する引っ張り強度維持面とを設けたことを特徴とする電線の超音波溶接装置である。
【0013】
この電線の超音波溶接装置では、溶接強度維持面で圧縮された電線のエリアは、強い圧縮力を受けることから溶接状態が強固になり、引っ張り強度維持面で圧縮された電線のエリアは、溶接強度維持面の対応エリアと比較して圧縮力が弱いため、溶接強度維持面よりも溶接強度が弱いが、電線の劣化がほとんど発生せず、引っ張り強度が維持される。したがって、溶接部に溶接強度が高い箇所と引っ張り強度が高い箇所が形成される。
【0014】
請求項2の発明は、請求項1記載の電線の超音波溶接装置であって、前記引っ張り強度維持面は、フラット面であることを特徴とする電線の超音波溶接装置である。
【0015】
この電線の超音波溶接装置では、請求項1の発明の作用に加え、引っ張り強度維持面で圧縮された電線のエリアは、凹凸の凸部が食い込むことによる電線の変形が発生しない。
【0016】
請求項3の発明は、請求項1又は請求項2記載の電線の超音波溶接装置であって、前記ホーンチップ部と前記アンビルとの双方の前記電線圧縮面に、前記溶接強度維持面と前記引っ張り強度維持面をそれぞれ設けたことを特徴とする電線の超音波溶接装置である。
【0017】
この電線の超音波溶接装置では、請求項1又は請求項2の発明の作用に加え、更に効率よく溶接部が形成される。
【0018】
請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の電線の超音波溶接装置であって、前記引っ張り強度維持面は、前記溶接強度維持面と隣接する側から電線圧縮方向の反対側に徐々に後退するテーパ形状であることを特徴とする電線の超音波溶接装置である。
【0019】
この電線の超音波溶接装置では、請求項1乃至請求項3の発明の作用に加え、溶接強度維持面に対応するエリアから引っ張り強度維持面に対応するエリアに対して、徐々に圧縮力が減少する。
【0020】
請求項5の発明は、請求項1乃至請求項3のいずれか一項に記載の電線の超音波溶接装置であって、前記引っ張り強度維持面は、前記溶接強度維持面より電線圧縮方向の反対側に一段後退するストレート形状であることを特徴とする電線の超音波溶接装置である。
【0021】
この電線の超音波溶接装置では、請求項1乃至請求項3の発明と同様の作用に加え、引っ張り強度維持面の引っ張り強度だけではなく、溶接強度も維持される。
【0022】
請求項6の発明は、請求項1乃至請求項5のいずれか一項に記載の電線の超音波溶接装置であって、前記引っ張り強度維持面は、前記溶接強度維持面より電線引き出し側に配置したことを特徴とする電線の超音波溶接装置である。
【0023】
この電線の超音波溶接装置では、請求項1乃至請求項5の発明の作用に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が弱く引っ張り強度が維持されているエリアの順に配列される。
【0024】
請求項7の発明は、請求項6記載の電線の超音波溶接装置であって、前記電線圧縮面には、前記引っ張り強度維持面より電線引き出し側の位置で、かつ、前記引っ張り強度維持面より電線圧縮方向の反対側に徐々に後退する電線径戻し面を設けたことを特徴とする電線の超音波溶接装置である。
【0025】
この電線の超音波溶接装置では、請求項6の発明の作用に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が弱いエリア、溶接状態が非常に弱いエリアの順に配列される。つまり、溶接部から通常の芯線径に徐々に戻すことができる。
【0026】
請求項8の発明は、超音波ホーンのホーンチップ部とアンビルとの間に複数の電線を配置し、この複数の電線に圧縮力と超音波振動を加えることによって複数の前記電線の溶融による溶接部を形成する電線の超音波溶接方法であって、前記ホーンチップ部と前記アンビルとの間に配置された複数の前記電線に対し、強い圧縮エリアと弱い圧縮エリアに分けて圧縮力を作用させたことを特徴とする電線の超音波溶接方法である。
【0027】
この電線の超音波溶接方法では、溶接部に溶接強度が高い箇所と引っ張り強度が高い箇所が形成される。
【0028】
請求項9の発明は、請求項8記載の電線の超音波溶接方法であって、電線引き出し側より遠い側を強い圧縮エリアとし、電線引き出し側に近い側を弱い圧縮エリアとしたことを特徴とする電線の超音波溶接方法である。
【0029】
この電線の超音波溶接方法では、請求項8の発明の作用に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が弱いエリアの順に配列される。
【0030】
請求項10の発明は、請求項9記載の電線の超音波溶接方法であって、弱い圧縮エリアより更に電線引き出し側には、弱い圧縮エリアより更に弱い圧縮力で、かつ、弱い圧縮エリアより遠ざかるにしたがって徐々に弱い圧縮力を作用させたことを特徴とする電線の超音波溶接方法である。
【0031】
この電線の超音波溶接方法では、請求項9の発明の作用に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が普通のエリア、溶接状態が弱いエリアの順に配列される。つまり、溶接部から通常の芯線径に徐々に戻すことができる。
【0032】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0033】
<第1実施形態>
図1〜図5は本発明の第1実施形態を示し、図1は超音波溶接装置1の要部斜視図、図2はホーンチップ部4とアンビル3の電線圧縮面4a、3a付近の拡大側面図、図3は超音波溶接によって作成された電線Wの溶接部13を示す斜視図、図4は図3のA−A線の断面模式図、図5(a)は図4のB1−B1線の断面模式図、図5(b)は図4のB2−B2線の断面模式図、図5(c)は図4のB3−B3線の断面模式図である。
【0034】
図1に示すように、超音波溶接装置1は、上方に配置された超音波ホーン2と超音波ホーン2の下方に配置されたアンビル3とを備えている。超音波ホーン2は、その先端にホーンチップ部4を有し、このホーンチップ部4は、アンビル3に圧接する溶接位置と、アンビル3の上方に離間する待機位置との間で変移可能に設けられている。溶接位置では、所定の圧縮力Fでアンビル3に圧接することができるようになっている。また、超音波ホーン2による超音波の振動方向は、ホーンチップ部4とアンビル3間に挟持される電線Wの軸方向(図1のV矢印方向)に設定されている。
【0035】
アンビル3は、左右の側壁部5に囲まれた上面を有し、この上面とホーンチップ部4の下面とが対向配置されている。この互いに対向するホーンチップ部4の下面とアンビル3の上面が電線圧縮面4a、3aとして形成されている。
【0036】
図2に詳しく示すように、電線圧縮面4a、3aは、それぞれ溶接強度維持面6と、この溶接強度維持面6に隣接され、かつ、溶接強度維持面6より電線圧縮方向の反対側(ホーンチップ部4の電線圧縮面4aでは上方側、アンビル3の電線圧縮面3aでは下方側)に後退する引っ張り強度維持面7と、この引っ張り強度維持面7と隣接し、かつ、引っ張り強度維持面7と隣接する側より連続して形成された電線径戻し面8とから構成されている。溶接強度維持面6と引っ張り強度維持面7と電線径戻し面8は、電線引き出し方向Sに向かってこの順序で配置されている。
【0037】
各溶接強度維持面6には、セレーション溝を切ることによって凹凸10が形成されている。セレーション溝によって形成される凸部(特に、符号を付さず)と凹部(特に、符号を付さず)は、電線Wの軸方向に沿って交互に配置され、この交互に配置された各凸部と各凹部は、電線Wの軸方向と直交方向にそれぞれ延設されている。なお、凹凸10は、ローレット溝等を形成することによって形成しても良い。
【0038】
各引っ張り強度維持面7は、凹凸が形成されていないフラットな面であり、かつ、溶接強度維持面6より電線圧縮方向の反対側に徐々に後退するストレートなテーパ面に形成されている。
【0039】
各電線径戻し面8は、凹凸が形成されていないフラットな面であり、かつ、引っ張り強度維持面7より電線圧縮方向の反対側に徐々に後退する曲面状のテーパ面に形成されている。
【0040】
次に、超音波溶接の手順を説明する。4本の電線Wの各端部同士を超音波溶接する場合を例に説明する。
【0041】
図1に示すように、最初に、4本の電線Wの端部側の絶縁外皮11をそれぞれ剥ぎ、芯線12をそれぞれ露出させる。芯線12は多数の素線12aの集合体である。そして、アンビル3の電線圧縮面3aの上に4本の電線Wの芯線12を集めた状態で載置する。次に、超音波ホーン2のホーンチップ部4を待機位置から溶接位置に変移させ、ホーンチップ部4とアンビル3によって4本の電線Wの芯線12を挟持する。次に、ホーンチップ部4とアンビル3の間に挟持した芯線12に圧縮力Fと超音波振動(V方向)を所定時間加える。このとき、ホーンチップ部4とアンビル3に挟持された4本の電線Wの芯線12には、各電線圧縮面4a、3aを介して超音波が伝達され、超音波エネルギーが作用する。この超音波エネルギーによって電線Wの芯線12が溶融し、溶融部分の冷却によって、図3に示す溶接部13が形成される。これによって、4本の電線W間が電気的に接続される。
【0042】
双方の溶接強度維持面6間で圧縮された芯線12のエリアL1には強い圧縮力が作用し、かつ、凹凸10によって超音波振動が有効に伝達されることから高い超音波エネルギーが加えられる。このため、このエリアL1は、図4(L1の範囲)及び図5(a)に示すように、溶接状態が強固になり、溶接強度の高いエリアとなる。また、溶接強度維持面6に対応するエリアL1の表面には、図3、図4に示すように、凹凸10の凸部が食い込むことによる溝15が形成される。
【0043】
これに対し、双方の引っ張り強度維持面7間で圧縮された芯線12のエリアL2には、溶接強度維持面6の対応エリアと比較すると弱い圧縮力が作用することから、弱い超音波エネルギーが加えられる。このため、このエリアL2は、図4(L2の範囲)及び図5(b)に示すように、溶接状態が弱く、芯線12の損傷が少ないことから引っ張り強度の高いエリアとなる。
【0044】
そして、双方の電線径戻し面8間で圧縮された芯線12のエリアL3には、引っ張り強度維持面7と比較すると更に弱い圧縮力が作用することから、非常に弱い超音波エネルギーが加えられる。このため、このエリアL3では、図4(L3の範囲)及び図5(c)に示すように、溶接状態が非常に弱く、芯線12の素線12aの形状がほぼ保たれた通常の芯線径に近い状態である。
【0045】
以上により、溶接部13に溶接強度が高い箇所と引っ張り強度が高い箇所が形成されるため、溶接部13の溶接強度と引っ張り強度とを共に向上させることができる。
【0046】
このように、上記した第1実施形態では、引っ張り強度維持面7はフラット面であるので、引っ張り強度維持面7で圧縮された芯線12のエリアL2は、図4に示すように、凹凸の凸部が食い込むことによる芯線12の変形が発生しないため引っ張り強度が維持される。特に、従来例では、芯線12を構成する素線12aの径が細いものについて引っ張り強度を上げることができなかったが、本発明では、引っ張り強度維持面7において凸部による食い込みがなく、素線12aの径が細いものについても有効に引っ張り強度を向上させることができる。
【0047】
また、上記第1実施形態では、引っ張り強度維持面7は、溶接強度維持面6と隣接する側より電線圧縮方向の反対側に徐々に後退するストレートなテーパ形状であるため、溶接強度維持面6に対応するエリアL1から引っ張り強度維持面7に対応するエリアL2に対して徐々に圧縮力が減少する。したがって、溶接部13には溶接状態が極端に切り替わる箇所が発生しない。
【0048】
更に、上記第1実施形態では、電線圧縮面4a、3aには溶接強度維持面6と引っ張り強度維持面7と共に、引っ張り強度維持面7より電線引き出し側に配置し、かつ、引っ張り強度維持面7より電線圧縮方向の反対側に徐々に後退する電線径戻し面8を設けたため、溶接部13では、図4に示すように、電線引き出し方向Sに向かって溶接状態が強いエリアL1、溶接状態が弱いエリアL2、溶接状態が非常に弱いエリアL3の順に配列される。つまり、溶接部13から通常の芯線径に徐々に戻すことができる。したがって、溶接部13と溶接されない箇所との境界の芯線径が極端に変化することを防止することができる。
【0049】
なお、上記した第1実施形態では、ホーンチップ部4とアンビル3との双方の電線圧縮面4a、3aに溶接強度維持面6、引っ張り強度維持面7及び電線径戻し面8をそれぞれ設けたが、いずれか一方の電線圧縮面4a、3aにのみ溶接強度維持面6、引っ張り強度維持面7及び電線径戻し面8を設けても良い。
【0050】
また、電線径戻し面8は、引っ張り強度維持面7より電線圧縮方向の反対側に徐々に後退する曲面状のテーパ面に形成されているが、ストレート形状のテーパ面に形成しても良い。
【0051】
次に、上記した第1実施形態の変形例を示す。
【0052】
図6は超音波溶接装置21の要部斜視図、図7はホーンチップ部24とアンビル23の電線圧縮面24a、23a付近の拡大側面図、図8は超音波溶接によって作成された電線Wの溶接部33を示す斜視図である。
【0053】
この変形例では、図6に示すように、超音波溶接装置21は、上方に配置された超音波ホーン22と超音波ホーン22の下方に配置されたアンビル23とを備えている。超音波ホーン22は、その先端にホーンチップ部24を有し、このホーンチップ部24は、アンビル23に圧接する溶接位置とアンビル23の上方に離間する待機位置との間で変移可能に設けられている。溶接位置では、所定の圧縮力Fでアンビル23に圧接することができるようになっている。また、超音波ホーン22による超音波の振動方向は、ホーンチップ部24とアンビル23間に挟持される電線Wの軸方向(図1のV矢印方向)に設定されている。
【0054】
アンビル23は、左右の側壁部25に囲まれた上面を有し、この上面とホーンチップ部24の下面とが対向配置されている。この互いに対向するホーンチップ部24の下面とアンビル23の上面が電線圧縮面24a、23aとして形成されている。
【0055】
図7に詳しく示すように、電線圧縮面24a、23aは、それぞれ溶接強度維持面26と、この溶接強度維持面26の両側に隣接して形成され、かつ、溶接強度維持面26より電線圧縮方向の反対側(ホーンチップ部24の電線圧縮面24aでは上方側、アンビル23の電線圧縮面23aでは下方側)に後退する引っ張り強度維持面27、27と、この引っ張り強度維持面27、27と隣接し、かつ、引っ張り強度維持面27、27と隣接する側より連続して形成された電線径戻し面28、28とから構成されている。溶接強度維持面26と引っ張り強度維持面27、27と電線径戻し面28、28は、電線引き出し方向Sから電線の先端方向Tに向かって、電線径戻し面28、引っ張り強度維持面27、溶接強度維持面26、引っ張り強度維持面27、電線径戻し面28の順序で配置されている。
【0056】
各溶接強度維持面26には、セレーション溝を切ることによって凹凸30が形成されている。セレーション溝によって形成される凸部(特に、符号を付さず)と凹部(特に、符号を付さず)は、電線Wの軸方向に沿って交互に配置され、この交互に配置された各凸部と各凹部は、電線Wの軸方向と直交方向にそれぞれ延設されている。なお、凹凸30は、ローレット溝等を形成することによって形成しても良い。
【0057】
各電線径戻し面28、28は、凹凸が形成されていないフラットな面であり、かつ、引っ張り強度維持面27、27より電線圧縮方向の反対側に徐々に後退する曲面状のテーパ面に形成されている。
【0058】
次に、超音波溶接の手順を説明する。5本の電線Wの各端部同士を超音波溶接する場合を例に説明する。
【0059】
図6に示すように、最初に、5本の電線Wの端部側の絶縁外皮11をそれぞれ剥ぎ、芯線12をそれぞれ露出させる。芯線12は多数の素線12aの集合体である。そして、アンビル23の電線圧縮面23aの上に4本の電線Wの芯線12を集めた状態で載置し、4本の電線Wと反対方向から1本の電線Wを載置する。次に、上記した第1実施形態と同様に、超音波ホーン22のホーンチップ部24を待機位置から溶接位置に変移させ、ホーンチップ部24とアンビル23によって5本の電線Wの芯線12を挟持する。次に、ホーンチップ部24とアンビル23の間に挟持した芯線12に圧縮力Fと超音波振動(V方向)を所定時間加える。このとき、ホーンチップ部24とアンビル23に挟持された5本の電線Wの芯線12には、各電線圧縮面24a、23aを介して超音波が伝達され、超音波エネルギーが作用する。この超音波エネルギーによって電線Wの芯線12が溶融し、溶融部分の冷却によって、図8に示す溶接部33が形成される。これによって、5本の電線W間が電気的に接続される。
【0060】
双方の溶接強度維持面26間で圧縮された芯線12のエリアL1には、強い圧縮力が作用し、かつ、凹凸30によって超音波振動が有効に伝達されることから高い超音波エネルギーが加えられる。このため、このエリアL1は溶接状態が強固になり、溶接強度の高いエリアとなる。また、溶接強度維持面26に対応するエリアL1の表面には、図8に示すように、凹凸30の凸部が食い込むことによる溝35が形成される。
【0061】
これに対し、双方の引っ張り強度維持面27、27間で圧縮された芯線12のエリアL2、L2には、溶接強度維持面26の対応エリアと比較すると弱い圧縮力が作用することから、弱い超音波エネルギーが加えられる。このため、このエリアL2、L2は溶接状態が弱く、芯線12の損傷が少ないことから引っ張り強度の高いエリアとなる。
【0062】
そして、双方の電線径戻し面28、28間で圧縮された芯線12のエリアL3、L3には引っ張り強度維持面27、27と比較すると更に弱い圧縮力が作用することから、非常に弱い超音波エネルギーが加えられる。このため、このエリアL3、L3では、溶接状態が非常に弱く、芯線12の素線12aの形状がほぼ保たれた通常の芯線径に近い状態である。
【0063】
以上により、溶接部33に溶接強度が高い箇所と引っ張り強度が高い箇所が形成されるため、溶接部33の溶接強度と引っ張り強度とを共に向上させることができる。
【0064】
このように、上記した第1実施形態の変形例では、第1実施形態と同様の効果が得られる他、溶接強度維持面26の電線引き出し側及び電線の先端側に引っ張り強度維持面27と電線径戻し面28が設けられているため、形成された溶接部33の両側と溶接されない箇所との境界の芯線径が極端に変化することが防止され、溶接部33には溶接状態が極端に切り替わる箇所が発生しない。また、電線引き出し側及び電線の先端側の両方向から電線Wを供給しても、有効に溶接することができ、溶接部の自由度が向上する。
【0065】
なお、上記した第1実施形態の変形例では、ホーンチップ部24とアンビル23との双方の電線圧縮面24a、23aに溶接強度維持面26、引っ張り強度維持面27及び電線径戻し面28をそれぞれ設けたが、いずれか一方の電線圧縮面24a、23aにのみ溶接強度維持面26、引っ張り強度維持面27及び電線径戻し面28を設けても良い。
【0066】
また、電線径戻し面28は、引っ張り強度維持面27より電線圧縮方向の反対側に徐々に後退する曲面状のテーパ面に形成されているが、ストレート形状のテーパ面に形成しても良い。
【0067】
<第2実施形態>
図9は本発明の第2実施形態を示し、ホーンチップ部4とアンビル3の電線圧縮面4a、3a付近の拡大側面図である。この第2実施形態を上記第1実施形態と比較すると、電線圧縮面4a、3aに形成された引っ張り強度維持面7aは、溶接強度維持面6より電線圧縮方向の反対側に一段後退するストレート形状に設けられている。他の構成は、上記第1実施形態と同様であるため、説明を省略する。
【0068】
この第2実施形態においても、上記第1実施形態と略同様の作用・効果を得ることができ、形成された溶接部と溶接されない箇所との境界の芯線径が極端に変化することが防止され、溶接部には溶接状態が極端に切り替わる箇所が発生しない。また、電線圧縮面4a、3aに電線径戻し面8が形成されている場合には、引っ張り強度維持面7aがストレート形状であっても、形成された溶接部は充分に引っ張り強度を維持することができる。更に、引っ張り強度維持面7aがストレート形状であることから、引っ張り強度維持面がテーパ状に形成されている場合と比較して、溶接強度も維持される。
【0069】
なお、上記した第1実施形態の変形例と同様に、溶接強度維持面6の電線引き出し側及び電線の先端側に引っ張り強度維持面と電線径戻し面を設けても良い。
【0070】
【発明の効果】
以上説明したように、請求項1の発明によれば、溶接強度維持面で圧縮された電線のエリアは、強い圧縮力を受けることから溶接状態が強固になり、引っ張り強度維持面で圧縮された電線のエリアは、溶接強度維持面の対応エリアに比較して弱い圧縮力しか作用せずに溶接強度が弱く、電線の劣化がほとんど発生しない。したがって、溶接部に溶接強度が高い箇所と引っ張り強度が高い箇所が形成されるため、溶接部の溶接強度と引っ張り強度とを共に向上させることができる。
【0071】
請求項2の発明によれば、請求項1の発明の効果に加え、引っ張り強度維持面で圧縮された電線のエリアは、凹凸の凸部が食い込むことによる電線の変形が発生しないため、引っ張り強度の更に向上する。
【0072】
請求項3の発明によれば、請求項1又は請求項2の発明と同様の効果に加え、更に効率よく溶接部を形成することができる。
【0073】
請求項4の発明によれば、請求項1乃至請求項3の発明の効果に加え、溶接強度維持面に対応するエリアから引っ張り強度維持面に対応するエリアに対して徐々に圧縮力が減少する。したがって、溶接部には溶接状態が極端に切り替わる箇所が発生しない。
【0074】
請求項5の発明によれば、請求項1乃至請求項3の発明と同様の効果に加え、引っ張り強度維持面がストレート形状であるため、引っ張り強度維持面の引っ張り強度だけではなく、溶接強度も維持される。
【0075】
請求項6の発明によれば、請求項1乃至請求項5の発明の効果に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が強くないエリアの順に配列される。したがって、溶接部と溶接されない箇所との境界の芯線径が極端に変化することを防止することができる。
【0076】
請求項7の発明によれば、請求項6の発明の効果に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が弱いエリア、溶接状態が非常に弱いエリアの順に配列される。つまり、溶接部から通常の芯線径に徐々に戻すことができるため、溶接部から溶接されな箇所との境界の芯線径が変化することを有効に防止することができる。
【0077】
請求項8の発明によれば、溶接部に溶接強度が高い箇所と引っ張り強度が高い箇所が形成されるため、溶接部の溶接強度と引っ張り強度とを共に向上させることができる。
【0078】
請求項9の発明によれば、請求項8の発明の効果に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が弱いエリアの順に配列される。したがって、溶接部と溶接されない箇所との境界の芯線径が極端に変化することを防止することができる。
【0079】
請求項10の発明によれば、請求項9の発明の効果に加え、溶接部は、電線引き出し方向に向かって溶接状態が強いエリア、溶接状態が普通のエリア、溶接状態が弱いエリアの順に配列される。つまり、溶接部から通常の芯線径に徐々に戻すことができるため、溶接部から溶接されな箇所との境界の芯線径が変化することを有効に防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示し、超音波溶接装置の要部斜視図である。
【図2】本発明の第1実施形態を示し、ホーンチップ部とアンビルの電線圧縮面付近の拡大側面図である。
【図3】本発明の第1実施形態を示し、超音波溶接によって作製された電線の溶接部を示す斜視図である。
【図4】本発明の第1実施形態を示し、図3のA−A線の断面模式図である。
【図5】本発明の第1実施形態を示し、(a)は図4のB1−B1線の断面模式図、図5(b)は図4のB2−B2線の断面模式図、図5(c)は図4のB3−B3線の断面模式図である。
【図6】本発明の第1実施形態の変形例を示し、超音波溶接装置の要部斜視図である。
【図7】本発明の第1実施形態の変形例を示し、ホーンチップ部とアンビルの電線圧縮面付近の拡大側面図である。
【図8】本発明の第1実施形態の変形例を示し、超音波溶接によって作製された電線の溶接部を示す斜視図である。
【図9】本発明の第2実施形態を示し、ホーンチップ部とアンビルの電線圧縮面付近の拡大側面図である。
【図10】従来例を示し、超音波溶接装置の要部斜視図である。
【図11】従来例を示し、図11(a)は4本の電線Wに反対方向から2本の電線Wを配置した6本の電線Wの各端部同士を溶接する前の状態であり、図11(b)は超音波溶接によって形成された電線Wの溶接部を示す斜視図である。
【図12】従来例を示し、図12(a)は電線Wの一部の芯線を露出させて、露出させた箇所に2本の電線Wを溶接する前の状態であり、図12(b)は超音波溶接によって形成された電線Wの溶接部を示す斜視図である。
【図13】従来例を示し、図13(a)は4本の電線Wの各端部同士を溶接する前の状態であり、図13(b)は超音波溶接によって形成された電線Wの溶接部を示す斜視図である。
【図14】従来例を示し、(a)〜(c)は各種溶接形態における電線の溶接部の引っ張り試験の状態を示す斜視図である。
【図15】従来例を示し、溶接部の断面模式図である。
【符号の説明】
1 超音波溶接装置
2 超音波ホーン
3 アンビル
3a 電線圧縮面
4 ホーンチップ部
4a 電線圧縮面
6 溶接強度維持面
7、7a 引っ張り強度維持面
8 電線径戻し面
10 凹凸
13 溶接部
W 撚り電線(電線)
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an ultrasonic welding apparatus and an ultrasonic welding method for an electric wire for connecting a plurality of electric wires by ultrasonic welding.
[0002]
[Prior art]
A technique for electrically connecting conductive members by ultrasonic welding has been proposed, for example, as disclosed in Japanese Patent Application Laid-Open No. 2002-217229 (Patent Document 1). The welding target of the ultrasonic welding disclosed in Japanese Patent Application Laid-Open No. 2002-217229 (Patent Document 1) is a wire and a semiconductor chip, but the ultrasonic welding is also used to electrically connect a plurality of electric wires. I have. Such a conventional ultrasonic welding apparatus will be described with reference to FIGS.
[0003]
As shown in FIG. 10, the ultrasonic welding apparatus 100 includes an ultrasonic horn 101 and an anvil 102, and a horn tip portion 103 is fixed to a tip of the ultrasonic horn 101. Opposing surfaces of the horn tip portion 103 and the anvil 102 are formed as wire compression surfaces 103a and 102a. Irregularities 104 for effectively transmitting ultrasonic vibrations to the electric wires are formed on the entire surfaces of the electric wire compression surfaces 103a and 102a.
[0004]
Next, the procedure of ultrasonic welding will be described. The plurality of electric wires W to be connected are peeled off from the insulating sheath 110 at the connection point, and the core wire 111 is exposed to be disposed between the horn tip portion 103 and the anvil 102. It is sandwiched between the part 103 and the anvil 102. Then, compressive force F and ultrasonic vibration (V direction) are applied to the core wires 111 of the plurality of electric wires W by the horn tip portion 103 and the anvil 102. At this time, the core wire 111 of the electric wire W is melted by the ultrasonic energy, and a welded portion 105 (shown in FIGS. 11 to 13) is formed at that portion.
[0005]
FIG. 11A shows a state before welding each end of six electric wires W in which two electric wires W are arranged from four electric wires W in opposite directions, and FIG. It is a perspective view showing welding part 105 of electric wire W formed by the method. FIG. 12A shows a state before exposing a part of the core wire 111 of the electric wire W and welding the two electric wires W to the exposed portion, and FIG. 12B shows a state formed by the above-described method. It is a perspective view which shows the welding part of the electric wire W which was made. FIG. 13A shows a state before welding each end of the four wires W, and FIG. 13B is a perspective view showing a welded portion of the wires W formed by the above-described method.
[0006]
Incidentally, the welded portion 105 formed by ultrasonic welding is required to have welding strength and tensile strength that are not less than predetermined values. As shown in FIGS. 14 (a), (b) and (c), the tensile strength is usually achieved by fixing one electric wire W and pulling the other electric wire W with a predetermined tensile force f.
[0007]
[Patent Document 1]
JP-A-2002-217229
[0008]
[Problems to be solved by the invention]
However, the above-described conventional ultrasonic welding apparatus 100 and its method cannot satisfy both the welding strength and the tensile strength of the welding portion 105.
[0009]
That is, if the welding conditions (compression force, amplitude of vibration, vibration time, etc.) are strengthened, the welding state becomes strong and the welding strength can be increased. However, since the projections of the irregularities 104 of the wire compression surfaces 103a and 102a compress the core wire with a very strong force as compared with other portions, the surface of the welding portion 105 has the wire compression surface 103a as shown in FIG. , 102a is formed with a groove 112 which is pierced by the protrusion of the unevenness 104. Due to the formation of the groove 112, the core wire 111 is degraded (U-shaped plastic deformation of the core wire 111, diameter reduction of the core wire 111, etc.), and the tensile strength is reduced. Particularly, when the diameter of the strand 111a constituting the core wire 111 is small, the influence of the biting of the convex portion is large, and the tensile strength is likely to be reduced.
[0010]
Conversely, when the welding conditions (compression force, vibration amplitude, vibration time, etc.) are weakened, the force for compressing the core wire is not so strong even at the convex portions of the irregularities 104 of the electric wire compression surfaces 103a, 102a. The groove 112 is hardly formed due to the bite of the portion, and the tensile strength is maintained. However, there is a possibility that the welding state of the welded portion 105 does not become strong and the welding strength becomes weak.
[0011]
Then, this invention was made in order to solve the said subject, and provides the ultrasonic welding apparatus and the ultrasonic welding method of the electric wire which can improve both the welding strength and the tensile strength of a welding part. With the goal.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, a plurality of electric wires are arranged between a horn tip portion of an ultrasonic horn and an anvil, and a plurality of the electric wires are welded by applying a compressive force and ultrasonic vibration to the plurality of electric wires. An ultrasonic welding apparatus for an electric wire forming a portion, wherein the horn tip portion and the electric wire compression surface of any one of the anvil are provided with a welding strength maintaining surface having irregularities formed thereon and adjacent to the welding strength maintaining surface. An ultrasonic welding apparatus for an electric wire, further comprising: a tensile strength maintaining surface that retreats from the welding strength maintaining surface on a side opposite to the electric wire compression direction.
[0013]
In this ultrasonic welding apparatus for electric wires, the area of the electric wire compressed on the welding strength maintaining surface receives a strong compressive force, so that the welding state is strengthened, and the area of the electric wire compressed on the tensile strength maintaining surface is welded. Since the compressive force is weaker than the corresponding area of the strength maintaining surface, the welding strength is lower than the welding strength maintaining surface, but the wire hardly deteriorates and the tensile strength is maintained. Therefore, a portion having high welding strength and a portion having high tensile strength are formed in the welded portion.
[0014]
The invention according to claim 2 is the ultrasonic welding apparatus for electric wires according to claim 1, wherein the tensile strength maintaining surface is a flat surface.
[0015]
In the ultrasonic welding apparatus for an electric wire, in addition to the effect of the first aspect of the present invention, in the area of the electric wire compressed on the surface where the tensile strength is maintained, the deformation of the electric wire due to the indentation of the projections of the unevenness does not occur.
[0016]
The invention according to claim 3 is the ultrasonic welding apparatus for an electric wire according to claim 1 or 2, wherein the welding strength maintaining surface and the welding strength maintaining surface are provided on the electric wire compression surfaces of both the horn tip portion and the anvil. An ultrasonic welding apparatus for an electric wire, wherein a tensile strength maintaining surface is provided.
[0017]
In the ultrasonic welding apparatus for an electric wire, in addition to the operation of the first or second aspect of the invention, a welded portion is formed more efficiently.
[0018]
The invention according to claim 4 is the ultrasonic welding apparatus for an electric wire according to any one of claims 1 to 3, wherein the tensile strength maintaining surface is an electric wire from a side adjacent to the welding strength maintaining surface. An ultrasonic welding apparatus for an electric wire, characterized in that it has a tapered shape that gradually retreats to the opposite side of the compression direction.
[0019]
In the ultrasonic welding apparatus for an electric wire, in addition to the effects of the first to third aspects, the compressive force is gradually reduced from the area corresponding to the welding strength maintaining surface to the area corresponding to the tensile strength maintaining surface. I do.
[0020]
According to a fifth aspect of the present invention, in the ultrasonic welding apparatus for an electric wire according to any one of the first to third aspects, the tensile strength maintaining surface is opposite to the electric wire compression direction than the welding strength maintaining surface. An ultrasonic welding apparatus for an electric wire, wherein the ultrasonic welding apparatus has a straight shape that retreats one step to a side.
[0021]
In this ultrasonic welding apparatus for electric wires, in addition to the same operation as the first to third aspects of the present invention, not only the tensile strength of the tensile strength maintaining surface but also the welding strength is maintained.
[0022]
According to a sixth aspect of the present invention, in the ultrasonic welding apparatus for an electric wire according to any one of the first to fifth aspects, the tensile strength maintaining surface is disposed closer to the wire drawing side than the welding strength maintaining surface. An ultrasonic welding apparatus for electric wires, characterized in that:
[0023]
In the ultrasonic welding apparatus for an electric wire, in addition to the effects of the inventions of the first to fifth aspects, in the welded portion, the area where the welding state is strong in the wire drawing direction, the welding state is weak, and the tensile strength is maintained. They are arranged in the order of the areas.
[0024]
The invention according to claim 7 is the ultrasonic welding apparatus for an electric wire according to claim 6, wherein the electric wire compression surface is located at a position closer to the electric wire drawing side than the tensile strength maintaining surface, and the electric wire is more than the tensile strength maintaining surface. An ultrasonic welding apparatus for an electric wire, wherein an electric wire diameter return surface that gradually retreats is provided on the opposite side of the electric wire compression direction.
[0025]
In this ultrasonic welding apparatus for electric wires, in addition to the effect of the invention of claim 6, the welded portion is formed in the order of the area where the welding state is strong, the area where the welding state is weak, and the area where the welding state is very weak in the wire drawing direction. Are arranged. That is, it is possible to gradually return to the normal core wire diameter from the welded portion.
[0026]
The invention according to claim 8 is that a plurality of electric wires are arranged between the horn tip portion of the ultrasonic horn and the anvil, and a compressive force and ultrasonic vibration are applied to the plurality of electric wires to weld the plurality of electric wires by melting. An ultrasonic welding method of an electric wire forming a portion, wherein a compressive force is applied to a plurality of the electric wires arranged between the horn tip portion and the anvil by dividing the electric wire into a strong compression area and a weak compression area. An ultrasonic welding method for electric wires, characterized in that:
[0027]
In this method of ultrasonic welding of electric wires, a portion having a high welding strength and a portion having a high tensile strength are formed at the welded portion.
[0028]
The invention according to claim 9 is the ultrasonic welding method for electric wires according to claim 8, wherein a side farther from the wire drawing side is a strong compression area, and a side closer to the wire drawing side is a weak compression area. This is an ultrasonic welding method for electric wires.
[0029]
In this ultrasonic welding method for electric wires, in addition to the effect of the invention of claim 8, the welded portions are arranged in the order of the area where the welding state is strong and the area where the welding state is weak in the wire drawing direction.
[0030]
According to a tenth aspect of the present invention, there is provided the ultrasonic welding method of the electric wire according to the ninth aspect, wherein the electric wire is further pulled out from the weakly compressed area with a smaller compressive force than the weakly compressed area and further away from the weakly compressed area. The present invention provides an ultrasonic welding method for electric wires, characterized by gradually applying a weak compressive force in accordance with the following.
[0031]
In this ultrasonic welding method for electric wires, in addition to the effect of the ninth aspect of the present invention, the welded portions are arranged in the order of the area where the welding state is strong, the area where the welding state is normal, and the area where the welding state is weak in the wire drawing direction. Is done. That is, it is possible to gradually return to the normal core wire diameter from the welded portion.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0033]
<First embodiment>
1 to 5 show a first embodiment of the present invention. FIG. 1 is a perspective view of a main part of an ultrasonic welding apparatus 1, and FIG. 2 is an enlarged view of a horn tip portion 4 and electric wire compression surfaces 4 a and 3 a vicinity of an anvil 3. FIG. 3 is a side view, FIG. 3 is a perspective view showing a welded portion 13 of the electric wire W created by ultrasonic welding, FIG. 4 is a schematic cross-sectional view taken along line AA of FIG. 3, and FIG. FIG. 5B is a schematic cross-sectional view taken along line B2-B2 in FIG. 4, and FIG. 5C is a schematic cross-sectional view taken along line B3-B3 in FIG.
[0034]
As shown in FIG. 1, the ultrasonic welding device 1 includes an ultrasonic horn 2 disposed above and an anvil 3 disposed below the ultrasonic horn 2. The ultrasonic horn 2 has a horn tip portion 4 at the tip thereof, and the horn tip portion 4 is provided so as to be movable between a welding position where it is pressed against the anvil 3 and a standby position where it is separated above the anvil 3. Have been. At the welding position, it can be pressed against the anvil 3 with a predetermined compression force F. The vibration direction of the ultrasonic waves by the ultrasonic horn 2 is set in the axial direction of the electric wire W sandwiched between the horn tip portion 4 and the anvil 3 (the direction of the arrow V in FIG. 1).
[0035]
The anvil 3 has an upper surface surrounded by left and right side wall portions 5, and the upper surface and the lower surface of the horn tip portion 4 are arranged to face each other. The opposing lower surface of the horn tip portion 4 and the upper surface of the anvil 3 are formed as wire compression surfaces 4a, 3a.
[0036]
As shown in detail in FIG. 2, the electric wire compression surfaces 4 a and 3 a are respectively weld strength maintaining surfaces 6, are adjacent to the weld strength maintenance surfaces 6, and are opposite to the welding strength maintenance surfaces 6 in the wire compression direction (horns). A tensile strength maintaining surface 7 that retreats to the upper side on the wire compressing surface 4a of the tip portion 4 and a lower side on the electric wire compressing surface 3a of the anvil 3), and is adjacent to the tensile strength maintaining surface 7 and at the same time. And the wire diameter return surface 8 formed continuously from the adjacent side. The welding strength maintaining surface 6, the tensile strength maintaining surface 7, and the wire diameter returning surface 8 are arranged in this order in the wire drawing direction S.
[0037]
Irregularities 10 are formed on each welding strength maintaining surface 6 by cutting serration grooves. The convex portions (particularly, without reference numerals) and the concave portions (particularly, without reference numerals) formed by the serration grooves are alternately arranged along the axial direction of the electric wire W, and each of the alternately arranged ones is formed. The convex portion and each concave portion extend in a direction orthogonal to the axial direction of the electric wire W, respectively. The unevenness 10 may be formed by forming a knurl groove or the like.
[0038]
Each of the tensile strength maintaining surfaces 7 is a flat surface on which no irregularities are formed, and is formed as a straight tapered surface that gradually retreats from the welding strength maintaining surface 6 to the opposite side in the wire compression direction.
[0039]
Each wire diameter return surface 8 is a flat surface on which no irregularities are formed, and is formed as a curved tapered surface that gradually retreats from the tensile strength maintaining surface 7 to the opposite side in the wire compression direction.
[0040]
Next, the procedure of ultrasonic welding will be described. An example in which the respective ends of the four electric wires W are ultrasonically welded will be described.
[0041]
As shown in FIG. 1, first, the insulating sheaths 11 at the end portions of the four electric wires W are peeled off, and the core wires 12 are respectively exposed. The core wire 12 is an aggregate of many strands 12a. Then, the core wires 12 of the four electric wires W are placed on the electric wire compression surface 3a of the anvil 3 in a state of being collected. Next, the horn tip portion 4 of the ultrasonic horn 2 is shifted from the standby position to the welding position, and the horn tip portion 4 and the anvil 3 sandwich the core wires 12 of the four electric wires W. Next, a compressive force F and ultrasonic vibration (V direction) are applied to the core wire 12 held between the horn tip portion 4 and the anvil 3 for a predetermined time. At this time, ultrasonic waves are transmitted to the core wires 12 of the four electric wires W sandwiched between the horn tip portion 4 and the anvil 3, via the electric wire compression surfaces 4a, 3a, and ultrasonic energy is applied. The core energy 12 of the electric wire W is melted by the ultrasonic energy, and the welded portion 13 shown in FIG. 3 is formed by cooling the melted portion. Thereby, the four electric wires W are electrically connected.
[0042]
A strong compressive force acts on the area L1 of the core wire 12 compressed between the two welding strength maintaining surfaces 6, and high ultrasonic energy is applied since ultrasonic vibration is effectively transmitted by the unevenness 10. For this reason, as shown in FIG. 4 (range of L1) and FIG. 5A, this area L1 is an area where the welding state is strong and the welding strength is high. In addition, a groove 15 is formed on the surface of the area L1 corresponding to the welding strength maintaining surface 6, as shown in FIGS.
[0043]
On the other hand, since weak compressive force acts on the area L2 of the core wire 12 compressed between the two tensile strength maintaining surfaces 7 as compared with the corresponding area of the welding strength maintaining surface 6, weak ultrasonic energy is applied. Can be Therefore, as shown in FIG. 4 (range of L2) and FIG. 5B, this area L2 is an area having a high tensile strength because the welding state is weak and the core wire 12 is less damaged.
[0044]
Further, an extremely weak ultrasonic energy is applied to the area L3 of the core wire 12 compressed between the two electric wire diameter return surfaces 8, since a weaker compressive force acts on the area L3 than the tensile strength maintaining surface 7. For this reason, in this area L3, as shown in FIG. 4 (range of L3) and FIG. 5C, the welding state is very weak, and the normal core wire diameter in which the shape of the wire 12a of the core wire 12 is almost maintained is maintained. It is in a state close to.
[0045]
As described above, since a portion having high welding strength and a portion having high tensile strength are formed in the welded portion 13, both the welding strength and the tensile strength of the welded portion 13 can be improved.
[0046]
As described above, in the above-described first embodiment, since the tensile strength maintaining surface 7 is a flat surface, the area L2 of the core wire 12 compressed by the tensile strength maintaining surface 7 has, as shown in FIG. Since the core wire 12 is not deformed due to the bite of the portion, the tensile strength is maintained. In particular, in the conventional example, the tensile strength could not be increased with respect to the wire 12a constituting the core wire 12 having a small diameter, but in the present invention, the tensile strength maintaining surface 7 has no bite by the convex portion, and Even when the diameter of 12a is small, the tensile strength can be effectively improved.
[0047]
In the first embodiment, the tensile strength maintaining surface 7 has a straight tapered shape that gradually retreats from the side adjacent to the welding strength maintaining surface 6 to the opposite side in the wire compression direction. Is gradually reduced from the area L1 corresponding to the area L2 to the area L2 corresponding to the tensile strength maintaining surface 7. Therefore, there is no place in the welded portion 13 where the welding state is extremely changed.
[0048]
Further, in the first embodiment, the electric wire compression surfaces 4a and 3a are arranged on the wire drawing side from the tensile strength maintaining surface 7 together with the welding strength maintaining surface 6 and the tensile strength maintaining surface 7, and the tensile strength maintaining surface 7 Since the wire diameter return surface 8 that gradually retreats on the opposite side in the wire compression direction is provided, in the welded portion 13, as shown in FIG. The weak area L2 and the area L3 where the welding state is very weak are arranged in this order. That is, it is possible to gradually return to the normal core wire diameter from the welded portion 13. Therefore, it is possible to prevent the core wire diameter at the boundary between the welded portion 13 and the portion not to be welded from being extremely changed.
[0049]
In the above-described first embodiment, the welding strength maintaining surface 6, the tensile strength maintaining surface 7, and the wire diameter returning surface 8 are provided on the wire compression surfaces 4a and 3a of both the horn tip portion 4 and the anvil 3, respectively. The welding strength maintaining surface 6, the tensile strength maintaining surface 7, and the wire diameter returning surface 8 may be provided only on one of the wire compression surfaces 4a, 3a.
[0050]
Further, the wire diameter return surface 8 is formed as a curved tapered surface that gradually retreats from the tensile strength maintaining surface 7 to the opposite side in the wire compression direction, but may be formed as a straight tapered surface.
[0051]
Next, a modified example of the above-described first embodiment will be described.
[0052]
FIG. 6 is a perspective view of a main part of the ultrasonic welding device 21, FIG. 7 is an enlarged side view of the horn tip portion 24 and the vicinity of the electric wire compression surfaces 24a and 23a of the anvil 23, and FIG. It is a perspective view which shows the welding part 33.
[0053]
In this modification, as shown in FIG. 6, the ultrasonic welding device 21 includes an ultrasonic horn 22 disposed above and an anvil 23 disposed below the ultrasonic horn 22. The ultrasonic horn 22 has a horn tip portion 24 at its tip, and the horn tip portion 24 is provided so as to be displaceable between a welding position where it is pressed against the anvil 23 and a standby position where it is separated above the anvil 23. ing. At the welding position, it can be pressed against the anvil 23 with a predetermined compression force F. The vibration direction of the ultrasonic waves by the ultrasonic horn 22 is set in the axial direction of the electric wire W sandwiched between the horn tip portion 24 and the anvil 23 (the direction of the arrow V in FIG. 1).
[0054]
The anvil 23 has an upper surface surrounded by left and right side wall portions 25, and the upper surface and the lower surface of the horn tip portion 24 are arranged to face each other. The lower surface of the horn tip portion 24 and the upper surface of the anvil 23 facing each other are formed as wire compression surfaces 24a, 23a.
[0055]
As shown in detail in FIG. 7, the electric wire compression surfaces 24a and 23a are formed adjacent to both sides of the welding strength maintaining surface 26 and the welding strength maintaining surface 26, respectively. (The upper side of the electric wire compression surface 24a of the horn tip portion 24 and the lower side of the electric wire compression surface 23a of the anvil 23), and the tensile strength maintaining surfaces 27, 27 are adjacent to the tensile strength maintaining surfaces 27, 27. And the tensile strength maintaining surfaces 27, 27 and the wire diameter returning surfaces 28, 28 formed continuously from the adjacent side. The welding strength maintaining surface 26, the tensile strength maintaining surfaces 27, 27, and the wire diameter returning surfaces 28, 28 are arranged so that the wire diameter returning surface 28, the tensile strength maintaining surface 27, The strength maintaining surface 26, the tensile strength maintaining surface 27, and the wire diameter returning surface 28 are arranged in this order.
[0056]
Irregularities 30 are formed on each welding strength maintaining surface 26 by cutting serration grooves. The convex portions (particularly, without reference numerals) and the concave portions (particularly, without reference numerals) formed by the serration grooves are alternately arranged along the axial direction of the electric wire W, and each of the alternately arranged ones is formed. The convex portion and each concave portion extend in a direction orthogonal to the axial direction of the electric wire W, respectively. In addition, the unevenness 30 may be formed by forming a knurl groove or the like.
[0057]
Each wire diameter return surface 28, 28 is a flat surface on which no irregularities are formed, and is formed as a curved tapered surface that gradually retreats from the tensile strength maintaining surfaces 27, 27 to the opposite side in the wire compression direction. Have been.
[0058]
Next, the procedure of ultrasonic welding will be described. The case where the respective ends of the five electric wires W are ultrasonically welded will be described as an example.
[0059]
As shown in FIG. 6, first, the insulating outer sheaths 11 at the end portions of the five electric wires W are peeled off, and the core wires 12 are respectively exposed. The core wire 12 is an aggregate of many strands 12a. Then, the cores 12 of the four electric wires W are placed on the electric wire compression surface 23a of the anvil 23 in a collected state, and one electric wire W is placed from the opposite direction to the four electric wires W. Next, similarly to the first embodiment, the horn tip portion 24 of the ultrasonic horn 22 is shifted from the standby position to the welding position, and the horn tip portion 24 and the anvil 23 hold the core wires 12 of the five electric wires W. I do. Next, a compressive force F and ultrasonic vibration (V direction) are applied to the core wire 12 sandwiched between the horn tip portion 24 and the anvil 23 for a predetermined time. At this time, ultrasonic waves are transmitted to the core wires 12 of the five electric wires W sandwiched between the horn tip portion 24 and the anvil 23 via the electric wire compression surfaces 24a and 23a, and ultrasonic energy acts. The core energy 12 of the electric wire W is melted by the ultrasonic energy, and the welded portion 33 shown in FIG. 8 is formed by cooling the melted portion. Thereby, the five electric wires W are electrically connected.
[0060]
A strong compressive force acts on the area L1 of the core wire 12 compressed between the two welding strength maintaining surfaces 26, and high ultrasonic energy is applied since ultrasonic vibration is effectively transmitted by the unevenness 30. . For this reason, this area L1 has a strong welding state and is an area having high welding strength. As shown in FIG. 8, a groove 35 is formed on the surface of the area L <b> 1 corresponding to the welding strength maintaining surface 26, as a result of the protrusion of the unevenness 30 being cut into the groove 35.
[0061]
On the other hand, compared to the corresponding area of the welding strength maintaining surface 26, a weak compressive force is applied to the areas L2, L2 of the core wire 12 compressed between the two tensile strength maintaining surfaces 27, 27, so Sonic energy is applied. Therefore, these areas L2, L2 are areas having a high tensile strength because the welding state is weak and the core wire 12 is less damaged.
[0062]
Since weaker compressive force acts on the areas L3, L3 of the core wire 12 compressed between the wire return surfaces 28, 28 than the tensile strength maintaining surfaces 27, 27, the ultrasonic waves are very weak. Energy is added. Therefore, in the areas L3 and L3, the welding state is very weak, and the shape of the element wire 12a of the core wire 12 is almost the same as the normal core wire diameter.
[0063]
As described above, since a portion having high welding strength and a portion having high tensile strength are formed in the welded portion 33, both the welding strength and the tensile strength of the welded portion 33 can be improved.
[0064]
As described above, in the modified example of the above-described first embodiment, the same effect as that of the first embodiment can be obtained, and the tensile strength maintaining surface 27 and the electric wire are provided on the wire drawing side and the distal end side of the welding strength maintaining surface 26. Since the diameter return surface 28 is provided, the core wire diameter at the boundary between both sides of the formed welded portion 33 and the portion not to be welded is prevented from being extremely changed, and the welding state of the welded portion 33 is extremely switched. No spots occur. Also, even if the electric wire W is supplied from both directions of the electric wire drawing side and the electric wire tip side, the electric wire W can be effectively welded, and the degree of freedom of the welded portion is improved.
[0065]
In the modification of the first embodiment described above, the welding strength maintenance surface 26, the tensile strength maintenance surface 27, and the wire diameter return surface 28 are respectively provided on the wire compression surfaces 24a and 23a of both the horn tip portion 24 and the anvil 23. Although provided, the welding strength maintaining surface 26, the tensile strength maintaining surface 27, and the wire diameter returning surface 28 may be provided only on one of the electric wire compression surfaces 24a and 23a.
[0066]
The wire diameter return surface 28 is formed as a curved tapered surface that gradually retreats from the tensile strength maintaining surface 27 to the opposite side in the wire compression direction, but may be formed as a straight tapered surface.
[0067]
<Second embodiment>
FIG. 9 shows the second embodiment of the present invention, and is an enlarged side view of the horn tip portion 4 and the vicinity of the wire compression surfaces 4a, 3a of the anvil 3. Comparing the second embodiment with the first embodiment, the tensile strength maintaining surface 7a formed on the electric wire compression surfaces 4a, 3a has a straight shape that retreats one step from the welding strength maintenance surface 6 to the opposite side in the electric wire compression direction. It is provided in. The other configuration is the same as that of the first embodiment, and the description is omitted.
[0068]
Also in the second embodiment, substantially the same operation and effect as those in the first embodiment can be obtained, and the core wire diameter at the boundary between the formed welded portion and the unwelded portion is prevented from being extremely changed. In the welded portion, there is no place where the welding state is extremely changed. Further, when the wire diameter return surface 8 is formed on the wire compression surfaces 4a, 3a, even if the tensile strength maintaining surface 7a has a straight shape, the formed welded portion should maintain sufficient tensile strength. Can be. Further, since the tensile strength maintaining surface 7a has a straight shape, the welding strength is maintained as compared with the case where the tensile strength maintaining surface is formed in a tapered shape.
[0069]
As in the modification of the first embodiment described above, a tensile strength maintaining surface and a wire diameter returning surface may be provided on the wire drawing side of the welding strength maintaining surface 6 and on the distal end side of the wire.
[0070]
【The invention's effect】
As described above, according to the first aspect of the present invention, the area of the electric wire compressed on the welding strength maintaining surface receives a strong compressive force, so that the welding state becomes strong, and the area is compressed on the tensile strength maintaining surface. In the area of the electric wire, only a weak compressive force is applied as compared with the corresponding area of the welding strength maintaining surface, so that the welding strength is weak, and the electric wire hardly deteriorates. Therefore, since a portion having high welding strength and a portion having high tensile strength are formed in the welded portion, both the welding strength and the tensile strength of the welded portion can be improved.
[0071]
According to the invention of claim 2, in addition to the effect of the invention of claim 1, in the area of the electric wire compressed on the tensile strength maintaining surface, the deformation of the electric wire due to the indentation of the convex and concave portions does not occur, so that the tensile strength Is further improved.
[0072]
According to the third aspect of the invention, in addition to the same effect as the first or second aspect of the invention, a welded portion can be formed more efficiently.
[0073]
According to the fourth aspect of the present invention, in addition to the effects of the first to third aspects, the compressive force gradually decreases from the area corresponding to the welding strength maintaining surface to the area corresponding to the tensile strength maintaining surface. . Therefore, there is no place in the welded portion where the welding state is extremely switched.
[0074]
According to the fifth aspect of the present invention, in addition to the same effects as the first to third aspects of the present invention, since the tensile strength maintaining surface has a straight shape, not only the tensile strength of the tensile strength maintaining surface but also the welding strength is improved. Will be maintained.
[0075]
According to the invention of claim 6, in addition to the effects of the invention of claims 1 to 5, the welded portions are arranged in the order of the area where the welding state is strong and the area where the welding state is not strong in the wire drawing direction. . Therefore, it is possible to prevent the core wire diameter at the boundary between the welded portion and the portion not to be welded from being extremely changed.
[0076]
According to the invention of claim 7, in addition to the effect of the invention of claim 6, the welded portion is arranged in the order of the area where the welding state is strong, the area where the welding state is weak, and the area where the welding state is very weak in the wire drawing direction. Are arranged. That is, since the diameter of the core wire can be gradually returned from the welded portion to the normal core wire diameter, it is possible to effectively prevent the core wire diameter at the boundary with the portion not welded from the welded portion from changing.
[0077]
According to the invention of claim 8, since a portion having a high welding strength and a portion having a high tensile strength are formed in the welded portion, both the welding strength and the tensile strength of the welded portion can be improved.
[0078]
According to the ninth aspect of the invention, in addition to the effect of the eighth aspect, the welded portions are arranged in the order of the area where the welding state is strong and the area where the welding state is weak in the wire drawing direction. Therefore, it is possible to prevent the core wire diameter at the boundary between the welded portion and the portion not to be welded from being extremely changed.
[0079]
According to the tenth aspect, in addition to the effect of the ninth aspect, the welded portions are arranged in the order of the area where the welding state is strong, the area where the welding state is normal, and the area where the welding state is weak in the wire drawing direction. Is done. That is, since the diameter of the core wire can be gradually returned from the welded portion to the normal core wire diameter, it is possible to effectively prevent the core wire diameter at the boundary with the portion not welded from the welded portion from changing.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention and is a perspective view of a main part of an ultrasonic welding apparatus.
FIG. 2 shows the first embodiment of the present invention, and is an enlarged side view near a wire compression surface of a horn tip portion and an anvil.
FIG. 3 is a perspective view showing the first embodiment of the present invention and showing a welded portion of an electric wire produced by ultrasonic welding.
FIG. 4 shows the first embodiment of the present invention, and is a schematic cross-sectional view taken along line AA of FIG. 3;
5A and 5B show a first embodiment of the present invention, in which FIG. 5A is a schematic sectional view taken along line B1-B1 of FIG. 4, FIG. 5B is a schematic sectional view taken along line B2-B2 of FIG. FIG. 5C is a schematic sectional view taken along line B3-B3 in FIG.
FIG. 6 shows a modification of the first embodiment of the present invention, and is a perspective view of a main part of an ultrasonic welding device.
FIG. 7 is an enlarged side view showing a modified example of the first embodiment of the present invention and showing the vicinity of a wire compression surface of a horn tip portion and an anvil.
FIG. 8 is a perspective view showing a modification of the first embodiment of the present invention and showing a welded portion of an electric wire produced by ultrasonic welding.
FIG. 9 is an enlarged side view of the horn tip portion and the vicinity of a wire compression surface of the anvil according to the second embodiment of the present invention.
FIG. 10 shows a conventional example and is a perspective view of a main part of an ultrasonic welding apparatus.
11 (a) shows a conventional example, and FIG. 11 (a) shows a state before welding each end of six electric wires W in which two electric wires W are arranged from four electric wires W in opposite directions. FIG. 11B is a perspective view showing a welded portion of the electric wire W formed by ultrasonic welding.
FIG. 12A shows a conventional example, and FIG. 12A shows a state before exposing a part of the core wire of the electric wire W and welding two electric wires W to the exposed portion. () Is a perspective view showing a welded portion of the electric wire W formed by ultrasonic welding.
13A and 13B show a conventional example, in which FIG. 13A shows a state before welding each end of four wires W, and FIG. 13B shows a state of the wires W formed by ultrasonic welding. It is a perspective view which shows a welding part.
14 (a) to 14 (c) are perspective views showing a state of a tensile test of a welded portion of an electric wire in various welding modes.
FIG. 15 shows a conventional example and is a schematic sectional view of a welded portion.
[Explanation of symbols]
1 Ultrasonic welding equipment
2 Ultrasonic horn
3 Anvil
3a Wire compression surface
4 Horn tip
4a Wire compression surface
6 Weld strength maintaining surface
7, 7a Tensile strength maintaining surface
8 Wire diameter return surface
10 unevenness
13 Welds
W twisted electric wire (electric wire)

Claims (10)

超音波ホーンのホーンチップ部とアンビルとの間に複数の電線を配置し、この複数の電線に圧縮力と超音波振動を加えることによって複数の前記電線の溶融による溶接部を形成する電線の超音波溶接装置であって、
前記ホーンチップ部と前記アンビルのいずれか一方の電線圧縮面には、凹凸が形成された溶接強度維持面と、この溶接強度維持面に隣接され、かつ、溶接強度維持面より電線圧縮方向の反対側に後退する引っ張り強度維持面とを設けたことを特徴とする電線の超音波溶接装置。
A plurality of electric wires are arranged between a horn tip portion of the ultrasonic horn and the anvil, and a compressive force and ultrasonic vibration are applied to the plurality of electric wires to form a welded portion by melting the plurality of electric wires. Sonic welding equipment,
Either the horn tip portion or the wire compression surface of the anvil has an uneven welding strength maintaining surface and a surface adjacent to the welding strength maintaining surface and opposite to the wire compression direction from the welding strength maintaining surface. An ultrasonic welding apparatus for an electric wire, comprising a tensile strength maintaining surface that retreats on a side.
請求項1記載の電線の超音波溶接装置であって、
前記引っ張り強度維持面は、フラット面であることを特徴とする電線の超音波溶接装置。
The ultrasonic welding apparatus for an electric wire according to claim 1,
An ultrasonic welding apparatus for electric wires, wherein the tensile strength maintaining surface is a flat surface.
請求項1又は請求項2記載の電線の超音波溶接装置であって、
前記ホーンチップ部と前記アンビルとの双方の前記電線圧縮面に、前記溶接強度維持面と前記引っ張り強度維持面をそれぞれ設けたことを特徴とする電線の超音波溶接装置。
An ultrasonic welding apparatus for an electric wire according to claim 1 or claim 2,
An ultrasonic welding apparatus for electric wires, wherein the welding strength maintaining surface and the tensile strength maintaining surface are provided on the electric wire compression surfaces of both the horn tip portion and the anvil.
請求項1乃至請求項3のいずれか一項に記載の電線の超音波溶接装置であって、
前記引っ張り強度維持面は、前記溶接強度維持面と隣接する側から電線圧縮方向の反対側に徐々に後退するテーパ形状であることを特徴とする電線の超音波溶接装置。
It is an ultrasonic welding apparatus of the electric wire according to any one of claims 1 to 3,
The ultrasonic welding apparatus for electric wires, wherein the tensile strength maintaining surface has a tapered shape that gradually retreats from a side adjacent to the welding strength maintaining surface to a side opposite to the electric wire compression direction.
請求項1乃至請求項3のいずれか一項に記載の電線の超音波溶接装置であって、
前記引っ張り強度維持面は、前記溶接強度維持面より電線圧縮方向の反対側に一段後退するストレート形状であることを特徴とする電線の超音波溶接装置。
It is an ultrasonic welding apparatus of the electric wire according to any one of claims 1 to 3,
The ultrasonic welding apparatus for electric wires, wherein the tensile strength maintaining surface has a straight shape that retreats one step to a side opposite to the electric wire compression direction from the welding strength maintaining surface.
請求項1乃至請求項5のいずれか一項に記載の電線の超音波溶接装置あって、
前記引っ張り強度維持面は、前記溶接強度維持面より電線引き出し側に配置したことを特徴とする電線の超音波溶接装置。
An ultrasonic welding apparatus for an electric wire according to any one of claims 1 to 5,
The ultrasonic welding apparatus for an electric wire, wherein the tensile strength maintaining surface is disposed closer to the wire drawing side than the welding strength maintaining surface.
請求項6記載の電線の超音波溶接装置であって、
前記電線圧縮面には、前記引っ張り強度維持面より電線引き出し側の位置で、かつ、前記引っ張り強度維持面より電線圧縮方向の反対側に徐々に後退する電線径戻し面を設けたことを特徴とする電線の超音波溶接装置。
An ultrasonic welding apparatus for an electric wire according to claim 6,
The electric wire compression surface is provided with an electric wire diameter return surface that is gradually retreated at a position on the electric wire drawing side from the tensile strength maintenance surface and on the opposite side of the electric wire compression direction from the tensile strength maintenance surface. Ultrasonic welding equipment for electric wires.
超音波ホーンのホーンチップ部とアンビルとの間に複数の電線を配置し、この複数の電線に圧縮力と超音波振動を加えることによって複数の前記電線の溶融による溶接部を形成する電線の超音波溶接方法であって、
前記ホーンチップ部と前記アンビルとの間に配置された複数の前記電線に対し、強い圧縮エリアと弱い圧縮エリアに分けて圧縮力を作用させたことを特徴とする電線の超音波溶接方法。
A plurality of electric wires are arranged between a horn tip portion of the ultrasonic horn and the anvil, and a compressive force and ultrasonic vibration are applied to the plurality of electric wires to form a welded portion by melting the plurality of electric wires. A sonic welding method,
An ultrasonic welding method for an electric wire, wherein a compressive force is applied to a plurality of electric wires arranged between the horn tip portion and the anvil in a strong compression area and a weak compression area.
請求項8記載の電線の超音波溶接方法であって、
電線引き出し側より遠い側を強い圧縮エリアとし、電線引き出し側に近い側を弱い圧縮エリアとしたことを特徴とする電線の超音波溶接方法。
An ultrasonic welding method for an electric wire according to claim 8,
An ultrasonic welding method for electric wires, characterized in that a side farther from the wire outlet side is a strong compression area and a side closer to the wire outlet side is a weak compression area.
請求項9記載の電線の超音波溶接方法であって、
弱い圧縮エリアより更に電線引き出し側には、弱い圧縮エリアより更に弱い圧縮力で、かつ、弱い圧縮エリアより遠ざかるにしたがって徐々に弱い圧縮力を作用させたことを特徴とする電線の超音波溶接方法。
An ultrasonic welding method for an electric wire according to claim 9,
An ultrasonic welding method for an electric wire, further comprising applying a weaker compressive force to the wire drawing side than the weakly compressed area with a weaker compressive force than the weakly compressed area and gradually increasing the distance from the weakly compressed area. .
JP2003007328A 2003-01-15 2003-01-15 Ultrasonic welding device and ultrasonic welding method for electric wire Pending JP2004220933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007328A JP2004220933A (en) 2003-01-15 2003-01-15 Ultrasonic welding device and ultrasonic welding method for electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007328A JP2004220933A (en) 2003-01-15 2003-01-15 Ultrasonic welding device and ultrasonic welding method for electric wire

Publications (1)

Publication Number Publication Date
JP2004220933A true JP2004220933A (en) 2004-08-05

Family

ID=32897465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007328A Pending JP2004220933A (en) 2003-01-15 2003-01-15 Ultrasonic welding device and ultrasonic welding method for electric wire

Country Status (1)

Country Link
JP (1) JP2004220933A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247236A (en) * 2003-02-17 2004-09-02 Sumitomo Wiring Syst Ltd Thermocompression bonding end part for electric supply cable, its process of manufacture as well as manufacturing device
JP2006231402A (en) * 2005-01-28 2006-09-07 Nissan Motor Co Ltd Ultrasonic bonding equipment and resulting bonding structure
JP2007134307A (en) * 2005-07-19 2007-05-31 Yazaki Corp Cable connection method
JP2008110382A (en) * 2006-10-31 2008-05-15 Yazaki Corp Ultrasonic bonding apparatus
CN102629726A (en) * 2011-02-08 2012-08-08 株式会社日立产机系统 Connection method of wire rod and stranded wire and rotary motor using thereof
JP2013222625A (en) * 2012-04-17 2013-10-28 Furukawa Electric Co Ltd:The Wire harness and manufacturing method of wire harness
WO2014086733A3 (en) * 2012-12-03 2014-08-14 Schunk Sonosystems Gmbh Ultrasound welding device and method for welding electrical conductors using elevations comprising the sonotrode and cut-outs comprising the counterelectrode
US8844384B2 (en) 2010-11-10 2014-09-30 Hitachi Metals, Ltd. Pressure-sensitive sensor production method and pressure-sensitive sensor
ES2524384R1 (en) * 2012-12-20 2015-02-24 Robert Bosch Gmbh Procedure for joining connecting wires of a phase winding of a stator winding for an electric machine as well as an electric machine.
KR20160039363A (en) * 2014-10-01 2016-04-11 주식회사 창환단자공업 Jointing Apparatus for Connection Terminal and Cable
JP2016517147A (en) * 2013-04-04 2016-06-09 テルゾニック ホルディング アーゲーTelsonic Holding Ag Method for joining tubular cable lugs to strands made of aluminum
JP2016185009A (en) * 2015-03-26 2016-10-20 古河電気工業株式会社 Connection method of wire, connection device, and wire with terminal
WO2018079273A1 (en) * 2016-10-31 2018-05-03 住友電装株式会社 Method for joining core wire and to-be-joined object, ultrasonic joining apparatus, and joined article of core wire and to-be-joined object
WO2019198786A1 (en) * 2018-04-11 2019-10-17 古河電気工業株式会社 Joined conductor, conductor joining device, method for manufacturing joined conductor, and conductor joining method
JP2019186070A (en) * 2018-04-11 2019-10-24 古河電気工業株式会社 Bonded conductor and manufacturing method thereof
JP2019181525A (en) * 2018-04-11 2019-10-24 古河電気工業株式会社 Conductor bonding device and conductor bonding method
JP2021502254A (en) * 2017-11-10 2021-01-28 シュンク・ソノシステムズ・ゲーエムベーハー Ultrasonic welding equipment
CN113437607A (en) * 2020-03-18 2021-09-24 矢崎总业株式会社 Method for manufacturing electric wire with terminal and electric wire with terminal
US20220048129A1 (en) * 2018-12-14 2022-02-17 Volkswagen Aktiengesellschaft Ultrasonic welding device and method for producing a metal foil stack

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247236A (en) * 2003-02-17 2004-09-02 Sumitomo Wiring Syst Ltd Thermocompression bonding end part for electric supply cable, its process of manufacture as well as manufacturing device
JP2006231402A (en) * 2005-01-28 2006-09-07 Nissan Motor Co Ltd Ultrasonic bonding equipment and resulting bonding structure
JP2007134307A (en) * 2005-07-19 2007-05-31 Yazaki Corp Cable connection method
JP2008110382A (en) * 2006-10-31 2008-05-15 Yazaki Corp Ultrasonic bonding apparatus
US8844384B2 (en) 2010-11-10 2014-09-30 Hitachi Metals, Ltd. Pressure-sensitive sensor production method and pressure-sensitive sensor
CN102629726A (en) * 2011-02-08 2012-08-08 株式会社日立产机系统 Connection method of wire rod and stranded wire and rotary motor using thereof
JP2012164535A (en) * 2011-02-08 2012-08-30 Hitachi Industrial Equipment Systems Co Ltd Connection method of wire material and strand and rotary electric machine using the same
JP2013222625A (en) * 2012-04-17 2013-10-28 Furukawa Electric Co Ltd:The Wire harness and manufacturing method of wire harness
WO2014086733A3 (en) * 2012-12-03 2014-08-14 Schunk Sonosystems Gmbh Ultrasound welding device and method for welding electrical conductors using elevations comprising the sonotrode and cut-outs comprising the counterelectrode
JP2016506303A (en) * 2012-12-03 2016-03-03 シュンク・ソノシステムズ・ゲーエムベーハー Ultrasonic welding apparatus and method for welding electrical conductors
US9496670B2 (en) 2012-12-03 2016-11-15 Schunk Sonosystems Gmbh Ultrasound welding device and method for welding electrical conductors
ES2524384R1 (en) * 2012-12-20 2015-02-24 Robert Bosch Gmbh Procedure for joining connecting wires of a phase winding of a stator winding for an electric machine as well as an electric machine.
JP2016517147A (en) * 2013-04-04 2016-06-09 テルゾニック ホルディング アーゲーTelsonic Holding Ag Method for joining tubular cable lugs to strands made of aluminum
KR20160039363A (en) * 2014-10-01 2016-04-11 주식회사 창환단자공업 Jointing Apparatus for Connection Terminal and Cable
KR101650369B1 (en) * 2014-10-01 2016-08-23 주식회사 창환단자공업 Jointing Apparatus for Connection Terminal and Cable
JP2016185009A (en) * 2015-03-26 2016-10-20 古河電気工業株式会社 Connection method of wire, connection device, and wire with terminal
WO2018079273A1 (en) * 2016-10-31 2018-05-03 住友電装株式会社 Method for joining core wire and to-be-joined object, ultrasonic joining apparatus, and joined article of core wire and to-be-joined object
US10601147B2 (en) 2016-10-31 2020-03-24 Sumitomo Wiring Systems, Ltd. Method of bonding core wire and bonding object, ultrasonic bonding device, and junction between core wire and bonding object
US20190260141A1 (en) * 2016-10-31 2019-08-22 Sumitomo Wiring Systems, Ltd. Method of bonding core wire and bonding object, ultrasonic bonding device, and junction between core wire and bonding object
JP2018069298A (en) * 2016-10-31 2018-05-10 住友電装株式会社 Method for joining core wire and joint object, ultrasonic joining device, and joint product of core wire and joint object
JP7273812B2 (en) 2017-11-10 2023-05-15 シュンク・ソノシステムズ・ゲーエムベーハー ultrasonic welding equipment
JP2021502254A (en) * 2017-11-10 2021-01-28 シュンク・ソノシステムズ・ゲーエムベーハー Ultrasonic welding equipment
CN111937242A (en) * 2018-04-11 2020-11-13 古河电气工业株式会社 Bonded conductor, conductor bonding device, method for manufacturing bonded conductor, and conductor bonding method
JP7166781B2 (en) 2018-04-11 2022-11-08 古河電気工業株式会社 Conductor joining device and conductor joining method
JP2019181525A (en) * 2018-04-11 2019-10-24 古河電気工業株式会社 Conductor bonding device and conductor bonding method
JP2019186070A (en) * 2018-04-11 2019-10-24 古河電気工業株式会社 Bonded conductor and manufacturing method thereof
US11862915B2 (en) 2018-04-11 2024-01-02 Furukawa Electric Co., Ltd. Joined conductor, conductor joining device, method for manufacturing joined conductor, and conductor joining method
JP7042678B2 (en) 2018-04-11 2022-03-28 古河電気工業株式会社 Joint conductor and manufacturing method of joint conductor
WO2019198786A1 (en) * 2018-04-11 2019-10-17 古河電気工業株式会社 Joined conductor, conductor joining device, method for manufacturing joined conductor, and conductor joining method
US20220048129A1 (en) * 2018-12-14 2022-02-17 Volkswagen Aktiengesellschaft Ultrasonic welding device and method for producing a metal foil stack
CN113437607A (en) * 2020-03-18 2021-09-24 矢崎总业株式会社 Method for manufacturing electric wire with terminal and electric wire with terminal
US11431142B2 (en) 2020-03-18 2022-08-30 Yazaki Corporation Method of manufacturing electric wire with terminal and electric wire with terminal
JP7073429B2 (en) 2020-03-18 2022-05-23 矢崎総業株式会社 Manufacturing method of electric wire with terminal and electric wire with terminal
CN113437607B (en) * 2020-03-18 2023-12-22 矢崎总业株式会社 Method for manufacturing terminal-equipped wire and terminal-equipped wire
JP2021150109A (en) * 2020-03-18 2021-09-27 矢崎総業株式会社 Manufacturing method of wire with terminal and the wire with the terminal

Similar Documents

Publication Publication Date Title
JP2004220933A (en) Ultrasonic welding device and ultrasonic welding method for electric wire
KR101710348B1 (en) Method and assembly for the electrically conductive connection of wires
US6824630B2 (en) Flexible flat cable connecting method and a horn construction of an ultrasonic welding machine
RU2320060C2 (en) Method for producing current-carrying junction between first and second electrical conductors
JP2007149421A (en) Ultrasonic joining method, device therefor and electric wire bundle
CN110021865B (en) Ultrasonic bonding method and bonding device for wire conductor, and wire
JP2010113946A (en) Method of connecting aluminum wire with cooper wire, and connector thereof
JP2013004406A (en) Manufacturing method of wire with terminal
JP2009043538A (en) Ultrasonic bonding method and device
JP4383684B2 (en) Wire ultrasonic bonding method
CN111937242B (en) Bonded conductor, conductor bonding device, method for manufacturing bonded conductor, and conductor bonding method
WO2010095646A1 (en) Method of connecting electrical wires together
JP5303259B2 (en) Wire connection method
JP3147749B2 (en) Ultrasonic welding method
KR102510718B1 (en) Rod-type electric conductor welding device and sonotrode of such device
JP3385980B2 (en) Horn of ultrasonic welding machine
JP2022000861A (en) Terminal equipped electric wire, and manufacturing method of terminal equipped electric wire
JP6989560B2 (en) Manufacturing method of electric wire with terminal and vibration damping method of electric wire
JP5581413B2 (en) Wire connection method
JP2006107882A (en) Manufacturing method of wire with terminal
JP2005319483A (en) Ultrasonic welding equipment
JPH0982375A (en) Electric wire connecting method
JP7166781B2 (en) Conductor joining device and conductor joining method
JPH0831469A (en) Splice part structure of electric wire
JP3971280B2 (en) Ultrasonic bonding equipment