JP2022134987A - Treatment method for incineration fly ash - Google Patents

Treatment method for incineration fly ash Download PDF

Info

Publication number
JP2022134987A
JP2022134987A JP2021034535A JP2021034535A JP2022134987A JP 2022134987 A JP2022134987 A JP 2022134987A JP 2021034535 A JP2021034535 A JP 2021034535A JP 2021034535 A JP2021034535 A JP 2021034535A JP 2022134987 A JP2022134987 A JP 2022134987A
Authority
JP
Japan
Prior art keywords
fly ash
treatment
fluidized bed
wastewater
cod value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021034535A
Other languages
Japanese (ja)
Other versions
JP7474212B2 (en
Inventor
明則 中村
Akinori Nakamura
浩喜 平山
Hiroki Hirayama
勝丈 澤野
Katsutake Sawano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2021034535A priority Critical patent/JP7474212B2/en
Publication of JP2022134987A publication Critical patent/JP2022134987A/en
Application granted granted Critical
Publication of JP7474212B2 publication Critical patent/JP7474212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To solve the problem that a COD value of wastewater is high after performing water washing to reduce a chlorine content, being one pretreatment for using fly ash produced in accompany with municipal refuse incineration as a cement raw material, and therefore, that considerable labor is required to decrease the COD value in order to discharge the wastewater.SOLUTION: Temperature at which dioxin removal treatment is carried out prior to fly ash water washing is set to exceed 450°C being a higher temperature than in conventional methods, and to be less than 600°C. In order to prevent sintering and melting of fly ash likely to occur during treatment at this high temperature, stoker fly ash and fluidized bed fly ash are mixed and treated at a mass ratio of preferably 1:2 to 3:1. An organic matter being a factor of increasing a COD value due to high temperature treatment is liable to be decomposed, and is made difficult to sinter by mixing fluidized bed fly ash. In decreasing the COD value by subjecting wastewater after water washing to oxidant treatment or the like, a necessary amount of an oxidant or the like can be reduced.SELECTED DRAWING: None

Description

本発明は、都市ゴミ焼却炉から排出される飛灰の新規な処理方法に関する。詳しくは、飛灰をセメント原料として使用する場合に、問題となる含有物を効率的に且つ確実に除去できる飛灰の処理方法である。 TECHNICAL FIELD The present invention relates to a novel method for treating fly ash discharged from municipal waste incinerators. More specifically, when fly ash is used as a raw material for cement, it is a fly ash treatment method capable of efficiently and reliably removing problematic inclusions.

都市ゴミはその80%以上が焼却処分され、その際焼却灰が発生する。かかる焼却灰は殆どが埋め立てられていたが、近年、環境に対する意識が高まり、これを再利用する方法か検討されるようになってきた。該焼却灰の主成分はカルシウム、アルミニウムや珪素の化合物であり、例えば、セメント製造用の原料として再利用することが考えられている。 More than 80% of municipal waste is incinerated, and incineration ash is generated at that time. Most of the incineration ash used to be landfilled, but in recent years, environmental awareness has increased, and methods for recycling the ash have been investigated. The main components of the incineration ash are compounds of calcium, aluminum and silicon, and it is considered to be reused as a raw material for manufacturing cement, for example.

ところが、上記焼却灰は塩素分を多量に含有しているためこれを除去する必要があり、かかる塩素分の除去方法として、水洗による除去が提案されている。即ち、焼却灰を水洗することにより、塩化物として含有される塩素分を可溶分として除去し、不溶分であるカルシウム、アルミニウムや珪素の化合物を固形物として分離し、これをセメント製造用の原料として使用する。 However, since the incinerated ash contains a large amount of chlorine, it must be removed. As a method for removing such chlorine, washing with water has been proposed. That is, by washing the incinerated ash with water, the chlorine contained as chlorides is removed as soluble matter, and the insoluble matter such as calcium, aluminum and silicon compounds are separated as solid matter, which is used for cement production. Used as raw material.

一方、焼却灰を排出する焼却炉には、大きく分けて流動床式焼却炉(以下「流動床炉」)とストーカ式焼却炉(以下「ストーカ炉」)とがあり、複数の都市ゴミ焼却炉より焼却灰を収集する場合、これらの炉から排出される種々の焼却灰が混在する。即ち、流動床炉での焼却灰は、炉の排気ガスと共に同伴して排出され、これを捕集して飛灰として排出され、また、ストーカ炉では、焼却灰は、上記飛灰と共に炉の底部に残る主灰としても排出される。 On the other hand, incinerators that discharge incinerated ash are broadly classified into fluidized bed incinerators (hereinafter referred to as "fluidized bed incinerators") and stoker incinerators (hereinafter referred to as "stoker incinerators"). When more incineration ash is collected, various incineration ash discharged from these furnaces are mixed. That is, the incineration ash in a fluidized bed furnace is discharged together with the exhaust gas of the furnace, and is collected and discharged as fly ash. It is also discharged as bottom ash remaining at the bottom.

上記焼却灰のうちの飛灰はダイオキシンの含有量が多く、主灰に対して80倍ものダイオキシンを含有し、その取扱い時に問題がある。また、飛灰を水洗処理して得られる処理排水は意外にもCOD成分が多いことも、他の大きな問題として挙げられる。 Among the incinerated ash, the fly ash contains a large amount of dioxins, containing 80 times as much dioxin as the bottom ash, which poses a problem in handling. Another major problem is that treated wastewater obtained by washing fly ash contains a large amount of COD components.

このような飛灰を処理する技術として、飛灰を無酸素雰囲気下で加熱して脱処理した後、水洗し、その排水をさらに酸化剤の存在下に、酸化触媒と接触させるなどしてCOD成分を除去する方法が提案されている(例えば、特許文献1参照)。なおこの水洗に際しては、別途粉砕した主灰と一緒に行うことも提案されている(例えば、特許文献2参照)。 As a technology for treating such fly ash, the fly ash is heated in an oxygen-free atmosphere to deprocess it, then washed with water, and the wastewater is further contacted with an oxidation catalyst in the presence of an oxidant to remove COD. A method for removing components has been proposed (see, for example, Patent Document 1). It is also proposed that this washing with water is performed together with separately pulverized bottom ash (see, for example, Patent Document 2).

特開2003-103231号公報Japanese Patent Application Laid-Open No. 2003-103231 特開2003-103232号公報JP-A-2003-103232

しかしながら、上記のような飛灰の水洗廃液には有機物が多量に含まれており、そのためCOD値が高く、その処理コストが問題となっていた。そこで、本発明はゴミ焼却炉からでる飛灰をセメント原料化するに際し、ダイオキシンを除去すると共に、水洗排水のCOD値を削減することを目的とする。 However, the fly ash washing waste liquid as described above contains a large amount of organic matter, and as a result, the COD value is high, and the processing cost has been a problem. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to remove dioxins and reduce the COD value of washing wastewater when using fly ash from a refuse incinerator as a raw material for cement.

本発明者等は上記課題に鑑み鋭意検討を行った結果、脱ダイオキシン処理の際の温度を高くすることにより、当該処理で飛灰に含まれる水溶性有機物をも少なくできることを見いだし、さらに処理温度を高くした場合に生じやすい飛灰の溶融という問題は、流動床式焼却炉からの飛灰を混合することにより解決可能であることも見いだし、本発明を完成した。 As a result of intensive studies in view of the above problems, the present inventors found that by increasing the temperature during dioxin removal treatment, the water-soluble organic matter contained in the fly ash can be reduced by the treatment. The inventors also found that the problem of fly ash melting, which tends to occur when the temperature is high, can be solved by mixing fly ash from a fluidized bed incinerator, and completed the present invention.

即ち本発明は、都市ごみ焼却炉より得られる飛灰を無酸素雰囲気下で加熱して脱ダイオキシン処理した後水洗し、塩素成分が低減された固形分を回収すると共に、得られる排水よりCOD成分を除去する焼却飛灰の処理方法において、
前記飛灰として、ストーカ式焼却炉から発生する飛灰と、流動床式焼却炉から発生する飛灰とを混合して脱ダイオキシン処理に供すると共に、当該脱ダイオキシン処理時の加熱温度を450℃を超え600℃未満とする焼却飛灰の処理方法である。
That is, the present invention heats fly ash obtained from a municipal waste incinerator in an oxygen-free atmosphere to remove dioxins, and then wash it with water to recover solids with reduced chlorine components, and remove COD components from the resulting wastewater. In a method for treating incineration fly ash that removes
As the fly ash, fly ash generated from a stoker incinerator and fly ash generated from a fluidized bed incinerator are mixed and subjected to dioxin removal treatment, and the heating temperature during the dioxin removal treatment is set to 450 ° C. This is a method for treating incineration fly ash with a temperature of more than 600°C and less than 600°C.

本発明によれば、ゴミ焼却炉からでる飛灰から確実にダイオキシンと塩素分を除去してセメント原料化できるとともに、水洗排水のCOD値も従来よりも低くでき、さらには脱ダイオキシン炉内での飛灰の溶融によるトラブルも起きがたい。 According to the present invention, it is possible to reliably remove dioxins and chlorine from fly ash discharged from a garbage incinerator and use it as a raw material for cement. Problems caused by melting fly ash are unlikely to occur.

本発明において処理される都市ゴミの焼却炉から排出される飛灰は、ストーカ炉の排ガスから捕捉される微粉(以下、ストーカ飛灰)、及び流動床炉の排ガスより捕捉される微粉(以下、流動床飛灰)であり、いずれも一般に5~35%(質量)程度の割合で塩素を含有している。 The fly ash discharged from the municipal waste incinerator treated in the present invention includes fine powder captured from the exhaust gas of the stoker furnace (hereinafter referred to as stoker fly ash) and fine powder captured from the exhaust gas of the fluidized bed furnace (hereinafter referred to as Fluidized bed fly ash), which generally contain chlorine at a rate of about 5 to 35% (mass).

本発明において、上記飛灰は、無酸素雰囲気下、450℃を超え600℃未満の温度で加熱して脱ダイオキシン処理される。このように従来技術よりも高温の条件下で飛灰を処理することにより、(1)飛灰中のダイオキシンの殆どを分解することができ、その後の水洗処理において、固形分及び排水中にダイオキシンが実質的に含有されることが無く、安全に取り扱うことができるという効果を発揮し、同時に(2)水溶性有機物の分解がしっかりと進み、この後に行う水洗後の排水中に含まれる有機物の量を少なくでき、よって排水のCOD値を低くできる。なお水溶性有機化合物に限らず、この処理によって有機物は炭化が進むが、COD値に大きな影響を与えるという意味で、水溶性有機物に焦点を当てている。この処理温度は高い方が上記効果が得られやすく、460℃が好ましく、さらには475℃以上が好ましい。一方、飛灰の溶融リスクや炉の耐久性などを考慮すると575℃以下が好ましく、550℃以下がより好ましい。 In the present invention, the fly ash is heated at a temperature of more than 450° C. and less than 600° C. in an oxygen-free atmosphere to remove dioxins. By treating the fly ash under conditions of higher temperature than in the prior art, (1) most of the dioxins in the fly ash can be decomposed, and in the subsequent water washing process, dioxin (2) The decomposition of water-soluble organic matter proceeds steadily, and the organic matter contained in the waste water after washing with water is removed. The amount can be reduced, so the COD value of the waste water can be lowered. This treatment promotes carbonization of not only water-soluble organic compounds but also other organic substances. The higher the treatment temperature is, the more likely it is to obtain the above effects, and the treatment temperature is preferably 460° C., more preferably 475° C. or higher. On the other hand, considering the risk of melting fly ash and the durability of the furnace, the temperature is preferably 575° C. or lower, more preferably 550° C. or lower.

本発明においては、上記のように従来からの脱ダイオキシン処理の温度よりも高い温度で処理する。ストーカ飛灰は流動床飛灰に比べて溶融しやすく、このような高い温度で単独で処理を行うと、炉の閉塞などのトラブルを生じる恐れがある。そこで本発明においては、ストーカ飛灰を単独では扱わず、流動床飛灰と混合して脱ダイオキシン処理を行う。流動床飛灰は、ごみを焼却する際に、流動砂を炉内循環させながら焼却しており、排出される飛灰に溶融し難い砂分が混入しているため、流動床飛灰はストーカー飛灰よりも高い温度でも溶融し難くなっている。混合比率は、好ましくはストーカ飛灰:流動床飛灰(質量比)が1:2乃至3:1であり、より好ましくは、ストーカ飛灰:流動床飛灰(質量比)が1:1乃至2:1である。 In the present invention, as described above, the treatment is performed at a temperature higher than that of the conventional dioxin removal treatment. Stoker fly ash melts more easily than fluidized bed fly ash, and if treated alone at such a high temperature, problems such as clogging of the furnace may occur. Therefore, in the present invention, stoker fly ash is not handled alone, but is mixed with fluidized bed fly ash for dedioxin treatment. Fluidized-bed fly ash is incinerated while circulating fluidized sand in the furnace when waste is incinerated, and the discharged fly ash contains sand that is difficult to melt. It is difficult to melt even at temperatures higher than fly ash. The mixing ratio is preferably stoker fly ash: fluidized bed fly ash (mass ratio) of 1:2 to 3:1, more preferably stoker fly ash: fluidized bed fly ash (mass ratio) of 1:1 to 2:1.

脱ダイオキシン処理における無酸素雰囲気は、酸素が実質的に存在しない雰囲気をいい、一般に、酸素濃度が0.5容量%以下、好ましくは0.2容量%以下の雰囲気である。かかる無酸素雰囲気を形成する方法は特に制限されないが、例えば、窒素雰囲気とする方法が一般的である。また、加熱方法は加熱機によって行うのが一般的である。 The oxygen-free atmosphere in the dioxin removal treatment refers to an atmosphere substantially free of oxygen, generally having an oxygen concentration of 0.5% by volume or less, preferably 0.2% by volume or less. A method for forming such an oxygen-free atmosphere is not particularly limited, but, for example, a method of forming a nitrogen atmosphere is common. Moreover, the heating method is generally carried out using a heater.

上記方法を好適に実施するには、公知の脱ダイオキシン装置のうち、上記方法を実施できる装置を選択して使用すればよく、商業的に入手可能な装置も多い。具体的には、ハーゲンマイヤー炉、雰囲気制御可能な箱型電気炉、雰囲気制御可能な内部攪拌機能を有する横形円筒型加熱炉等が好適である。 In order to suitably carry out the above method, it is sufficient to select and use an apparatus capable of carrying out the above method from among known dioxin-removing apparatuses, and there are many commercially available apparatuses. Specifically, a Hagenmeyer furnace, an atmosphere-controllable box-type electric furnace, a horizontal cylindrical heating furnace having an atmosphere-controllable internal stirring function, and the like are suitable.

上記加熱処理時間は、温度等により多少異なるため一概に限定することはできないが、一般に、0.5~2時間が適当である。 The above heat treatment time varies slightly depending on the temperature, etc., and cannot be unconditionally limited, but in general, 0.5 to 2 hours is appropriate.

本発明において、上記のようにして脱ダイオキシン処理された飛灰は水洗される。水洗は、飛灰を水と混合してスラリー化した後、ろ過し、更に、必要に応じて水を使用して洗浄ろ過を実施することによって行うことができる。 In the present invention, the fly ash from which dioxin has been removed as described above is washed with water. Washing with water can be carried out by mixing fly ash with water to form a slurry, filtering the slurry, and optionally washing and filtering with water.

具体的には、該飛灰は、スラリー化槽に供給され、水と混合されて水スラリーとされる。かかる水スラリーは、フィルタープレスを代表とする内部洗浄が可能なろ過器で洗浄及びろ過され、固形分とろ液とに分離する方法が挙げられる。 Specifically, the fly ash is supplied to a slurry tank and mixed with water to form a water slurry. Such water slurry is washed and filtered by a filter typified by a filter press capable of washing the inside, and a method of separating into a solid content and a filtrate can be mentioned.

上記洗浄工程で得られた固形分は、珪素、アルミニウムやカルシウム化合物を主成分とするため、セメント製造工場にて、セメント製造用原料として使用される。この場合、上記固形分は水分を含有しているため、セメント製造工場における原料調整工程でセメント原料と混合し、ドライヤーを経てサスペンションプレピーターに供給することが好ましい。 The solid content obtained in the washing step is mainly composed of silicon, aluminum and calcium compounds, and is therefore used as a raw material for cement production in cement production plants. In this case, since the solid content contains water, it is preferable to mix it with the cement raw material in the raw material preparation process in a cement manufacturing plant, and supply it to the suspension pre-peater through a dryer.

また、固形分を分離して得られる排水は、COD成分の除去を行ってCOD(化学的酸素要求量)の値を環境規制などに適合するレベルまで引き下げ、さらに必要に応じて他の無害化処理を行った後に排出される。本発明において、上記水洗後に回収される排水は、従来に比べてCOD成分は低減されており、環境中に排出できるレベルまで当該COD成分を低減することが相対的に容易である。 In addition, the wastewater obtained by separating the solid content is subjected to removal of COD components to reduce the COD (chemical oxygen demand) value to a level that meets environmental regulations, etc., and if necessary, other detoxification Discharged after processing. In the present invention, the waste water collected after the water washing has a reduced COD component compared to the conventional one, and it is relatively easy to reduce the COD component to a level that can be discharged into the environment.

上記排水中のCOD成分の除去は、公知の方法が特に制限なく採用することができ、例えば、酸化剤処理、活性炭処理などの方法が挙げられる。なお本発明において上記「除去」とは分解等も含む概念であり、排水のCOD値を下げる処理であれば、どのような処理も該当する(但し、単純希釈は除く)。 For the removal of COD components in the waste water, known methods can be employed without particular limitation, and examples thereof include methods such as oxidizing agent treatment and activated carbon treatment. In the present invention, the above-mentioned "removal" is a concept including decomposition and the like, and applies to any treatment as long as it is a treatment for lowering the COD value of wastewater (however, simple dilution is excluded).

上記酸化剤処理に用いる酸化剤としては、COD成分に対して強力な酸化作用を供給し得るものであれば特に制限なく使用される。具体的には、次亜塩素酸ソーダ、次亜塩素酸カリウム、次亜塩素酸カルシウム等の次亜塩素酸塩、過塩素酸ソーダ-等の過塩素酸塩、ペルオキソニ硫酸カリウム等のペルオキソ酸塩さらには過酸化水素等の酸化剤等が挙げられる。これらの酸化剤のうち、次亜塩素酸塩、とりわけ、次亜塩素酸ソーダがCOD成分の除去(分解)において最も効果的であり、好適に使用される。 The oxidizing agent used for the oxidizing agent treatment is not particularly limited as long as it can provide a strong oxidizing action to the COD component. Specifically, sodium hypochlorite, potassium hypochlorite, hypochlorites such as calcium hypochlorite, perchlorates such as sodium perchlorate, and peroxates such as potassium peroxodisulfate. Furthermore, oxidizing agents such as hydrogen peroxide and the like are included. Among these oxidizing agents, hypochlorite, especially sodium hypochlorite, is most effective in removing (decomposing) COD components and is preferably used.

上記酸化剤処理に際しては酸化触媒を併用すると、より強力にCOD成分を除去(酸化分解)できる。 If an oxidation catalyst is used in combination with the oxidant treatment, COD components can be removed (oxidative decomposition) more strongly.

酸化触媒の形状は特に限定されないが、処理後の水と分離しやすい点で粒状であることが好ましい。当該粒状酸化触媒は、一般に、酸化触媒成分とこれを粒状化するためのバインダーとより成る。酸化触媒成分は公知のものが特に制限なく使用されるが、チタン、ニッケル、鉄、銅、コバルト等の金属および遷移金属の酸化物および過酸化物、さらに白金、銀等の金属等が挙げられる。そのうち、ニッケルの過酸化物が特に効果的であり、最も好適に使用される。 Although the shape of the oxidation catalyst is not particularly limited, it is preferably granular because it is easily separated from water after treatment. The particulate oxidation catalyst generally consists of an oxidation catalyst component and a binder for granulating it. As the oxidation catalyst component, known ones are used without particular limitation, and examples thereof include oxides and peroxides of metals such as titanium, nickel, iron, copper and cobalt, oxides and peroxides of transition metals, and metals such as platinum and silver. . Of these, nickel peroxide is particularly effective and is most preferably used.

また、上記酸化触媒成分を粒状化するためのバインダーは、得られる粒状酸化触媒の比重は、利用方法あるいは利用条件によって適宜調整することができ、且つ、使用環境において耐性を有する材質のものであれば特に制限されない。例えば、各種セメント、珪素化合物、粘土系鉱物あるいは樹脂等が挙げられる。 In addition, the binder for granulating the oxidation catalyst component should be made of a material that allows the specific gravity of the resulting granular oxidation catalyst to be appropriately adjusted depending on the method of use or the conditions of use, and that is resistant to the environment in which it is used. is not particularly limited. Examples thereof include various cements, silicon compounds, clay minerals, resins, and the like.

上記粒状酸化触媒の大きさ、及び形状は、排水との接触および分離効率を考慮して利用方法あるいは利用条件によって適宜決定すればよい。 The size and shape of the particulate oxidation catalyst may be appropriately determined depending on the method of use or the conditions of use, taking into account the efficiency of contact with and separation from waste water.

上記COD成分を除去するための処理において、排水中に存在させる酸化剤の濃度は、酸化触媒成分の種類などによって異なり、一概に決定することは困難であるが、一般に、要求酸素量換算で等量~10倍、好ましくは、等量~5倍程度である。 In the treatment for removing the COD component, the concentration of the oxidizing agent present in the wastewater varies depending on the type of the oxidation catalyst component, etc., and it is difficult to determine it unconditionally. It is about 10 times the amount, preferably about the same amount to 5 times the amount.

酸化剤と酸化触媒を併用することによりCOD成分を除去する方法としては、触媒充填塔方式、流動槽方式等公知の方法が特に制限なく利用できる。 As a method for removing COD components by using an oxidizing agent and an oxidation catalyst in combination, known methods such as a catalyst packed tower method and a fluidized bed method can be used without particular limitation.

この方法で用いる触媒は、具体的には、100μm未満の粒子が5重量%以下で平均粒径は150μm~10mm、好ましくは、平均粒径600μm~5mmの球状体が好ましい。 Specifically, the catalyst used in this method is preferably a spherical body containing 5% by weight or less of particles of less than 100 μm and having an average particle size of 150 μm to 10 mm, preferably 600 μm to 5 mm.

また、排水中における上記酸化触媒の濃度は、0.2~50重量%、好ましくは、0.5~10重量%が適当である。 Moreover, the concentration of the oxidation catalyst in the waste water is 0.2 to 50% by weight, preferably 0.5 to 10% by weight.

活性炭処理することによりCOD成分を除去する方法としては、活性炭充填塔方式、流動槽方式等公知の方法が特に制限なく利用できる。 As a method for removing COD components by treating with activated carbon, known methods such as activated carbon packed tower method and fluidized bed method can be used without particular limitation.

この方法で用いる活性炭は、具体的には、100μm未満の粒子が5重量%以下で平均粒径は150μm~10mm、好ましくは、平均粒径600μm~5mmの球状体が好ましい。 Specifically, the activated carbon used in this method is preferably a spherical body containing 5% by weight or less of particles less than 100 μm in diameter and having an average particle size of 150 μm to 10 mm, preferably 600 μm to 5 mm.

また、排水中における上記活性炭の濃度は、0.2~50重量%、好ましくは、0.5~10重量%が適当である。 Also, the concentration of the activated carbon in the waste water is 0.2 to 50% by weight, preferably 0.5 to 10% by weight.

尚、飛灰を水洗して得られる排水には、主成分である塩化ナトリウム、塩化カルシウム等の無機塩化物の他に重金属成分が溶解しており、これを予め除去した後に、COD成分の除去処理を行うことが望ましい。 In the wastewater obtained by washing fly ash, heavy metal components are dissolved in addition to inorganic chlorides such as sodium chloride and calcium chloride, which are the main components. Treatment is desirable.

即ち、上記COD成分の除去処理は、排水中に固形分が存在しない状態であれば適用が可能であり、上記金属化合物を除去する前の排水にも適用することは可能であるが、重金属等による粒状酸化触媒あるいは活性炭の劣化、反応時の不溶化物の生成等により、COD成分の除去効率が低下する恐れがあり、上記金属化合物を除去した液に対して実施することが好ましい。 That is, the COD component removal treatment can be applied as long as there is no solid content in the wastewater, and can be applied to wastewater before the metal compounds are removed. The removal efficiency of the COD component may be lowered due to the deterioration of the particulate oxidation catalyst or activated carbon due to the heat and the formation of insolubilized substances during the reaction.

飛灰を水洗して得られる排水から溶解している金属化合物を除去する方法は、該排水に酸を添加して液のpHを6~10程度に調整することによりこれらの溶解物を不溶化し、必要に応じて凝集剤を添加し、濾過器で上記の不溶化物を分離する方法が好適である。 The method of removing dissolved metal compounds from waste water obtained by washing fly ash with water is to add acid to the waste water to adjust the pH of the liquid to about 6 to 10 to make these dissolved substances insoluble. A preferred method is to add a flocculant if necessary and separate the above insolubilized matter with a filter.

また都市ゴミにはボタン電池などに由来して水銀が含まれている場合があり、そのため、ストーカ飛灰や流動床飛灰には水銀が含まれている場合がある。これら飛灰は多量の未燃カーボンを含んでいるため、前記した脱ダイオキシン処理における無酸素雰囲気下での加熱により、当該水銀は(飛灰中の存在形態によっては還元されて)金属水銀として揮発し、当該脱ダイオキシン処理に際して発生する排ガス中に含まれることになる。 Municipal waste may contain mercury derived from button batteries and the like, so stoker fly ash and fluidized bed fly ash may contain mercury. Since the fly ash contains a large amount of unburned carbon, the mercury (reduced depending on the form of existence in the fly ash) volatilizes as metallic mercury by heating in an oxygen-free atmosphere in the above-described dioxin removal treatment. It will be contained in the exhaust gas generated during the dioxin removal process.

このような水銀ガスを含んだ排ガスは公知の方法で処理することができるが、好ましくは、当該排ガスを凝縮器(ガス冷却器)に通し、ガス状の水銀を金属水銀として凝結させて回収する。凝縮器は金属水銀が液化する温度まで排ガスを冷却可能なものであれば、公知の凝縮器を適宜選択して使用すれば良い。液化した金属水銀は公知の方法に従い回収、処理を行えばよい。 The exhaust gas containing such mercury gas can be treated by a known method. Preferably, the exhaust gas is passed through a condenser (gas cooler) to condense gaseous mercury as metallic mercury and collect it. . Any known condenser may be appropriately selected and used as long as the condenser can cool the exhaust gas to a temperature at which metallic mercury liquefies. Liquefied metallic mercury may be recovered and treated according to a known method.

さらに金属水銀を凝結させて回収した排ガスは、必要に応じてさらなる無害化処理を施した後、大気放出することができる。 Furthermore, the exhaust gas collected by condensing the metallic mercury can be released into the atmosphere after further detoxification treatment if necessary.

以下、実施例を用いてより具体的に説明するが、本発明はこの実施例に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.

実施例、比較例における化学的酸素要求量(COD値)の測定は以下の方法による。 The chemical oxygen demand (COD value) in Examples and Comparative Examples was measured by the following method.

COD値の測定は、JIS K0102工場排水試験法の100℃における過マンガン酸カリウムによる酸素要求量(CODMn)の測定方法に従って行った。 The COD value was measured according to the measuring method of oxygen demand (COD Mn ) by potassium permanganate at 100° C. in the JIS K0102 factory wastewater test method.

実施例1
処理する都市ごみ焼却飛灰として、ストーカ飛灰および流動床飛灰を1:1で混合した。この混合飛灰は、塩素を8.8%、ダイオキシン類を0.72ng-TEQ/g、Cを2.7%、水銀を10.7ppm含有していた。この混合飛灰を雰囲気制御可能な電気炉において、窒素雰囲気下、475℃で1時間の加熱処理を行った。処理後に灰の溶融や焼結は見られなかった。加熱処理後のダイオキシン類の濃度は0.0015ng-TEQ/gであり、ダイオキシン類の除去率は99.8%であった。また、Hg濃度は、0.34ppmであり、水銀の除去率は96.8%であった。
Example 1
As municipal refuse incineration fly ash to be treated, stoker fly ash and fluidized bed fly ash were mixed at a ratio of 1:1. This mixed fly ash contained 8.8% chlorine, 0.72 ng-TEQ/g dioxins, 2.7% C, and 10.7 ppm mercury. The mixed fly ash was heat-treated at 475° C. for 1 hour in a nitrogen atmosphere in an atmosphere-controllable electric furnace. No melting or sintering of the ash was observed after treatment. The dioxin concentration after heat treatment was 0.0015 ng-TEQ/g, and the dioxin removal rate was 99.8%. Also, the Hg concentration was 0.34 ppm, and the mercury removal rate was 96.8%.

ついで、上記加熱処理を行った焼却飛灰の水洗を行った。この水洗は、水/灰重量比およそ10で行い、ろ過することにより固形分(脱水ケーキ)と排水を得た。得られた固形分中の塩素濃度は0.33%であり、塩素成分の除去率は96.9%であった。一方、得られた排水を酸によりpH調整して、重金属類を析出させた後、固液分離により除去した。分離処理後の排水のCODMnを測定した結果は表1に示す。 Then, the incinerated fly ash subjected to the above heat treatment was washed with water. This water washing was performed at a water/ash weight ratio of about 10, and filtered to obtain a solid content (dehydrated cake) and waste water. The chlorine concentration in the obtained solid content was 0.33%, and the chlorine component removal rate was 96.9%. On the other hand, the obtained waste water was pH-adjusted with an acid to precipitate heavy metals, which were then removed by solid-liquid separation. Table 1 shows the results of measuring the COD Mn of the wastewater after the separation treatment.

実施例2
加熱処理温度を525℃とした以外は、実施例1と同様の処理操作を行った。加熱処理に際して、灰の溶融や焼結は見られなかった。金属析出、分離処理後の排水のCODMnを表1に示す。
Example 2
The same treatment operation as in Example 1 was performed, except that the heat treatment temperature was 525°C. No melting or sintering of the ash was observed during the heat treatment. Table 1 shows the COD Mn of wastewater after metal deposition and separation treatment.

比較例1、2
加熱処理温度を375℃(比較例1)あるいは425℃(比較例2)とした以外は、実施例1と同様の処理操作を行った。加熱処理に際して、灰の溶融や焼結は見られなかった。金属析出、分離処理後の排水のCODMnを表1に示す。
Comparative Examples 1 and 2
The same treatment operation as in Example 1 was performed except that the heat treatment temperature was changed to 375° C. (Comparative Example 1) or 425° C. (Comparative Example 2). No melting or sintering of the ash was observed during the heat treatment. Table 1 shows the COD Mn of wastewater after metal deposition and separation treatment.

比較例3
ストーカ飛灰を単独で、実施例1の条件下で処理したところ、電気炉内で焼結した。
Comparative example 3
When the stoker fly ash was treated alone under the conditions of Example 1, it was sintered in an electric furnace.

Figure 2022134987000001
Figure 2022134987000001

Claims (3)

都市ごみ焼却炉より得られる飛灰を無酸素雰囲気下で加熱して脱ダイオキシン処理した後水洗し、塩素成分が低減された固形分を回収すると共に、得られる排水よりCOD成分を除去する焼却飛灰の処理方法において、
前記飛灰として、ストーカ式焼却炉から発生する飛灰と、流動床式焼却炉から発生する飛灰とを混合して脱ダイオキシン処理に供すると共に、当該脱ダイオキシン処理時の加熱温度を450℃を超え600℃未満とする焼却飛灰の処理方法。
Fly ash obtained from municipal waste incinerators is heated in an oxygen-free atmosphere to remove dioxins, then washed with water to recover solids with reduced chlorine components, and to remove COD components from the resulting wastewater. In the ash disposal method,
As the fly ash, fly ash generated from a stoker incinerator and fly ash generated from a fluidized bed incinerator are mixed and subjected to dioxin removal treatment, and the heating temperature during the dioxin removal treatment is set to 450 ° C. A method of treating incineration fly ash with a temperature of more than 600°C.
ストーカ式焼却炉から発生する飛灰と、流動床式焼却炉から発生する飛灰との混合比(質量)が1:2乃至3:1である請求項1記載の焼却飛灰の処理方法。 2. The method for treating incineration fly ash according to claim 1, wherein the mixing ratio (mass) of the fly ash generated from the stoker type incinerator and the fly ash generated from the fluidized bed type incinerator is 1:2 to 3:1. 前記脱ダイオキシン処理に際して発生する排ガスを凝縮器に通し、金属水銀を液体として回収する請求項1又は2記載の焼却飛灰の処理方法。 3. The method for treating incineration fly ash according to claim 1 or 2, wherein exhaust gas generated during the dioxin removal treatment is passed through a condenser to recover metallic mercury as a liquid.
JP2021034535A 2021-03-04 2021-03-04 Incineration fly ash treatment method Active JP7474212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021034535A JP7474212B2 (en) 2021-03-04 2021-03-04 Incineration fly ash treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021034535A JP7474212B2 (en) 2021-03-04 2021-03-04 Incineration fly ash treatment method

Publications (2)

Publication Number Publication Date
JP2022134987A true JP2022134987A (en) 2022-09-15
JP7474212B2 JP7474212B2 (en) 2024-04-24

Family

ID=83231899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021034535A Active JP7474212B2 (en) 2021-03-04 2021-03-04 Incineration fly ash treatment method

Country Status (1)

Country Link
JP (1) JP7474212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646442A (en) * 2022-10-24 2023-01-31 苏州市吴中区固体废弃物处理有限公司 Method for preparing adsorbent by using household garbage incineration fly ash and adsorbent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979164B2 (en) 2001-07-26 2012-07-18 株式会社トクヤマ Incineration ash treatment method
JP3867125B2 (en) 2003-03-04 2007-01-10 株式会社アクトリー Detoxification method for incineration fly ash, etc. (high temperature)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646442A (en) * 2022-10-24 2023-01-31 苏州市吴中区固体废弃物处理有限公司 Method for preparing adsorbent by using household garbage incineration fly ash and adsorbent

Also Published As

Publication number Publication date
JP7474212B2 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP7204156B2 (en) Pre-dechlorination and sintering process for highly chlorinated metallurgical waste and incineration fly ash
KR20130010072A (en) Treatment method and treatment device for converting chlorine-containing waste into raw material for cement
JP7474212B2 (en) Incineration fly ash treatment method
Song et al. An all-in-one strategy for municipal solid waste incineration fly ash full resource utilization by heat treatment with added kaolin
JP2007069185A (en) Method for washing inorganic matter
JP5359197B2 (en) Waste chromium removal method and chromium removal apparatus
JP3915816B2 (en) Nickel plating sludge treatment method
JP3568569B2 (en) Recycling of heavy metals by detoxifying incinerated ash or fly ash
SK147599A3 (en) Process and device for recovering raw materials from waste and residues
JP4243661B2 (en) Dust disposal method
JP5008945B2 (en) Contaminant disposal method
JP4820504B2 (en) Fly ash treatment method
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP3574928B2 (en) Method for treating fly ash from incinerators and melting furnaces
TW201912209A (en) Method for stabilizing MSWI fly ash
JP3940157B1 (en) Incineration residue treatment method and incineration residue treatment product
TWI418393B (en) Processing method for fly ash of large-scale incineration plant and product thereof
WO1998024938A1 (en) Extraction of metals from heavy metal-bearing wastes
US6136063A (en) Process for separating hazardous metals from waste materials during vitrification
JP2003286050A (en) Treatment method for dust in kiln exhaust gas
JP2020104039A (en) Dechlorination processing method of chlorine-containing ashes and manufacturing method of cement raw materials
JP7110128B2 (en) Method for removing mercury in smoke washing wastewater
JPH11343117A (en) Preparation of gypsum dihydrate from fly ash and device therefor
JP2010131521A (en) Method of treating waste
JP3855207B2 (en) Method for treating fly ash in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7474212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150