JP3855207B2 - Method for treating fly ash in exhaust gas - Google Patents

Method for treating fly ash in exhaust gas Download PDF

Info

Publication number
JP3855207B2
JP3855207B2 JP11896495A JP11896495A JP3855207B2 JP 3855207 B2 JP3855207 B2 JP 3855207B2 JP 11896495 A JP11896495 A JP 11896495A JP 11896495 A JP11896495 A JP 11896495A JP 3855207 B2 JP3855207 B2 JP 3855207B2
Authority
JP
Japan
Prior art keywords
fly ash
exhaust gas
particles
heavy metals
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11896495A
Other languages
Japanese (ja)
Other versions
JPH08290145A (en
Inventor
千秋 泉川
寿 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP11896495A priority Critical patent/JP3855207B2/en
Publication of JPH08290145A publication Critical patent/JPH08290145A/en
Application granted granted Critical
Publication of JP3855207B2 publication Critical patent/JP3855207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は排ガス中の飛灰の処理方法、特に、都市ごみ焼却工場や産業廃棄物焼却工場等における焼却炉および溶融炉もしくはセメントキルンから発生する有害物を含めた各種重金属を含有する焼却灰または飛灰の無害化処理による重金属のリサイクル方法に関する。
【0002】
【従来の技術】
一般に、事業場や一般家庭から排出されるゴミ(「都市ゴミ」または「一般廃棄物」と称されている)は、都市ゴミ焼却場に集められて焼却処分されるが、その際に焼却炉から発生する燃えがらや飛灰は最終処分場に堆積されていた。
【0003】
しかしながら、近年、堆積場確保の困難性や、堆積される飛灰に含まれている水銀、鉛、亜鉛、カドミウム、砒素などの重金属やダイオキシン類の有害性が問題視されている。
【0004】
そのため、上記有害物質の安定化を図るためセメント固化法や薬剤処理法等が開発され実用化されているが、セメント固化法等によると埋立容積を減らすことができないため、堆積場の確保に関する問題点は未解決のままであった。また、飛灰とセメントとの混練処理により、飛灰に含まれている重金属の溶出はなくなる(環境庁告示第13号法による溶出試験)と報告されているが、酸性雨等の影響を考えた場合、セメントと混練した飛灰中の重金属類は必ずしも安定であるとはいいきれないものである(菊地猛著「プラズマによるゴミ焼却灰の溶融処理による焼却残渣の無害化と生成スラグの資源化」PPM1992/5)と報告されている。
【0005】
一方、焼却炉からの燃えがらや飛灰を溶融処理することにより、減容化やダイオキシン類の熱分解による無害化を図ることができるという報告がある(永田勝也著「都市ゴミ焼却炉におけるダイオキシン対策の現状と動向」廃棄物学会誌第3巻第3号)。
【0006】
しかしながら、上記溶融処理によると、蒸気圧の大きい鉛やカドミウム等の重金属は、炉内で揮発して排ガス中に入り、排ガスに入った重金属は排ガス処理設備内で凝縮し、再び飛灰となってしまうという問題点があった。
【0007】
【発明が解決しようとする課題】
そこで本発明は、上述従来の技術の問題点を解決し、飛灰中に含まれている重金属を安定な形で固定しながら積極的に分離回収し、環境汚染の問題を生じることなくリサイクルによる有価金属の有効利用が可能な焼却炉および溶融炉からの焼却灰または飛灰の処理方法を提供することを目的とする。
【0008】
本発明者達は上記目的を達成すべく鋭意研究したところ、従来法によって得られた飛灰中には処理目的とする重金属分の他、表1に示すように鉄、珪素、アルミニウム等の粒径の大きい無機物も多く含有され、この無機物が重金属の分離回収に相当の悪影響を及ぼすことが判明し、これらを前工程で除去することによって飛灰中の重金属を効率よく回収できることを見出し、本発明方法を提供することができた。
【0009】
【表1】

Figure 0003855207
【0010】
表1はジグザグ分級機(MULTI−PLEX:ドイツ製)を使用して得たA焼却工場産飛灰中の不純物濃縮率を示す。
【0011】
本発明方法において処理対象とする飛灰は、都市ごみ、焼却工場や産業廃棄物焼却工場等における焼却炉または溶融炉もしくはセメントキルンから発生する各種重金属を含有する飛灰(以下、元飛灰という)である。
【0012】
これらの元飛灰の組成は、鉛・亜鉛・銅の他、鉄、珪素、アルミニウム、カリウム、ナトリウム、塩素等を含有しているが、重金属を鉛残渣と亜鉛澱物とに分離したときに、これらの元素の一部、詳しくは鉄と無機物である珪素、アルミニウム等が不純物として含有されるため、リサイクル原料としても品位を下げる要因となっていた。
【0013】
また、これらの不純物は10μm〜20μm以上の粗粒子として多く見られ、これらの粗粒子が含有されたまま従来方法で鉛残渣と亜鉛澱物を回収した場合の品位は共に30%以下であり、非鉄製錬原料としては不十分な品位であった(比較例参照)。
【0014】
【課題を解決するための手段】
本発明方法における第1の発明は、焼却炉、溶融炉、またはロータリキルンのいずれかからの高温下にある1000℃以上の排ガスを150〜900℃に冷却して生成した鉄、珪素、アルミニウムの粒子を分離除去する第1工程、次いで残りのガス中から生成した粒子及び微細粒子を飛灰として捕集する第2工程、得られた飛灰に酸またはアルカリの少なくとも一種以上を添加して重金属を分離する第3工程、とから成ることを特徴とする。
【0015】
第2の発明は、焼却炉、溶融炉、またはロータリキルンのいずれかからの高温下にある1000℃以上の排ガスを500〜600℃に冷却して生成した鉄、珪素、アルミニウムの粒子を分離除去する第1工程、次いで残りのガス中から生成した粒子及び微細粒子を飛灰として捕集する第2工程、得られた飛灰に酸またはアルカリの少なくとも一種以上を添加して重金属を分離する第3工程、とから成ることを特徴とする。
【0016】
第3の発明においては、上記飛灰がSi 1.1%以下の飛灰であり、上記分離除去を分級機を用いて行なうことを特徴とする。
【0017】
上記第1工程で分離除去した粒子は、焼却炉、溶融炉、またはロータリキルンのいずれかに戻す。
【0018】
【実施例】
以下本発明の実施例を説明する。
【0019】
本発明方法においては、前記焼却炉や溶融炉等で発生する1000℃以上の高温排ガスを150〜900℃の範囲に冷却して鉄、珪素、アルミニウム系の高沸点化合物を晶出させて生成した粒子を分離除去する(第1工程)が、これによって第3工程である分離濃縮工程で妨害する化合物の含有量を少なくすることができる。
【0020】
この場合、上記高沸点化合物を除去する手段としては、冷却塔に水噴射やフリーエアを入れるなどして高沸点化合物を晶出させたり、粗い粒子を除去する手段としては、サイクロン分級機やジグザグ分級機を用いているが、これらの高沸点化合物や粗い粒子以外のものは、そのまま排ガスと共に移動する。
【0021】
次いで、上記排ガス中から微細粒子を主とする元飛灰をバクフィルター等で捕集して、処理原料とする(第2工程)。
【0022】
このため本発明方法では、元飛灰が揮散する過程で、温度調整し、分級機を設置する等して、粗粒とそれ以下の細粒とに分け、鉄、珪素、アルミニウムを主とする粗粒を分離すると共に、細粒からなる元飛灰中の重金属分を製錬原料として回収する。
【0023】
上記第2工程で得られた元飛灰を水に溶解してpHが3〜7の範囲になるように攪拌して、重金属分を含む残渣と、塩類含有濾液とに分別する。次いで、得られた残渣をリパルプして塩酸又は硫酸を加えpHを3.0よりも低く、好ましくは1.0前後に調整して鉛以外の重金属を浸出溶解させ、鉛を主体とする残渣と、亜鉛や銅など溶解重金属分を含む濾液とに分別する。
【0024】
次いで、上記塩類含有濾液と浸出溶解液とを混ぜ、これに対して中和剤として水酸化ナトリウム、炭酸ナトリウムまたは水酸化カルシウムの少なくとも一種を添加してそのpHを7.0以上、好ましくは7.5〜8.5に調整することにより、亜鉛を主とする重金属を水酸化合物として生成させ、その液中に重金属が小量残留している場合には、さらに、硫化ナトリウム、水硫化ナトリウムまたは硫化水素などの硫化剤を添加して残留する重金属を硫化物として沈澱させ濾過分別して亜鉛澱物と最終中和濾液を得る(第3工程)。
【0025】
従って、本発明の方法では、元飛灰に含まれる重金属を主に鉛を含有する残渣と、主に亜鉛、銅を含有する水酸化物および硫化物とに分けて回収することができるため、それぞれ非鉄製錬原料として活用できるものである。
【0026】
(実施例1)
【0027】
Bゴミ焼却工場産EP灰460kgを130KVAのジロー式試験電気炉に装入し1350℃で溶融を行なった。この場合、電気炉からの煙道途中に冷却チャンバーを取付け、該チャンバー内にフリーエアーを入れて排ガスを200℃前後に急冷して、鉄、珪素、アルミニウム系の高沸点化合物を晶出させて分離した(第1工程)。
【0028】
次いで、上記工程から得られた排ガスをバグフィルターを通すことによってガス中に含まれている細い粒子からなる低沸点化合物を主とする元飛灰の全量27.1kgを回収した(第2工程)。得られた元飛灰の品位を表2に示す。
【0029】
【表2】
Figure 0003855207
【0030】
次いで、先ず2リットルビーカーに蒸留水1リットルを入れ攪拌しながら上記表2に示す元飛灰50gを添加してスラリーとし、硫酸を添加しながらpHを4に維持しつつ10分間攪拌した後、固液分離した(重金属分離)。
【0031】
上記で得られた残渣を蒸留水1リットルでリパルプしたものに硫酸を添加してpHが1になるようにpH調整を行なった後、10分間攪拌し、得られた鉛残渣を固液分離して回収したが、その残渣品位を表3に示す(鉛残渣分離)。
【0032】
【表3】
Figure 0003855207
【0033】
次いで、上記重金属分離と鉛残渣分離操作によって得られた濾過液を混合した後、200g/リットルに調整した水酸化ナトリウム水溶液を添加してpH7.0まで中和し、さらに10g/リットルに調整した水硫化ナトリウム液を酸化還元電位で−100mV(Ag/AgCl電極基準)まで添加し亜鉛を主とする重金属の水酸化物澱物およびその他の硫化物澱物を生成させ、固液分離して残渣と最終濾過液とに分離し、残渣は洗浄して亜鉛澱物として分離回収したが、その澱品位を表3に併せて示した(亜鉛澱物分離)。
【0034】
上記表3に示すように、鉛残渣と亜鉛澱物との品位は、非鉄製錬原料として充分であった。
【0035】
(実施例2)
【0036】
Bゴミ焼却工場産EP灰460kgを、130KVAのジロー式試験電気炉に装入し、1350℃で溶融を行なった。この場合、電気炉からの煙道途中にサイクロン分級機を取付、分級機手前でフリーエアーを入れ、排ガス温度を500〜600℃に低下させると共に流速を調整することにより、分級点を30〜40μmに設定して、分級点以上の粗粒子と鉄、珪素、アルミニウム系の高沸点化合物を晶出させて分離した(第1工程)。
【0037】
次いで、上記工程から得られた排ガスをバグフィルターを通すことによってガス中に含まれていて細い粒子からなる低沸点化合物を主とする元飛灰の全量23.2kgを回収した(第2工程)。得られた元飛灰の品位を表4に示す。
【0038】
【表4】
Figure 0003855207
【0039】
第2工程で得られた元飛灰を原料とした他は、実施例1に示す手段で重金属分離処理を行ない、表5に示すような鉛残渣と亜鉛澱物とを得ることができたが、これらは何れも非鉄製錬原料として充分であった。
【0040】
【表5】
Figure 0003855207
【0041】
(比較例1)
【0042】
Bゴミ焼却工場産EP灰460kgを実施例2に示すように130KVAのジロー式試験電気炉に装入し、1350℃で溶融を行ない、発生した元飛灰や高沸点化合物等を併せてバグフィルターで飛灰原料として28.9kg回収した。その品位を表6に示す。
【0043】
【表6】
Figure 0003855207
【0044】
得られた飛灰原料50gを実施例1に示す手段で重金属分離処理を行ない、目的とする鉛残渣を亜鉛澱物を得、その品位を表7に示したが、これらの結果から明らかなように、鉛残渣と亜鉛澱物の品位は共に30%以下であり、これらを非鉄製錬原料として使用するには不充分であった。
【0045】
【表7】
Figure 0003855207
【0046】
【発明の効果】
上述のように本発明方法によれば元飛灰に含まれている重金属を安定な形で分離することができ、また、分離された鉛を含む残渣と亜鉛を主とする重金属の水酸化澱物は、それぞれ鉛及び亜鉛を資源として活用できるものであるため、有害な重金属を処分場に埋立てることなく安全な処分を行なうことができる。[0001]
[Industrial application fields]
The present invention relates to a method for treating fly ash in exhaust gas, particularly incineration ash containing various heavy metals including harmful substances generated from incinerators and melting furnaces or cement kilns in municipal waste incineration plants, industrial waste incineration plants, etc. The present invention relates to a method for recycling heavy metals by detoxifying fly ash.
[0002]
[Prior art]
In general, waste discharged from business establishments and households (referred to as “urban waste” or “general waste”) is collected at an urban waste incineration site and incinerated. Dust and fly ash generated from the sea were deposited at the final disposal site.
[0003]
However, in recent years, the difficulty of securing a deposition site and the harmfulness of heavy metals and dioxins such as mercury, lead, zinc, cadmium and arsenic contained in the deposited fly ash have been regarded as problems.
[0004]
For this reason, cement solidification methods and chemical treatment methods have been developed and put into practical use in order to stabilize the above hazardous substances. The point remained unresolved. In addition, it has been reported that the elution of heavy metals contained in fly ash is eliminated by the kneading treatment of fly ash and cement (dissolution test by the Environmental Agency Notification No. 13 method). Heavy metals in fly ash mixed with cement are not necessarily stable (Takeshi Kikuchi, “Detoxification of incineration residue by melting treatment of garbage incineration ash by plasma and resource of generated slag PPM 1992/5).
[0005]
On the other hand, there is a report that it is possible to reduce the volume and detoxify by thermal decomposition of dioxins by melting the burnt and fly ash from the incinerator (Katsuya Nagata, “Measures against dioxins in municipal waste incinerators” Current Status and Trends ”Journal of Waste Science, Vol. 3, No. 3).
[0006]
However, according to the above melting treatment, heavy metals such as lead and cadmium having a high vapor pressure volatilize in the furnace and enter the exhaust gas, and the heavy metal contained in the exhaust gas condenses in the exhaust gas treatment facility and becomes fly ash again. There was a problem that it was.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention solves the above-mentioned problems of the prior art, actively separates and collects heavy metals contained in fly ash while fixing them in a stable form, and recycles them without causing environmental pollution problems. It is an object of the present invention to provide a method for treating incineration ash or fly ash from an incinerator and melting furnace capable of effectively using valuable metals.
[0008]
As a result of intensive research to achieve the above object, the present inventors have found that the fly ash obtained by the conventional method contains particles of iron, silicon, aluminum, etc. Many inorganic substances with large diameters are also contained, and it has been found that these inorganic substances have a considerable adverse effect on the separation and recovery of heavy metals, and it has been found that heavy metals in fly ash can be efficiently recovered by removing these in the previous process. Inventive method could be provided.
[0009]
[Table 1]
Figure 0003855207
[0010]
Table 1 shows the impurity concentration rate in the fly ash from the A incineration plant obtained using a zigzag classifier (MULTI-PLEX: manufactured in Germany).
[0011]
The fly ash to be treated in the method of the present invention is a fly ash containing various heavy metals generated from incinerators, melting furnaces, or cement kilns in municipal waste, incineration plants, industrial waste incineration plants, etc. (hereinafter referred to as original fly ash). ).
[0012]
The composition of these original fly ash contains iron, silicon, aluminum, potassium, sodium, chlorine, etc. in addition to lead, zinc and copper, but when heavy metals are separated into lead residue and zinc starch Since some of these elements, specifically, iron and inorganic silicon, aluminum, and the like are contained as impurities, it has been a factor in reducing the quality of recycled materials.
[0013]
In addition, these impurities are often seen as coarse particles of 10 μm to 20 μm or more, and the quality when both lead particles and zinc starch are recovered by a conventional method while containing these coarse particles is 30% or less, The quality was insufficient as a non-ferrous smelting raw material (see comparative example).
[0014]
[Means for Solving the Problems]
The first invention in the method of the present invention is an iron, silicon, aluminum produced by cooling an exhaust gas of 1000 ° C. or higher under high temperature from either an incinerator, melting furnace, or rotary kiln to 150-900 ° C. A first step of separating and removing particles, a second step of collecting particles and fine particles generated from the remaining gas as fly ash, and adding at least one kind of acid or alkali to the obtained fly ash to add heavy metals And a third step of separating.
[0015]
The second invention separates and removes particles of iron, silicon, and aluminum generated by cooling an exhaust gas at 1000 ° C. or higher at a high temperature from either an incinerator, a melting furnace, or a rotary kiln to 500 to 600 ° C. A first step for collecting particles and fine particles generated from the remaining gas as fly ash, and a step for separating heavy metals by adding at least one acid or alkali to the obtained fly ash. It is characterized by comprising three steps.
[0016]
In a third invention, the fly ash is fly ash containing 1.1% or less of Si, and the separation and removal are performed using a classifier.
[0017]
The particles separated and removed in the first step are returned to either an incinerator, a melting furnace, or a rotary kiln.
[0018]
【Example】
Examples of the present invention will be described below.
[0019]
In the method of the present invention, high-temperature exhaust gas of 1000 ° C. or higher generated in the incinerator or melting furnace is cooled to a range of 150 to 900 ° C., and iron, silicon, and aluminum-based high boiling point compounds are crystallized and generated. By separating and removing the particles (first step), the content of the compound that interferes with the separation and concentration step, which is the third step, can be reduced.
[0020]
In this case, as a means for removing the high-boiling compounds, water-jetting or free air is injected into the cooling tower to crystallize the high-boiling compounds, or as means for removing coarse particles, a cyclone classifier or a zigzag is used. Although a classifier is used, those other than these high boiling point compounds and coarse particles move with the exhaust gas as they are.
[0021]
Next, the original fly ash mainly containing fine particles is collected from the exhaust gas with a bag filter or the like, and used as a processing raw material (second step).
[0022]
For this reason, in the method of the present invention, in the process of volatilization of the original fly ash, the temperature is adjusted, a classifier is installed, etc. to divide into coarse particles and fine particles smaller than that, mainly iron, silicon and aluminum The coarse particles are separated and the heavy metal content in the original fly ash consisting of fine particles is recovered as a smelting raw material.
[0023]
The original fly ash obtained in the second step is dissolved in water and stirred so that the pH is in the range of 3 to 7, and separated into a residue containing a heavy metal content and a salt-containing filtrate. Next, the obtained residue is repulped and hydrochloric acid or sulfuric acid is added to adjust the pH to be lower than 3.0, preferably around 1.0 to leach and dissolve heavy metals other than lead. Separated into a filtrate containing dissolved heavy metals such as zinc and copper.
[0024]
Next, the salt-containing filtrate and the leaching solution are mixed, and at least one of sodium hydroxide, sodium carbonate, or calcium hydroxide is added as a neutralizing agent to adjust the pH to 7.0 or more, preferably 7 In the case where a heavy metal mainly composed of zinc is produced as a hydroxy compound by adjusting to 0.5 to 8.5 and a small amount of heavy metal remains in the liquid, sodium sulfide, sodium hydrosulfide is further added. Alternatively, a sulfiding agent such as hydrogen sulfide is added to precipitate the remaining heavy metal as a sulfide, followed by filtration to obtain a zinc starch and a final neutralized filtrate (third step).
[0025]
Therefore, in the method of the present invention, the heavy metal contained in the original fly ash can be recovered by separating it into a residue mainly containing lead and a hydroxide and sulfide mainly containing zinc and copper, Each can be used as a non-ferrous smelting raw material.
[0026]
Example 1
[0027]
460 kg of EP ash produced from the B garbage incineration plant was charged into a 130 KVA Jiro test electric furnace and melted at 1350 ° C. In this case, a cooling chamber is installed in the middle of the flue from the electric furnace, free air is put into the chamber, the exhaust gas is rapidly cooled to around 200 ° C., and iron, silicon, and aluminum-based high boiling point compounds are crystallized. Separated (first step).
[0028]
Next, the exhaust gas obtained from the above step was passed through a bag filter to recover 27.1 kg of the original fly ash mainly composed of low boiling point compounds composed of fine particles contained in the gas (second step). . Table 2 shows the quality of the obtained original fly ash.
[0029]
[Table 2]
Figure 0003855207
[0030]
Next, after adding 1 liter of distilled water to a 2 liter beaker and stirring, 50 g of the original fly ash shown in Table 2 above was added to form a slurry, and after stirring for 10 minutes while maintaining the pH at 4 while adding sulfuric acid, Solid-liquid separation (heavy metal separation).
[0031]
The residue obtained above was repulped with 1 liter of distilled water, sulfuric acid was added to adjust the pH so that the pH was 1, and the mixture was stirred for 10 minutes. The resulting lead residue was solid-liquid separated. The residue quality is shown in Table 3 (Lead residue separation).
[0032]
[Table 3]
Figure 0003855207
[0033]
Next, after mixing the filtrate obtained by the above heavy metal separation and lead residue separation operation, an aqueous sodium hydroxide solution adjusted to 200 g / liter was added to neutralize to pH 7.0, and further adjusted to 10 g / liter. Sodium hydrosulfide solution is added to the oxidation-reduction potential to -100 mV (Ag / AgCl electrode standard) to produce heavy metal hydroxide starch and other sulfide starch mainly composed of zinc, solid-liquid separation and residue The residue was washed and separated and recovered as zinc starch. The quality of the starch is shown in Table 3 (zinc starch separation).
[0034]
As shown in Table 3 above, the grades of lead residue and zinc starch were sufficient as non-ferrous smelting raw materials.
[0035]
(Example 2)
[0036]
460 kg of EP ash from the B garbage incineration plant was charged into a 130 KVA Giraud test electric furnace and melted at 1350 ° C. In this case, a cyclone classifier is installed in the middle of the flue from the electric furnace, free air is put in front of the classifier, the exhaust gas temperature is lowered to 500 to 600 ° C., and the flow rate is adjusted to set the classification point to 30 to 40 μm. The coarse particles above the classification point and iron, silicon, and aluminum-based high-boiling compounds were crystallized and separated (first step).
[0037]
Next, the exhaust gas obtained from the above step was passed through a bag filter to collect 23.2 kg of the total amount of the original fly ash mainly composed of low-boiling compounds consisting of fine particles contained in the gas (second step). . Table 4 shows the quality of the obtained original fly ash.
[0038]
[Table 4]
Figure 0003855207
[0039]
Other than using the original fly ash obtained in the second step as a raw material, heavy metal separation treatment was performed by the means shown in Example 1, and lead residues and zinc starch as shown in Table 5 could be obtained. These were all sufficient as non-ferrous smelting raw materials.
[0040]
[Table 5]
Figure 0003855207
[0041]
(Comparative Example 1)
[0042]
As shown in Example 2, 460 kg of EP ash from the B incineration plant was charged into a 130 KVA Giraud test electric furnace, melted at 1350 ° C., and the generated fly ash and high-boiling compounds were also added. 28.9 kg was recovered as a fly ash raw material. Table 6 shows the quality.
[0043]
[Table 6]
Figure 0003855207
[0044]
50 g of the obtained fly ash raw material was subjected to heavy metal separation treatment by the means shown in Example 1, and zinc starch was obtained as the target lead residue. The quality is shown in Table 7, but it is clear from these results. In addition, the grades of lead residue and zinc starch were both 30% or less, which was insufficient to use them as non-ferrous smelting raw materials.
[0045]
[Table 7]
Figure 0003855207
[0046]
【The invention's effect】
As described above, according to the method of the present invention, the heavy metal contained in the original fly ash can be separated in a stable form, and the separated lead-containing residue and the heavy metal hydroxide starch mainly composed of zinc. Since each object can utilize lead and zinc as resources, it can be safely disposed of without toxic heavy metals being landfilled.

Claims (4)

焼却炉、溶融炉、またはロータリキルンのいずれかからの高温下にある1000℃以上の排ガスを150〜900℃に冷却して生成した鉄、珪素、アルミニウムの粒子を分離除去する第1工程、
次いで残りのガス中から生成した粒子及び微細粒子を飛灰として捕集する第2工程、
得られた飛灰に酸またはアルカリの少なくとも一種以上を添加して重金属を分離する第3工程、
とから成ることを特徴とする排ガス中の飛灰の処理方法。
A first step of separating and removing particles of iron, silicon, and aluminum generated by cooling an exhaust gas at 1000 ° C. or higher at a high temperature from either an incinerator, a melting furnace, or a rotary kiln to 150 to 900 ° C .;
Next, a second step of collecting particles and fine particles generated from the remaining gas as fly ash,
A third step of adding at least one acid or alkali to the obtained fly ash to separate heavy metals;
A method for treating fly ash in exhaust gas, comprising:
焼却炉、溶融炉、またはロータリキルンのいずれかからの高温下にある1000℃以上の排ガスを500〜600℃に冷却して生成した鉄、珪素、アルミニウムの粒子を分離除去する第1工程、
次いで残りのガス中から生成した粒子及び微細粒子を飛灰として捕集する第2工程、
得られた飛灰に酸またはアルカリの少なくとも一種以上を添加して重金属を分離する第3工程、
とから成ることを特徴とする排ガス中の飛灰の処理方法。
A first step of separating and removing particles of iron, silicon, and aluminum generated by cooling an exhaust gas at 1000 ° C. or higher at a high temperature from either an incinerator, a melting furnace, or a rotary kiln to 500 to 600 ° C .;
Next, a second step of collecting particles and fine particles generated from the remaining gas as fly ash,
A third step of adding at least one acid or alkali to the obtained fly ash to separate heavy metals;
A method for treating fly ash in exhaust gas, comprising:
上記飛灰がSi 1.1%以下の飛灰であり、上記分離除去を分級機を用いて行なうことを特徴とする請求項1または2記載の排ガス中の飛灰の処理方法。 The method for treating fly ash in exhaust gas according to claim 1 or 2 , wherein the fly ash is fly ash containing 1.1% or less of Si, and the separation and removal are performed using a classifier. 上記第1工程で分離除去した粒子を焼却炉、溶融炉、またはロータリキルンのいずれかに戻すことを特徴とする請求項1,2または3記載の排ガス中の飛灰の処理方法。  4. The method for treating fly ash in exhaust gas according to claim 1, wherein the particles separated and removed in the first step are returned to any one of an incinerator, a melting furnace, and a rotary kiln.
JP11896495A 1995-04-21 1995-04-21 Method for treating fly ash in exhaust gas Expired - Lifetime JP3855207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11896495A JP3855207B2 (en) 1995-04-21 1995-04-21 Method for treating fly ash in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11896495A JP3855207B2 (en) 1995-04-21 1995-04-21 Method for treating fly ash in exhaust gas

Publications (2)

Publication Number Publication Date
JPH08290145A JPH08290145A (en) 1996-11-05
JP3855207B2 true JP3855207B2 (en) 2006-12-06

Family

ID=14749643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11896495A Expired - Lifetime JP3855207B2 (en) 1995-04-21 1995-04-21 Method for treating fly ash in exhaust gas

Country Status (1)

Country Link
JP (1) JP3855207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490221B2 (en) * 1996-07-18 2004-01-26 Jfeプラント&サービス株式会社 Method for producing molten solid from fly ash generated during sludge incineration

Also Published As

Publication number Publication date
JPH08290145A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
EP1034014B1 (en) A process for separation of heavy metals and halogen from waste material or residue
JP3441239B2 (en) Method for wet processing of fly ash containing heavy metals from high temperature processing furnace
US5612008A (en) Process for treating solid waste containing volatilizable inorganic contaminants
JP3568569B2 (en) Recycling of heavy metals by detoxifying incinerated ash or fly ash
JP2003225633A (en) Method of treating chloride-containing dust
JP3564625B2 (en) Method for treating dust in exhaust gas
KR20210141943A (en) Ash processing method and system
JP3855207B2 (en) Method for treating fly ash in exhaust gas
SK147599A3 (en) Process and device for recovering raw materials from waste and residues
JP3574928B2 (en) Method for treating fly ash from incinerators and melting furnaces
JP3300081B2 (en) Method for treating fly ash from incinerators and melting furnaces
JPH0924240A (en) Method for recovering heavy metals from exhaust gas generated when bottom ash and fly ash are melted
JPH10109077A (en) Method for recovering heavy metal from molten fry ash
JP3276074B2 (en) How to treat fly ash from incinerators
JP4277108B2 (en) Heavy metal recovery from fly ash
JP3536901B2 (en) Method of recovering valuable metals from fly ash
JP3524601B2 (en) Method for treating fly ash from incinerators and melting furnaces
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP4393915B2 (en) Method for treating substances containing zinc, lead and chlorine
JP2005068535A (en) Method of treating gas or flying ash containing lead and zinc
JP3374728B2 (en) How to treat incinerated dust
JP2000051819A (en) Method for detoxifying fly ash
JP2005177757A (en) Calcium-and heavy metal-containing matter treatment method
JP4108818B2 (en) Treatment method for waste containing heavy metals
JP3470594B2 (en) Processing method of molten fly ash

Legal Events

Date Code Title Description
A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term