JP2022131665A - Oxide sputtering target, manufacturing method of the same, and oxide thin film - Google Patents

Oxide sputtering target, manufacturing method of the same, and oxide thin film Download PDF

Info

Publication number
JP2022131665A
JP2022131665A JP2021030722A JP2021030722A JP2022131665A JP 2022131665 A JP2022131665 A JP 2022131665A JP 2021030722 A JP2021030722 A JP 2021030722A JP 2021030722 A JP2021030722 A JP 2021030722A JP 2022131665 A JP2022131665 A JP 2022131665A
Authority
JP
Japan
Prior art keywords
oxide
sputtering target
target according
moo2
oxide sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021030722A
Other languages
Japanese (ja)
Other versions
JP7436409B2 (en
Inventor
慧 宗安
Kei Soan
淳史 奈良
Atsushi Nara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021030722A priority Critical patent/JP7436409B2/en
Priority to KR1020210150402A priority patent/KR20220122465A/en
Priority to CN202111358250.9A priority patent/CN114959594A/en
Priority to TW110143455A priority patent/TW202233867A/en
Publication of JP2022131665A publication Critical patent/JP2022131665A/en
Application granted granted Critical
Publication of JP7436409B2 publication Critical patent/JP7436409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

To provide an oxide sputtering target capable of depositing a film with a high work function.SOLUTION: An oxide sputtering target is composed of tungsten (W), molybdenum (Mo), and oxygen (O), the sputtering target having a relative density of 90% or more. The oxide sputtering target contains a molybdenum oxide, the molybdenum oxide preferably existing as MoO2. The sputtering target also contains a tungsten oxide, the tungsten oxide preferably existing as WO3.SELECTED DRAWING: None

Description

本発明は、仕事関数の高い酸化物薄膜を成膜するのに適した、酸化物スパッタリングターゲット及びその製造方法並びに酸化物薄膜に関する。 The present invention relates to an oxide sputtering target suitable for forming an oxide thin film having a high work function, a method for producing the same, and an oxide thin film.

有機エレクトロルミネッセンス(有機EL)素子などの発光素子における透明電極(陽極)としてITO(インジウム・スズ酸化物)が用いられている。陽極に電圧を印加することで注入された正孔は、正孔輸送層を経由して、発光層で電子と結合する。近年、正孔輸送層への電荷注入効率を向上させる目的で、ITOよりも仕事関数が高い酸化物を用いることが研究されている。たとえば、非特許文献1には、有機半導体デバイスにおける酸化物薄膜として、TiO2、MoO2、CuO、NiO、WO3、V25、CrO3、Ta25、Co34などの高い仕事関数のものが報告されている。 BACKGROUND ART ITO (indium tin oxide) is used as a transparent electrode (anode) in a light-emitting element such as an organic electroluminescence (organic EL) element. Holes injected by applying a voltage to the anode combine with electrons in the light emitting layer via the hole transport layer. In recent years, research has been conducted on using an oxide having a higher work function than ITO for the purpose of improving the efficiency of charge injection into the hole transport layer. For example, Non-Patent Document 1 describes oxide thin films in organic semiconductor devices such as TiO 2 , MoO 2 , CuO, NiO, WO 3 , V 2 O 5 , CrO 3 , Ta 2 O 5 and Co 3 O 4 . High work functions have been reported.

非特許文献1に示されるように、WO3は比較的高い仕事関数を有する。このWO3膜は酸化タングステン焼結体からなるスパッタリングターゲットを用いて成膜することができるが(特許文献1、2)、WO3単相では焼結体の高密度化が困難であり、体積抵抗率が高いために、DCスパッタリングが困難であった。そのため、特許文献2には、WO3にWO2を添加することで、焼結体の高密度化を達成し、導電性を高めてDCスパッタリングを可能とすることが開示されている。なお、特許文献3、4には、WとMoの酸化物を含む酸化物スパッタリングターゲットが開示されている。 As shown in Non-Patent Document 1 , WO3 has a relatively high work function. This WO3 film can be formed using a sputtering target made of a tungsten oxide sintered body (Patent Documents 1 and 2 ), but with a WO3 single phase, it is difficult to increase the density of the sintered body, and the volume DC sputtering was difficult due to the high resistivity. Therefore, Patent Literature 2 discloses that by adding WO2 to WO3 , the density of the sintered body is increased and the electrical conductivity is increased to enable DC sputtering. Patent Documents 3 and 4 disclose oxide sputtering targets containing oxides of W and Mo.

特開平3-150357号公報JP-A-3-150357 特開2013-76163号公報JP 2013-76163 A 特開2017-25348号公報JP 2017-25348 A 特開2004-190120号公報Japanese Patent Application Laid-Open No. 2004-190120

Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5,e55, 19 July 2013Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5,e55, 19 July 2013

上述の通り、有機ELなどの有機半導体デバイスを構成する膜として、仕事関数の高い酸化物膜が求められている。WO3、MoO3は、ともに高い仕事関数を有する材料として知られているが、両材料とも単相で高密度なスパッタリングターゲットを製造することが困難であった。このようなことから本発明は、上述課題を解決するために提案されたものであって、仕事関数の高い膜を成膜することができる高密度のスパッタリングターゲットを提供することを課題とする。 As described above, an oxide film having a high work function is required as a film constituting an organic semiconductor device such as an organic EL. Both WO 3 and MoO 3 are known as materials having a high work function, but it is difficult to produce single-phase, high-density sputtering targets from both materials. In view of the above, the present invention has been proposed to solve the above problems, and an object of the present invention is to provide a high-density sputtering target capable of forming a film having a high work function.

本発明は、上記課題を解決するために提案されたものであって、その課題を解決できる本発明の一態様は、タングステン(W)、モリブデン(Mo)、及び、酸素(O)からなる酸化物スパッタリングターゲットであって、相対密度が90%以上であることを特徴とする酸化物スパッタリングターゲットである。 The present invention has been proposed to solve the above problems, and one aspect of the present invention that can solve the problems is an oxide containing tungsten (W), molybdenum (Mo), and oxygen (O) An oxide sputtering target characterized by having a relative density of 90% or more.

本発明によれば、相対密度が高い酸化物スパッタリングターゲットを製造することができ、このような酸化物スパッタリングターゲットを用いて仕事関数の高い酸化物薄膜を製造することができるという優れた効果を有する。 According to the present invention, an oxide sputtering target having a high relative density can be produced, and an oxide thin film having a high work function can be produced using such an oxide sputtering target. .

本発明の実施形態に係る酸化物スパッタリングターゲットは、タングステン(W)、モリブデン(Mo)、及び、酸素(O)からなる。但し、当該スパッタリングターゲットには、原料や製造過程などから混入する不純物が含まれる場合があり、成膜した薄膜の仕事関数などに特別な影響を及ぼさない量の不純物を含んでいてもよく、不純物の合計含有量が0.1wt%以下であれば、特に問題ないといえる。 An oxide sputtering target according to embodiments of the present invention consists of tungsten (W), molybdenum (Mo), and oxygen (O). However, the sputtering target may contain impurities mixed in from raw materials and manufacturing processes, and may contain impurities in an amount that does not have a particular effect on the work function of the thin film formed. If the total content of is 0.1 wt% or less, it can be said that there is no particular problem.

本発明の実施形態に係る酸化物スパッタリングターゲットは、相対密度が90%以上であることを特徴とするものである。より好ましくは92%以上、さらに好ましくは94%以上である。このような高密度のスパッタリングターゲットは、スパッタリングの際にクラックや割れ等を防ぐことができ、成膜時のパーティクルを低減することができる。
また、スパッタリングターゲットの相対密度は、体積抵抗率とも関連し、相対密度の値が低くなると、体積抵抗率が高くなる傾向にある。そのため、体積抵抗率を下げるためには、スパッタリングターゲットのWとMoの含有比率の他、スパッタリングターゲットの製造方法や製造条件を厳格に調整して、相対密度を高める必要がある。
An oxide sputtering target according to an embodiment of the present invention is characterized by having a relative density of 90% or more. More preferably 92% or more, still more preferably 94% or more. Such a high-density sputtering target can prevent cracks, cracks, and the like during sputtering, and can reduce particles during film formation.
The relative density of the sputtering target is also related to volume resistivity, and the lower the relative density value, the higher the volume resistivity. Therefore, in order to lower the volume resistivity, it is necessary to increase the relative density by strictly adjusting the content ratio of W and Mo in the sputtering target as well as the manufacturing method and manufacturing conditions of the sputtering target.

本発明の実施形態に係る酸化物スパッタリングターゲットは、モリブデンの酸化物を含有し、前記モリブデン酸化物はMoO2として存在していることが好ましい。モリブデン酸化物には、MoO2とMoO3があるが、MoO2はMoO3に比べて、密度が高く、導電性も高いため、MoO3ではなく、MoO2として存在させることが、高密度、且つ、低抵抗の酸化物スパッタリングターゲットを製造する上で重要である。
好ましい実施形態は、MoO2相の(110)面に帰属するXRDピーク強度をIMoO2とし、バックグランドのXRD平均強度をIBGとしたときに、IMoO2/IBGが3.0以上とすることである。
本願明細書おいて、MoO2相の(110)面に帰属するXRDピーク強度IMoO2、バックグランドのXRD平均強度IBGは以下のように定義される。
MoO2:25.8°≦2θ≦26.3°の範囲におけるXRDピーク強度
BG:20.0°≦2θ<22.0°の範囲におけるXRD平均強度
An oxide sputtering target according to embodiments of the present invention comprises an oxide of molybdenum, said molybdenum oxide preferably being present as MoO2 . Molybdenum oxide includes MoO 2 and MoO 3 , but MoO 2 has a higher density and higher conductivity than MoO 3 , so it is possible to have MoO 2 instead of MoO 3 to have a high density and a high conductivity. Moreover, it is important in manufacturing a low resistance oxide sputtering target.
In a preferred embodiment, I MoO2 /I BG is 3.0 or more, where I MoO2 is the XRD peak intensity attributed to the (110) plane of the MoO 2 phase and I BG is the XRD average intensity of the background. That is.
In the present specification, the XRD peak intensity I MoO2 attributed to the (110) plane of the MoO 2 phase and the background XRD average intensity I BG are defined as follows.
I MoO2 : XRD peak intensity in the range of 25.8°≦2θ≦26.3° I BG : XRD average intensity in the range of 20.0°≦2θ<22.0°

本発明の実施形態に係る酸化物スパッタリングターゲットは、タングステン酸化物を含有し、タングステン酸化物はWO3として存在していることが好ましい。タングステン酸化物は、WO3が安定酸化物であるが、酸素欠損した、WO2、WO2.722.75、WO2.9などが存在する。酸素欠損したタングステン酸化物では、ターゲットの相対密度が上がり難く、また、仕事関数が低下する可能性が高いことから、ターゲットの高密度化、かつ、薄膜の高仕事関数を得るためには、WO3として存在していることが望ましい。
好ましい実施形態は、WO3相の(202)面に帰属するXRDピーク強度をIWO3とし、バックグランドのXRD平均強度をIBGとしたときに、IwO3/IBGが3.0以上である。本願明細書において、WO3相の(202)面に帰属するXRDピーク強度IWO3、バックグランドのXRD平均強度IBGは以下のように定義される。
WO3:33.5°≦2θ≦34.5°の範囲におけるXRDピーク強度
BG:20.0°≦2θ<22.0°の範囲におけるXRD平均強度
The oxide sputtering targets according to embodiments of the present invention contain tungsten oxide , which is preferably present as WO3. Among tungsten oxides, WO 3 is a stable oxide, but oxygen-deficient WO 2 , WO 2.72 to 2.75 and WO 2.9 exist. With oxygen-deficient tungsten oxide, it is difficult to increase the relative density of the target and the work function is likely to decrease. It is desirable to exist as 3 .
In a preferred embodiment, when the XRD peak intensity attributed to the (202) plane of the WO3 phase is IWO3 and the background XRD average intensity is IBG , IwO3 / IBG is 3.0 or more. . In the present specification, the XRD peak intensity I WO3 attributed to the (202) plane of the WO 3 phase and the background XRD average intensity I BG are defined as follows.
I WO3 : XRD peak intensity in the range of 33.5°≦2θ≦34.5° I BG : XRD average intensity in the range of 20.0°≦2θ<22.0°

本発明の実施形態に係る酸化物スパッタリングターゲットは、WとMoの含有比率が原子%で0.10≦W/(W+Mo)<1.0を満たすことが好ましい。WとMoの含有比率が原子%でW/(W+Mo)が0.10未満であると、本実施形態に係る酸化物スパッタリングターゲットを用いて形成した酸化物膜において、所望の仕事関数が得られないことがある。一方、W/(W+Mo)=1.0(WO3単相)であると、高密度の酸化物スパッタリングターゲットが得ることが困難となる。より好ましくは、WとMoの含有比率が原子%で0.15≦W/(W+Mo)≦0.85である In the oxide sputtering target according to the embodiment of the present invention, the content ratio of W and Mo preferably satisfies 0.10≦W/(W+Mo)<1.0 in terms of atomic %. When the content ratio of W and Mo is atomic % and W/(W+Mo) is less than 0.10, the oxide film formed using the oxide sputtering target according to the present embodiment has a desired work function. sometimes not. On the other hand, when W/(W+Mo)=1.0 ( WO3 single phase), it becomes difficult to obtain a high-density oxide sputtering target. More preferably, the content ratio of W and Mo is 0.15 ≤ W / (W + Mo) ≤ 0.85 in atomic %

本発明の実施形態に係る酸化物スパッタリングターゲットは、体積抵抗率が1Ω・cm以下であることが好ましい。より好ましくは0.5Ω・cm以下、さらに好ましくは0.1Ω・cm以下である。これにより、高速成膜が可能なDCスパッタリングを安定して実施することができる。上述の通り、本実施形態に係る酸化物スパッタリングターゲット中、酸化モリブデンはMoO2となっており、MoO2はMoO3に比べて酸素欠損しているため体積抵抗率を低くすることができる。なお、Moの含有比率によって、体積抵抗率は変動し、Moの含有比率が増えると、体積抵抗率が低くなる傾向にある。 The oxide sputtering target according to the embodiment of the present invention preferably has a volume resistivity of 1 Ω·cm or less. It is more preferably 0.5 Ω·cm or less, still more preferably 0.1 Ω·cm or less. As a result, DC sputtering capable of high-speed film formation can be stably performed. As described above, in the oxide sputtering target according to the present embodiment, molybdenum oxide is MoO 2 , and MoO 2 has more oxygen deficiency than MoO 3 , so the volume resistivity can be lowered. Note that the volume resistivity varies depending on the content of Mo, and tends to decrease as the content of Mo increases.

本発明の別の実施形態に係る酸化物薄膜は、上記酸化物スパッタリングターゲットを用いて成膜される薄膜であって、仕事関数が4.5eV以上であることを特徴とする。このような仕事関数が高い膜は、例えば、有機EL、有機太陽電池などの有機半導体デバイスにおいて正孔輸送層への電荷注入効率を向上させることができ、発光効率あるいは変換効率などの向上が期待できる。 An oxide thin film according to another embodiment of the present invention is a thin film formed using the above oxide sputtering target, and is characterized by having a work function of 4.5 eV or more. A film with such a high work function can, for example, improve the efficiency of charge injection into the hole transport layer in organic semiconductor devices such as organic EL and organic solar cells, and is expected to improve luminous efficiency or conversion efficiency. can.

(酸化物スパッタリングターゲットの製造方法)
以下に、本実施形態に係る酸化物スパッタリングターゲットの製造方法を示す。但し、以下の製造条件等は開示した範囲に限定するものではなく、いくらかの省略や変更を行ってもよいことは明らかである。
(Method for producing oxide sputtering target)
A method for manufacturing an oxide sputtering target according to this embodiment will be described below. However, it is clear that the following manufacturing conditions and the like are not limited to the disclosed range, and that some omissions and changes may be made.

原料粉末として、酸化タングステン(WO3)粉末、酸化モリブデン(MoO2)粉末を準備し、これらの原料粉末を所望の組成比となるように秤量する。このとき、酸化モリブデンはMoO3ではなく、MoO2を使用すること好ましい。次に、ボール径が0.5~3.0mmのジルコニアビーズを用いて、湿式粉砕を行う。そして、粒径の中央値が0.1~5.0μmとなるまで粉砕を行い、その後、造粒を行う。 Tungsten oxide (WO 3 ) powder and molybdenum oxide (MoO 2 ) powder are prepared as raw material powders, and these raw material powders are weighed so as to have a desired composition ratio. At this time, it is preferable to use MoO 2 instead of MoO 3 as molybdenum oxide. Next, wet pulverization is performed using zirconia beads having a ball diameter of 0.5 to 3.0 mm. Then, pulverization is performed until the median particle size reaches 0.1 to 5.0 μm, and then granulation is performed.

次に、得られた造粒混合粉を真空又は不活性ガス(Arなど)雰囲気、800℃以上1000℃以下でホットプレス焼結を行う。焼結温度が800℃未満であると、高密度の焼結体が得られず、一方、1000℃超であると、粒が粗大化し、クラックが発生するため好ましくない。また、焼結時間は、1~10時間とすることが好ましい。その後、得られた焼結体をターゲット形状に切削、研磨などして、スパッタリングターゲットを作製することができる。 Next, the obtained granulated mixed powder is subjected to hot press sintering at 800° C. or higher and 1000° C. or lower in a vacuum or an inert gas (such as Ar) atmosphere. If the sintering temperature is less than 800° C., a high-density sintered body cannot be obtained. Also, the sintering time is preferably 1 to 10 hours. After that, the obtained sintered body is cut into a target shape, polished, or the like, so that a sputtering target can be produced.

本願明細書において、スパッタリングターゲット及び薄膜の各種物性の分析方法等を以下に示す。
(スパッタリングターゲットの成分組成)
スパッタリングターゲットの成分組成の分析は、以下の装置を用いることができる。
装置:SII社製SPS3500DD
方法:ICP-OES(高周波誘導結合プラズマ発光分析法)
なお、スパッタリングターゲットの成分組成は、原料の組成比率と同じとみなすことができる。本実施形態に係るスパッタリングターゲットの製造プロセスにおいて、特定の酸化物のみをロスするような工程はなく、組成比率の変化が少ないと考えられるためである。
In the specification of the present application, methods for analyzing various physical properties of sputtering targets and thin films are shown below.
(Component composition of sputtering target)
The following equipment can be used to analyze the composition of the sputtering target.
Device: SPS3500DD manufactured by SII
Method: ICP-OES (Inductively Coupled Plasma Emission Spectrometry)
In addition, the composition of the sputtering target can be considered to be the same as the composition ratio of the raw material. This is because, in the manufacturing process of the sputtering target according to the present embodiment, there is no process in which only a specific oxide is lost, and the change in the composition ratio is thought to be small.

(スパッタリングターゲットのX線回折分析について)
スパッタリングターゲットのX線回折分析(XRD)は、以下の方法により行う。
装置:リガク社製SmartLab
管球:Cu-Kα線
管電圧:40kV
電流:30mA
測定方法:2θ-θ反射法
スキャン速度:20.0°/min
サンプリング間隔:0.01°
(About X-ray diffraction analysis of sputtering target)
X-ray diffraction analysis (XRD) of the sputtering target is performed by the following method.
Apparatus: SmartLab manufactured by Rigaku
Tube: Cu-Kα ray Tube voltage: 40 kV
Current: 30mA
Measurement method: 2θ-θ reflection method Scanning speed: 20.0°/min
Sampling interval: 0.01°

(スパッタリングターゲットの体積抵抗率)
スパッタリングターゲットの体積抵抗率は、スパッタリングターゲットの表面を5点(中心1点、半径の1/2の箇所を90度間隔で4点)測定し、それらの平均値とした。測定には、以下の装置を使用する。
装置:NPS社製 抵抗率測定器 Σ-5+
方式:定電流印加方式
方法:直流4探針法
(Volume resistivity of sputtering target)
The volume resistivity of the sputtering target was measured at 5 points on the surface of the sputtering target (1 point at the center and 4 points at half the radius at 90 degree intervals), and the average value thereof was taken. The following equipment is used for the measurement.
Apparatus: Resistivity measuring instrument Σ-5+ manufactured by NPS
Method: Constant current application method Method: DC 4-probe method

(スパッタリングターゲットの相対密度について)
相対密度(%)=アルキメデス密度/真密度×100
アルキメデス密度:スパッタリングターゲットターゲットから小片を切り出して、その小片からアルキメデス法を用いて密度を算出する。
真密度:原料の組成比率から計算したW、Moの原子比を、スパッタリングターゲットのW、Moの原子比とみなし、その原子比から、WのWO3換算重量をa(wt%)、MoのMoO2換算重量をb(wt%)を求め、WO3、MoO2の理論密度をそれぞれdWO3、dMoO2として、真密度(g/cm3)=100/(a/dWO3+b/dMoO2)を計算する。なお、WO3の理論密度をdWO3=7.16g/cm3、MoO2の理論密度dMoO2=6.47g/cm3、とする。
(Regarding the relative density of the sputtering target)
Relative density (%) = Archimedes density / true density x 100
Archimedes Density: A small piece is cut from the sputtering target and the density is calculated from the piece using the Archimedes method.
True density: The atomic ratio of W and Mo calculated from the composition ratio of the raw material is regarded as the atomic ratio of W and Mo of the sputtering target, and from that atomic ratio , the WO3 equivalent weight of W is a (wt%), and the weight of Mo is b (wt%) is obtained as the MoO 2 equivalent weight, and the theoretical densities of WO 3 and MoO 2 are d WO3 and d MoO2 , respectively, and the true density (g/cm 3 ) = 100/(a/d WO3 +b/d MoO2 ). The theoretical density of WO 3 is d WO3 =7.16 g/cm 3 , and the theoretical density of MoO 2 is d MoO2 = 6.47 g/cm 3 .

(酸化物薄膜の仕事関数について)
酸化物薄膜の仕事関数の測定は、ガラス基板もしくはSi基板上に成膜した20×20mmのサンプルを作製し、以下の条件で測定を実施した。なお、仕事関数の測定結果は、通常、サンプルのサイズに依存しない。
方式:大気中光電子分光法
装置:理研計器製 AC-5装置
条件:測定可能な仕事関数の範囲:3.4eV~6.2eV
光源パワー:2000W
(Work function of oxide thin film)
For the measurement of the work function of the oxide thin film, a sample of 20×20 mm formed on a glass substrate or a Si substrate was prepared, and the measurement was carried out under the following conditions. It should be noted that the measurement result of the work function usually does not depend on the size of the sample.
Method: Atmospheric photoelectron spectroscopy Apparatus: Riken Keiki AC-5 apparatus Conditions: Measurable work function range: 3.4 eV to 6.2 eV
Light source power: 2000W

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. It should be noted that this embodiment is merely an example, and the present invention is not limited by this example. That is, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1)
WO3粉とMoO2粉とを準備し、これらの粉末をWO3:MoO2=85:15(mol%)で秤量した。次に、0.5mmのジルコニアビーズを用いて3時間湿式ビーズミル混合粉砕を実施し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を焼結温度:825℃、最高圧力:250kgf/cm2、保持時間:6時間、雰囲気:アルゴン、の条件でホットプレス焼結を行い、焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
実施例1で得られたスパッタリングターゲットについて評価した結果、相対密度は、94.4%であり、体積抵抗率は75.5mΩ・cmであった。また、スパッタリングターゲットについてX線回折分析(XRD)を行った結果、IMoO2/IBGは7.1であった。以上の結果を表1に示す。なお、スパッタリングターゲットの成分組成は、原料の組成比率と同じとみなして計算した。
(Example 1)
WO 3 powder and MoO 2 powder were prepared, and these powders were weighed at WO 3 :MoO 2 =85:15 (mol %). Next, wet bead mill mixing pulverization was performed using 0.5 mm zirconia beads for 3 hours to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, this mixed powder was subjected to hot press sintering under the following conditions: sintering temperature: 825° C., maximum pressure: 250 kgf/cm 2 , holding time: 6 hours, atmosphere: argon to produce a sintered body. After that, this sintered body was machined and finished into a sputtering target shape.
As a result of evaluating the sputtering target obtained in Example 1, the relative density was 94.4% and the volume resistivity was 75.5 mΩ·cm. As a result of X-ray diffraction analysis (XRD) of the sputtering target, I MoO2 /I BG was 7.1. Table 1 shows the above results. The composition of the sputtering target was calculated assuming that it was the same as the composition ratio of the raw material.

Figure 2022131665000001
Figure 2022131665000001

(実施例2~4)
WO3粉とMoO2粉とを準備し、これらの粉末を表1に記載するモル比となるように秤量した。次に、0.5mmのジルコニアビーズを用いて3時間湿式ビーズミル混合粉砕し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を焼結温度:850℃~875℃、最高圧力:250kgf/cm2、保持時間:6時間、雰囲気:アルゴンの条件でホットプレス焼結を行い、焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
実施例2~4のスパッタリングターゲットは、いずれも相対密度が94%以上であり、体積抵抗率は1.0Ω・cm以下であった。また、スパッタリングターゲットについてX線回折分析(XRD)を行った結果、IMoO2/IBGは3.0以上であった。なお、スパッタリングターゲットの成分組成は、原料の組成比率と同じとみなして計算した。
(Examples 2-4)
WO 3 powder and MoO 2 powder were prepared, and these powders were weighed so as to have the molar ratios shown in Table 1. Next, the mixed powder was mixed and pulverized in a wet bead mill for 3 hours using 0.5 mm zirconia beads to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, this mixed powder was subjected to hot press sintering under the conditions of sintering temperature: 850° C. to 875° C., maximum pressure: 250 kgf/cm 2 , holding time: 6 hours, and atmosphere: argon to produce a sintered body. . After that, this sintered body was machined and finished into a sputtering target shape.
The sputtering targets of Examples 2 to 4 all had a relative density of 94% or more and a volume resistivity of 1.0 Ω·cm or less. As a result of X-ray diffraction analysis (XRD) of the sputtering target, I MoO2 /I BG was 3.0 or more. The composition of the sputtering target was calculated assuming that it was the same as the composition ratio of the raw material.

(比較例1)
比較例1では、WO3粉のみとした。WO3粉を0.5mmのジルコニアビーズを用いて3時間湿式ビーズミル混合粉砕し、メジアン径0.8μm以下の混合粉末を得た。次に、この混合粉末を焼結温度:940℃、最高圧力:250kgf/cm2、保持時間:10時間、雰囲気:酸素の条件で、常圧焼結を行い、焼結体を作製した。その後、この焼結体を機械加工してスパッタリングターゲット形状に仕上げた。
比較例1のスパッタリングターゲットは、相対密度が94%であり、体積抵抗率は1.6×104Ω・cmであった。また、スパッタリングターゲットについてX線回折分析(XRD)を行った結果、IMoO2/IBGは1.9であった。なお、スパッタリングターゲットの成分組成は、原料の組成比率と同じとみなして計算した。
(Comparative example 1)
In Comparative Example 1 , only WO3 powder was used. The WO 3 powder was mixed and pulverized in a wet bead mill using 0.5 mm zirconia beads for 3 hours to obtain a mixed powder having a median diameter of 0.8 μm or less. Next, this mixed powder was sintered at normal pressure under conditions of sintering temperature: 940° C., maximum pressure: 250 kgf/cm 2 , holding time: 10 hours, atmosphere: oxygen, and a sintered body was produced. After that, this sintered body was machined and finished into a sputtering target shape.
The sputtering target of Comparative Example 1 had a relative density of 94% and a volume resistivity of 1.6×10 4 Ω·cm. As a result of X-ray diffraction analysis (XRD) of the sputtering target, I MoO2 /I BG was 1.9. The composition of the sputtering target was calculated assuming that it was the same as the composition ratio of the raw material.

次に、実施例1~4のスパッタリングターゲットを用いて、スパッタ成膜を行った。なお、成膜条件は以下の通りとした。得られたスパッタ膜について、仕事関数を測定した結果、Arガス下では4.62~4.76eVであり、Arガス+2%O2下では4.71~4.76eVであり、Arガス+6%O2下では4.74~4.77eVであり、所望の高い仕事関数が得られた。以上の結果を表1に示す。なお、スパッタ膜の成分組成は、原料比率と同じとみなして計算した。
(成膜条件)
装置:キャノンアネルバ製 SPL-500スパッタ装置
基板:シリコン基板
成膜パワー密度:2.74W/cm2
成膜雰囲気:Ar、Ar+2%O2、Ar+6%O2
ガス圧:0.5Pa
膜厚:50nm
Next, using the sputtering targets of Examples 1 to 4, sputtering film formation was performed. The film formation conditions were as follows. As a result of measuring the work function of the obtained sputtered film, it was 4.62 to 4.76 eV under Ar gas, 4.71 to 4.76 eV under Ar gas + 2% O 2 , and Ar gas + 6%. 4.74 to 4.77 eV under O 2 , yielding the desired high work function. Table 1 shows the above results. The component composition of the sputtered film was calculated assuming that it was the same as the raw material ratio.
(Deposition conditions)
Apparatus: SPL-500 sputtering apparatus manufactured by Canon ANELVA Substrate: Silicon substrate Deposition power density: 2.74 W/cm 2
Deposition atmosphere: Ar, Ar+2% O2 , Ar+6% O2
Gas pressure: 0.5 Pa
Film thickness: 50 nm

本発明の実施形態に係る酸化物スパッタリングターゲットは、相対密度が高く、成膜時にターゲットに割れやクラックが発生することがなく、実用的、商業的レベルで使用することができる。さらに、体積抵抗率が低く、DCスパッタリングが可能である。本発明は、特に有機エレクトロルミネッセンス素子などの発光素子における透明電極を形成するために有用である。 INDUSTRIAL APPLICABILITY The oxide sputtering target according to the embodiment of the present invention has a high relative density, does not generate cracks or breakage in the target during film formation, and can be used on a practical and commercial level. Furthermore, the volume resistivity is low and DC sputtering is possible. INDUSTRIAL APPLICABILITY The present invention is particularly useful for forming transparent electrodes in light-emitting devices such as organic electroluminescence devices.

Claims (10)

タングステン(W)、モリブデン(Mo)、及び、酸素(O)からなる酸化物スパッタリングターゲットであって、相対密度が90%以上であることを特徴とする酸化物スパッタリングターゲット。 An oxide sputtering target comprising tungsten (W), molybdenum (Mo) and oxygen (O) and having a relative density of 90% or more. MoO2であるモリブデン酸化物を含有する請求項1に記載の酸化物スパッタリングターゲット。 2. The oxide sputtering target of claim 1 containing a molybdenum oxide which is MoO2. MoO2相の(110)面に帰属するXRDピーク強度をIMoO2とし、バックグランドのXRD平均強度をIBGとしたとき、IMoO2/IBGが3.0以上であることを特徴とする請求項2に記載の酸化物スパッタリングターゲット。 A claim characterized in that I MoO2 /I BG is 3.0 or more, where I MoO2 is the XRD peak intensity attributed to the (110) plane of the MoO 2 phase and I BG is the XRD average intensity of the background. Item 3. The oxide sputtering target according to item 2. WO3であるタングステン酸化物を含有する請求項1~3のいずれか一項に記載の酸化物スパッタリングターゲット。 An oxide sputtering target according to any one of claims 1 to 3 , containing a tungsten oxide which is WO3. WO3相の(202)面に帰属するXRDピーク強度をIWO3とし、バックグランドのXRD平均強度をIBGとしたとき、IWO3/IBGが3.0以上であることを特徴とする請求項4に記載の酸化物スパッタリングターゲット。 A claim characterized in that IWO3 / IBG is 3.0 or more, where IWO3 is the XRD peak intensity attributed to the (202) plane of the WO3 phase and IBG is the XRD average intensity of the background . Item 5. The oxide sputtering target according to Item 4. WとMoの含有比率が原子%で0.10≦W/(W+Mo)<1.0を満たす請求項1~5のいずれか一項に記載の酸化物スパッタリングターゲット。 The oxide sputtering target according to any one of claims 1 to 5, wherein the content ratio of W and Mo satisfies 0.10 ≤ W/(W + Mo) < 1.0 in atomic percent. 体積抵抗率が1Ω・cm以下である請求項1~6のいずれか一項に記載の酸化物スパッタリングターゲット。 The oxide sputtering target according to any one of claims 1 to 6, which has a volume resistivity of 1 Ω·cm or less. 請求項1~7のいずれか一項に記載の酸化物スパッタリングターゲットの製造方法であって、酸化タングステン粉と酸化モリブデン粉とを混合し、その混合粉を800℃以上1000℃以下ホットプレス焼結して製造する酸化物スパッタリングターゲットの製造方法。 The method for producing an oxide sputtering target according to any one of claims 1 to 7, wherein tungsten oxide powder and molybdenum oxide powder are mixed, and the mixed powder is hot-press sintered at 800 ° C. or higher and 1000 ° C. or lower. A method for producing an oxide sputtering target produced by 前記酸化モリブデン粉として、MoO2を使用する請求項8に記載の酸化物スパッタリングターゲットの製造方法。 9. The method for manufacturing an oxide sputtering target according to claim 8, wherein MoO2 is used as the molybdenum oxide powder. 請求項1~7のいずれか一項に記載の酸化物スパッタリングターゲットを用いてスパッタ成膜した酸化物薄膜であって、仕事関数が4.5eV以上である酸化物薄膜。 An oxide thin film formed by sputtering using the oxide sputtering target according to any one of claims 1 to 7, wherein the oxide thin film has a work function of 4.5 eV or more.
JP2021030722A 2021-02-26 2021-02-26 Oxide sputtering target, its manufacturing method, and oxide thin film Active JP7436409B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021030722A JP7436409B2 (en) 2021-02-26 2021-02-26 Oxide sputtering target, its manufacturing method, and oxide thin film
KR1020210150402A KR20220122465A (en) 2021-02-26 2021-11-04 Oxide sputtering target and production method thereof, and oxide thin film
CN202111358250.9A CN114959594A (en) 2021-02-26 2021-11-16 Oxide sputtering target, method for producing same, and oxide thin film
TW110143455A TW202233867A (en) 2021-02-26 2021-11-23 Oxide sputtering target, method for producing the same, and oxide thin film an oxide sputtering target, which is composed of tungsten (W), molybdenum (Mo) and oxygen (O)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021030722A JP7436409B2 (en) 2021-02-26 2021-02-26 Oxide sputtering target, its manufacturing method, and oxide thin film

Publications (2)

Publication Number Publication Date
JP2022131665A true JP2022131665A (en) 2022-09-07
JP7436409B2 JP7436409B2 (en) 2024-02-21

Family

ID=82974414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021030722A Active JP7436409B2 (en) 2021-02-26 2021-02-26 Oxide sputtering target, its manufacturing method, and oxide thin film

Country Status (4)

Country Link
JP (1) JP7436409B2 (en)
KR (1) KR20220122465A (en)
CN (1) CN114959594A (en)
TW (1) TW202233867A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190120A (en) * 2002-12-13 2004-07-08 Sony Corp Method of producing sputtering target, and sputtering target
JP2007092089A (en) * 2005-09-27 2007-04-12 Japan New Metals Co Ltd Method for producing high-purity molybdenum-tungsten alloy powder used for raw powder for sputtering target
WO2008088076A1 (en) * 2007-01-17 2008-07-24 Sony Corporation Developing solution and method for production of finely patterned material
CN101550535A (en) * 2009-05-07 2009-10-07 上海交通大学 Method for preparing compound metal sulfide diamond composite membrane
JP2016017224A (en) * 2014-07-11 2016-02-01 パナソニックIpマネジメント株式会社 Method of reactive sputtering formation and cylindrical media deposited by reactive sputtering formation method
JP2020536174A (en) * 2017-10-06 2020-12-10 プランゼー エスエー Target material for depositing molybdenum oxide layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693599B2 (en) 1989-11-06 1997-12-24 日本タングステン株式会社 Target and its manufacturing method
JP4066101B2 (en) * 1997-10-17 2008-03-26 旭硝子株式会社 Low emissivity laminate manufacturing method
JP2013076163A (en) 2011-09-15 2013-04-25 Mitsubishi Materials Corp Sputtering target and method for manufacturing the same
JP2017025348A (en) 2015-07-15 2017-02-02 三菱マテリアル株式会社 Mo-W OXIDE SPUTTERING TARGET, AND MANUFACTURING METHOD OF Mo-W OXIDE SPUTTERING TARGET
KR20200020855A (en) * 2018-08-09 2020-02-26 제이엑스금속주식회사 Oxide thin film formed using the oxide sputtering target, its manufacturing method, and this oxide sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190120A (en) * 2002-12-13 2004-07-08 Sony Corp Method of producing sputtering target, and sputtering target
JP2007092089A (en) * 2005-09-27 2007-04-12 Japan New Metals Co Ltd Method for producing high-purity molybdenum-tungsten alloy powder used for raw powder for sputtering target
WO2008088076A1 (en) * 2007-01-17 2008-07-24 Sony Corporation Developing solution and method for production of finely patterned material
CN101550535A (en) * 2009-05-07 2009-10-07 上海交通大学 Method for preparing compound metal sulfide diamond composite membrane
JP2016017224A (en) * 2014-07-11 2016-02-01 パナソニックIpマネジメント株式会社 Method of reactive sputtering formation and cylindrical media deposited by reactive sputtering formation method
JP2020536174A (en) * 2017-10-06 2020-12-10 プランゼー エスエー Target material for depositing molybdenum oxide layer

Also Published As

Publication number Publication date
KR20220122465A (en) 2022-09-02
TW202233867A (en) 2022-09-01
JP7436409B2 (en) 2024-02-21
CN114959594A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
US7569167B2 (en) Oxide sintered body
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
CN111164233B (en) Oxide sputtering target, method for producing same, and oxide thin film formed using same
TWI395231B (en) A transparent conductive film for a transparent conductive film and a transparent conductive film produced by using the transparent conductive film and a transparent conductive film
JPWO2009078329A1 (en) Zinc oxide sintered body and manufacturing method thereof, sputtering target, electrode
JP5735190B1 (en) Oxide sintered body, sputtering target, and oxide thin film
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
JP4962355B2 (en) ZnO vapor deposition material and ZnO film formed thereby
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
JP7436409B2 (en) Oxide sputtering target, its manufacturing method, and oxide thin film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP7162647B2 (en) Cu-W-O sputtering target and oxide thin film
JP4962356B2 (en) ZnO vapor deposition material and ZnO film formed thereby
TWI837462B (en) Cu-W-O sputtering target and oxide film
JP4524577B2 (en) Transparent conductive film and sputtering target
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
WO2022255266A1 (en) Sputtering target and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7436409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150