JP2022130931A - Method for identifying plate shape, method for evaluating material characteristics, and test piece - Google Patents

Method for identifying plate shape, method for evaluating material characteristics, and test piece Download PDF

Info

Publication number
JP2022130931A
JP2022130931A JP2021029593A JP2021029593A JP2022130931A JP 2022130931 A JP2022130931 A JP 2022130931A JP 2021029593 A JP2021029593 A JP 2021029593A JP 2021029593 A JP2021029593 A JP 2021029593A JP 2022130931 A JP2022130931 A JP 2022130931A
Authority
JP
Japan
Prior art keywords
shape
stress
plate
test piece
stress triaxiality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021029593A
Other languages
Japanese (ja)
Inventor
大貴 池嶋
Daiki Ikejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021029593A priority Critical patent/JP2022130931A/en
Publication of JP2022130931A publication Critical patent/JP2022130931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To easily and accurately carry out a method for identifying the shape of a plate, with which a discretionary stress triaxiality of deformation can be executed by a uniaxial tensile testing machine.SOLUTION: A shape of a plate is such that a principal plane is rectangular and a notch is formed at one point on each of two long sides of the principal plane, the notches having a point symmetrical relationship, with the center of the principal plane as a symmetrical point. The notches assume a shape composed of two lengths of parallel lines extending from the long sides of the principal plane to the inside of the principal plane and a semicircle of radius φ linking the tips of the two lengths of parallel lines. When it is assumed that a tip-to-distance of the semicircles of the two notches is H in the long side direction of the principal plane and W in the short-side direction, a stress triaxiality of deformation when the plate is pulled by a uniaxial tensile testing machine is obtained and a relationship between φ, H and W and the stress triaxiality is obtained in advance, with the shape of the plate identified by the relationship between φ, H and W and the stress triaxiality.SELECTED DRAWING: Figure 1

Description

本発明は、任意の応力三軸度の変形を一軸引張試験機で行える板材の形状を特定する方法、この板材形状の特定方法を利用した一軸引張軸試験機による材料特性評価方法、および一軸引張試験機による材料特性評価に使用される板材の試験片に関する。 The present invention provides a method for specifying the shape of a plate material that can be deformed with an arbitrary stress triaxiality with a uniaxial tensile tester, a method for evaluating material properties by a uniaxial tensile axial tester using this method for specifying the plate shape, and a uniaxial tensile tester. It relates to a test piece of plate material used for material property evaluation by a testing machine.

近年、コンピュータの演算処理能力の飛躍的な進歩に伴い、有限要素法(Finite Element Method。以下、FEMと記す)などによる構造解析を利用して、車両設計、構造設計、性能評価などを、実試験のかわりに、コンピュータ上でシミュレーションし、評価している。 In recent years, with the dramatic progress in computing power of computers, structural analysis such as the finite element method (FEM) is used to implement vehicle design, structural design, performance evaluation, etc. Instead of testing, they are simulating and evaluating on a computer.

特に、車両設計における構造解析において、車体と衝突物が高速に衝突し、かつ衝突物に対して複数の部品が相互作用しながら引張、圧縮、および曲げ変形が発生することを考慮し、衝突安全性能や強度・耐久性能を高精度に評価する必要がある。そこで、従来技術として、構造解析に応力三軸度ごとに変化する材料特性を考慮して解析する手法が採用される場合がある。 In particular, in structural analysis in vehicle design, considering that the vehicle body collides with a collision object at high speed, and that multiple parts interact with the collision object, tension, compression, and bending deformation occur, and collision safety is considered. It is necessary to evaluate performance, strength, and durability with high accuracy. Therefore, as a conventional technique, there is a case where a method of analyzing in consideration of material properties that change for each stress triaxiality is adopted for structural analysis.

応力三軸度は、静水圧応力を相当応力で除したパラメータであって、以下のように定義される。 The stress triaxiality is a parameter obtained by dividing the hydrostatic stress by the equivalent stress and is defined as follows.

Figure 2022130931000002
Figure 2022130931000002

静水圧応力、およびMises相当応力は、それぞれ主応力σ、σ、σを用いて、以下のように表すことができる。 The hydrostatic stress and Mises equivalent stress can be expressed as follows using principal stresses σ 1 , σ 2 and σ 3 , respectively.

Figure 2022130931000003
Figure 2022130931000003

Figure 2022130931000004
Figure 2022130931000004

構造解析に応力三軸度ごとに変化する材料特性を考慮する場合、例えば特許文献1による試験評価手法で評価した材料特性を考慮する方法が知られている。特許文献1には、脆性破壊に関する材料特性の定量的かつ信頼性の高い取得方法を課題とし、切り欠き部を形成した薄鋼板の試験片を一軸方向に引っ張り、その試験片に発生する応力三軸度と破断時の材料特性の関係を明らかにする方法が開示されている。 When considering material properties that change for each stress triaxiality in structural analysis, there is a known method of considering material properties evaluated by a test evaluation method according to Patent Document 1, for example. In Patent Document 1, the subject is a quantitative and highly reliable method for obtaining material properties related to brittle fracture, and a test piece of a thin steel plate with a notch is pulled uniaxially, and the stress generated in the test piece is measured. A method is disclosed to establish the relationship between axialness and material properties at break.

特開2015-87311号公報JP 2015-87311 A

しかし、特許文献1に開示されている方法では、応力三軸度は試験片の形状を決定した後にFEM解析により評価しているため、車両設計における構造解析において発生した応力三軸度場の範囲を網羅できない。つまり、上記構造解析において発生したすべての応力三軸度場を網羅するためには、あらかじめ必要な応力三軸度の範囲を上記構造解析において見定めておく必要があり、上記範囲をもとに試験片の形状を決定する必要がある。そして、試験片形状を作成した後に応力三軸度を評価するのみでは上記すべての範囲を網羅できる評価試験を行うことができない。 However, in the method disclosed in Patent Document 1, since the stress triaxiality is evaluated by FEM analysis after determining the shape of the test piece, the range of the stress triaxiality field generated in the structural analysis in vehicle design cannot be covered. In other words, in order to cover all the stress triaxiality fields generated in the above structural analysis, it is necessary to determine the necessary range of stress triaxiality in advance in the above structural analysis. It is necessary to determine the shape of the piece. In addition, it is not possible to conduct an evaluation test that can cover all the above ranges only by evaluating the stress triaxiality after preparing the shape of the test piece.

そこで、本発明は、上述した問題点に鑑みてなされたもので、任意の応力三軸度の変形を一軸引張試験機で行える板材の形状を特定する方法を提供する。さらに本発明は、この板材形状の特定方法を利用した一軸引張軸試験機による材料特性評価方法を提供する。さらに本発明は、一軸引張試験機による材料特性評価に使用される板材の試験片を提供する。 Therefore, the present invention has been made in view of the above-mentioned problems, and provides a method for specifying the shape of a plate material that can perform arbitrary stress triaxiality deformation with a uniaxial tensile tester. Furthermore, the present invention provides a material property evaluation method using a uniaxial tensile axial tester that utilizes this plate shape specification method. Further, the present invention provides a plate specimen for use in material characterization with a uniaxial tensile tester.

上記課題を解決する本発明の板材形状の特定方法は、任意の応力三軸度の変形を一軸引張試験機で行える板材の形状を特定する方法であって、
単一の材料からなる板材であって、
主平面が長方形であり、主平面の2つの長辺のそれぞれに1箇所ずつ、主平面の中心を対称点とする点対称の位置関係にある切り欠き部が形成され、
上記切り欠き部が、上記主平面の長辺から主平面の内側に延びる2本の平行線と、2本の平行線の先端をつなぐ曲率φの半円とからなる形状であり、
上記2つの切り欠き部の上記半円の先端間距離が、上記主平面の長辺方向にH、短辺方向にWである、板材を用い、
上記φ、HおよびWが複数の組み合わせの上記板材を、それぞれの2つの短辺を一軸引張試験機で引っ張ったときの変形の応力三軸度を求めて、φ、HおよびWと応力三軸度との関係をあらかじめ求めておき、
一軸引張試験機で引っ張ったときの応力三軸度が任意の値となる上記切り欠き部の形状および位置を、上記φ、HおよびWと応力三軸度との関係から特定する。
The method for specifying the plate shape of the present invention that solves the above problems is a method for specifying the shape of a plate that can be deformed with an arbitrary stress triaxiality with a uniaxial tensile tester,
A plate made of a single material,
The principal plane is rectangular, and one notch is formed on each of the two long sides of the principal plane and has a point-symmetrical positional relationship with the center of the principal plane as a symmetrical point,
The notch portion has a shape consisting of two parallel lines extending from the long side of the main plane to the inside of the main plane and a semicircle with a curvature φ connecting the tips of the two parallel lines,
Using a plate material in which the distance between the tips of the semicircles of the two notches is H in the long side direction of the main plane and W in the short side direction,
The stress triaxiality of deformation is obtained when the two short sides of each of the plate materials with a plurality of combinations of φ, H and W are pulled with a uniaxial tensile tester, and φ, H and W and the stress triaxial The relationship between
The shape and position of the cutout portion at which the stress triaxiality when pulled by a uniaxial tensile tester has an arbitrary value is specified from the relationship between the above φ, H and W and the stress triaxiality.

本発明の板材形状の特定方法は、以下のいずれかであることが好ましい。
・上記切り欠き部の2本の平行線が上記主平面の短辺方向に平行である。
・上記応力三軸度が0以上である。
・上記φ、HおよびWと応力三軸度との関係を、有限要素法を用いて求める。
・上記HおよびWが0より大きい。
It is preferable that the method for specifying the plate shape of the present invention be any one of the following.
- Two parallel lines of the notch are parallel to the short side direction of the main plane.
- The stress triaxiality is 0 or more.
- Obtain the relationship between the above φ, H and W and the stress triaxiality using the finite element method.
- H and W above are greater than zero.

また、上記課題を解決する本発明の材料特性評価方法は、本発明の板材形状の特定方法を利用した一軸引張軸試験機による材料特性評価方法であって、
一軸引張試験機で引っ張ったときの応力三軸度が任意の値となる板材の形状を、上記板材形状の特定方法から特定し、
特性を評価したい材料からなり上記特定された形状の板材を一軸引張試験機で引っ張り、破断相当時における材料物性を求め、
複数の応力三軸度について上記操作を繰り返して、応力三軸度と材料物性との関係を求める。
Further, the material property evaluation method of the present invention for solving the above problems is a material property evaluation method by a uniaxial tensile axial tester using the plate shape specification method of the present invention,
Identify the shape of the plate that gives an arbitrary value of stress triaxiality when pulled by a uniaxial tensile tester from the method for identifying the plate shape,
A plate made of the material whose properties are to be evaluated and having the specified shape is pulled with a uniaxial tensile tester to obtain the physical properties of the material at the time of breakage,
The above operation is repeated for a plurality of stress triaxialities to determine the relationship between stress triaxiality and material properties.

本発明の材料特性方法は、以下のいずれかであることが好ましい。
・上記特性を評価したい材料のヤング率が1000GPa以下である。
・上記特性を評価したい材料が樹脂材料である。
・上記樹脂材料のヤング率が500GPa以下である。
・上記材料物性が、破断相当時までの荷重―変位線図、破断ひずみ、破断応力、またはエネルギ吸収率である。
Preferably, the material property method of the present invention is any of the following.
- The Young's modulus of the material whose properties are to be evaluated is 1000 GPa or less.
・The material for which we want to evaluate the above characteristics is a resin material.
- The Young's modulus of the resin material is 500 GPa or less.
・The physical properties of the material are the load-displacement diagram, breaking strain, breaking stress, or energy absorption rate up to the time equivalent to breakage.

上記課題を解決する発明の試験片は、一軸引張軸試験機による材料特性評価に使用される板材の試験片であって、
特性を評価したい材料からなり、
一軸引張試験機で引っ張ったときの応力三軸度が評価したい値となる形状であり、
本発明の板材形状の特定方法で特定されたものである。
The test piece of the invention for solving the above problems is a test piece of a plate material used for material property evaluation by a uniaxial tensile axial tester,
It consists of a material whose properties you want to evaluate,
The shape is such that the stress triaxiality when pulled by a uniaxial tensile tester is the value you want to evaluate,
It is specified by the method for specifying the plate shape of the present invention.

本発明によれば、任意の応力三軸度の変形を一軸引張試験機で行える板材が、どのような形状であるのかを特定できるので、複雑な応力三軸度場が発生する構造解析においても、すべての応力三軸度の範囲を網羅できる応力三軸度が発生する試験片を提供できる。また、作製した複数の試験片を用いて引張試験、もしくはシミュレーションを行うことにより、複数の応力三軸度と破断相当時における材料物性との関係を求められる。 According to the present invention, it is possible to specify the shape of a plate that can be deformed with an arbitrary stress triaxiality with a uniaxial tensile tester, so even in structural analysis where a complex stress triaxiality field occurs , it is possible to provide a test piece that generates stress triaxiality that can cover the entire stress triaxiality range. Also, by performing a tensile test or a simulation using a plurality of prepared test pieces, the relationship between a plurality of stress triaxialities and material properties at the time of fracture can be obtained.

図1は、板材形状の特定方法をステップ順に示すフロー図である。FIG. 1 is a flow chart showing a step-by-step method for specifying the plate shape. 図2は、図1のステップS101において作成した試験片を示す概略平面図である。FIG. 2 is a schematic plan view showing the test piece produced in step S101 of FIG. 図3は、FEM解析により行う引張試験シミュレーションを実施する場合の概略平面図である。FIG. 3 is a schematic plan view when performing a tensile test simulation by FEM analysis. 図4は、試験片208における、切り欠き部の中心間距離をr、水平方向とのなす角度をθとする円筒座標系を設定した試験片の概略平面図である。FIG. 4 is a schematic plan view of the test piece 208 in which a cylindrical coordinate system is set with r as the center-to-center distance of the cutout portions and θ as the angle formed with the horizontal direction. 図5は、切り欠き部先端の半円の曲率φを1mmに固定し、切り欠き先端間の短辺方向距離Wおよび切り欠き先端間の長辺方向距離Hに対して、応力三軸度を等高線表示したグラフである。In FIG. 5, the curvature φ of the semicircle at the tip of the notch is fixed to 1 mm, and the stress triaxiality is calculated with respect to the distance W between the tips of the notch in the short side direction and the distance H between the tips of the notch in the long side direction. It is a graph displayed by contour lines. 図6は(a)試験片200および(b)試験片204に対してFEM解析を実施し、破断直前における試験片と試験片に発生する荷重方向を示す概略平面図である。FIG. 6 is a schematic plan view showing the test piece 200 (a) and the test piece 204 (b) subjected to FEM analysis immediately before fracture and the direction of load generated in the test piece. 図7は、図5の関係から作成した、(a)目的の応力三軸度0.5を達成する試験片形状、および(b)目的の応力三軸度0.2を達成する試験片形状の概略平面図である。FIG. 7 shows (a) a test piece shape that achieves the target stress triaxiality of 0.5, and (b) a test piece shape that achieves the target stress triaxiality of 0.2, created from the relationship in FIG. is a schematic plan view of the. 図8は、試験片200、試験片204および208に対して、FEM解析により引張試験シミュレーションを行い、各応力三軸度ごとに(a)破断ひずみ、(b)破断応力および(c)エネルギ吸収率を算出したグラフである。FIG. 8 shows that the test piece 200, the test pieces 204 and 208 were subjected to tensile test simulation by FEM analysis, and (a) breaking strain, (b) breaking stress and (c) energy absorption were performed for each stress triaxiality. It is the graph which calculated the ratio.

本発明の望ましい実施の形態について、以下の通り図面を参照しながら説明する。
図1は、板材形状の特定方法をステップ順に示すフロー図である。
Preferred embodiments of the present invention are described below with reference to the drawings.
FIG. 1 is a flow chart showing a step-by-step method for specifying the plate shape.

本実施形態では、まず、試験片の形状と応力三軸度の関係を求めるための複数の試験片を作成する(ステップS101)。 In this embodiment, first, a plurality of test pieces are prepared for determining the relationship between the shape of the test piece and the stress triaxiality (step S101).

図2は、図1のステップS101において作成した試験片を示す概略平面図である。図2の(a)~(c)には、それぞれ試験片200、試験片204、および試験片208の板状形状の試験片を例示する。なお、試験片200、試験片204、および試験片208は本実施形態で作成した試験片の形状の一例であり、ステップS101で作成する試験片の形状は、これら試験片に何ら限定されるものではない。 FIG. 2 is a schematic plan view showing the test piece produced in step S101 of FIG. FIGS. 2(a) to 2(c) exemplify plate-shaped test pieces of the test piece 200, the test piece 204, and the test piece 208, respectively. Note that the test piece 200, the test piece 204, and the test piece 208 are examples of the shape of the test piece produced in this embodiment, and the shape of the test piece produced in step S101 is not limited to these test pieces. is not.

試験片200は、主平面201の中心を対称点とする点対称の位置関係に、先端が曲率φ1mmの半円である切り欠き部202および203が形成されており、切り欠き部202および203間の短辺方向の距離Wが3mm離れている。試験片204は、主平面205の中心を対称点とする点対称の位置関係に、先端が曲率φ2mmの半円である切り欠き部206および207が形成されており、切り欠き部206および207間の長辺方向の距離Hが3mm離れている。試験片208は、主平面209の中心を対称点とする点対称の位置関係に、先端が曲率φ3mmの半円である切り欠き部210および211が形成されており、切り欠き部210および211間の短辺方向の距離Wが3mm、長辺方向の距離Hが3mm離れている。なお、2つの切り欠き部の短辺方向の距離Wと長辺方向の距離Hは、いずれも2つの切り欠き部の半円の先端間の距離である。 The test piece 200 is formed with notches 202 and 203 whose tips are semicircles with a curvature of φ1 mm in a positional relationship of point symmetry with the center of the principal plane 201 as the point of symmetry. are separated by a distance W of 3 mm in the short side direction. The test piece 204 has cutouts 206 and 207 whose ends are semicircles with a curvature of φ2 mm in a positional relationship of point symmetry with the center of the principal plane 205 as the symmetrical point. are separated by a distance H in the long side direction of 3 mm. The test piece 208 has cutouts 210 and 211 whose ends are semicircles with a curvature of φ3 mm in a positional relationship of point symmetry with the center of the main plane 209 as the point of symmetry. The distance W in the short side direction is 3 mm, and the distance H in the long side direction is 3 mm. Both the distance W in the short side direction and the distance H in the long side direction of the two cutouts are the distances between the tips of the semicircles of the two cutouts.

切り欠き部の形状は、主平面の長辺から主平面の内側に延びる2本の平行線と、2本の平行線の先端をつなぐ曲率φの半円とから形成される。2本の平行線は、主平面の短辺に平行でなくともよいが、主平面の短辺に平行であると、試験片の形状と応力三軸度の関係を算出するうえで切り欠き部の位置関係を決定するパラメータを削減できるので好ましい。切り欠き部の位置関係は、試験片200のように板状形状の試験片の短辺方向にのみ離れていてもよく、試験片204のように板状形状の試験片の長辺方向にのみ離れていてもよく、試験片208のように板状形状の試験片の短辺および長辺方向に、それぞれWおよびHの距離だけ離れていてもよい。 The shape of the notch is formed by two parallel lines extending from the long side of the main plane to the inner side of the main plane, and a semicircle of curvature φ connecting the ends of the two parallel lines. The two parallel lines do not have to be parallel to the short sides of the principal planes, but if they are parallel to the short sides of the principal planes, the notch part is used to calculate the relationship between the shape of the test piece and the stress triaxiality. This is preferable because it reduces the number of parameters that determine the positional relationship between . The positional relationship of the notches may be separated only in the short side direction of the plate-shaped test piece like the test piece 200, or only in the long side direction of the plate-shaped test piece like the test piece 204. They may be separated, and may be separated by distances W and H in the short side and long side directions of a plate-shaped test piece like the test piece 208, respectively.

上記φ、W、およびHの範囲は特に限定されず、ステップS105における目的の応力三軸度が発生する試験片の形状を網羅できる試験片の形状が作成できればよい。試験片に用いる材料は限定されるものではないが、応力三軸度に対して材料特性が変化する材料が好ましい。例えば、ヤング率1000GPa以下のハイテン材(High Tensile Strength Steel)やヤング率500GPa以下の繊維強化樹脂は、発生する応力三軸度によって材料特性が変化するため、好ましく用いられる。 The ranges of φ, W, and H are not particularly limited as long as the shape of the test piece can cover the shape of the test piece that generates the desired stress triaxiality in step S105. The material used for the test piece is not limited, but a material whose material properties change with respect to stress triaxiality is preferred. For example, high tensile strength steel with a Young's modulus of 1000 GPa or less and fiber reinforced resin with a Young's modulus of 500 GPa or less are preferably used because the material properties change depending on the generated stress triaxiality.

続いて、試験片の形状と応力三軸度の関係を有限要素法で求めるためにFEM解析を行う(ステップS102)。学界や産業界などで幅広く活用されている、ANSYS社製シミュレーションソフトウェアLS-DYNA(ヴァージョン 971 R10.2.0)は、応力三軸度と破断ひずみの関係を自由に定義できるので、本実施形態ではこのソフトウェアを用いる。ただし、応力三軸度を考慮できる解析ソフトウェアおよび外部のプログラムがあれば、それをFEM解析として用いてもよい。 Subsequently, FEM analysis is performed to determine the relationship between the shape of the test piece and the stress triaxiality by the finite element method (step S102). ANSYS simulation software LS-DYNA (version 971 R10.2.0), which is widely used in academia and industry, can freely define the relationship between stress triaxiality and breaking strain, so this embodiment use this software. However, if there is analysis software and an external program that can consider stress triaxiality, it may be used as FEM analysis.

例えば、試験片200、204、および208の各々について、FEM解析の条件を以下のように設定する。引張試験速度は、材料物性にひずみ速度依存性が発現しうる限り、試験速度を限定しないほうが好ましい。例えば、対象とする材料の使用条件を想定した、準静的速度に相当するひずみ速度0.001/ms程度から衝撃速度に相当するひずみ速度1000/ms程度に相当する試験速度とする。雰囲気温度は、-150℃程度~200℃程度、好ましくは対象とする材料の使用環境を想定した-40℃程度~80℃程度とする。例えば、室温(23℃)とする。また、FEM解析を用いるかわりに、一軸引張試験機を用いて、引張試験を実施してもよい。 For example, for each of test pieces 200, 204, and 208, conditions for FEM analysis are set as follows. As for the tensile test speed, it is preferable not to limit the test speed as long as the strain rate dependence can be expressed in the physical properties of the material. For example, a test speed corresponding to a strain rate of about 0.001/ms, which corresponds to a quasi-static speed, to a strain rate of about 1000/ms, which corresponds to an impact speed, is set assuming the use conditions of the target material. The ambient temperature is about −150° C. to about 200° C., preferably about −40° C. to about 80° C. assuming the use environment of the target material. For example, room temperature (23° C.) is used. Also, instead of using FEM analysis, a uniaxial tensile tester may be used to perform the tensile test.

続いて、試験片の形状と応力三軸度の関係を求める(ステップS103)。なお、本実施形態では、一軸引張試験機を用いているために試験片に発生する応力三軸度は一軸引張試験機により発生するせん断変形(応力三軸度0.0)以上を想定する。 Subsequently, the relationship between the shape of the test piece and the stress triaxiality is obtained (step S103). In this embodiment, since the uniaxial tensile tester is used, the stress triaxiality generated in the test piece is assumed to be greater than or equal to the shear deformation (stress triaxiality 0.0) generated by the uniaxial tensile tester.

ステップS103では、試験片に発生する応力三軸度を算出する第1工程と、試験片の形状と応力三軸度の関係を算出する第2工程が存在する。 Step S103 includes a first step of calculating the stress triaxiality generated in the test piece and a second step of calculating the relationship between the shape of the test piece and the stress triaxiality.

第1工程では、各試験片について、ステップS102で行ったFEM解析、または一軸引張試験機により、応力三軸度を算出する。図3はFEM解析により行う引張試験シミュレーションを実施する場合の概略平面図である。試験片の応力三軸度は、例えば試験片300に破断箇所301が発生した時点での破断箇所301近傍に発生する平均の応力三軸度を代表的な応力三軸度として用いることができる。または、平均の応力三軸度に代わって、破断箇所301近傍に発生する最大の応力三軸度を用いてもよい。表1は、試験片200、試験片204および試験片208について、破断箇所近傍に発生する平均の応力三軸度の算出結果である。材料は東レ(株)製繊維強化樹脂(弾性率:2.7GPa、強度76GPa)、試験速度は0.005m/s、雰囲気温度は23℃である。 In the first step, the stress triaxiality is calculated for each test piece by the FEM analysis performed in step S102 or by the uniaxial tensile tester. FIG. 3 is a schematic plan view when performing a tensile test simulation by FEM analysis. For the stress triaxiality of the test piece, for example, the average stress triaxiality generated near the fractured portion 301 when the fractured portion 301 occurs in the test piece 300 can be used as a typical stress triaxiality. Alternatively, instead of the average stress triaxiality, the maximum stress triaxiality generated near the fracture location 301 may be used. Table 1 shows the calculation results of the average stress triaxiality occurring in the vicinity of the breaking point for the test piece 200, the test piece 204 and the test piece 208. The material is a fiber-reinforced resin manufactured by Toray Industries, Inc. (modulus of elasticity: 2.7 GPa, strength: 76 GPa), the test speed is 0.005 m/s, and the ambient temperature is 23°C.

Figure 2022130931000005
Figure 2022130931000005

なお、応力三軸度を算出する場合において、FEM解析を用いれば静水圧応力およびMises相当応力を容易に算出できる点で好ましい。また、デジタル画像相関法などを用いて実験で発生するひずみ場から静水圧応力およびMises相当応力を算出し、応力三軸度を算出してもよい。 When calculating the stress triaxiality, it is preferable to use the FEM analysis because the hydrostatic stress and the Mises equivalent stress can be easily calculated. Alternatively, the stress triaxiality may be calculated by calculating the hydrostatic stress and the Mises equivalent stress from the strain field generated in the experiment using a digital image correlation method or the like.

第2工程では、試験片形状と応力三軸度の関係を算出する。試験片に発生する応力三軸度分布は、切り欠き部の曲率φ、切り欠き先端間の長辺方向距離H、および切り欠き先端間の短辺方向距離Wに起因する。したがって、上記関係の算出方法は、例えばx軸に切り欠き先端間の短辺方向距離W、y軸に切り欠き先端間の長辺方向距離H、z軸に切り欠き部の曲率φをとり、応力三軸度の値を標高に見立てて等高線を表示することが好ましい。 In the second step, the relationship between the shape of the test piece and the stress triaxiality is calculated. The stress triaxiality distribution generated in the test piece is caused by the curvature φ of the notch portion, the long-side distance H between the notch tips, and the short-side distance W between the notch tips. Therefore, the method of calculating the above relationship is, for example, taking the short-side distance W between the notch tips on the x-axis, the long-side distance H between the notch tips on the y-axis, and the curvature φ of the notch on the z-axis, It is preferable to display contour lines by assuming the values of the stress triaxiality as altitudes.

上記関係の算出方法に代わって、例えば上記曲率またはいずれかの距離を固定するのであれば、x~z軸のいずれかのパラメータを固定し、固定したパラメータ以外に相当する軸を二次元に射影し、応力三軸度を等高線表示してもよい。 Instead of the above relationship calculation method, for example, if the above curvature or one of the distances is fixed, one of the parameters of the x to z axes is fixed, and the corresponding axis other than the fixed parameter is projected two-dimensionally. However, the stress triaxiality may be expressed by contour lines.

あるいは、直交座標系ではなく、円筒座標系を設定してもよい。図4は、試験片208における、切り欠き部の中心間距離をr、水平方向とのなす角度をθとする円筒座標系を設定した試験片の概略平面図である。例えば、試験片208の切り欠き部210の中心を原点400とした円筒座標系を設定し、切り欠き部211の中心までの距離をr、水平方向とのなす角度をθとし、応力三軸度を等高線表示してもよい。例えば、距離rおよび角度θは以下のように計算される。 Alternatively, a cylindrical coordinate system may be set instead of the orthogonal coordinate system. FIG. 4 is a schematic plan view of the test piece 208 in which a cylindrical coordinate system is set with r as the center-to-center distance of the cutout portions and θ as the angle formed with the horizontal direction. For example, a cylindrical coordinate system is set with the center of the notch 210 of the test piece 208 as the origin 400, the distance to the center of the notch 211 is r, the angle with the horizontal direction is θ, and the stress triaxiality may be contoured. For example, the distance r and angle θ are calculated as follows.

Figure 2022130931000006
Figure 2022130931000006

Figure 2022130931000007
Figure 2022130931000007

また、切り欠き部211の中心を原点とした円筒座標系を設定し、切り欠き部210の中心までの距離をr、水平方向とのなす角度をθとしてもよい。また、原点400は切り欠き部210または211の先端に設定してもよいし、水平方向とのなす角度は試験片の長辺方向とのなす角度でもよい。 Alternatively, a cylindrical coordinate system may be set with the center of the notch 211 as the origin, the distance to the center of the notch 210 may be r, and the angle to the horizontal direction may be θ. The origin 400 may be set at the tip of the notch 210 or 211, and the angle formed with the horizontal direction may be the angle formed with the long side direction of the test piece.

また、上記等高線表示にかわり、応力三軸度の数値の大きさに応じたコンター表示をしてもよい。 Further, instead of the contour line display, a contour display corresponding to the numerical value of the stress triaxiality may be used.

ステップS101~ステップS103までを繰り返し、試験片の形状と応力三軸度の関係が明らかになったかを判定する(ステップS104)。上記関係が明らかになったと判定される場合には、ステップS105に進む。上記関係が明らかになっていないと判定される場合には、ステップS101に戻って試験片の本数を増やすことが好ましい。例えば、全体的に各プロット間の応力三軸度の数値間隔が荒い場合、各プロット間の間隔を細かくできる試験片の形状を作成するように、試験片の本数を増やすことが好ましい。例えば、局所的に各プロット間の応力三軸度の数値間隔が荒い場合には、対象となるプロット間の間隔を細かくできる試験片の形状を作成するように、試験片の本数を増やすことが好ましい。 Steps S101 to S103 are repeated to determine whether the relationship between the shape of the test piece and the stress triaxiality has been clarified (step S104). If it is determined that the above relationship has been clarified, the process proceeds to step S105. If it is determined that the above relationship is not clarified, it is preferable to return to step S101 and increase the number of test pieces. For example, if the numerical spacing of the stress triaxiality between plots is generally coarse, it is preferable to increase the number of specimens so as to create a specimen shape that allows finer spacing between plots. For example, if the stress triaxiality numerical intervals between plots are locally coarse, the number of specimens can be increased so as to create a specimen shape that allows finer intervals between plots of interest. preferable.

本実施形態では、切り欠き部先端の半円の曲率φを1mmに固定し、切り欠き先端間の短辺方向距離Wを0mm~12mm、切り欠き先端間の長辺方向距離Wを0mm~12mmまでの範囲で計43ケースを実施し、それぞれの試験片の破断箇所近傍に発生する平均の応力三軸度を算出した。 In this embodiment, the curvature φ of the semicircle at the tip of the notch portion is fixed to 1 mm, the short side distance W between the notch tips is 0 mm to 12 mm, and the long side direction distance W between the notch tips is 0 mm to 12 mm. A total of 43 cases were carried out in the range up to, and the average stress triaxiality generated near the breaking point of each test piece was calculated.

図5に、切り欠き部先端の半円の曲率φを1mmに固定し、切り欠き先端間の短辺方向距離Wおよび切り欠き先端間の長辺方向距離Hに対して、応力三軸度を等高線表示したグラフを本実施形態の一例として、例示する。図5中の等高線に示す0.2~0.6は応力三軸度を示す。なお、本実施形態で作成した試験片の形状と応力三軸度の関係は実施の一例であり、試験片の形状と応力三軸度の関係を算出する方法および関係性を何ら限定するものではない。 In FIG. 5, the curvature φ of the semicircle at the tip of the notch is fixed to 1 mm, and the stress triaxiality is calculated with respect to the distance W between the tips of the notch in the short side direction and the distance H between the tips of the notch in the long side direction. A contour line-displayed graph will be exemplified as an example of the present embodiment. 0.2 to 0.6 indicated by contour lines in FIG. 5 indicate stress triaxiality. In addition, the relationship between the shape of the test piece prepared in this embodiment and the stress triaxiality is an example of implementation, and the method and relationship for calculating the relationship between the shape of the test piece and the stress triaxiality are not limited in any way. do not have.

図5の作成方法は、まずx軸に切り欠き先端間の短辺方向距離W、y軸に切り欠き先端間の長辺方向距離Hを取ったグラフを作成する。次に、上記グラフに対して、上記各43ケースの試験片の破断箇所近傍に発生した応力三軸度に基づいて、応力三軸度の等高線を作成する。応力三軸度の等高線を作成する際は、三次元データセット(切り欠き先端間の短辺方向距離W、切り欠き先端間の長辺方向距離H、および応力三軸度)から三次元補完によって容易に等高線を描写できる点からPythonによって記述されたスクリプトを用いた。等高線を描写できるプログラムがあれば、それを用いてもよい。 In the method of creating FIG. 5, first, a graph is created in which the x-axis is the short-side distance W between the notch tips and the y-axis is the long-side distance H between the notch tips. Next, based on the stress triaxiality generated in the vicinity of the rupture point of the test piece of each of the above 43 cases, contour lines of the stress triaxiality are created for the above graph. When creating contour lines of stress triaxiality, three-dimensional interpolation from a three-dimensional data set (short-side distance W between notch tips, long-side distance H between notch tips, and stress triaxiality) A script written in Python was used because it can easily draw contour lines. If you have a program that can draw contour lines, you can use it.

続いて、上記関係から試験片形状を決定する(ステップS105)。なお、上記相関関係をあらかじめ求めている場合には、ステップS101~S104を実施せずにステップS105から実施してもよい。 Subsequently, the test piece shape is determined from the above relationship (step S105). Note that if the correlation is obtained in advance, steps S101 to S104 may be skipped and steps S105 and onwards may be performed.

本実施形態では、図5を用いて、目的の応力三軸度を達成する試験片形状を決定する。なお、目的の応力三軸度を決定する試験片の形状の決定方法は、例えば以下の指針のように決定する。 In this embodiment, FIG. 5 is used to determine the shape of the test piece that achieves the desired stress triaxiality. The method for determining the shape of the test piece for determining the desired stress triaxiality is determined, for example, according to the guidelines below.

図6は、試験片200および試験片204に対してFEM解析を実施し、破断直前における試験片と試験片に発生する荷重方向を示す概略平面図である。図6(a)に示す試験片200のように同一軸上に切り欠き部が形成された場合、試験片中央600は切り欠き部202および203に沿った荷重方向601、荷重方向602、荷重方向603、および荷重方向604による二軸引張変形(応力三軸度0.67)を受ける。一方、図6(b)に示す試験片204のように同一軸上に切り欠き部が形成されない場合、試験片の中央605は試験片204の引張方向である荷重方向606および荷重方向607の一軸引張方向と、および切り欠き部206および207に沿った荷重方向608および荷重方向609のせん断方向の変形を受け、一軸引張変形(応力三軸度1/3)とせん断変形(応力三軸度0.0)が混在した変形を受ける。上述より、目的の応力三軸度が二軸引張方向に近い場合、同一軸上に切り欠き部が形成される試験片の形状を用いればよい。また、目的の応力三軸度がせん断変形に近い場合、同一軸上に切り欠き部が形成されない試験片の形状を用いればよい。 FIG. 6 is a schematic plan view showing the test piece 200 and the test piece 204 subjected to FEM analysis and showing the direction of the load generated in the test piece and the test piece immediately before fracture. When notches are formed on the same axis as in the test piece 200 shown in FIG. 603, and a biaxial tensile deformation (stress triaxiality 0.67) with loading direction 604. On the other hand, when notches are not formed on the same axis as in the test piece 204 shown in FIG. Uniaxial tensile deformation (stress triaxiality 1/3) and shear deformation (stress triaxiality 0 .0) undergoes mixed deformation. From the above, when the target stress triaxiality is close to the biaxial tensile direction, it is sufficient to use a test piece shape in which notches are formed on the same axis. Also, when the desired stress triaxiality is close to shear deformation, a shape of the test piece in which notches are not formed on the same axis may be used.

図7は、図5の関係から作成した、(a)目的の応力三軸度0.5を達成する試験片形状、および(b)目的の応力三軸度0.2を達成する試験片形状の概略平面図である。例えば、目的の応力三軸度が0.5の場合、応力三軸度0.5は二軸引張変形(応力三軸度0.67)に近いので同一軸上に切り欠き部が形成された試験片の形状を作成する。図5に着目すると、同一軸上に切り欠き部が形成された試験片の形状の場合、切り欠き部先端の半円の曲率φに1mm、切り欠き先端間の短辺方向距離Wに10.5mm、切り欠き先端間の長辺方向距離Hに0mmを選べばよい。図7(a)に試験片の形状を例示する。 FIG. 7 shows (a) a test piece shape that achieves the target stress triaxiality of 0.5, and (b) a test piece shape that achieves the target stress triaxiality of 0.2, created from the relationship in FIG. is a schematic plan view of the. For example, when the target stress triaxiality is 0.5, the notch is formed on the same axis because the stress triaxiality of 0.5 is close to the biaxial tensile deformation (stress triaxiality of 0.67). Create the shape of the specimen. Focusing on FIG. 5, in the case of the shape of the test piece in which the notch is formed on the same axis, the curvature φ of the semicircle at the tip of the notch is 1 mm, and the distance W between the tips of the notch in the short side direction is 10.5 mm. 5 mm and 0 mm may be selected for the long-side distance H between the tips of the cutouts. FIG. 7(a) illustrates the shape of the test piece.

例えば、目的の応力三軸度が0.2の場合、応力三軸度0.2はせん断変形(応力三軸度0.0)に近いので、切り欠き先端間の長辺方向距離Hを重視して決定すればよい。図5に着目すると、切り欠き部の曲率φに1mm、切り欠き先端間の短辺方向距離Wに0mm、切り欠き先端間の長辺方向距離Hに3mmを選べばよい。図7(b)に試験片の形状を例示する。 For example, when the target stress triaxiality is 0.2, stress triaxiality 0.2 is close to shear deformation (stress triaxiality 0.0), so the long side distance H between the notch tips is emphasized. can be determined by Focusing on FIG. 5, it is sufficient to select 1 mm for the curvature φ of the notch portion, 0 mm for the distance W between the tips of the notch in the short side direction, and 3 mm for the distance H between the tips of the notch in the long side direction. FIG. 7(b) illustrates the shape of the test piece.

目標の応力三軸度と上記の決定方法により得られた試験形状に対して、FEM解析を実施し、得られた応力三軸度を比較した結果を表2に示す。表2に示すように、目標の応力三軸度とFEM解析により得られた応力三軸度はほぼ一致した。以上より、本実施形態によって得られる試験片形状の決定方法は十分に正確であることが確認された。 Table 2 shows the results of comparing the stress triaxiality obtained by performing FEM analysis on the target stress triaxiality and the test shape obtained by the determination method described above. As shown in Table 2, the target stress triaxiality and the stress triaxiality obtained by the FEM analysis substantially matched. From the above, it was confirmed that the test piece shape determination method obtained by this embodiment is sufficiently accurate.

Figure 2022130931000008
Figure 2022130931000008

以上説明したように、本実施形態によれば、任意の応力三軸度の変形を一軸引張試験機で行える板材の形状の特定方法を正確に特定することが可能になる。 As described above, according to the present embodiment, it is possible to accurately specify a method for specifying the shape of a plate that can perform arbitrary stress triaxial deformation with a uniaxial tensile tester.

続いて、各試験片について、応力三軸度と破断相当時における材料特性の関係を求める(ステップS106)。 Subsequently, for each test piece, the relationship between the stress triaxiality and the material properties at the time of fracture is determined (step S106).

本実施形態における破断相当時における評価項目は、破断相当時までの荷重―変位線図、破断ひずみ、破断応力、またはエネルギ吸収率である。破断相当時までの荷重―変位線図は、試験片に破断が発生するまでに得られる荷重―変位線図である。破断ひずみは、試験片の破断発生箇所におけるひずみ(%)である。破断応力は、試験片の破断発生箇所における応力である。エネルギ吸収率は、試験片が破断するまでに試験片が吸収するエネルギ(N・m)である。 Evaluation items at the time equivalent to breakage in this embodiment are the load-displacement diagram up to the time equivalent to breakage, breaking strain, breaking stress, or energy absorption rate. The load-displacement diagram up to the time corresponding to breakage is a load-displacement diagram obtained until the test piece breaks. The breaking strain is the strain (%) at the breaking point of the test piece. The breaking stress is the stress at the breaking point of the test piece. The energy absorption rate is the energy (N·m) absorbed by the test piece before it breaks.

具体例として、A材(東レ(株)製非強化樹脂材料(弾性率:1.8GPa、強度107GPa))、B材(東レ(株)製繊維強化樹脂材料(弾性率:2.7GPa、強度76GPa))、およびC材(東レ(株)製繊維強化樹脂材料(弾性率:9.0GPa、強度120GPa))のそれぞれの材料について、図2(a)~(c)に示す試験片200、204、および208を用いた場合を例示する。図8は、A~C材のそれぞれの材料について、試験片200204および208に対してFEM解析により引張試験シミュレーションを行い、各応力三軸度ごとに(a)破断ひずみ、(b)破断応力および(c)エネルギ吸収率を算出したグラフである。 As specific examples, material A (non-reinforced resin material manufactured by Toray Industries, Inc. (modulus of elasticity: 1.8 GPa, strength 107 GPa)), material B (fiber-reinforced resin material manufactured by Toray Industries, Inc. (modulus of elasticity: 2.7 GPa, strength 76 GPa)) and C material (fiber reinforced resin material manufactured by Toray Industries, Inc. (elastic modulus: 9.0 GPa, strength: 120 GPa)), the test pieces 200 shown in FIGS. A case where 204 and 208 are used is illustrated. FIG. 8 shows that for each material of A to C, tensile test simulation is performed by FEM analysis on test pieces 200204 and 208, and (a) breaking strain, (b) breaking stress and (c) It is the graph which calculated the energy absorption rate.

以上説明したように、本実施形態によれば、任意の応力三軸度の変形を一軸引張試験機で行える板材の形状の特定方法を用いることで、応力三軸度と破断相当時における材料物性との関係を容易に求めることができる。 As described above, according to the present embodiment, by using a method for specifying the shape of a plate material that can deform with arbitrary stress triaxiality with a uniaxial tensile tester, the physical properties of the material at the time of stress triaxiality and fracture relationship can be easily obtained.

本発明の板材の形状を特定する方法、材料特性評価方法および試験片は、車両設計、構造設計、性能評価などあらゆるシミュレーションにおいて発生する複雑な応力三軸度場すべてを網羅する試験片の形状を正確に特定かつ目標の応力三軸度を達成する試験片を提供でき、応力三軸度と材料特性の関係を評価できる。 The method for specifying the shape of the plate material, the method for evaluating the material properties, and the test piece of the present invention provide the shape of the test piece that covers all the complex stress triaxiality fields that occur in all simulations such as vehicle design, structural design, and performance evaluation. Specimens can be provided that achieve precisely specified and targeted stress triaxiality, and the relationship between stress triaxiality and material properties can be evaluated.

200 試験片
201 主平面
202 切り欠き部
203 切り欠き部
204 試験片
205 主平面
206 切り欠き部
207 切り欠き部
208 試験片
209 主平面
210 切り欠き部
211 切り欠き部
300 FEM解析により行う引張試験シミュレーションを実施する場合の概略平面図
301 破断箇所
400 円筒座標系における原点
600 試験片200の中央
601 荷重方向
602 荷重方向
603 荷重方向
604 荷重方向
605 試験片204の中央
606 荷重方向
607 荷重方向
608 荷重方向
609 荷重方向
700 試験片
701 試験片
200 Test piece 201 Principal plane 202 Notch 203 Notch 204 Test piece 205 Principal plane 206 Notch 207 Notch 208 Test piece 209 Principal plane 210 Notch 211 Notch 300 Tensile test simulation performed by FEM analysis Schematic plan view when performing 301 Breaking point 400 Origin 600 in cylindrical coordinate system Center 601 of test piece 200 Load direction 602 Load direction 603 Load direction 604 Load direction 605 Test piece 204 center 606 Load direction 607 Load direction 608 Load direction 609 Load direction 700 Test piece 701 Test piece

Claims (11)

任意の応力三軸度の変形を一軸引張試験機で行える板材の形状を特定する方法であって、
単一の材料からなる板材であって、
主平面が長方形であり、主平面の2つの長辺のそれぞれに1箇所ずつ、主平面の中心を対称点とする点対称の位置関係にある切り欠き部が形成され、
前記切り欠き部が、前記主平面の長辺から主平面の内側に延びる2本の平行線と、2本の平行線の先端をつなぐ曲率φの半円とからなる形状であり、
前記2つの切り欠き部の前記半円の先端間距離が、前記主平面の長辺方向にH、短辺方向にWである、板材を用い、
前記φ、HおよびWが複数の組み合わせの前記板材を、それぞれの2つの短辺を一軸引張試験機で引っ張ったときの変形の応力三軸度を求めて、φ、HおよびWと応力三軸度との関係をあらかじめ求めておき、
一軸引張試験機で引っ張ったときの応力三軸度が任意の値となる前記切り欠き部の形状および位置を、前記φ、HおよびWと応力三軸度との関係から特定する、
板材形状の特定方法。
A method for specifying the shape of a plate that can be deformed with an arbitrary stress triaxiality with a uniaxial tensile tester,
A plate made of a single material,
The principal plane is rectangular, and one notch is formed on each of the two long sides of the principal plane and has a point-symmetrical positional relationship with the center of the principal plane as a symmetrical point,
The cutout portion has a shape consisting of two parallel lines extending from the long side of the main plane to the inside of the main plane and a semicircle with a curvature φ connecting the tips of the two parallel lines,
Using a plate material in which the distance between the tips of the semicircles of the two notches is H in the long side direction of the main plane and W in the short side direction,
The stress triaxiality of deformation is obtained when the two short sides of each of the plate materials with a plurality of combinations of φ, H and W are pulled with a uniaxial tensile tester, and φ, H and W and the stress triaxial The relationship between
The shape and position of the notch at which the stress triaxiality when pulled by a uniaxial tensile tester is an arbitrary value is specified from the relationship between the φ, H and W and the stress triaxiality.
How to identify plate shape.
前記切り欠き部の2本の平行線が前記主平面の短辺方向に平行である、請求項1の板材形状の特定方法。 2. The method of specifying a plate material shape according to claim 1, wherein two parallel lines of said notch are parallel to the direction of the short side of said main plane. 前記応力三軸度が0以上である、請求項1または2の板材形状の特定方法。 3. The method of specifying a plate shape according to claim 1, wherein said stress triaxiality is 0 or more. 前記φ、HおよびWと応力三軸度との関係を、有限要素法を用いて求める、請求項1~3のいずれかの板材形状の特定方法。 4. The method for specifying a plate shape according to any one of claims 1 to 3, wherein the relationship between said φ, H and W and the stress triaxiality is determined using the finite element method. 前記HおよびWが0より大きい、請求項1~4のいずれかの板材形状の特定方法。 5. The method of specifying a plate material shape according to any one of claims 1 to 4, wherein said H and W are greater than 0. 請求項1~5のいずれかの板材形状の特定方法を利用した一軸引張軸試験機による材料特性評価方法であって、
一軸引張試験機で引っ張ったときの応力三軸度が任意の値となる板材の形状を、前記板材形状の特定方法から特定し、
特性を評価したい材料からなり前記特定された形状の板材を一軸引張試験機で引っ張り、破断相当時における材料物性を求め、
複数の応力三軸度について前記操作を繰り返して、応力三軸度と材料物性との関係を求める、
材料特性評価方法。
A material property evaluation method using a uniaxial tensile axial tester using the plate shape specification method according to any one of claims 1 to 5,
Identify the shape of the plate material that gives an arbitrary value of stress triaxiality when pulled by a uniaxial tensile tester from the method for identifying the plate shape,
A plate made of a material whose properties are to be evaluated and having the specified shape is pulled with a uniaxial tensile tester to obtain the physical properties of the material at the time of breakage,
Repeating the above operation for a plurality of stress triaxialities to determine the relationship between stress triaxiality and material properties;
Material characterization methods.
前記特性を評価したい材料のヤング率が1000GPa以下である、請求項6の材料特性評価方法。 7. The method of evaluating material properties according to claim 6, wherein the material whose properties are to be evaluated has a Young's modulus of 1000 GPa or less. 前記特性を評価したい材料が樹脂材料である、請求項6または7の材料特性評価方法。 8. The material property evaluation method according to claim 6, wherein said material whose property is to be evaluated is a resin material. 前記樹脂材料のヤング率が500GPa以下である、請求項8の材料特性評価方法。 9. The material property evaluation method according to claim 8, wherein the Young's modulus of said resin material is 500 GPa or less. 前記材料物性が、破断相当時までの荷重―変位線図、破断ひずみ、破断応力、またはエネルギ吸収率である、請求項6~9のいずれかの材料特性評価方法。 10. The material property evaluation method according to any one of claims 6 to 9, wherein said material property is a load-displacement diagram up to the time equivalent to breakage, breaking strain, breaking stress, or energy absorption rate. 一軸引張軸試験機による材料特性評価に使用される板材の試験片であって、
特性を評価したい材料からなり、
一軸引張試験機で引っ張ったときの応力三軸度が評価したい値となる形状であり、
前記形状が、請求項1~5のいずれかの板材形状の特定方法で特定された、
試験片。
A test piece of a plate material used for material property evaluation by a uniaxial tensile axial tester,
It consists of a material whose properties you want to evaluate,
The shape is such that the stress triaxiality when pulled by a uniaxial tensile tester is the value you want to evaluate,
The shape is specified by the plate shape specifying method according to any one of claims 1 to 5,
Test pieces.
JP2021029593A 2021-02-26 2021-02-26 Method for identifying plate shape, method for evaluating material characteristics, and test piece Pending JP2022130931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021029593A JP2022130931A (en) 2021-02-26 2021-02-26 Method for identifying plate shape, method for evaluating material characteristics, and test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021029593A JP2022130931A (en) 2021-02-26 2021-02-26 Method for identifying plate shape, method for evaluating material characteristics, and test piece

Publications (1)

Publication Number Publication Date
JP2022130931A true JP2022130931A (en) 2022-09-07

Family

ID=83153082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021029593A Pending JP2022130931A (en) 2021-02-26 2021-02-26 Method for identifying plate shape, method for evaluating material characteristics, and test piece

Country Status (1)

Country Link
JP (1) JP2022130931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115266387A (en) * 2022-09-27 2022-11-01 太原理工大学 Mechanics experiment method and device for realizing negative stress triaxial degree through isostatic loading

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115266387A (en) * 2022-09-27 2022-11-01 太原理工大学 Mechanics experiment method and device for realizing negative stress triaxial degree through isostatic loading

Similar Documents

Publication Publication Date Title
Peirs et al. Novel technique for static and dynamic shear testing of Ti6Al4V sheet
US8990028B2 (en) Fracture prediction method, device, a program arrangement and computer-accessible medium therefor
US20160161382A1 (en) Metal sheet bending fracture determination method and recording medium
JP7479727B2 (en) Method and system for predicting multiaxial fatigue life of metallic materials based on virtual strain energy
CN109063287B (en) Design method of crack propagation characteristic simulation piece of center hole of centrifugal impeller
RU2694312C1 (en) Method and device for fracture prediction
JP2022130931A (en) Method for identifying plate shape, method for evaluating material characteristics, and test piece
CN116542095A (en) Method for acquiring turbine blade life assessment model and life assessment method
Jorge et al. On the digital image correlation technique
CN112857992B (en) Simulation calibration method for mechanical properties of carbon fiber material
Moreno et al. In-plane shear failure properties of a chopped glass-reinforced polyester by means of traction–compression biaxial testing
Haluza et al. Shear strain measurement techniques in composite V-notch shear testing
Belova et al. Computational and experimental identification of coefficients of the Williams series expansion by considering higher order terms in the cracked specimens through digital image analysis
JP2024082720A (en) Materials characterization and analysis methods
CN110008560B (en) Blade dynamic stress measuring point determining method
Carpentier et al. An improved short-beam method for measuring multiple constitutive properties for composites
JP2023065041A (en) Stress extension coefficient estimation method and fatigue strength estimation method
JP2022110394A (en) Method, apparatus and program for analyzing structure
Berković Numerical methods in fracture mechanics
JP2004101228A (en) Work hardening data acquiring method
Tomilin et al. Frequency dependence of the internal friction of the amg6 alloy
Kwon et al. Strain rate dependent failure criteria for fibrous composites using multiscale approach
Skliarov et al. Application of the FEM for modeling and prediction of the relationship between the hardness and stress of the deformed body
Pereira et al. The effect of mass scaling and speed increase in explicit dynamic simulations using tensile test
Hopmann et al. Tensile impact testing on polymer materials considering the force-oscillation phenomenon