JP2022126379A - Surface-coated cutter - Google Patents

Surface-coated cutter Download PDF

Info

Publication number
JP2022126379A
JP2022126379A JP2021024413A JP2021024413A JP2022126379A JP 2022126379 A JP2022126379 A JP 2022126379A JP 2021024413 A JP2021024413 A JP 2021024413A JP 2021024413 A JP2021024413 A JP 2021024413A JP 2022126379 A JP2022126379 A JP 2022126379A
Authority
JP
Japan
Prior art keywords
layer
tool
coating layer
coated
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021024413A
Other languages
Japanese (ja)
Inventor
英利 淺沼
Hidetoshi Asanuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021024413A priority Critical patent/JP2022126379A/en
Publication of JP2022126379A publication Critical patent/JP2022126379A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a coated tool that can be used in high-speed and high-efficiency cutting of hard-to-cut materials such as a Ti-based alloy and has its coating layer to exhibit sufficient heat resistance even in such treatment, demonstrating a long life.SOLUTION: A surface-coated cutter includes a tool substrate and a coating layer on the surface of the tool substrate. The coating layer includes a composite boride layer of Ti and lanthanoid with its average layer thickness of 0.5-10.0 μm. With the average composition of the composite boride layer expressed by the formula: Ti1-zLzBx (L is one or more lanthanoid elements), the atomic ratio z is 0.01-0.20 and x is 1.0-3.5.SELECTED DRAWING: Figure 1

Description

本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 TECHNICAL FIELD The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).

従来から、被覆工具としては、例えば、炭化タングステン(以下、WCで表す)基超硬合金等の工具基体に被覆層を形成したものが知られている。
そして、この被覆層の組成を調整することによって、より高硬度の被覆層を得る提案がなされている
2. Description of the Related Art Conventionally, as a coated tool, for example, a tool base made of a tungsten carbide (hereinafter referred to as WC)-based cemented carbide or the like with a coating layer formed thereon has been known.
A proposal has been made to obtain a coating layer with a higher hardness by adjusting the composition of this coating layer.

例えば、特許文献1には、工具基体の表面にAl、Si、Cr、W、Ti、Nb、Zrから選択される1種または2種以上の金属元素からなる硼化物皮膜を被覆し、該硼化物皮膜は六方晶構造を有し、X線回折において011回折線が最強硬度を有し、残留圧縮応力が0.1GPa以上である被覆工具が記載され、該被覆工具は密着性に優れ高硬度の皮膜を有するため長寿命であるとされている。 For example, in Patent Document 1, the surface of a tool substrate is coated with a boride film made of one or more metal elements selected from Al, Si, Cr, W, Ti, Nb, and Zr, and the boride The compound coating has a hexagonal crystal structure, the 011 diffraction line in X-ray diffraction has the strongest hardness, and a coated tool having a residual compressive stress of 0.1 GPa or more is described, and the coated tool has excellent adhesion and high hardness. It is said to have a long life because it has a coating of

特開2008-238281号公報JP 2008-238281 A

硼化物皮膜を被覆層として有する被覆工具は、例えば、前記特許文献1に記載されているように、同被覆層が密着性に優れ高硬度であるため、優れた切削性能を有するが、本発明者の検討によれば、Ti基合金等の難削材の高速高能率切削加工に供すると、耐熱性が不足することが判明した。 A coated tool having a boride film as a coating layer, for example, as described in Patent Document 1, has excellent cutting performance because the coating layer has excellent adhesion and high hardness. According to the inventors' studies, it was found that the heat resistance was insufficient when used for high-speed, high-efficiency cutting of difficult-to-cut materials such as Ti-based alloys.

本発明は、Ti基合金等の難削材の高速高能率切削加工に供しても、被覆層が十分な耐熱性を有し、長寿命の被覆工具を得ることを目的とする。ここで、高速高能率切削加工とは、通常の切削加工に比して、切削加工速度が30%以上速く、かつ、30%以上切削量が多い切削加工をいう。 An object of the present invention is to provide a long-life coated tool with a coating layer having sufficient heat resistance even when subjected to high-speed, high-efficiency cutting of difficult-to-cut materials such as Ti-based alloys. Here, high-speed, high-efficiency cutting refers to cutting in which the cutting speed is 30% or more and the amount of cutting is 30% or more as compared to ordinary cutting.

本発明者は、前記目的を達成する被覆工具を得るべく鋭意検討を行った。その結果、Tiの他にランタノイド(以下、ランタノイドをLで表記することがある)を1種または2種以上含む複合硼化物を被覆層に含むと、Ti基合金等の難削材の高速高能率切削に供しても、被覆層が十分な耐熱性を有し、長寿命の被覆工具となるとの新規な知見を得た。 The inventor of the present invention has made intensive studies to obtain a coated tool that achieves the above object. As a result, if the coating layer contains a composite boride containing one or two or more lanthanoids (hereinafter, lanthanoids may be abbreviated as L) in addition to Ti, the high-speed, high-speed machining of difficult-to-cut materials such as Ti-based alloys can be achieved. A new knowledge was obtained that the coating layer has sufficient heat resistance even when subjected to efficient cutting, and that the coated tool has a long life.

本発明は、この知見に基づくものであって、次のとおりのものである。
「工具基体と該工具基体表面に被覆層を有する表面被覆切削工具であって、
前記被覆層は、その平均層厚が0.5~10.0μmであるTiとランタノイドとの複合硼化物層を含み、該複合硼化物層の平均組成を組成式:Ti1-zx(Lはランタノイドの1種または2種以上)で表したとき、原子比zが0.01~0.20で、xが1.0~3.5を満足する、
ことを特徴とする表面被覆切削工具。」
The present invention is based on this finding and is as follows.
"A surface-coated cutting tool having a tool substrate and a coating layer on the surface of the tool substrate,
The coating layer includes a composite boride layer of Ti and lanthanide having an average layer thickness of 0.5 to 10.0 μm, and the average composition of the composite boride layer is represented by the composition formula: Ti 1-z L z B When represented by x (L is one or more lanthanoids), the atomic ratio z is 0.01 to 0.20 and x satisfies 1.0 to 3.5.
A surface-coated cutting tool characterized by: ”

前記によれば、Ti基合金等の難削材の高速高能率切削加工に供しても、優れた耐摩耗性、耐欠損性を発揮する。 According to the above, excellent wear resistance and chipping resistance are exhibited even when subjected to high-speed, high-efficiency cutting of difficult-to-cut materials such as Ti-based alloys.

本発明の表面被覆切削工具における被覆層の縦断面の模式図である。It is a schematic diagram of the longitudinal section of the coating layer in the surface-coated cutting tool of the present invention.

以下では、本発明の実施形態に係る被覆工具について、より詳細に説明する。なお、本明細書、特許請求の範囲の記載において、数値範囲を「A~B」を用いて表現する場合、その範囲は上限(B)および下限(A)の数値を含むものである。また、上限(B)および下限(B)は同じ単位である。 Below, the coated tool which concerns on embodiment of this invention is demonstrated in detail. In addition, in the description of the present specification and claims, when a numerical range is expressed using "A to B", the range includes the numerical values of the upper limit (B) and the lower limit (A). Also, the upper limit (B) and the lower limit (B) are in the same unit.

本発明の実施形態に係る被覆工具の被覆層の層構造は図1に模式的に示すとおりであり、工具基体(1)上にTiとランタノイドとの複合硼化物層(3)を有し、該硼化物層(3)と前記工具基体(1)との間には下部層(2)を、前記硼化物層の上部に上部層(4)を設けてもよい。 The layer structure of the coating layer of the coated tool according to the embodiment of the present invention is as schematically shown in FIG. A lower layer (2) may be provided between the boride layer (3) and the tool substrate (1), and an upper layer (4) may be provided on top of the boride layer.

1.被覆層
以下、被覆層について説明する。
1. Coating Layer The coating layer will be described below.

(1)被覆層の構成
本実施形態に係る被覆工具における被覆層は、TiとLとの複合硼化物層を有し、選択的に(必要に応じて)、その下部に下部層を、その上部に上部層を有してもよい。
(1) Structure of coating layer The coating layer in the coated tool according to the present embodiment has a composite boride layer of Ti and L, and optionally (if necessary) a lower layer below it. It may have an upper layer on top.

(1-1)TiとLとの複合硼化物層
TiとLとの複合硼化物層の平均組成は、組成式:Ti1-z(Lはランタノイドの1種または2種以上)で表したとき、zが0.01~0.20であり、xが1.0~3.5であることが好ましい。
(1-1) Composite boride layer of Ti and L The average composition of the composite boride layer of Ti and L is the composition formula: Ti 1-z L z B x (L is one or more lanthanoids ), z is preferably 0.01 to 0.20 and x is preferably 1.0 to 3.5.

zの前記範囲が好ましい理由は、0.01未満であるとLがもたらす耐熱性向上や機械的物性の向上を得ることできず、一方、0.20を超えると複合硼化物層の硬さや靭性が低下し、チッピング、欠損を発生しやすくなるためである。
xの前記範囲が好ましい理由は、1.0未満になると複合硼化物相の耐溶着性の向上を十分に発揮できず、一方、3.5を超えると複合硼化物相の硬さが低下して早期に摩耗が進みやすくなるためである。
The reason why the above range of z is preferable is that if it is less than 0.01, the improvement in heat resistance and mechanical properties brought about by L cannot be obtained, while if it exceeds 0.20, the hardness and toughness of the composite boride layer This is because chipping and breakage tend to occur.
The reason why the above range of x is preferable is that if it is less than 1.0, the improvement in the adhesion resistance of the composite boride phase cannot be sufficiently exhibited, while if it exceeds 3.5, the hardness of the composite boride phase decreases. This is because the wear tends to progress at an early stage.

(1-2)平均膜厚
TiとLとの複合硼化物層の平均層厚は、0.5~10.0μmであることが好ましい。その理由は、0.5μm未満であると、複合硼化物層が長期の使用にわたって優れた耐摩耗性を発揮することができず、一方、10.0μmを超えると、複合硼化物層の結晶粒が粗大化しやすくなり、耐チッピング性の向上が得られなくなるからである。平均層厚は、0.8~8.0μmがより好ましい。
(1-2) Average Thickness The average layer thickness of the composite boride layer of Ti and L is preferably 0.5 to 10.0 μm. The reason for this is that if it is less than 0.5 μm, the composite boride layer cannot exhibit excellent wear resistance over a long period of use, while if it exceeds 10.0 μm, the crystal grains of the composite boride layer This is because the particles tend to coarsen, and the chipping resistance cannot be improved. More preferably, the average layer thickness is 0.8 to 8.0 μm.

(2-1)下部層
工具基体とTiとLとの複合硼化物層との間に、下部層を設けてもよい。
下部層は、0.1~20.0μmの合計平均層厚となるように、Tiまたは、TiAlの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上を選択する。この下部層を設けた場合には、下部層を構成する層のもたらす働きと相俟って、被覆工具が一層優れた耐摩耗性および耐チッピング性を発揮することができる。
(2-1) Lower Layer A lower layer may be provided between the tool substrate and the composite boride layer of Ti and L.
The lower layer is a Ti or TiAl carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer so that the total average layer thickness is 0.1 to 20.0 μm. Choose one or more layers. When this lower layer is provided, the coated tool can exhibit even more excellent wear resistance and chipping resistance in conjunction with the functions provided by the layers constituting the lower layer.

ここで、下部層の合計平均層厚を前記範囲とする理由は、0.1μm未満では、下部層の働きが十分に奏されず、一方、20.0μmを超えると下部層の結晶粒が粗大化しやすくなり、被覆層にチッピングを発生しやすくなるためである。 Here, the reason why the total average layer thickness of the lower layer is set in the above range is that when the thickness is less than 0.1 μm, the lower layer does not work sufficiently, while when it exceeds 20.0 μm, the crystal grains of the lower layer become coarse. The reason for this is that the coating layer is likely to be chipped.

(2-2)上部層
上部層として、1.0~25.0μmの平均層厚の酸化アルミニウム層を設けてもよい。上部層を設けると、一層優れた耐摩耗性および熱的安定性を発揮する被覆工具を得ることができる。
(2-2) Upper Layer As the upper layer, an aluminum oxide layer having an average layer thickness of 1.0 to 25.0 μm may be provided. The provision of a top layer results in a coated tool with better wear resistance and thermal stability.

ここで、酸化アルミニウム層の平均層厚を前記範囲とする理由は、1.0μm未満では、上部層の働きが十分になされず、一方、25.0μmを超えると上部層の結晶粒が粗大化しやすくなり、被覆層にチッピングを発生しやすくなるためである。 Here, the reason why the average layer thickness of the aluminum oxide layer is within the above range is that if the thickness is less than 1.0 μm, the upper layer does not work sufficiently, while if it exceeds 25.0 μm, the crystal grains of the upper layer become coarse. This is because it becomes easy to cause chipping in the coating layer.

また、上部層としてTiN層を設けてもよい。このTiN層を設けた場合には、TiN層自体が黄金色の色調を有することから、例えば、被覆工具が未使用であるか使用済であるかを色調変化によって、判別することができる識別層として活用することができる。なお、この識別層としてのTiN層の平均層厚は、例えば、0.1~1.0μmでよい。 Also, a TiN layer may be provided as an upper layer. When this TiN layer is provided, since the TiN layer itself has a golden color tone, for example, whether the coated tool is unused or used can be determined by the change in color tone. Identification layer can be utilized as The average layer thickness of the TiN layer as the identification layer may be, for example, 0.1 to 1.0 μm.

2.平均層厚の測定方法
本実施形態において、被覆層を構成する各層の平均層厚については、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)に付属するエネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy:EDS)を用いた縦断面(インサートのとき、工具基体表面の微少な凹凸を無視し平坦な面として扱ったとき、この面に垂直な断面。ドリルのような軸物工具のときは軸に垂直な断面)の観察により求めることができる。
2. Method for measuring average layer thickness In the present embodiment, the average layer thickness of each layer constituting the coating layer is measured using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). A longitudinal section using energy dispersive X-ray spectroscopy (EDS) (when inserting, when treating as a flat surface ignoring minute irregularities on the tool base surface, perpendicular to this surface It can be obtained by observing a cross section (a cross section perpendicular to the shaft in the case of a shaft tool such as a drill).

ここで、工具基体の表面は、縦断面を観察して、工具基体とTiとLとの複合硼化物層(下部層が設けられているときは下部層)との界面を、元素マッピングにより定め、こうして得られた界面の粗さ曲線について、平均線を算術的にもとめ、これを工具基体の表面とする。 Here, the surface of the tool substrate is observed in longitudinal section, and the interface between the tool substrate and the composite boride layer of Ti and L (the lower layer when the lower layer is provided) is determined by elemental mapping. Arithmetically find the mean line of the interface roughness curve thus obtained, and use this as the surface of the tool substrate.

3.工具基体
(1)材質
本実施形態に使用する工具基体は、従来公知の工具基体の材質であれば、前述の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例をあげるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
3. Tool Substrate (1) Material The tool substrate used in the present embodiment can be any material as long as it is a conventionally known tool substrate material, as long as it does not hinder the achievement of the above-mentioned object. For example, cemented carbide (WC-based cemented carbide, containing Co in addition to WC, and further containing carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc. as a main component, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body is preferable. .

(2)形状
工具基体の形状は、切削工具として用いられる形状であれば特段の制約はなく、インサートの形状、ドリルの形状が例示できる。
(2) Shape The shape of the tool base is not particularly limited as long as it is a shape used as a cutting tool, examples of which include the shape of an insert and the shape of a drill.

4.製造方法
本実施形態の被覆工具の被覆層は、例えば、PVDの一種である高出力パルススパッタリングの蒸着源を持つ成膜装置を用いて製造することができる。また、そのターゲットとして、下部層であるTiN層を設けるときはTi、または、TiAlターゲットを、TiとLとの複合硼化物層はTi(1-z)ターゲットを、上部層として酸化アルミニウム層を設けるときはAlターゲットを、それぞれ用いることにより成膜することができる
4. Manufacturing Method The coating layer of the coated tool of the present embodiment can be manufactured, for example, using a film forming apparatus having a vapor deposition source for high-power pulse sputtering, which is a type of PVD. In addition, as the target, when providing the TiN layer which is the lower layer, a Ti or TiAl target is used, and when a composite boride layer of Ti and L is provided, a Ti (1-z) L z B x target is used as the upper layer. When providing an aluminum oxide layer, it is possible to form a film by using an Al target, respectively

次に、実施例について説明する。
ここでは、本発明の被覆工具の実施例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体は前述の材質のものが使用でき、また、前述のとおり工具基体の形状としてドリル、エンドミル等に適用した場合も同様である。
Next, examples will be described.
Here, as an example of the coated tool of the present invention, an insert cutting tool using a WC-based cemented carbide as a tool substrate will be described. The same applies to drills, end mills, etc. as the shape of the tool base as described above.

まず、原料粉末として、Co粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFTN1のインサート形状をもったWC基超硬合金製の工具基体1~3を作製した。 First, Co powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and WC powder were prepared as raw material powders, and these raw material powders were blended in the composition shown in Table 1, and further Wax is added and wet-mixed in a ball mill for 72 hours, dried under reduced pressure, and then press-molded at a pressure of 100 MPa. Tool substrates 1 to 3 made of WC-based cemented carbide and having an insert shape were produced.

次に、工具基体1~3に高出力スパッタリング蒸着源と直流(DC)スパッタリング蒸着源を持つ成膜装置を用いて被覆層を形成すべく、アセトン中で超音波洗浄し、乾燥した状態で、工具基体を該装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着した。また、カソード電極(蒸発源)としてTiやAl、そしてTiとLと硼素の合金ターゲットを配置した。 Next, in order to form a coating layer on the tool substrates 1 to 3 using a film forming apparatus having a high-power sputtering deposition source and a direct current (DC) sputtering deposition source, ultrasonic cleaning is performed in acetone, and in a dried state, A tool substrate was mounted along the outer periphery at a position radially away from the central axis of the rotary table in the apparatus. Also, Ti, Al, and an alloy target of Ti, L, and boron were arranged as a cathode electrode (evaporation source).

続いて、成膜装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、1.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する工具基体に-1000Vの直流バイアス電圧を印加し、アルゴンイオンによって、工具基体表面を30分間ボンバード処理した。 Subsequently, while the inside of the film forming apparatus was evacuated and maintained at a vacuum of 10 −2 Pa or less, the inside of the apparatus was heated to 500° C. with a heater, then set to an Ar gas atmosphere of 1.0 Pa, and placed on the rotary table. A DC bias voltage of -1000 V was applied to the tool substrate rotating while rotating at , and the surface of the tool substrate was bombarded with argon ions for 30 minutes.

成膜装置内に反応ガスとして、表2に示す分圧が0.1~1.0Paの範囲内のArガスを所定時間導入すると共に、同じく表2に示す炉内温度に維持し、前記回転テーブル上で自転しながら回転する工具基体に、表2に示す所定のパルススパッタ条件で、層厚に対応した時間で高出力パルススパッタを行い、表2に示す本発明の被覆工具(以下、「実施例」という)1~9を作製した。 Ar gas having a partial pressure within the range of 0.1 to 1.0 Pa shown in Table 2 was introduced into the film forming apparatus as a reaction gas for a predetermined time, and the temperature inside the furnace was maintained at the temperature shown in Table 2. A tool substrate that rotates while rotating on a table is subjected to high-power pulse sputtering under predetermined pulse sputtering conditions shown in Table 2 for a time corresponding to the layer thickness, and the coated tool of the present invention shown in Table 2 (hereinafter referred to as " Examples 1 to 9 were produced.

一方、比較のため、前記工具基体1~3に対して、前記と同じ成膜装置を用いて、表3に示す条件で被覆層を蒸着形成し、表3に示す比較例の皮膜工具(以下、「比較例」という)1~5を作製した。 On the other hand, for comparison, a coating layer was deposited on tool substrates 1 to 3 under the conditions shown in Table 3 using the same film forming apparatus as above, and coated tools of comparative examples shown in Table 3 (hereinafter, , referred to as “comparative examples”) 1 to 5 were produced.

被覆層の平均層厚、被覆層の平均組成は、前記で作製した実施例1~9および比較例1~5の工具基体の表面に垂直な被覆層の縦断面について、工具基体の表面に平行な方向の幅が10μmであり、被覆層の厚み領域が全て含まれるよう設定された視野について、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、エネルギー分散型X線分光法(EDS)を用いた断面観察により求めた。 The average layer thickness of the coating layer and the average composition of the coating layer are parallel to the surface of the tool substrate with respect to the vertical cross section of the coating layer perpendicular to the surface of the tool substrate of Examples 1 to 9 and Comparative Examples 1 to 5 prepared above. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS) were performed on a field of view that was 10 µm wide in the direction of the polarities and was set to include the entire thickness region of the coating layer. ) was obtained by cross-sectional observation using.

具体的には、各層の平均層厚は観察断面(縦断面)を5000倍に拡大して、5点の膜厚を求めて平均層厚を算出した。各層の各成分平均含有割合については、厚さ方向に5本のTEM-EDS線分析を行って求めた。 Specifically, the average layer thickness of each layer was calculated by magnifying an observed section (longitudinal section) by 5000 times and obtaining the film thickness at five points. The average content ratio of each component in each layer was obtained by performing five TEM-EDS line analyzes in the thickness direction.

Figure 2022126379000002
Figure 2022126379000002

Figure 2022126379000003
Figure 2022126379000003

Figure 2022126379000004
Figure 2022126379000004

次いで、本発明工具1~9および比較例工具1~5について、SE445R0506Eのカッタを用いて、単刃の正面フライス切削加工試験を実施した。以下の切削条件でTi―6Al-4V合金について、湿式高速切削加工試験を実施した。 Next, a single-edge face milling test was performed on the inventive tools 1 to 9 and the comparative example tools 1 to 5 using a cutter of SE445R0506E. A wet high-speed cutting test was performed on the Ti-6Al-4V alloy under the following cutting conditions.

切削条件:
被削材:幅110mm×長さ250mmのブロック材
切削速度: 105 m/min.
切り込み: 1.3 mm
送り: 0.12 mm/tooth.
切削長1.8mまで切削し、逃げ面摩耗幅を測定し、刃先の損耗状態を観察した。
切削試験の結果を表4に示す。
Cutting conditions:
Work material: Block material of width 110 mm x length 250 mm Cutting speed: 105 m/min.
Notch: 1.3mm
Feed: 0.12 mm/tooth.
Cutting was performed up to a cutting length of 1.8 m, the flank wear width was measured, and the wear state of the cutting edge was observed.
Table 4 shows the results of the cutting test.

Figure 2022126379000005
Figure 2022126379000005

表4の結果によれば、実施例1~9については、チッピング、剥離等の異常損傷の発生はなく、耐摩耗性、耐チッピング性のいずれにも優れていることがわかる。
これに対して、比較例1~5については、チッピングの発生、あるいは、逃げ面摩耗の進行により、短時間で寿命に至ることは明らかである。
According to the results in Table 4, in Examples 1 to 9, abnormal damage such as chipping and peeling did not occur, and both wear resistance and chipping resistance were excellent.
On the other hand, in Comparative Examples 1 to 5, it is clear that chipping occurs or flank wear progresses, leading to the end of life in a short period of time.

1 工具基体
2 下部層
3 Tiとランタノイドとの複合硼化物層
4 上部層
REFERENCE SIGNS LIST 1 tool substrate 2 lower layer 3 composite boride layer of Ti and lanthanide 4 upper layer

Claims (1)

工具基体と該工具基体表面に被覆層を有する表面被覆切削工具であって、
前記被覆層は、その平均層厚が0.5~10.0μmであるTiとランタノイドとの複合硼化物層を含み、該複合硼化物層の平均組成を組成式:Ti1-zx(Lはランタノイドの1種または2種以上)で表したとき、原子比zが0.01~0.20で、xが1.0~3.5を満足する、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a tool substrate and a coating layer on the surface of the tool substrate,
The coating layer includes a composite boride layer of Ti and lanthanide having an average layer thickness of 0.5 to 10.0 μm, and the average composition of the composite boride layer is represented by the composition formula: Ti 1-z L z B When represented by x (L is one or more lanthanoids), the atomic ratio z is 0.01 to 0.20 and x satisfies 1.0 to 3.5.
A surface-coated cutting tool characterized by:
JP2021024413A 2021-02-18 2021-02-18 Surface-coated cutter Pending JP2022126379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021024413A JP2022126379A (en) 2021-02-18 2021-02-18 Surface-coated cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021024413A JP2022126379A (en) 2021-02-18 2021-02-18 Surface-coated cutter

Publications (1)

Publication Number Publication Date
JP2022126379A true JP2022126379A (en) 2022-08-30

Family

ID=83058781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021024413A Pending JP2022126379A (en) 2021-02-18 2021-02-18 Surface-coated cutter

Country Status (1)

Country Link
JP (1) JP2022126379A (en)

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5297388B2 (en) Surface coated cutting tool
JP6384341B2 (en) Surface coated cutting tool with excellent abnormal damage resistance and wear resistance
WO2013131961A1 (en) Nanolaminated coated cutting tool
WO2018216256A1 (en) Coating and cutting tool
JPWO2020075356A1 (en) Cutting tools and their manufacturing methods
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP6984108B2 (en) Surface coating cutting tool and its manufacturing method
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2015101748A (en) Cemented carbide and surface-coated cutting tool prepared using the same
WO2019171648A1 (en) Surface-coated cutting tool and method for producing same
EP1757388B1 (en) Surface-coated cutware and process for producing the same
WO2020166466A1 (en) Hard coating cutting tool
JP2022126379A (en) Surface-coated cutter
JP2022139718A (en) Surface-coated cutter
JP2022139719A (en) Surface-coated cutter
JP6930446B2 (en) Hard film, hard film coating tool and its manufacturing method
JP2020151794A (en) Surface-coated cutting tool
JPWO2020075355A1 (en) Cutting tools and their manufacturing methods
WO2022196555A1 (en) Surface-coated cutting tool
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
WO2022176230A1 (en) Surface-coated cutting tool
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP7375592B2 (en) surface coated cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240129