JP2022123317A - 光学式センサ - Google Patents

光学式センサ Download PDF

Info

Publication number
JP2022123317A
JP2022123317A JP2021020547A JP2021020547A JP2022123317A JP 2022123317 A JP2022123317 A JP 2022123317A JP 2021020547 A JP2021020547 A JP 2021020547A JP 2021020547 A JP2021020547 A JP 2021020547A JP 2022123317 A JP2022123317 A JP 2022123317A
Authority
JP
Japan
Prior art keywords
light
detection
light receiving
wavelength band
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021020547A
Other languages
English (en)
Inventor
元基 田中
Motoki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2021020547A priority Critical patent/JP2022123317A/ja
Priority to PCT/JP2021/007952 priority patent/WO2022172465A1/ja
Publication of JP2022123317A publication Critical patent/JP2022123317A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】コストの増大を抑制しつつ外乱光の影響を受けにくい光学式センサを提供する。【解決手段】光学式センサは、検出光を投光する投光素子と、対象物で反射した検出光を受光する受光素子と、投光素子及び受光素子を収容する筐体と、筐体の一面に設けられ、受光素子へ向かう検出光の少なくとも一部を透過させる透過窓と、透過窓から入射する光のうち検出光の波長帯域の少なくとも一部を含む検出波長帯域の光を受光素子の方向へ反射させ、検出波長帯域よりも高周波側の波長帯域及び検出波長帯域よりも低周波側の波長帯域の少なくとも一方を反射させない波長選択性を有する反射部材とを備える。【選択図】図2

Description

本発明は、光学式センサに関する。
検出光を測定対象物へ投射し、その反射光を受光素子で受光することにより対象物までの距離や対象物の変位を計測する光学式センサが知られている(例えば、特許文献1参照)。
特開2008-145160号公報
このような光学式センサが様々な環境において利用されることを鑑みると、受光素子は、投光素子で投光された光以外の外乱光を受光してしまうこともあり得る。外乱光を除去するために、例えば筐体に設置された受光窓である板ガラスに波長選択性を持たせ、投光素子で投光された光の波長を含む波長帯を主に透過させるように構成することも考えられる。しかし、受光窓は比較的大きく設計されることが多く、波長選択性を持たせるための薄膜形成に多大なコストを要する。また、筐体の一面を形成する受光窓には、防汚コーティングなどの他機能コーティングを施すこともあり、有効な波長選択性を付与することが難しい。
本発明は、このような問題を解決するためになされたものであり、コストの増大を抑制しつつ外乱光の影響を受けにくい光学式センサを提供することを目的とする。
本発明の一態様における光学式センサは、検出光を投光する投光素子と、対象物で反射した検出光を受光する受光素子と、投光素子及び受光素子を収容する筐体と、筐体の一面に設けられ、受光素子へ向かう検出光の少なくとも一部を透過させる透過窓と、透過窓から入射する光のうち検出光の波長帯域の少なくとも一部を含む検出波長帯域の光を受光素子の方向へ反射させ、検出波長帯域よりも高周波側の波長帯域及び検出波長帯域よりも低周波側の波長帯域の少なくとも一方を反射させない波長選択性を有する反射部材とを備える。
このように波長選択性を有する反射部材を介在させれば、透過窓にバンドパスフィルタの機能を持たせなくてもよいので、コストの低減を図ることができる。また、透過窓に他の機能のコーティングを施しやすくなる。また、集光レンズのサイズや受光素子の種類が異なる機種間において、透過窓を共通化しやすくなる。さらに、反射部材を設けることにより光路設計の自由度が増し、ひいては筐体の小型化にも寄与する。
上記の光学式センサにおいて、透過窓は、入射する光のうち検出波長帯域の光を反射部材の方向へ透過させ、透過窓及び反射部材の一方がハイパスフィルタとして機能し、他方がローパスフィルタとして機能することにより、透過窓と反射部材でバンドパスフィルタを構成するようにしてもよい。透過窓は、ハイパスフィルタまたはローパスフィルタに機能を限れば比較的容易に波長選択性を付与できるので、反射部材との間で役割を分担することができる。このように構成することにより、異なる機種間において、透過窓を共通化しつつ、反射部材の波長選択性を調整することにより、機種間の相違に対応することができる。
このとき、透過窓を赤色透明板としてもよい。例えば赤色アクリル板であれば広く利用されている部材であるので、入手の容易さやコストの面で有利である。
また、上記の光学式センサにおいて、透過窓と反射部材の間に、対象物で反射した検出光を受光素子へ集光する集光レンズを備えるように構成してもよい。このような構成によれば、集光レンズよりも受光素子側に反射部材が配置されることになるので、反射部材の反射面を小さくすることができ、低コストで波長選択性を付与できるばかりでなく、筐体の小型化にも寄与する。
本発明により、コストの増大を抑制しつつ外乱光の影響を受けにくい光学式センサを提供することができる。
光学式センサの使用状態を模式的に示す斜視図である。 光学式センサの断面図である。 検出光の強度特性を模式的に表す図である。 受光窓の透過率波長特性を模式的に表す図である。 ミラーの反射率波長特性を模式的に表す図である。 受光窓とミラーを合成した到達率波長特性を模式的に表す図である。
以下、発明の実施の形態を通じて本発明を説明するが、特許請求の範囲に係る発明を以下の実施形態に限定するものではない。また、実施形態で説明する構成の全てが課題を解決するための手段として必須であるとは限らない。
図1は、光学式センサ100の使用状態を模式的に示す斜視図である。本実施形態に係る光学式センサ100は、対象物であるワークWまでの距離やワークWの変位を測定したり、ワークWの有無を検出したりするセンサであり、例えば工場の製造ラインなどに設置されて利用される。光学式センサ100は、例えばレーザダイオードである投光素子から検出光L1を検出対象物であるワークWへ向けて投光し、ワークWで反射して戻ってくる検出光L2を例えばCMOSセンサである受光素子で受光し、その受光位置によりワークWまでの距離や、ワークWの変位を計測する。また、検出光L2の有無により、ワークWが存否を検出することもできる。
検出光L1は、筐体の一面に設けられた投光窓113を通過してワークWへ投光される。検出光L1がワークWへ到達し反射すると、その一部が検出光L2として受光窓114へ向かって戻ってくる。検出光L2は、ワークWの距離に応じた角度で受光窓114へ入射する。受光素子は、検出光L2を受光し、ワークWまでの距離に応じた検出信号を出力する。
検出信号は、ケーブル112を介してアンプユニットへ送信される。アンプユニットは、受信した検出信号を数値に変換して表示部に表示したり、外部機器であるPLCやPCへ出力したりする。なお、光学式センサ100がアンプユニットの機能を内蔵してもよい。その場合、筐体111は数値等を表示する表示ユニットや外部機器と通信を行う通信ユニットを備える。また、図示するようにx軸、y軸及びz軸を定める。以後の図面においても図1と同様の座標軸を併記することにより、それぞれの図面が表す構成要素の向きを示す。
図2は、光学式センサ100の断面図である。具体的には、検出光L1を含むxz平面で切断した断面図である。筐体111の内部にはベースフレーム120が収容されており、投光素子121、投光レンズ122、受光レンズ123、ミラー124、受光素子125は、直接的又は間接的にベースフレーム120に固定されている。筐体111を構成する外装材も、ビスを介してベースフレーム120に対して固定されている。
投光素子121及び投光レンズ122は、投光素子121から投光される検出光L1が投光レンズ122によって例えば平行光線となるように調整され、投光窓113の略中心を通過してワークWへ向けて投光されるように、ベースフレーム120上に配置されている。投光窓113は、平行平板の例えば板ガラスであり、外表面には防汚コーティングが施されている。
受光レンズ123は、受光窓114を通過して筐体内へ入射した検出光L2を集光して受光素子125の受光面へ結像させる。ミラー124は、受光レンズ123によって集光される検出光L2の光路上に配置され、検出光L2を反射させて受光素子125の受光面へ導く。検出光L2の結像位置は、ワークWまでの距離に応じて一方向(基線方向)に沿って変化する。受光素子125の画素は、基線方向に沿って複数配列されており、検出光L2の結像位置に応じた強度分布を示す検出信号を出力する。受光レンズ123、ミラー124、受光素子125は、このような光学関係を満たすように、ベースフレーム120上に配置されている。
さて、一般的に光学式センサは様々な環境において利用されることが想定されており、受光素子は、ワークWで反射した検出光に限らず、一定条件を満たして受光窓から入射する光を受光してしまう場合がある。このような外乱光の存在は、誤検出の原因となる。光学式センサにおいて検出光としてよく用いられるレーザ光は、一般的な環境光に比較して波長帯域(スペクトル幅)が狭く強度が強い。図3は、本実施形態に係る光学式センサ100の投光素子121として採用されるレーザダイオードが出力する検出光(L1,L2)の強度特性を模式的に表す図である。横軸は、波長を表し、縦軸はピークを100%とする強度を表す。図示するように、検出光は、約660nm~700nmの狭い帯域に限った波長スペクトルを有する。
このようなレーザ光を利用するのであれば、外乱光を除去するために、レーザ光の波長帯域以外の波長帯域をカットするバンドパスフィルタを検出光の光路中に介在させればよい。例えば、受光窓に薄膜を形成することによりそのような波長選択性を付与することが考えられる。しかし、受光窓は比較的大きく設計されるので、バンドパスフィルタとしての波長選択性を持たせるための薄膜形成には多大なコストを要する。また、筐体の一面を形成する受光窓には、防汚コーティングなどの他機能コーティングを施す必要もあり、有効な波長選択性を付与することが難しい。
そこで、本実施形態に係る光学式センサ100では、ミラー124の反射に対して波長選択性を付与する。具体的には、ミラー124の表面に高屈折率と低屈折率の誘電体薄膜を蒸着により交互に重ねて反射膜を形成することにより実現する。具体的には、高屈折材料としてTiO2、Ta203など、低屈折率材料としてSiO2、MgF2などを用い、それぞれを設計波長(660~700nm)の1/4波長程度の膜厚にして交互に積層することによって、各層境界面からの反射光が表面反射光と同位相となり、反射膜を形成することができる。ミラー124にバンドパスフィルタとしての波長選択性を付与することも可能であるが、受光窓114にハイパスフィルタ又はローパスフィルタとしての波長選択性を付与することは比較的安価に実現できる。また、ミラー124にハイパスフィルタ又はローパスフィルタとしての波長選択性を付与する場合は、バンドパスフィルタとしての波長選択性を付与する場合に比較して、表面に形成する薄膜の層数を少なくすることができるので、やはり製造コストの点から有利である。そこで、本実施形態においては、受光窓114にハイパスフィルタとしての波長選択性を付与し、ミラー124にローパスフィルタとしての波長選択性を付与することにより、合わせてバンドパスフィルタの波長選択性を実現する。
図4は、受光窓114の透過率波長特性を模式的に表す図である。横軸は、波長を表し、縦軸は透過率を表す。受光窓114は、透明な樹脂板あるいはガラス板を基材とし、その表面に多層膜コーティングが施されることにより図示する波長選択性を獲得する。
図の例によれば、受光窓114は、実用的な入射角度(例えば0°~30°)の範囲において、630nm未満の帯域で5%未満、660nm以上の帯域で90%以上の透過率となる波長選択性を有する。このような波長選択性を有する受光窓114によれば、検出光L2はほぼ全光量が透過し、630nm未満の外乱光はほぼ遮断される。
このようなコーティングを、受光窓114のうち筐体内部側の面に施せば、筐体外部側の面には防汚コーティングや反射防止コーティングなど他の機能コーティングを施すことができる。防汚コーティングに限らなければ、波長選択のためのコーティングを筐体外部側の面に施し、他の機能コーティングを筐体内部側の面に施してもよい。また、多層膜コーティングによって波長選択性を付与する場合に限らず、例えば、受光窓114として赤色透明板を用いても図4に類似する波長選択性を持たせることができる。例えば赤色アクリル板などの赤色透明板は安価であるので、赤色透明板の採用は製造コストの観点から好ましい。
図5は、ミラー124の反射率波長特性を模式的に表す図である。横軸は、波長を表し、縦軸は反射率を表す。ミラー124は、例えば、特定の波長帯域の光を反射し、その他の波長帯域の光を透過させるダイクロイックミラーである。
図の例によれば、ミラー124は、実用的な入射角度(例えば20°~60°)の範囲において、550nmから680nmの帯域で85%以上、720nm以上の帯域で5%未満の反射率となる波長選択性を有する。このような波長選択性を有するミラー124によれば、検出光L2はほぼ全光量が反射し、720nm以上の外乱光が実質的に遮断される。
特に光学式センサ100おいては、受光窓114とミラー124の間に、検出光L2を受光素子125へ集光する集光レンズとしての受光レンズ123が配置されているので、検出光L2が集光される分、ミラー124の反射面を小さくすることができる。したがって、低コストで波長選択性を実現できるばかりでなく、筐体111の小型化にも寄与する。
図6は、受光窓114とミラー124の特性を合成した、受光素子125まで到達する到達率波長特性を模式的に表す図である。横軸は、波長を表し、縦軸は受光素子125まで到達する到達率を表す。具体的には、受光窓114へ入射する光のうち、受光素子125まで到達する波長ごとの割合を表す。実質的には、図4と図5のグラフを波長ごとに掛け合わせたものであり、全体としてはバンドパスフィルタとして機能することがわかる。なお、全体としてバンドパスフィルタとするためには、本実施形態のように受光窓114にハイパスフィルタ、ミラー124にローパスフィルタの波長選択性を付与する場合に限らず、逆の組み合わせであってもよい。
また、このようなバンドパスフィルタとしての波長選択性は、ミラー124単体でも実現できる。この場合は、受光窓114には波長選択のためのコーティングを施す必要がない。ミラー124単体にバンドパスフィルタの機能を持たせるのであれば、例えば異なる機種間において、受光窓114を共通化しつつ、ミラー124の波長選択性を調整することにより、機種間の相違に対応することができる。例えば、互いに異なる強度特性のレーザダイオードを採用する機種間においては、それぞれの強度特性に合致するバンドパスフィルタとなるようにミラー124の波長選択性を調整すればよい。
以上説明した光学式センサ100においては、投光窓113と受光窓114を別体としたが、これらを一体的にひとつの透過窓としても構わない。また、光学式センサ100は、反射部材としてミラー124を採用したが、波長選択性を付与可能な反射部材はこれに限らない。ダイクロイックプリズム等を用いてもよい。透過部材に波長選択性を付与するよりも、本実施形態に係る光学式センサ100のように反射部材に波長選択性を付与する方が、筐体111の内部空間を有効に活用する観点において望ましい。すなわち、反射部材を介在させることによって受光素子125のレイアウトの自由度が増すので、筐体111の小型化の観点において有利である。
[付記]
検出光(L1)を投光する投光素子(121)と、
対象物(W)で反射した前記検出光(L2)を受光する受光素子(125)と、
前記投光素子(121)及び前記受光素子(125)を収容する筐体(111)と、
前記筐体(111)の一面に設けられ、前記受光素子(125)へ向かう前記検出光(L2)の少なくとも一部を透過させる透過窓(114)と、
前記透過窓(114)から入射する光のうち前記検出光(L2)の波長帯域の少なくとも一部を含む検出波長帯域の光を前記受光素子(125)の方向へ反射させ、前記検出波長帯域よりも高周波側の波長帯域及び前記検出波長帯域よりも低周波側の波長帯域の少なくとも一方を反射させない波長選択性を有する反射部材(124)と
を備える光学式センサ(100)。
100…光学式センサ、111…筐体、112…ケーブル、113…投光窓、114…受光窓、120…ベースフレーム、121…投光素子、122…投光レンズ、123…受光レンズ、124…ミラー、125…受光素子

Claims (4)

  1. 検出光を投光する投光素子と、
    対象物で反射した前記検出光を受光する受光素子と、
    前記投光素子及び前記受光素子を収容する筐体と、
    前記筐体の一面に設けられ、前記受光素子へ向かう前記検出光の少なくとも一部を透過させる透過窓と、
    前記透過窓から入射する光のうち前記検出光の波長帯域の少なくとも一部を含む検出波長帯域の光を前記受光素子の方向へ反射させ、前記検出波長帯域よりも高周波側の波長帯域及び前記検出波長帯域よりも低周波側の波長帯域の少なくとも一方を反射させない波長選択性を有する反射部材と
    を備える光学式センサ。
  2. 前記透過窓は、入射する光のうち前記検出波長帯域の光を前記反射部材の方向へ透過させ、
    前記透過窓及び前記反射部材の一方がハイパスフィルタとして機能し、他方がローパスフィルタとして機能することにより、前記透過窓と前記反射部材でバンドパスフィルタを構成する請求項1に記載の光学式センサ。
  3. 前記透過窓は、赤色透明板である請求項2に記載の光学式センサ。
  4. 前記透過窓と前記反射部材の間に、対象物で反射した前記検出光を前記受光素子へ集光する集光レンズを備える請求項1から3のいずれか1項に記載の光学式センサ。
JP2021020547A 2021-02-12 2021-02-12 光学式センサ Pending JP2022123317A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021020547A JP2022123317A (ja) 2021-02-12 2021-02-12 光学式センサ
PCT/JP2021/007952 WO2022172465A1 (ja) 2021-02-12 2021-03-02 光学式センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021020547A JP2022123317A (ja) 2021-02-12 2021-02-12 光学式センサ

Publications (1)

Publication Number Publication Date
JP2022123317A true JP2022123317A (ja) 2022-08-24

Family

ID=82837600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021020547A Pending JP2022123317A (ja) 2021-02-12 2021-02-12 光学式センサ

Country Status (2)

Country Link
JP (1) JP2022123317A (ja)
WO (1) WO2022172465A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302314A (ja) * 1987-03-26 1988-12-09 Matsushita Electric Works Ltd 光電センサ
JPH0713567B2 (ja) * 1987-03-31 1995-02-15 株式会社東海理化電機製作所 非接触距離測定装置
JPH07280532A (ja) * 1994-04-14 1995-10-27 Nippon Steel Corp 物体の形状検査装置
US6747745B2 (en) * 2000-03-31 2004-06-08 Omron Corporation Displacement sensor
DE102015100706A1 (de) * 2014-12-15 2016-06-16 Vorwerk & Co. Interholding Gmbh Selbsttätig verfahrbares Reinigungsgerät

Also Published As

Publication number Publication date
WO2022172465A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
US7113349B2 (en) Decentering optical system and optical system using the same
JP6932656B2 (ja) 偏光フィルタ
US20140049630A1 (en) Dichroic image splitter
US20150055116A1 (en) Range Finder and Prism Assembly Thereof
CN105372801B (zh) 一种日盲紫外光学镜头与系统
WO2009098864A1 (ja) 測距装置及び測距方法
JP6504874B2 (ja) 光学フィルタおよび光学測定装置
JP7257146B2 (ja) 空間的に変異する微細複製層を有する光学フィルタ
JP6551193B2 (ja) 光学フィルタ、およびそれを用いた光mimo通信システム
US7673996B2 (en) Image projection apparatus and image projection system
US10209518B2 (en) Display apparatus
WO2022172465A1 (ja) 光学式センサ
JP7145086B2 (ja) 光学フィルタ用の入射角制限
US11754767B1 (en) Display with overlaid waveguide
JP2014010093A (ja) 分光画像撮像装置
JP5470842B2 (ja) 光学フィルタ及び受光装置
US7508567B1 (en) Metal etalon with enhancing stack
CN112462463A (zh) 用于电子设备的防反射红外截止滤光器涂层
JP2012237832A (ja) 光学装置
JP2013160984A (ja) 撮影光学系及び撮像装置
TWI637502B (zh) 光學感測裝置以及光學感測模組
US4864345A (en) Distance measuring and light measuring optical system
US9121759B2 (en) Arrangements for detecting light of different wavelength at different angles
US20220357492A1 (en) Multilayer light-filtering structure and fabricating method thereof
JP2016186540A (ja) 光学フィルタおよび光学測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231212