JP2022123234A - 画像検査装置、画像検査方法及び学習済みモデル生成装置 - Google Patents

画像検査装置、画像検査方法及び学習済みモデル生成装置 Download PDF

Info

Publication number
JP2022123234A
JP2022123234A JP2021020406A JP2021020406A JP2022123234A JP 2022123234 A JP2022123234 A JP 2022123234A JP 2021020406 A JP2021020406 A JP 2021020406A JP 2021020406 A JP2021020406 A JP 2021020406A JP 2022123234 A JP2022123234 A JP 2022123234A
Authority
JP
Japan
Prior art keywords
inspection
image
divided image
defective product
feature amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021020406A
Other languages
English (en)
Inventor
泰之 池田
Yasuyuki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2021020406A priority Critical patent/JP2022123234A/ja
Priority to PCT/JP2021/009412 priority patent/WO2022172468A1/ja
Publication of JP2022123234A publication Critical patent/JP2022123234A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Abstract

Figure 2022123234000001
【課題】良品画像の特徴量に対し、特殊パターンを含む良品画像の特徴量を近くにプロットさせるとともに、不良品の検査画像の特徴量を遠くにプロットさせる。
【解決手段】良品分割画像と良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力とし、合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査分割画像と検査分割画像に対応するラベル情報とを合成して生成された合成検査分割画像を入力して、合成検査分割画像の特徴量を抽出する抽出部234と、抽出された合成検査分割画像の特徴量及び学習時に出力された合成良品分割画像の特徴量により形成される特徴空間に基づいて、合成検査分割画像に対応する検査分割画像の欠陥度合いを取得する取得部235と、取得された欠陥度合いに基づいて検査対象物を検査する検査部236と、を備える。
【選択図】図9

Description

本発明は、画像検査装置、画像検査方法及び学習済みモデル生成装置に関する。
従来、対象物を撮影した画像に基づいて、当該対象物の検査を行う画像検査装置が知られている。
例えば、特許文献1には、入力される判定対象画像データに基づいて異常を判定する異常判定を行う異常判定装置において、正常画像データ群から抽出される特徴量から正常画像データを再構成するための再構成用パラメータを用いて、判定対象画像データの特徴量から再構成画像データを生成し、生成した再構成画像データと該判定対象画像データとの差異情報に基づいて異常判定を行うための異常判定処理を実行する処理実行手段を有するものが記載されている。
特許文献1の異常判定装置は、判定対象画像データが複数チャネルの画像データを含む場合、再構成用パラメータを用いて各チャネルの画像データの特徴量から再構成画像データをチャネルごとに生成し、生成した各再構成画像データと該判定対象画像データの各チャネルの画像データとの差異情報に基づいて異常判定を行っている。
特開2018-5773号公報
ここで、従来、良品の対象物の良品画像を小さいサイズに分割して入力し、当該良品画像の特徴量を出力するように学習させた学習済みモデルを用い、特徴空間において、検査画像から抽出した特徴量と良品画像の特徴量とに基づいて、検査画像の欠陥を検出する方法があった。
しかしながら、良品画像に特殊パターンが局所的に存在する場合、この特殊パターンを含む良品画像の特徴量は、特徴空間において、他の良品画像の特徴量群から離れた位置にプロットされてしまい、特殊パターンを含む対象物を不良品として検出してしまうことがあった。
また、別の良品画像が、ある位置では良品である一方、別の位置では不良品であるパターンを含む場合、このようなパターンを当該別の位置に含む検査画像の特徴量は、特徴空間において、良品画像の特徴量群の近くにプロットされることになり、不良品を見逃してしまうことがあった。
本発明は、このような事情に鑑みてなされたものであり、良品画像の特徴量に対し、特殊パターンを含む検査画像の特徴量を近くにプロットするとともに、不良品の検査画像の特徴量を遠くにプロットすることができる画像検査装置、画像検査方法、及び学習済みモデル生成装置を提供することを目的の1つとする。
本発明の一態様に係る画像検査装置は、良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力とし、合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査対象物の分割画像である検査分割画像と当該検査分割画像に対応するラベル情報とを合成して生成された合成検査分割画像を入力して、合成検査分割画像の特徴量を抽出する抽出部と、抽出された合成検査分割画像の特徴量、及び学習時に出力された合成良品分割画像の特徴量により形成される特徴空間に基づいて、合成検査分割画像に対応する検査分割画像の欠陥の程度を示す欠陥度合いを取得する取得部と、取得された欠陥度合いに基づいて、検査対象物を検査する検査部と、を備える。
この態様によれば、良品分割画像とラベル情報とを合成した合成良品分割画像を入力として合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査分割画像とラベル情報とを合成した合成検査分割画像を入力し、合成検査分割画像の特徴量を抽出させることができ、抽出された合成検査分割画像の特徴量と、学習時に出力された複数の合成良品分割画像の特徴量により形成される特徴空間とに基づいて、検査分割画像の欠陥度合いを取得し、その欠陥度合いに基づいて、検査対象物を検査することができるため、検査対象物30の検査精度を高めることが可能となる。
ここで、学習済みモデルは、ラベル情報に基づいて各良品分割画像に特有のパターンを学習することができ、特徴空間において、各合成良品分割画像の特徴量が示す点は、良品画像において同じ位置にある他の合成良品分割画像の特徴量によって形成される集合の近くにプロットされる。したがって、特徴空間において、特殊パターンを含む合成検査分割画像の特徴量が示す点を、当該合成検査分割画像に対応する複数の合成良品分割画像の特徴量が形成する集合の近くにプロットすることができ、欠陥の程度が小さい欠陥度合いを取得して良品と判定することが可能となる。また、学習済みモデルは、ラベル情報に基づいて良品画像における位置によって異なる判別基準を学習することができ、特徴空間において、各良品分割画像に対応する特徴量が示す点の集合を、良品画像における良品分割画像の位置ごとに異なる範囲、領域に集めることができる。したがって、特徴空間において、ある位置で良品であるが別の位置では不良品であるパターンを含む、当該別の位置の合成検査分割画像の特徴量が示す点を、当該別の位置の複数の合成良品分割画像の特徴量が形成する集合に対して遠くにプロットすることができ、欠陥の程度が大きい欠陥度合いを取得して不良品と判定することが可能となる。
上記態様において、取得部は、合成検査分割画像の特徴量と特徴空間を形成する合成良品分割画像の特徴量との間の距離に基づいて、検査分割画像の欠陥度合いを取得してもよい。
この態様によれば、特徴量に対応する検査分割画像の欠陥度合いは、特徴空間における、特徴量が示す点と、複数の良品分割画像に対応する特徴量によって形成される集合と、の間の距離に基づいて取得される。これにより、検査分割画像の欠陥の程度を容易に示すことが可能になる。
上記態様において、取得部は、合成検査分割画像の特徴量と、特徴空間を形成する合成良品分割画像の特徴量のうち合成検査分割画像の特徴量との間の距離が最も近い合成良品分割画像の特徴量と、に基づいて、検査分割画像の欠陥度合いを取得してもよい。
この態様によれば、特徴量に対応する検査分割画像の欠陥度合いは、特徴空間における、特徴量が示す点と、複数の良品分割画像に対応する特徴量のうち検査分割画像に対応する特徴量との間の距離が最も近い良品分割画像に対応する特徴量と、の間の距離に基づいて取得される。これにより、検査分割画像の欠陥の程度を容易に示すことが可能になる。
上記態様において、検査部は、複数の欠陥度合いに基づいて欠陥度合い画像を生成し、欠陥度合い画像に基づいて検査対象物を検査してもよい。
この態様によれば、検査対象物が良品であるか不良品であるかを容易に判定することができ、検査精度の高い検査を容易に実現することが可能になる。
上記態様において、検査分割画像とラベル情報とを合成して合成検査分割画像を生成する合成部をさらに備え、合成部は、ラベル情報に含まれるラベルを識別する番号に検査分割画像で使用可能な色数を乗算し、当該乗算により得られた値を検査分割画像の濃度値に加算又は乗算することで、合成検査分割画像を生成してもよい。
この態様によれば、検査対象物の画像における検査分割画像の位置ごとに、濃度値が相互に異なる合成検査分割画像を分布させることが可能になる。
上記態様において、良品の検査対象物に含まれる複数の良品分割画像を用いて学習モデルを学習させ、学習済みモデルを生成する学習部をさらに備えることとしてもよい。
この態様によれば、学習済みモデル生成装置がなくても、学習済みモデルを得ることが可能になる。
本発明の他の態様に係る画像検査方法は、良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力とし、合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査対象物の分割画像である検査分割画像と当該検査分割画像に対応するラベル情報とを合成して生成された合成検査分割画像を入力して、合成検査分割画像の特徴量を抽出する抽出ステップと、抽出された合成検査分割画像の特徴量、及び学習時に出力された合成良品分割画像の特徴量により形成される特徴空間に基づいて、合成検査分割画像に対応する検査分割画像の欠陥の程度を示す欠陥度合いを取得する取得ステップと、取得された欠陥度合いに基づいて、検査対象物を検査する検査ステップと、を含む。
この態様によれば、良品分割画像とラベル情報とを合成した合成良品分割画像を入力として合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査分割画像とラベル情報とを合成した合成検査分割画像を入力し、合成検査分割画像の特徴量を抽出させることができ、抽出された合成検査分割画像の特徴量と、学習時に出力された複数の合成良品分割画像の特徴量により形成される特徴空間とに基づいて、検査分割画像の欠陥度合いを取得し、その欠陥度合いに基づいて、検査対象物を検査することができるため、検査対象物30の検査精度を高めることが可能となる。
ここで、学習済みモデルは、ラベル情報に基づいて各良品分割画像に特有のパターンを学習することができ、特徴空間において、各合成良品分割画像の特徴量が示す点は、良品画像において同じ位置にある他の合成良品分割画像の特徴量によって形成される集合の近くにプロットされる。したがって、特徴空間において、特殊パターンを含む合成検査分割画像の特徴量が示す点を、当該合成検査分割画像に対応する複数の合成良品分割画像の特徴量が形成する集合の近くにプロットすることができ、欠陥の程度が小さい欠陥度合いを取得して良品と判定することが可能となる。また、学習済みモデルは、ラベル情報に基づいて良品画像における位置によって異なる判別基準を学習することができ、特徴空間において、各良品分割画像に対応する特徴量が示す点の集合を、良品画像における良品分割画像の位置ごとに異なる範囲、領域に集めることができる。したがって、特徴空間において、ある位置で良品であるが別の位置では不良品であるパターンを含む、当該別の位置の合成検査分割画像の特徴量が示す点を、当該別の位置の複数の合成良品分割画像の特徴量が形成する集合に対して遠くにプロットすることができ、欠陥の程度が大きい欠陥度合いを取得して不良品と判定することが可能となる。
本発明の他の態様に係る学習済みモデル生成装置は、良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力として、合成良品分割画像の特徴量を出力するように学習させた学習済みモデルを生成するモデル生成部を備える。
この態様によれば、良品分割画像とラベル情報とを合成した合成良品分割画像を入力として合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査分割画像とラベル情報とを合成した合成検査分割画像を入力し、合成検査分割画像の特徴量を抽出させることができる。学習済みモデルは、ラベル情報に基づいて各良品分割画像に特有のパターンを学習することができ、特徴空間において、各合成良品分割画像の特徴量が示す点は、対応する他の合成良品分割画像の特徴量によって形成される集合の近くにプロットされる。したがって、特徴空間において、特殊パターンを含む合成良品分割画像の特徴量が示す点を、当該合成良品分割画像に対応する複数の良品分割画像の特徴量が形成する集合の近くにプロットすることができる。また、学習済みモデルは、ラベル情報に基づいて良品画像における位置によって異なる判別基準を学習することができ、特徴空間において、各良品分割画像に対応する特徴量が示す点の集合を、良品画像における良品分割画像の位置ごとに異なる範囲、領域に集めることができる。したがって、特徴空間において、ある位置で良品であるが別の位置では不良品であるパターンを含む、当該別の位置の合成検査分割画像の特徴量が示す点を、当該別の位置の複数の合成良品分割画像の特徴量が形成する集合に対して遠くにプロットすることができる。
本発明によれば、良品画像の特徴量に対し、特殊パターンを含む良品画像の特徴量を近くにプロットするとともに、不良品の検査画像の特徴量を遠くにプロットすることができる画像検査装置、画像検査方法及び学習済みモデル生成装置を提供することができる。
本発明の一実施形態に係る画像検査システムの概略構成図である。 同実施形態に係る学習済みモデル生成装置の構成を示す機能ブロック図である。 良品分割画像及びラベル情報を説明するための図である。 良品画像の一例を示す図である。 図4の良品画像に含まれる複数の良品分割画像のそれぞれに付与されるラベル情報の一例を示す図である。 合成良品分割画像を生成する際の具体例を説明するための図である。 同実施形態に係るモデル生成部が学習させるモデルを説明するための図である。 同実施形態に係る画像検査装置の構成を示す機能ブロック図である。 同実施形態に係る処理部の構成を示す機能ブロック図である。 欠陥度合いを取得する方法の一例を説明するための概念図である。 欠陥度合いを取得する方法の他の例を説明するための概念図である。 同実施形態に係る検査部による処理を説明するための概念図である。 欠陥度合い画像の一例を示す図である。 同実施形態に係る画像検査装置が実行する画像検査処理の一例を説明するためのフローチャートである。 実施形態に係る画像検査装置が実行する画像検査処理の一例を説明するためのフローチャートである。 同実施形態に係る画像検査装置及び学習済みモデル生成装置の物理的構成を示すブロック図である。
以下に本発明の実施形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号で表している。但し、図面は模式的なものである。従って、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。さらに、本発明の技術的範囲は、当該実施形態に限定して解するべきではない。
添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、本発明の一実施形態に係る画像検査システム1の概略構成図である。画像検査システム1は、画像検査装置20及び照明25を含む。照明25は、検査対象物30に光Lを照射する。画像検査装置20は、反射光Rを撮影し、検査対象物30の画像(以下、「検査画像」ともいう。)に基づいて、検査対象物30の検査を行う。画像検査装置20は、通信ネットワーク15を介して、学習済みモデル生成装置10に接続されている。学習済みモデル生成装置10は、画像検査装置20が検査対象物30の検査を行うために用いる学習済みモデルを生成する。
図2は、本実施形態に係る学習済みモデル生成装置10の構成を示す機能ブロック図である。学習済みモデル生成装置10は、例えば、記憶部100、学習部110及び通信部120を備える。
記憶部100は、各種の情報を記憶する。本実施形態において、記憶部100は、例えば、良品画像40、学習用画像50、学習済みモデル65及び特徴量70を記憶する。良品画像40は、良品の検査対象物の画像である。学習用画像50は、モデルの学習用に入力する画像である。学習済みモデル65は、後述する学習部110により生成されるモデルである。特徴量70は、学習済みモデル65から出力されるデータである。
学習部110は、例えば、学習用画像生成部111及びモデル生成部112を備える。
学習用画像生成部111は、モデル生成部112が学習処理を行うために用いる学習用画像50を生成する。学習用画像50は、良品画像40を分割した良品分割画像とその良品分割画像に対応するラベル情報とを合成して生成される画像である。図3を参照して、良品分割画像及びラベル情報について説明する。
学習用画像生成部111は、記憶部100から良品画像40を取得し、その良品画像40を分割することにより複数の良品分割画像400、402、404、・・・を生成する。本実施形態において、学習用画像生成部111は、良品画像40を縦及び横にそれぞれ4分割することにより、計16個の良品分割画像を生成する。なお、良品画像40は、2から15個の良品分割画像に分割されてもよいし、17個以上の良品分割画像に分割されてもよい。
学習用画像生成部111は、複数の良品分割画像のそれぞれにラベル情報を付与し、良品分割画像及びラベル情報により構成される複数のデータセットを生成する。学習用画像生成部111は、予め指定されたアルゴリズムに基づきラベル情報を良品分割画像に付与してもよいし、ユーザの操作に基づいてラベル情報を良品分割画像に付与してもよい。
例えば、互いに異なる複数の良品画像のそれぞれについて、良品分割画像が生成されているとする。この場合、生成された良品分割画像のうち、良品画像における位置が互いに一致する良品分割画像の全てに、同一のラベル情報を付与する。
学習用画像生成部111は、良品分割画像にラベル情報を付与すると、どの位置の良品分割画像にどのラベル情報を付与したのかを示す情報を、記憶部100に記憶させることとしてもよい。
例えば、図3の良品分割画像400には、ラベル情報(A)が付与され、良品分割画像400及びラベル情報(A)が1組のデータセットとして記憶される。同様にして、学習用画像生成部111は、良品分割画像402及びラベル情報(B)のデータセット、並びに良品分割画像404及びラベル情報(C)のデータセット等、16個の良品分割画像のそれぞれに基づくデータセットを生成して記憶させる。
ここで、図4及び図5を参照して、学習用画像生成部111が良品分割画像に付与するラベル情報の具体例を説明する。図4は、良品画像40の一例を示す図である。図4に示す良品画像40は、4つのパターン(第1パターン402、第2パターン404、第3パターン406及び第4パターン408)が含まれている。また、図4に示す良品画像40は、縦及び横にそれぞれ4分割されており、合計16個の良品分割画像に分割されている。
図5は、16個の良品分割画像のそれぞれに付与されるラベル情報の一例を示す図である。なお、図5では、図4に示した4つのパターンを省略して示している。また、図5の良品分割画像に示されている数字は、ラベルを識別する番号(以下、「ラベル識別番号」という。)であり、ラベル情報に含まれるデータである。
図5に示す良品画像40では、ラスタスキャンの順番で、16個の良品分割画像のそれぞれにラベル情報が付与されている。すなわち、図5に示す良品画像40では、矢印で示した順番に、16個の良品分割画像のそれぞれに、0から15までのラベル識別番号が付与されている。例えば、一番上の行の4つの良品分割画像のそれぞれには、左端の良品分割画像420から順番に、0から3までのラベル識別番号が付与されている。また、一番上から2番目の行の4つの良品分割画像のそれぞれには、一番左側の良品分割画像422から順番に、4から7までのラベル識別番号が付与されている。さらに、一番上から3番目及び4番目の行にある8つの良品分割画像には、8から15までのラベル識別番号が矢印の順番で付与されている。
なお、ここでは、一番上の左端の良品分割画像420をラベル識別番号が0となる開始の良品分割画像として説明したが、いずれの良品分割画像を開始の良品分割画像としてもよい。また、ラベル識別番号の数値は、ラスタスキャンの順番に限らず、いかなる順番で良品分割画像に付与してもよい。
学習用画像生成部111は、1つのデータセットを構成する良品分割画像とラベル情報とを合成して合成良品分割画像を生成する。具体的に、学習用画像生成部111は、ラベル情報に含まれるラベル識別番号に、良品分割画像で使用可能な色数を乗算し、その乗算により得られた値を良品分割画像の濃度値に加算又は乗算することで、合成良品分割画像を生成する。良品分割画像で使用可能な色数として、例えば256色を用いることができる。なお、色数は256色に限定されず、量子化ビット数に応じた色数を適宜用いることができる。
図6を参照して、学習用画像生成部111が、良品分割画像及びラベル情報に基づいて、合成良品分割画像を生成する際の具体例について説明する。図6に示す良品分割画像及びラベル情報は、図4及び図5に示す計16個の良品分割画像及びラベル情報の一部に対応する。この良品画像40で使用可能な色数は、256色であるとする。
図6の良品分割画像420に対応するラベル情報に含まれるラベル識別番号は、0となる。この場合、ラベル識別番号である0に、色数である256を乗算すると、乗算値として0が得られる。学習用画像生成部111は、ラベル識別番号と色数との乗算値である0を、良品分割画像420の濃度値に加算又は乗算することで、合成良品分割画像420’を生成する。
また、良品分割画像422に対応するラベル情報に含まれるラベル識別番号は、4となる。したがって、学習用画像生成部111は、ラベル識別番号である4と色数である256との乗算値である1024を、良品分割画像422の濃度値に加算又は乗算することで、合成良品分割画像422’を生成する。
さらに、良品分割画像424に対応するラベル情報に含まれるラベル識別番号は、8となる。したがって、学習用画像生成部111は、ラベル識別番号である8と色数である256との乗算値である2048を、良品分割画像424の濃度値に加算又は乗算することで、合成良品分割画像424’を生成する。
学習用画像生成部111は、上記と同様の処理を残りの13個の良品分割画像に対して実行することで、計16個の合成良品分割画像を生成する。このように合成良品分割画像を生成することで、互いに濃度値が異なる16個の合成良品分割画像を生成することができる。つまり、16個の合成良品分割画像により構成される良品画像40の濃度分布を、合成良品分割画像の位置に応じた16種類の濃度によって表すことが可能となる。
学習用画像生成部111は、生成した合成良品分割画像を学習用画像50として記憶させる。本実施形態では、良品画像40から生成される複数の合成良品分割画像420’、・・・それぞれを学習用画像50として記憶部100に記憶する。
図2に示すモデル生成部112は、学習用画像50を用いて学習処理を実行し、学習済みモデル65を生成する。学習済みモデル65は、例えば、良品画像40を構成する複数の合成良品分割画像それぞれを入力とし、それぞれの特徴量を出力するモデルである。
図7に例示するように、モデル生成部112が学習済みモデル65を生成するために用いる学習モデル60は、例えば、ニューラルネットワークの1つであり、教師なし機械学習の手法の1つでもあるオートエンコーダを用いることができる。オートエンコーダは、入力層601と、出力層605と、入力層601と出力層605との間に配置されている中間層603と、を含んでいる。
なお、学習モデル60は、オートエンコーダに限定されるものではない。学習モデル60は、例えば、PCA(Principal Component Analysis)を用いたモデルであってもよい。また、中間層603は、1層である場合に限定されず、2層以上であってもよい。
良品分割画像とラベル情報とを合成して合成良品分割画像が生成される。入力層601に合成良品分割画像が入力されると、中間層603において合成良品分割画像の次元が削減される。そして、出力層605において次元を戻して合成良品分割画像に対応する出力合成良品分割画像が出力される。
オートエンコーダは、合成良品分割画像と出力合成良品分割画像との間の差分が最小となるように、重みを学習する。より詳細には、円形状で表される各ノードは、線で表される各エッジにおいて固有の重み付けを行い、重み付けされた値が次の層のノードに入力される。この重み付けにおける重みを学習することで、合成良品分割画像と出力合成良品分割画像との間の差分が最小になる。この学習によって、中間層603から特徴量を出力することが可能となる。
ここで、特徴量は、求めたい事物の特徴を定量的に表した変数である。中間層603から出力される特徴量は、例えば合成良品分割画像であることを特徴付けるものであり、具体的には合成良品分割画像が有する濃淡の配列、合成良品分割画像における輝度、赤単体、緑単体、青単体、又は赤・緑・青(RGB)のヒストグラム等が挙げられる。一般に、合成良品分割画像は、1種類の特徴量で認識されるよりも、複数種類の特徴量を用いて認識されることが多い。
特徴量は、例えば、複数の特徴量を成分とするベクトル(以下、「特徴ベクトル」ともいう。)により表現することができる。本実施形態では、特徴量をベクトルにより表現する場合について説明するが、これに限定されず、特徴量を、スカラー、行列、テンソルにより表現してもよい
特徴量の数(個数)は、特徴量の次元(次元数)を表す。特徴量により形成される空間は、特徴空間と呼ばれ、1つの特徴量は特徴空間上の1点として表される。
本実施形態において、学習モデル60への入力は、例えば合成良品分割画像であり、学習モデル60の中間層603からの出力は、その合成良品分割画像の特徴量である。
例えば、図4の良品画像40のための学習済みモデル65を生成する場合、学習モデル60には、良品画像40に基づいて生成された、図6の合成良品分割画像420’、・・・のそれぞれが入力される。そして、学習モデル60は、合成良品分割画像ごとに、その合成良品分割画像と同じ位置に配置されている複数の合成良品分割画像の特徴量を示す点の集まりが、特徴空間において近い距離にプロットされるように、各重みを学習する。これにより、合成良品分割画像の特徴量を出力する学習済みモデル65が生成される。
このように、モデル生成部112は、良品分割画像とその良品分割画像のラベル情報とを合成した合成良品分割画像を学習モデル60に入力し、学習モデル60を学習させることで、学習済みモデル65を生成する。
学習済みモデル65は、良品画像における位置を特定するためのラベル情報を良品分割画像に合成した合成良品分割画像に基づいて学習するため、良品画像におけるどの位置の良品分割画像のパターンであるのかを判別することが可能となる。
図2に戻り、学習済みモデル生成装置10の通信部120について説明する。通信部120は、各種の情報を送受信することができる。例えば、通信部120は、通信ネットワーク15を介して、学習済みモデル65を画像検査装置20に送信する。このとき、良品画像におけるどの位置の良品分割画像にどのラベル情報が付与されたのかを示す情報も、画像検査装置20に送信される。
図8は、本実施形態に係る画像検査装置20の構成を示す機能ブロック図である。画像検査装置20は、例えば、通信部200、記憶部210、撮影部220、処理部230及び学習部240を備える。
通信部200は、例えば、通信ネットワーク15を介して、学習済みモデル生成装置10から学習済みモデル65及び特徴量70を受信する。また、通信部200は、例えば、通信ネットワーク15を介して、学習済みモデル生成装置10又は他の装置から学習用画像50を受信することもできる。受信した学習用画像50、学習済みモデル65及び特徴量70は、記憶部210に書き込まれて記憶される。なお、通信部200は、学習済みモデル65及び特徴量70と学習用画像50とのいずれか一方のみを受信してもよい。通信部200が学習用画像50のみを受信する場合、後述する学習部240は、学習用画像50を用い、学習済みモデル65を生成し、学習済みモデル65を生成する過程で特徴量70を抽出してもよい。
記憶部210は、各種の情報を記憶するように構成されている。記憶部210は、例えば、学習用画像50と、学習済みモデル65と、特徴量70とを記憶する。学習済みモデル65には、良品画像におけるどの位置の良品分割画像にどのラベル情報が付与されたのかを表す情報も付与される。学習済みモデル65を記憶部210に記憶させることで、学習済みモデルを容易に読み出すことが可能となる。
学習部240は、学習用画像50により学習モデルを学習させ、学習済みモデル65を生成するように構成されている。学習済みモデル65は、合成良品分割画像を入力とし、その合成良品分割画像の特徴量を出力するモデルである。生成した学習済みモデル65は、記憶部210に書き込まれて記憶される。なお、学習モデルを学習させる方法は、前述した学習済みモデル生成装置10のモデル生成部112による方法と同様であるため、その説明を省略する。
画像検査装置20に学習部240を備えることにより、学習済みモデル生成装置10がなくても、学習済みモデル65を得ることができる。
撮影部220は、例えばカメラ等の撮像装置を含み、検査対象物30の画像を撮像する。本実施形態において、撮影部220は、検査対象物30からの反射光Rを受光し、検査対象物30の画像を撮像する。撮影部220は、撮像した画像を処理部230に出力する。
処理部230は、各種の処理を検査対象物の画像に施し、検査対象物の検査を行う。図9は、本実施形態に係る処理部230の構成を示す機能ブロック図である。処理部230は、例えば、分割部231、ラベル付与部232、合成部233、抽出部234、取得部235及び検査部236を備える。
分割部231は、撮影部220から検査対象物の画像を取得し、その検査対象物の画像を分割することにより複数の検査分割画像を生成する。なお、検査対象物の画像を分割する方法は、前述した学習済みモデル生成装置10の学習用画像生成部111による良品画像の分割方法と同様であるため、その説明を省略する。
ラベル付与部232は、複数の検査分割画像のそれぞれにラベル情報を付与し、検査分割画像及びラベル情報により構成される複数のデータセットを生成する。本実施形態において、ラベル付与部232は、学習済みモデル65に紐づけて記憶されている、良品画像におけるどの位置の良品分割画像にどのラベル情報が付与されたのかを示す情報を参照し、検査分割画像と同じ位置にある良品分割画像のラベル情報を、検査分割画像に付与する。
合成部233は、1つのデータセットを構成する検査分割画像とラベル情報とを合成して合成検査分割画像を生成する。なお、合成検査分割画像を生成する方法は、前述した学習済みモデル生成装置10の学習用画像生成部111による合成良品分割画像の生成方法と同様であるため、その説明を省略する。
抽出部234は、学習済みモデル65に合成検査分割画像を入力し、その合成検査分割画像の特徴量を抽出する。
取得部235は、抽出された合成検査分割画像の特徴量、及び学習時に出力された合成良品分割画像の特徴量70により形成される特徴空間に基づいて、合成検査分割画像の特徴量に対応する検査分割画像の欠陥の程度を示す欠陥度合いを取得する。取得部235が欠陥度合いを取得する際の手順を、以下に説明する。
最初に、取得部235は、記憶部210に記憶された特徴量70を読み出し、各特徴量70が示す点を特徴空間にプロットする。これにより、例えば、図10に示すように、2次元の特徴空間に、各特徴量70が示す黒丸の点によって、破線で示す集合S1が形成される。この集合S1は、例えば良品画像40における良品分割画像の位置ごとに形成される。なお、取得部235は、複数の特徴量70に基づいて特徴空間における集合S1をあらかじめ形成しておき、その集合S1に関する情報を記憶部210に書き込んで記憶していてもよい。
続いて、取得部235は、集合S1に対応する位置の合成検査分割画像の特徴量が示す点を、特徴空間にプロットする。図10では、対応する位置の合成検査分割画像の特徴量は、白丸の点P1で示されている。そして、取得部235は、この合成検査分割画像の特徴量が示す点P1と集合S1とに基づいて、合成検査分割画像に対応する検査分割画像の欠陥度合いを取得する。
より詳細には、取得部235は、抽出された特徴量について、特徴空間における、その特徴量が示す点と複数の合成良品分割画像の特徴量によって形成される集合との間の距離に基づいて、その特徴量に対応する検査分割画像の欠陥度合いを取得する。
図10に示す例では、第1特徴量及び第2特徴量により形成される特徴空間において、取得部235は、ある合成検査分割画像の特徴量が示す点P1と、その合成検査分割画像に対応する複数の合成良品分割画像の特徴量の集合S1との間の距離に基づいて、その合成検査分割画像に対応する検査分割画像の欠陥度合いを取得する。この欠陥度合いは、例えば距離に応じた値である。このように、特徴量に対応する検査分割画像の欠陥度合いが、特徴空間における、特徴量が示す点P1と複数の合成良品分割画像の特徴量によって形成される集合S1との間の距離に基づいて取得されることにより、検査分割画像の欠陥の程度を容易に示すことができる。
ここで、検査分割画像の欠陥度合いを取得する際に、ある合成検査分割画像の特徴量が示す点と、複数の合成良品分割画像の特徴量のうちの1つが示す点との間の距離に基づいて、検査分割画像の欠陥度合いを取得することとしてもよい。
例えば、図11に示すように、第1特徴量及び第2特徴量により形成される特徴空間において、取得部235は、ある合成検査分割画像の特徴量が示す点P2と、その合成検査分割画像に対応する複数の合成良品分割画像の特徴量の集合S2に含まれる点P3との間の距離に基づいて、検査分割画像の欠陥度合いを取得する。この欠陥度合いは、例えば距離に応じた値である。また、集合S2に含まれる点P3は、集合S2に含まれる複数の点のうち、点P2に最も近い点である。取得部235は、集合S2に含まれる複数の点のそれぞれについて点P2との間の距離を算出し、点P2に最も近い点を決定することができる。
このように、特徴量に対応する検査分割画像の欠陥度合いが、特徴空間における、特徴量が示す点P2と複数の合成良品分割画像の特徴量のうちの1つが示す点との間の距離に基づいて取得されることにより、検査分割画像の欠陥の程度を容易に示すことができる。
取得部235は、抽出部234により抽出される各特徴量について、以上の手順を繰り返し行い、複数の検査分割画像のそれぞれの欠陥度合いを取得する。そして、取得部235は、複数の欠陥度合いを検査部236に出力する。
図9に戻り、検査部236について説明する。検査部236は、取得部235によって取得された複数の欠陥度合いに基づいて、検査対象物30を検査する。
例えば、検査部236は、複数の欠陥度合いに基づいて欠陥度合い画像を生成し、生成した欠陥度合い画像に基づいて検査対象物30を検査する。これにより、検査対象物が良品であるか不良品であるかを容易に判定することができ、検査精度の高い検査を容易に実現することができる。欠陥度合いは、検査分割画像の欠陥の程度を示す値であることが好ましい。これにより、検査分割画像の欠陥の程度を定量的に示すことができる。
具体的に、検査部236は、図12に示すように、取得部235によって取得された各欠陥度合い460,462、464,・・・を、それぞれの値に基づいて画像化することで、部分画像480,482,484,・・・を生成する。部分画像480,482,484,・・・は、例えば、欠陥度合いの値を、白黒の階調に変換したグレースケール画像や、RGBの階調に変換したカラー画像等である。
検査部236は、生成された部分画像480,482,484,・・・を統合することで、欠陥度合い画像48を生成する。なお、欠陥度合い画像48の縦及び横のサイズ(画素数)は、検査画像と同じであってもよいし、異なっていてもよい。そして、検査部236は、欠陥度合い画像48に基づいて検査対象物30が良品であるか否かを判定する。
図13に示すように、欠陥度合い画像48は、例えば、2つの欠陥部分画像482,484を含む。欠陥部分画像484は欠陥度合いが相対的に低い部分画像であり、欠陥部分画像482は欠陥度合いが相対的に高い部分画像である。
検査部236は、例えば、欠陥度合い画像48における欠陥部分画像482,484の占める割合が、所定の閾値以下である場合に検査対象物30が良品であると判定し、所定の閾値を超える場合に検査対象物30が良品ではない、つまり、不良品であると判定する。
ここで、検査部236は、欠陥度合い画像48に含まれる欠陥部分画像482,484の有無に基づいて、検査対象物30の欠陥を検出してもよい。
このように、特徴空間における、合成検査分割画像の特徴量が示す点と複数の合成良品分割画像の特徴量によって形成される集合とに基づいて、各検査分割画像の欠陥度合いを取得し、これら複数の欠陥度合いに基づいて、検査対象物30を検査することにより、検査対象物30の検査精度を高めることができる。
次に、図14を参照して、実施形態に係る学習済みモデル生成装置が実行する学習済みモデル生成処理の一例を説明する。
最初に、通信部120は、通信ネットワーク15を介して、複数の良品画像40を取得する(ステップS101)。取得された複数の良品画像40は、記憶部100に記憶される。
続いて、学習用画像生成部111は、記憶部100から複数の良品画像40を読み出し、複数の良品画像40に基づいて、複数の学習用画像50を生成する(ステップS102)。学習用画像50として、前述したように、良品分割画像とラベル情報とに基づいて生成される合成良品分割画像を用いる。
続いて、モデル生成部112は、ステップS102において生成された複数の学習用画像50を入力とし、その学習用画像の特徴量を出力するように学習させた学習済みモデル65を生成する(ステップS103)。生成された学習済みモデル65は、記憶部100に記憶される。
続いて、通信部120は、ステップS103において生成された学習済みモデル65と、学習済みモデル65を生成する過程で抽出された特徴量70とを、通信ネットワーク15を介して、画像検査装置20に送信する(ステップS104)。これにより、画像検査装置20は、学習済みモデル生成装置10によって生成された学習済みモデルを使用できるようになる。
ステップS104の後、学習済みモデル生成装置10は、学習済みモデル生成処理を終了する。
次に、図15を参照して、実施形態に係る画像検査装置が実行する画像検査処理の一例を説明する。
なお、以下の例では、通信部200が学習済みモデル生成装置10から学習済みモデル65及び特徴量70を受信し、記憶部210に学習済みモデル65及び特徴量70が記憶されているものとして説明する。
最初に、撮影部220が、検査対象物30の検査画像を取得する(ステップS201)。取得された検査画像は、処理部230に出力される。
続いて、処理部230の分割部231は、ステップS201において取得された検査画像を分割し、複数の検査分割画像を生成する(ステップS202)。生成された複数の検査分割画像は、処理部230のラベル付与部232に出力される。
続いて、ラベル付与部232は、ステップS202において生成された検査分割画像に、当該検査分割画像と同じ位置にある良品分割画像のラベル情報を付与してデータセットを生成する(ステップS203)。生成されたデータセットは、処理部230の合成部233に出力される。
続いて、合成部233は、ステップS203において生成されたデータセットを構成する検査分割画像とラベル情報とを合成して合成検査分割画像を生成する(ステップS204)。生成された合成検査分割画像は、処理部230の抽出部234に出力される。
続いて、抽出部234は、記憶部210にあらかじめ記憶された学習済みモデル65を読み出し、ステップS204において生成された合成検査分割画像を、学習済みモデル65に入力し、合成検査分割画像の特徴量を抽出する(ステップS205)。抽出された特徴量は、処理部230の取得部235に出力される。
続いて、取得部235は、記憶部210にあらかじめ記憶された合成良品分割画像の特徴量70を読み出し、ステップS205において抽出された特徴量について、特徴空間における、その特徴量が示す点と、読み出された特徴量70によって形成される集合との間の距離に基づいて、その特徴量に対応する検査分割画像の欠陥度合いを取得する(ステップS206)。得られた欠陥度合いは、処理部230の検査部236に出力される。
続いて、検査部236は、ステップS206において得られた欠陥度合いの値から部分画像を生成し、生成した部分画像を統合して欠陥度合い画像を生成する(ステップS207)。
続いて、検査部236は、ステップS207において生成された欠陥度合い画像に基づいて、検査対象物30を検査する(ステップS208)。
ステップS208の後、画像検査装置20は、画像検査処理を終了する。
なお、本実施形態で説明したフローチャートは、処理に矛盾が生じない限り、順序を入れ替えてもよい。
図16は、本実施形態に係る学習済みモデル生成装置10の物理的構成を示す図である。学習済みモデル生成装置10は、演算部に相当するCPU(Central Processing Unit)10aと、記憶部に相当するRAM(Random Access Memory)10bと、記憶部に相当するROM(Read only Memory)10cと、通信部10dと、入力部10eと、表示部10fと、を有する。これらの各構成は、バスを介して相互にデータ送受信可能に接続される。
なお、画像検査装置20の物理的構成は、学習済みモデル生成装置10の物理的構成と同様であるため、その説明を省略する。
なお、本例では、学習済みモデル生成装置10及び画像検査装置20のそれぞれが、一台のコンピュータで構成されるものとして説明するが、学習済みモデル生成装置10及び画像検査装置20のそれぞれは、複数のコンピュータが組み合わされて実現されてもよい。また、学習済みモデル生成装置10及び画像検査装置20が一台のコンピュータで構成されてもよい。また、図16で示す構成は一例であり、学習済みモデル生成装置10及び画像検査装置20は、これら以外の構成を有してもよいし、これらの構成のうち一部を有さなくてもよい。
CPU10aは、RAM10b又はROM10cに記憶されたプログラムの実行に関する制御やデータの演算、加工を行う演算部である。学習済みモデル生成装置10が備えるCPU10aは、学習データを用いて学習処理を実施して、学習済みモデルを生成するプログラム(学習プログラム)を実行する演算部である。また、画像検査装置20が備えるCPU10aは、検査対象物の画像を用いて、検査対象物の検査を行うプログラム(画像検査プログラム)を実行する演算部である。CPU10aは、入力部10eや通信部10dから種々のデータを受け取り、データの演算結果を表示部10fに表示したり、RAM10bに格納したりする。
RAM10bは、記憶部のうちデータの書き換えが可能なものであり、例えば半導体記憶素子で構成されてよい。RAM10bは、CPU10aが実行するプログラム、学習用データ、学習済みモデルといったデータを記憶してよい。なお、これらは例示であって、RAM10bには、これら以外のデータが記憶されていてもよいし、これらの一部が記憶されていなくてもよい。
ROM10cは、記憶部のうちデータの読み出しが可能なものであり、例えば半導体記憶素子で構成されてよい。ROM10cは、例えば画像検査プログラム、学習プログラム及び書き換えが行われないデータを記憶してよい。
通信部10dは、学習済みモデル生成装置10又は画像検査装置20を他の機器に接続するインターフェースである。通信部10dは、インターネット等の通信ネットワークに接続されてよい。
入力部10eは、ユーザからデータの入力を受け付けるものであり、例えば、キーボード及びタッチパネルを含んでよい。入力部10eは、例えば良品分割画像又は検査分割画像のラベル情報等の入力を受け付けてもよい。
表示部10fは、CPU10aによる演算結果を視覚的に表示するものであり、例えば、LCD(Liquid Crystal Display)により構成されてよい。表示部10fは、例えば、検査対象物の検査結果等を表示してよい。
画像検査プログラムは、RAM10bやROM10c等のコンピュータによって読み取り可能な記憶媒体に記憶されて提供されてもよいし、通信部10dにより接続される通信ネットワークを介して提供されてもよい。学習済みモデル生成装置10では、CPU10aが学習プログラムを実行することにより、図2等を用いて説明した様々な機能が実現される。また、画像検査装置20では、CPU10aが画像検査プログラムを実行することにより、図8及び図9等を用いて説明した様々な機能が実現される。なお、これらの物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、学習済みモデル生成装置10及び画像検査装置20のそれぞれは、CPU10aとRAM10bやROM10cが一体化したLSI(Large-Scale Integration)を備えていてもよい。
前述したように、本実施形態における画像検査装置20及び画像検査方法によれば、良品分割画像とラベル情報とを合成した合成良品分割画像を入力として合成良品分割画像の特徴量を出力するように学習させた学習済みモデル65に、検査分割画像とラベル情報とを合成した合成検査分割画像を入力し、合成検査分割画像の特徴量を抽出させることができ、抽出された合成検査分割画像の特徴量と、学習時に出力された複数の合成良品分割画像の特徴量により形成される特徴空間とに基づいて、検査分割画像の欠陥度合いを取得し、その欠陥度合いに基づいて、検査対象物を検査することができるため、検査対象物30の検査精度を高めることが可能となる。
ここで、本実施形態における学習済みモデル65は、ラベル情報に基づいて各良品分割画像に特有のパターンを学習することができ、特徴空間において、各合成良品分割画像の特徴量が示す点は、良品画像において同じ位置にある他の合成良品分割画像の特徴量によって形成される集合の近くにプロットされる。
したがって、特徴空間において、特殊パターンを含む合成検査分割画像の特徴量が示す点を、当該合成検査分割画像に対応する複数の合成良品分割画像の特徴量が形成する集合の近くにプロットすることができ、欠陥の程度が小さい欠陥度合いを取得して良品と判定することが可能となる。
それゆえ、良品画像に特殊パターンが局所的に存在する場合であっても、特殊パターンを含む対象物を良品として正しく検査することが可能となる。
また、本実施形態における学習済みモデル65は、ラベル情報に基づいて良品画像における位置によって異なる判別基準を学習することができ、特徴空間において、各良品分割画像に対応する特徴量が示す点の集合を、良品画像における良品分割画像の位置ごとに異なる範囲、領域に集めることができる。
したがって、特徴空間において、ある位置で良品であるが別の位置では不良品であるパターンを含む、当該別の位置の合成検査分割画像の特徴量が示す点を、当該別の位置の複数の合成良品分割画像の特徴量が形成する集合に対して遠くにプロットすることができ、欠陥の程度が大きい欠陥度合いを取得して不良品と判定することが可能となる。
それゆえ、特徴空間において、ある位置で良品であるが別の位置では不良品であるパターンを含む場合であっても、不良品の見逃しを抑制することが可能となる。
なお、前述した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。すなわち、実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
[付記1]
良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力とし、前記合成良品分割画像の特徴量を出力するように学習させた学習済みモデル(65)に、検査対象物の分割画像である検査分割画像と当該検査分割画像に対応するラベル情報とを合成して生成された合成検査分割画像を入力して、前記合成検査分割画像の特徴量を抽出する抽出部(234)と、
前記抽出された前記合成検査分割画像の特徴量、及び学習時に出力された前記合成良品分割画像の特徴量により形成される特徴空間に基づいて、前記合成検査分割画像に対応する前記検査分割画像の欠陥の程度を示す欠陥度合いを取得する取得部(235)と、
前記取得された前記欠陥度合いに基づいて、前記検査対象物を検査する検査部(236)と、
を備える画像検査装置(20)。
[付記2]
良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力とし、前記合成良品分割画像の特徴量を出力するように学習させた学習済みモデル(65)に、検査対象物の分割画像である検査分割画像と当該検査分割画像に対応するラベル情報とを合成して生成された合成検査分割画像を入力して、前記合成検査分割画像の特徴量を抽出する抽出ステップと、
前記抽出された前記合成検査分割画像の特徴量、及び学習時に出力された前記合成良品分割画像の特徴量により形成される特徴空間に基づいて、前記合成検査分割画像に対応する前記検査分割画像の欠陥の程度を示す欠陥度合いを取得する取得ステップと、
前記取得された前記欠陥度合いに基づいて、前記検査対象物を検査する検査ステップと、
を含む、画像検査方法。
[付記3]
良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力として、前記合成良品分割画像の特徴量を出力するように学習させた学習済みモデル(65)を生成するモデル生成部(112)を備える、
学習済みモデル生成装置(10)。
1…画像検査システム、10…モデル生成装置、10a…CPU、10b…RAM、10c…ROM、10d…通信部、10e…入力部、10f…表示部、15…通信ネットワーク、20…画像検査装置、25…照明、30…検査対象物、40…良品画像、50…学習用画像、60…学習モデル、65…学習済みモデル、70…特徴量、100…記憶部、110…学習部、111…学習用画像生成部、112…モデル生成部、120…通信部、200…通信部、210…記憶部、220…撮影部、230…処理部、231…分割部、232…ラベル付与部、233…合成部、234…抽出部、235…取得部、236…検査部、240…学習部、601…入力層、605…出力層

Claims (8)

  1. 良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力とし、前記合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査対象物の分割画像である検査分割画像と当該検査分割画像に対応するラベル情報とを合成して生成された合成検査分割画像を入力して、前記合成検査分割画像の特徴量を抽出する抽出部と、
    前記抽出された前記合成検査分割画像の特徴量、及び学習時に出力された前記合成良品分割画像の特徴量により形成される特徴空間に基づいて、前記合成検査分割画像に対応する前記検査分割画像の欠陥の程度を示す欠陥度合いを取得する取得部と、
    前記取得された前記欠陥度合いに基づいて、前記検査対象物を検査する検査部と、
    を備える画像検査装置。
  2. 前記取得部は、前記合成検査分割画像の特徴量と前記特徴空間を形成する前記合成良品分割画像の特徴量との間の距離に基づいて、前記検査分割画像の前記欠陥度合いを取得する、
    請求項1に記載の画像検査装置。
  3. 前記取得部は、前記合成検査分割画像の特徴量と、前記特徴空間を形成する前記合成良品分割画像の特徴量のうち前記合成検査分割画像の特徴量との間の距離が最も近い前記合成良品分割画像の特徴量と、に基づいて、前記検査分割画像の前記欠陥度合いを取得する、
    請求項2に記載の画像検査装置。
  4. 前記検査部は、複数の前記欠陥度合いに基づいて欠陥度合い画像を生成し、前記欠陥度合い画像に基づいて前記検査対象物を検査する、
    請求項1から3のいずれか一項に記載の画像検査装置。
  5. 前記検査分割画像と前記ラベル情報とを合成して前記合成検査分割画像を生成する合成部をさらに備え、
    前記合成部は、前記ラベル情報に含まれるラベルを識別する番号に前記検査分割画像で使用可能な色数を乗算し、当該乗算により得られた値を前記検査分割画像の濃度値に加算又は乗算することで、前記合成検査分割画像を生成する、
    請求項1から4のいずれか一項に記載の画像検査装置。
  6. 良品の検査対象物に含まれる複数の前記良品分割画像を用いて学習モデルを学習させ、前記学習済みモデルを生成する学習部をさらに備える、
    請求項1から5のいずれか一項に記載の画像検査装置。
  7. 良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力とし、前記合成良品分割画像の特徴量を出力するように学習させた学習済みモデルに、検査対象物の分割画像である検査分割画像と当該検査分割画像に対応するラベル情報とを合成して生成された合成検査分割画像を入力して、前記合成検査分割画像の特徴量を抽出する抽出ステップと、
    前記抽出された前記合成検査分割画像の特徴量、及び学習時に出力された前記合成良品分割画像の特徴量により形成される特徴空間に基づいて、前記合成検査分割画像に対応する前記検査分割画像の欠陥の程度を示す欠陥度合いを取得する取得ステップと、
    前記取得された前記欠陥度合いに基づいて、前記検査対象物を検査する検査ステップと、
    を含む、画像検査方法。
  8. 良品の検査対象物の分割画像である良品分割画像と当該良品分割画像に対応するラベル情報とを合成して生成された合成良品分割画像を入力として、前記合成良品分割画像の特徴量を出力するように学習させた学習済みモデルを生成するモデル生成部を備える、
    学習済みモデル生成装置。
JP2021020406A 2021-02-12 2021-02-12 画像検査装置、画像検査方法及び学習済みモデル生成装置 Pending JP2022123234A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021020406A JP2022123234A (ja) 2021-02-12 2021-02-12 画像検査装置、画像検査方法及び学習済みモデル生成装置
PCT/JP2021/009412 WO2022172468A1 (ja) 2021-02-12 2021-03-10 画像検査装置、画像検査方法及び学習済みモデル生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021020406A JP2022123234A (ja) 2021-02-12 2021-02-12 画像検査装置、画像検査方法及び学習済みモデル生成装置

Publications (1)

Publication Number Publication Date
JP2022123234A true JP2022123234A (ja) 2022-08-24

Family

ID=82837624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021020406A Pending JP2022123234A (ja) 2021-02-12 2021-02-12 画像検査装置、画像検査方法及び学習済みモデル生成装置

Country Status (2)

Country Link
JP (1) JP2022123234A (ja)
WO (1) WO2022172468A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736764B2 (ja) * 2005-01-11 2011-07-27 オムロン株式会社 基板検査装置並びにその検査ロジック設定方法および検査ロジック設定装置
JP2018005773A (ja) * 2016-07-07 2018-01-11 株式会社リコー 異常判定装置及び異常判定方法
JP7166189B2 (ja) * 2019-02-15 2022-11-07 東京エレクトロン株式会社 画像生成装置、検査装置及び画像生成方法
CN110570393B (zh) * 2019-07-31 2023-06-23 华南理工大学 一种基于机器视觉的手机玻璃盖板视窗区缺陷检测方法

Also Published As

Publication number Publication date
WO2022172468A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2019117065A1 (ja) データ生成装置、データ生成方法及びデータ生成プログラム
JP6936957B2 (ja) 検査装置、データ生成装置、データ生成方法及びデータ生成プログラム
JP6693938B2 (ja) 外観検査装置
JP2019087078A (ja) データ生成装置、データ生成方法及びデータ生成プログラム
KR20210150970A (ko) 약한 라벨링을 사용한 반도체 시편들에서의 결함들의 검출
US20230118767A1 (en) Learning device, learning method, inference device, and storage medium
US11210774B2 (en) Automated pixel error detection using an inpainting neural network
JP2022013662A (ja) 半導体試料の検査に使用可能な訓練セットの生成
KR102437115B1 (ko) 제품 구조 예측 기술을 이용한 딥러닝 기반 결함 검사 장치 및 방법
WO2022172468A1 (ja) 画像検査装置、画像検査方法及び学習済みモデル生成装置
WO2022172470A1 (ja) 画像検査装置、画像検査方法及び学習済みモデル生成装置
JP2023145412A (ja) 欠陥検出方法及びシステム
US20220335288A1 (en) Systems, apparatuses and methods for detecting and classifying patterns of heatmaps
JP7475901B2 (ja) 試験片上の欠陥検出の方法およびそのシステム
WO2022172475A1 (ja) 画像検査装置、画像検査方法、及び学習済みモデル生成装置
WO2022172469A1 (ja) 画像検査装置、画像検査方法、及び学習済みモデル生成装置
JPWO2020158630A1 (ja) 検出装置、学習器、コンピュータプログラム、検出方法及び学習器の生成方法
WO2021229901A1 (ja) 画像検査装置、画像検査方法及び学習済みモデル生成装置
WO2023089846A1 (ja) 検査装置および検査方法並びにこれに用いるプログラム
EP4307216A1 (en) Integrated model generation method, image inspection system, image inspection model generation device, image inspection model generation program, and image inspection device
JP7392166B2 (ja) 画像生成装置、画像生成方法およびプログラム
KR102621884B1 (ko) 상품불량 선별을 위한 딥러닝 기반의 이미지 분석 방법 및 이를 위한 시스템
WO2023112302A1 (ja) 教師データ作成支援装置、教師データ作成支援方法
CN116523803B (zh) 图像处理方法、阴影去除方法、装置、设备和存储介质
JP7465446B2 (ja) 画像検査装置、画像検査方法、及び学習済みモデル生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231212