JP2022118471A - 基板処理装置、電極及び半導体装置の製造方法 - Google Patents

基板処理装置、電極及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2022118471A
JP2022118471A JP2021015036A JP2021015036A JP2022118471A JP 2022118471 A JP2022118471 A JP 2022118471A JP 2021015036 A JP2021015036 A JP 2021015036A JP 2021015036 A JP2021015036 A JP 2021015036A JP 2022118471 A JP2022118471 A JP 2022118471A
Authority
JP
Japan
Prior art keywords
electrode
gas
film
processing
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021015036A
Other languages
English (en)
Inventor
大介 原
Daisuke Hara
剛 竹田
Takeshi Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP2021015036A priority Critical patent/JP2022118471A/ja
Publication of JP2022118471A publication Critical patent/JP2022118471A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】より均一な基板処理を可能とする技術を提供することにある。【解決手段】複数の基板を処理する処理容器と、処理容器の外側に設置される少なくとも1つの電極と、処理容器と少なくとも1つの電極との距離を調整することが可能な調整部と、を有する技術が提供される。【選択図】図5

Description

本開示は、基板処理装置、電極及び半導体装置の製造方法に関する。
半導体装置(デバイス)の製造工程の一工程として、基板処理装置の処理室内に基板を搬入し、処理室内に原料ガスと反応ガスとを供給して基板上に絶縁膜や半導体膜、導体膜等の各種膜を形成したり、各種膜を除去したりする基板処理が行われることがある。
微細パターンが形成される量産デバイスにおいては、不純物の拡散を抑制したり、有機材料など耐熱性の低い材料を使用できるようにしたりするために低温化が求められることがある。
特開2007-324477号公報
このような技術的要求を満たすため、プラズマを用いて基板処理を行うことが一般的に行われているが、膜を均一処理することが困難となってしまう場合がある。
本開示の目的は、より均一な基板処理を可能とする技術を提供することにある。
本開示の一態様によれば、
複数の基板を処理する処理容器と、
前記処理容器の外側に設置される少なくとも1つの電極と、
前記処理容器と前記少なくとも1つの電極との距離を調整することが可能な調整部と、
を有する技術が提供される。
本開示によれば、より均一な基板処理を可能とする技術を提供することが可能となる。
本開示の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面で示す図である。 図1に示す基板処理装置におけるA-A断面図である。 (a)は、本開示の実施形態の電極を石英カバーに設置した際の斜視図であり、(b)は、本開示の実施形態のヒータ、石英カバー、電極、電極を固定する突起部、反応管の位置関係を示すための図である。 (a)は、本開示の実施形態の電極の正面図であり、(b)は、電極を石英カバーに固定する点を説明する図である。 本開示の実施形態の電極と反応管との位置関係の一例を示す図である。 図1に示す基板処理装置におけるコントローラの概略構成図であり、コントローラの制御系の一例を示すブロック図である。 図1に示す基板処理装置を用いた基板処理プロセスの一例を示すフローチャートである。
以下、本開示の実施形態について図1から図7を参照しながら説明する。
全図面中、同一または対応する構成については、同一または対応する参照符号を付し、重複する説明を省略する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
(加熱装置)
図1に示すように、処理炉202は加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。また、ヒータ207は、後述する電極固定治具としての石英カバー301の外側に設けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(処理室)
ヒータ207の内側には、後述する電極固定治具としての石英カバー301が配設され、更に石英カバー301の内側には、後述するプラズマ生成部の電極300が配設されている。更に、電極300の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)や炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。反応管203は、ウエハ200を処理する処理室201を形成している。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器(反応容器)と称する場合もある。
(ガス供給部)
処理室201内には、ノズル249a,249bが、マニホールド209の側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bが、それぞれ接続されている。このように、処理容器には2本のノズル249a,249bと、2本のガス供給管232a,232bとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。なお、反応管203のみを処理容器とした場合、ノズル249a,249bは反応管203の側壁を貫通するように設けられていてもよい。
ガス供給管232a,232bには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、上流方向から順に、MFC241c,241dおよびバルブ243c,243dがそれぞれ設けられている。
ノズル249a,249bは、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直にそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、それぞれ、反応管203の下部から上部にわたって複数設けられている。
このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部(周縁部)と、で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249a,249bを経由してガスを搬送している。そして、ノズル249a,249bにそれぞれ開口されたガス供給孔250a,250bから、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される膜の膜厚の均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
ガス供給管232aからは、原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。
ガス供給管232bからは、反応ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。
ガス供給管232c,232dからは、不活性ガスが、それぞれMFC241c,241d、バルブ243c,243d、ノズル249a,249bを介して処理室201内へ供給される。
主に、ガス供給管232a、MFC241a、バルブ243aにより、原料ガス供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、反応ガス供給系が構成される。主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。原料ガス供給系、反応ガス供給系および不活性ガス供給系を単にガス供給系(ガス供給部)とも称する。
(基板支持具)
図1に示すように基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持(保持)するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。但し、本実施形態はこのような形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料により構成される筒状の部材として構成された断熱筒を設けてもよい。
(プラズマ生成部)
次にプラズマ生成部について、図1から図3を用いて説明する。
反応管(処理容器)203の外部、すなわち、処理室201の外部には、反応管(処理容器)203の壁面に平行にプラズマ生成用の電極300が設けられている。電極300に電力を印加することにより、反応管(処理容器)203の内部、すなわち、処理室201の内部でガスをプラズマ化させて励起させること、すなわち、ガスをプラズマ状態に励起させることが可能となっている。以下、ガスをプラズマ状態に励起させることを、単に、プラズマ励起とも称する。電極300は、電力、すなわち、高周波電力(RF電力)が印加されることで、反応管(処理容器)203内、すなわち、処理室201内に、容量結合プラズマ(Capacitively Coupled Plasma、略称:CCP)を発生させるように構成されている。
具体的には、図2に示すように、ヒータ207と反応管203との間に、電極300と、電極300を固定する電極固定具301と、が配設されている。ヒータ207の内側に、電極固定具301が配設され、電極固定具301の内側に、電極300が配設され、電極300の内側に、反応管203が配設されている。
また、図1、図2に示すように、電極300および電極固定具301は、ヒータ207の内壁と、反応管203の外壁との間における平面視において円環状の空間に、反応管203の外壁の下部より上部に沿って、ウエハ200の配列方向に延びるようにそれぞれ設けられている。電極300は、ノズル249a、249bと平行に設けられている。電極300および電極固定具301は、平面視において、反応管203およびヒータ207と同心円状に、また、反応管203およびヒータ207とは非接触となるように、配列、配置されている。電極固定具301は、絶縁性物質(絶縁体)で構成され、電極300および反応管203の少なくとも一部をカバーするように設けられていることから、電極固定具301をカバー(カバー、石英カバー、絶縁壁、絶縁板)、または、断面円弧カバー(断面円弧体、断面円弧壁)と称することもできる。
図2および図3(a)に示すように、電極300は、第1の電極300-1と、第2の電極300-2を含む。第1の電極300-1は、整合器325を介して、高周波電源(RF電源)320に接続されている。第2の電極300-2は、アースに接地されており、基準電位(0V)となる。第1の電極300-1をHot電極またはHOT電極とも称し、第2の電極300-2をGround電極またはGND電極とも称する。第1の電極300-1および第2の電極300-2は、それぞれ、正面視が矩形形状の板状部材として構成されている。第1の電極300-1は少なくとも1つ設けられ、第2の電極300-2は少なくとも1つ設けられる。図2、図3(a)では、第1の電極300-1および第2の電極300-2のそれぞれが、複数設けられる例を示しており、図3(a)では、8つの第1の電極300-1、4つの第2の電極300-2と、が設けられる例を示している。整合器325を介して高周波電源320から、第1の電極300-1と第2の電極300-2との間にRF電力を印可することで、第1の電極300-1と第2の電極300-2との間の領域にプラズマが生成される。この領域をプラズマ生成領域とも称する。本開示では特に区別して説明する必要のない場合には、電極300として記載して説明する。
電極300は反応管203とヒータ207との間に、反応管203の外壁に沿うように略円弧状に配置され、例えば、平面視において中心角が30度以上240度以下となる円弧状に形成された電極固定具301の内壁面に固定されて配置される。ここで、中心角が30度未満とすると、プラズマ生成量が少なくなってしまう。また、中心角が240度を超える角度とすると、ヒータ207からの熱エネルギーを遮断してしまいウエハ処理に悪影響を及ぼしてしまう。更に、中心角が240度を超える角度とすると、プラズマ生成領域を避けて、ノズル249a、249b及び温度センサ263としての例えば、カスケードTC(熱電対)を配置することが難しくなる。仮に、ノズル249a、249b等をプラズマ生成領域に配置すると、ノズル249a、249b等からパーティクル(PC)が発生しやすくなってしまう。また、温度センサ263としてのカスケードTCも同様にプラズマ生成領域に配置すると、TC線から放電するようになり、ウエハ200にダメージや膜の不均一性をもたらしてしまう。したがって、中心角を30度以上240度以下とすることで、プラズマ生成量を確保しつつ、ヒータ207からの熱エネルギーの遮断を抑制しながらウエハ処理を行うことが可能となる。電極300には、高周波電源320から図示しない整合器を介し、例えば周波数13.56MHzの高周波が入力されることによって反応管203内にプラズマ活性種302が生成される。このように生成されたプラズマによって、ウエハ200の周囲から基板処理のためのプラズマ活性種302をウエハ200の表面に供給することが可能となる。主に、電極300と、高周波電源320によってプラズマ生成部が構成される。整合器325や後述する電極固定治具としての電極固定具301を含んでプラズマ生成部と考えてもよい。
ここで、電極固定具301と電極300(第1の電極300-1、第2の電極300-2)とを、電極ユニットと称することもできる。電極ユニットは、図2に示すように、ノズル249a、249bおよび排気管231を避けた位置に配置されるようにすることが好ましい。図2では、2つの電極ユニットが、ノズル249a、249b、温度センサ263および排気管231を避けて、ウエハ200(反応管203)の中心を挟んで対向(対面)するように配置される例を示している。なお、図2では、2つの電極ユニットが、平面視において、直線Lを対称軸として線対称に、すなわちシンメトリに配置される例を示している。電極ユニットをこのように配置することで、ノズル249a、249b、温度センサ263および排気管231を、処理室201内におけるプラズマ生成領域外に配置することが可能となり、これらの部材へのプラズマダメージ、これらの部材の消耗、破損、これらの部材からのパーティクルの発生を抑制することが可能となる。
電極300は、ニッケルなどの耐酸化材料で構成されている。電極を、SUS、アルミニウム(Al)、銅(Cu)等の金属材料で構成することもできるが、Niなどの耐熱材料で構成することにより、電気伝導率の劣化を抑制することができ、プラズマ生成効率の低下を抑制することができる。この場合、耐熱性および耐腐食性の高い酸化被膜であるアルミニウム酸化膜(AlO膜)や酸化銅膜(CuO膜)等を、電極300の最表面に形成するようにすることもできる。電極300の最表面に形成されたAlO膜、CuO膜等は、保護膜(ブロック膜、バリア膜)として作用し、電極300の内部の劣化の進行を抑制することができる。これにより、電極300の電気伝導率の低下によるプラズマ生成効率の低下を、より抑制することが可能となる。電極固定具301は、絶縁性物質(絶縁体)、例えば、石英またはSiC等の耐熱性材料により構成されている。電極固定具301の材質は、反応管203の材質と、同様とすることが好ましい。
また、電極300には、図4(a)に示すように、後述する突起頭部311を通す円形切欠き部303と、突起軸部312をスライドさせるスライド切欠き部304とで構成される切欠き部305が形成されている。電極300を貫通する穴としての切欠き部305は複数設けられ、例えば、電極300の上部、中央部および下部の3か所に設けられている。
電極300は、十分な強度を持ち、かつ、熱源によるウエハ加熱の効率を著しく下げないように、厚さは0.1mm以上、1mm以下、幅は5mm以上、30mm以下となる範囲で構成される平板構造であることが好ましい。
縦型基板処理装置において、高周波電源320の周波数を13.56MHzにて実施し、長さが1m、電極幅が10mm、厚さが1mmである電極を採用し、チューブ形状の反応管203の外壁に、電極ピッチ(中心間距離)を20mmで複数本の任意の電位が印加される第1の電極300-1と基準電位が与えられる第2の電極300-2を図3(b)に示すように、第1の電極300-1、第1の電極300-1、第2の電極300-2、第1の電極300-1、第1の電極300-1、・・・の順に配置して、CCPモードのプラズマを生成する。すなわち、反応管(処理容器)203の外壁(壁面)に平行に、電極300は、第1の電極300-1を2つ連続して配置し、この連続して配置された2組の第1の電極300-1との間に、1つの第2の電極300-2を挟み込むように配置している。
なお、第1の電極300-1の表面積は、第2の電極300-2の表面積の2倍以上3倍以下とすることが好ましい。第1の電極300-1の表面積が第2の電極300-2の表面積の2倍未満となる場合、電位分布の広がりが狭くなり、プラズマ生成効率が低下することがある。第1の電極300-1の表面積が第2の電極300-2の表面積の3倍を超える場合、電位分布がウエハ200のエッジ部分にまで広がることがあり、ウエハ200が障害となりプラズマの生成効率が飽和することがある。また、この場合、ウエハ200のエッジ部においても放電が生じ、ウエハ200へのプラズマダメージが生じることもある。第1の電極300-1の表面積を、第2の電極300-2の表面積の2倍以上3倍以下とすることにより、プラズマ生成効率を高め、ウエハ200へのプラズマダメージを抑制することが可能となる。なお、図2に示すように、電極300(第1の電極300-1、第2の電極300-2)は、平面視において、円弧状に配置されており、また、等間隔に、すなわち、隣接する電極300(第1の電極300-1、第2の電極300-2)間の距離(隙間)が等しくなるように配置されている。また、上述のように、電極300(第1の電極300-1、第2の電極300-2)は、ノズル249a、249bと平行に設けられている。
ここで、基板処理時の炉内圧力は、10Pa以上、300Pa以下の範囲で制御されることが好ましい。これは、炉内の圧力が10Paより低い場合、プラズマのデバイ長よりもガス分子の平均自由工程が長くなってしまい、炉壁を直接叩くプラズマが顕著化するため、パーティクルの発生を抑制することが困難となってしまうためである。また、炉内の圧力が300Paより高い場合、プラズマの生成効率が飽和してしまうため、反応ガスを供給してもプラズマの生成量は変化することがなく、反応ガスを無駄に消費することとなってしまうと同時に、ガス分子の平均自由行程が短くなることで、ウエハまでのプラズマ活性種の輸送効率が悪くなってしまうためである。
(電極固定治具)
次に電極300を固定する電極固定治具としての電極固定具301について、図3から図5を用いて説明する。図3に示すように、垂直方向に延伸し、水平方向に複数本配設された電極300は、その切欠き部305を湾曲形状の電極固定具301の内壁面に設けられた突起部310に引掛け、スライドさせて固定し、この電極固定具301と一体となるようユニット化(フック式電極ユニット)して反応管203の外周に設置されている。ここで、フック式電極ユニットを電極ともいう。電極300(第1の電極300-1、第2の電極300-2)と電極固定治具である電極固定具301とを含めて電極固定ユニットという。なお、電極固定具301と電極300の材料として、それぞれ、石英とニッケル合金を採用している。
電極固定具301は、十分な強度を持ち、かつ、ヒータ207によるウエハ加熱の効率を著しく下げないよう、厚さは1mm以上、5mm以下の範囲となるように構成されることが好ましい。電極固定具301の厚みが1mm未満となってしまうと、電極固定具301の自重や温度変化などに対する所定の強度を得ることができなくなってしまい、5mmよりも大きく構成するとヒータ207から放射される熱エネルギーを吸収してしまうため、ウエハ200への熱処理を適切に行うことができなくなってしまう。
また、電極固定具301は反応管203側である内壁面からヒータ207側である外壁面に貫通する複数のねじ孔301aを有し、電極300を固定する位置を調整するための調整部としての複数の突起部310のそれぞれが複数のねじ孔301aに螺合して固定されている。例えば、図4では、ねじ孔301aは、電極固定具301の上部、中央部および下部の3か所に設けられる。電極300を固定する位置を調整するための調整部としての突起部310は、突起頭部311と突起軸部312とねじ部313から構成されている。突起頭部311およびねじ部313の最大幅は、電極300の切欠き部305の円形切欠き部303の径より小さく、突起軸部312の最大幅は、スライド切欠き部304の幅よりも小さくなっている。電極300の切欠き部305は鍵穴のような形状をし、このスライド切欠き部304は上記の突起軸部312をスライド時に誘導でき、かつ、この突起頭部311はこのスライド切欠き部304で抜けない構造となっている。つまり、電極固定具301は、電極300が係止される柱状部である突起軸部312から抜けてしまうことを抑制する先端部である突起頭部311を備えた固定部を有しているといえる。なお、前述した切欠き部305と突起頭部311の形状は、電極300が電極固定具301に係止できれば、図3、4に示した形状に限定されないことは明らかである。例えば、突起頭部311は、ハンマーやトゲのような凸形状を有してもよい。
突起部310の突起軸部312が穴であるスライド切欠き部304に挿入されて、ねじ孔301aへのねじ部313のねじ込み量を調整することにより、反応管203(処理容器)と電極300との距離が調整可能である。なお、反応管203内にウエハ200が搬入されている場合には、ウエハ200と電極300との距離ともいえる。電極300の上部における突起部310、中央部おける突起部310および下部における突起部310はそれぞれ処理室201との距離が調整可能である。図5に示すように、電極300は、反応管(処理容器)203の壁面に平行に設けられている。また、突起部310は、例えば、電極300の上部および下部においては、反応管(処理容器)203との距離を長くし、中央部においては、ねじ部313を回してねじ孔301aに押し込むことにより、ねじ部313が電極300を反応管(処理容器)203側に近づけるため反応管(処理容器)203との距離を短く調整する。また、電極300の中央部および下部においては、反応管(処理容器)203との距離を長くして、電極300の上部において、ねじ部313を回してねじ孔301aに押し込むことにより反応管(処理容器)203との距離を短く調整することができる。また、電極300の上部および中央部においては、反応管(処理容器)203との距離を長くして、電極300の下部において、ねじ部313を回してねじ孔301aに押し込むことにより反応管(処理容器)203との距離を短く調整することができる。また、電極300の中央部においては、反応管(処理容器)203との距離を長くして、電極300の上部および下部において、ねじ部313を回してねじ孔301aに押し込むことにより反応管(処理容器)203との距離を短く調整することができる。言い換えると、反応管(処理容器)203と電極300の一部と他の部分との距離を異ならせことや、電極300が反応管(処理容器)203に対して撓らせることができる。電極300と反応管(処理容器)203との距離を調整することにより、プラズマの生成量が調整され、ウエハ200の面間の膜厚のばらつきを解消することが可能となる。主に、突起部310、突起軸部312及びねじ部313により調整部が構成される。
基板温度500℃以下で高い基板処理能力を得るためには、電極固定具301の占有率を中心角30°以上240°以下の略円弧形状とし、また、パーティクルの発生を避けるために排気口である排気管231やノズル249a、249b、温度センサ263などを避けた配置が望ましい。つまり、電極固定治具である電極固定具301は、反応管203内に設けられたガス供給部であるノズル249a、249bとガス排気部である排気管231が設置された位置以外の反応管203の外周に配置される。本実施形態においては中心角110°の電極固定具301を2台で左右対称に設置している。
(排気部)
反応管203には、図1に示すように処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249a,249bと同様にマニホールド209に設けてもよい。
(周辺装置)
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。
シールキャップ219の処理室201と反対側には、ボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。
ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
反応管203の内部には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル249a,249bと同様に、反応管203の内壁に沿って設けられている。
(制御装置)
次に制御装置について図6を用いて説明する。制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各種処理(成膜処理)における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115、シャッタ開閉機構115s、高周波電源320等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すことが可能なように構成されている。CPU121aは、読み出したレシピの内容に沿うように、回転機構267の制御、MFC241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の正逆回転、回転角度および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作、高周波電源320の電力供給等を制御することが可能なように構成されている。
コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ、SSD等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
上述の基板処理装置を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成するプロセス例について、図7を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
本明細書では、図7に示す成膜処理のシーケンスを、便宜上、以下のように示すこともある。
(原料ガス→反応ガス)×n
本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(搬入ステップ:S1)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力・温度調整ステップ:S2)
処理室201の内部が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくとも後述する成膜ステップが終了するまでの間は常時作動させた状態を維持する。
また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくとも後述する成膜ステップが終了するまでの間は継続して行われる。但し、成膜ステップを室温以下の温度条件下で行う場合は、ヒータ207による処理室201内の加熱は行わなくてもよい。なお、このような温度下での処理だけを行う場合には、ヒータ207は不要となり、ヒータ207を基板処理装置に設置しなくてもよい。この場合、基板処理装置の構成を簡素化することができる。
続いて、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも後述する成膜ステップが終了するまでの間は継続して行われる。
(成膜ステップ:S3,S4,S5,S6)
その後、ステップS3,S4,S5,S6を順次実行することで成膜ステップを行う。
(原料ガス供給ステップ:S3,S4)
ステップS3では、処理室201内のウエハ200に対して原料ガスを供給する。
バルブ243aを開き、ガス供給管232a内へ原料ガスを流す。原料ガスは、MFC241aにより流量調整され、ノズル249aを介してガス供給孔250aから処理室201内へ供給され、排気管231から排気される。このとき、ウエハ200に対して原料ガスが供給されることとなる。このとき同時にバルブ243cを開き、ガス供給管232c内へ不活性ガスを流すようにしてもよい。不活性ガスは、MFC241cにより流量調整され、原料ガスと一緒に処理室201内へ供給され、排気管231から排気される。
また、ノズル249b内への原料ガスの侵入を防止するため、バルブ243dを開き、ガス供給管232d内へ不活性ガスを流すようにしてもよい。不活性ガスは、ガス供給管232d、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。
本ステップにおける処理条件としては、
処理温度:室温(25℃)~550℃、好ましくは400~500℃
処理圧力:1~4000Pa、好ましくは100~1000Pa
原料ガス供給流量:0.1~3slm
原料ガス供給時間:1~100秒、好ましくは1~50秒
不活性ガス供給流量(ガス供給管毎):0~10slm
が例示される。
なお、本明細書における「25~550℃」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「25~550℃」とは「25℃以上550℃以下」を意味する。他の数値範囲についても同様である。また、本明細書における処理温度とはウエハ200の温度または処理室201内の温度のことを意味し、処理圧力とは処理室201内の圧力のことを意味する。また、ガス供給流量:0slmとは、そのガスを供給しないケースを意味する。これらは、以下の説明においても同様である。
上述の条件下でウエハ200に対して原料ガスを供給することにより、ウエハ200(表面の下地膜)上に、第1層が形成される。例えば、原料ガスとして、後述するシリコン(Si)含有ガスを用いる場合、第1層としてSi含有層が形成される。
第1層が形成された後、バルブ243aを閉じ、処理室201内への原料ガスの供給を停止する。このとき、APCバルブ244を開いたままとし、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1層の形成に寄与した後の原料ガスや反応副生成物等を処理室201内から排除する(S4)。また、バルブ243c,243dを開き、処理室201内へ不活性ガスを供給する。不活性ガスはパージガスとして作用する。
原料ガスとしては、例えば、テトラキス(ジメチルアミノ)シラン(Si[N(CH、略称:4DMAS)ガス、トリス(ジメチルアミノ)シラン(Si[N(CHH、略称:3DMAS)ガス、ビス(ジメチルアミノ)シラン(Si[N(CH、略称:BDMAS)ガス、ビス(ジエチルアミノ)シラン(Si[N(C、略称:BDEAS)ガス、ビス(ターシャリーブチル)アミノシラン(SiH[NH(C)]、略称:BTBAS)ガス、(ジイソプロピルアミノ)シラン(SiH[N(C]、略称:DIPAS)ガス等のアミノシラン系ガスを用いることができる。原料ガスとしては、これらのうち1以上を用いることができる。
また、原料ガスとしては、例えば、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシラン系ガスや、テトラフルオロシラン(SiF)ガス、ジフルオロシラン(SiH)ガス等のフルオロシラン系ガスや、テトラブロモシラン(SiBr)ガス、ジブロモシラン(SiHBr)ガス等のブロモシラン系ガスや、テトラヨードシラン(SiI)ガス、ジヨードシラン(SiH)ガス等のヨードシラン系ガスを用いることもできる。すなわち、原料ガスとしては、ハロシラン系ガスを用いることができる。原料ガスとしては、これらのうち1以上を用いることができる。
また、原料ガスとしては、例えば、モノシラン(SiH、略称:MS)ガス、ジシラン(Si、略称:DS)ガス、トリシラン(Si、略称:TS)ガス等の水素化ケイ素ガスを用いることができる。原料ガスとしては、これらのうち1以上を用いることができる。
不活性ガスとしては、例えば、窒素(N)ガスや、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。この点は、後述する各ステップにおいても同様である。
(反応ガス供給ステップ:S5,S6)
原料ガス供給ステップが終了した後、処理室201内のウエハ200に対してプラズマ励起させた反応ガスを供給する(S5)。
このステップでは、バルブ243b~243dの開閉制御を、ステップS3におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。反応ガスは、MFC241bにより流量調整され、ノズル249bを介してガス供給孔250bから処理室201内へ供給される。このとき、高周波電源320から電極300へ高周波電力(RF電力)を供給(印加)する。処理室201内へ供給された反応ガスは処理室201の内部でプラズマ状態に励起され、活性種としてウエハ200に対して供給され、排気管231から排気される。
本ステップにおける処理条件としては、
処理温度:室温(25°)~550℃、好ましくは400~500℃
処理圧力:1~300Pa、好ましくは10~100Pa
反応ガス供給流量:0.1~10slm
反応ガス供給時間:10~100秒、好ましくは1~50秒
不活性ガス供給流量(ガス供給管毎):0~10slm
RF電力:50~1000W
RF周波数:13.56MHzまたは27MHz
が例示される。
上述の条件下でウエハ200に対して反応ガスをプラズマ状態に励起させて供給することにより、プラズマ中で生成されたイオンと電気的に中性な活性種の作用により、ウエハ200の表面に形成された第1層に対して改質処理が行われ、第1層は第2層へ改質される。
反応ガスとして、例えば、酸素(O)含有ガス等の酸化ガス(酸化剤)を用いる場合、O含有ガスをプラズマ状態に励起させることで、O含有活性種が発生し、このO含有活性種がウエハ200に対して供給されることとなる。この場合、O含有活性種の作用により、ウエハ200の表面に形成された第1層に対して改質処理として酸化処理が行わる。この場合において、第1層が、例えばSi含有層である場合、第1層としてのSi含有層は、第2層としてのシリコン酸化層(SiO層)へと改質される。
また、反応ガスとして、例えば、窒素(N)及び水素(H)含有ガス等の窒化ガス(窒化剤)を用いる場合、N及びH含有ガスをプラズマ状態に励起させることで、N及びH含有活性種が発生し、このN及びH含有活性種がウエハ200に対して供給されることとなる。この場合、N及びH含有活性種の作用により、ウエハ200の表面に形成された第1層に対して改質処理として窒化処理が行わる。この場合において、第1層が、例えばSi含有層である場合、第1層としてのSi含有層は、第2層としてのシリコン窒化層(SiN層)へと改質される。
第1層を第2層へと改質させた後、バルブ243bを閉じ、反応ガスの供給を停止する。また、電極300へのRF電力の供給を停止する。そして、ステップS4と同様の処理手順、処理条件により、処理室201内に残留する反応ガスや反応副生成物等を処理室201内から排除する(S6)。
反応ガスとしては、上述のように、例えば、O含有ガスや、N及びH含有ガスを用いることができる。O含有ガスとしては、例えば、酸素(O)ガス、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、過酸化水素(H)ガス、水蒸気(HO)、水酸化アンモニウム(NH(OH))ガス、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いることができる。N及びH含有ガスとしては、アンモニア(NH)ガス、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスを用いることができる。反応ガスとしては、これらのうち1以上を用いることができる。
不活性ガスとしては、例えば、ステップS4で例示した各種ガスを用いることができる。
(所定回数実施:S7)
上述したステップS3,S4,S5,S6をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回、nは1以上の整数)、すなわち、1回以上行うことにより、ウエハ200上に、所定組成および所定膜厚の膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成される第2層の厚さを所望の膜厚よりも小さくし、第2層を積層することで形成される膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。なお、第1層として、例えばSi含有層を形成し、第2層として、例えばSiO層を形成する場合、膜として、シリコン酸化膜(SiO膜)が形成されることとなる。また、第1層として、例えばSi含有層を形成し、第2層として、例えばSiN層を形成する場合、膜として、シリコン窒化膜(SiN膜)が形成されることとなる。
(大気圧復帰ステップ:S8)
上述の成膜処理が完了したら、ガス供給管232c,232dのそれぞれから不活性ガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留する反応ガス等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰:S8)。
(搬出ステップ:S9)
その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。
ここで、基板処理時の炉内圧力は、10Pa以上、300Pa以下の範囲で制御されることが好ましい。これは、炉内の圧力が10Paより低い場合、プラズマのデバイ長よりもガス分子の平均自由工程が長くなってしまい、炉壁を直接叩くプラズマが顕著化するため、パーティクルの発生を抑制することが困難となってしまうためである。また、炉内の圧力が300Paより高い場合、プラズマの生成効率が飽和してしまうため、反応ガスを供給してもプラズマの生成量は変化することがなく、反応ガスを無駄に消費することとなってしまうと同時に、ガス分子の平均自由行程が短くなることで、ウエハまでのプラズマ活性種の輸送効率が悪くなってしまうためである。
以上、本開示の実施形態について具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
また、例えば、上述の実施形態では、原料を供給した後に反応体を供給する例について説明した。本開示はこのような態様に限定されず、原料、反応体の供給順序は逆でもよい。すなわち、反応体を供給した後に原料を供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。
本開示は、ウエハ200上に、SiO膜やSiN膜を形成する場合だけでなく、ウエハ200上に、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)等のSi系酸化膜を形成する場合にも、好適に適用可能である。
例えば、上述したガスの他、もしくは、これらのガスに加え、アンモニア(NH)ガス等の窒素(N)含有ガス、プロピレン(C)ガス等の炭素(C)含有ガス、三塩化硼素(BCl)ガス等の硼素(B)含有ガス等を用い、例えば、SiN膜、SiON膜、SiOCN膜、SiOC膜、SiCN膜、SiBN膜、SiBCN膜、BCN膜等を形成することができる。なお、各ガスを流す順番は適宜変更することができる。これらの成膜を行う場合においても、上述の実施形態と同様な処理条件にて成膜を行うことができ、上述の実施形態と同様の効果が得られる。これらの場合、反応ガスとしての酸化剤には、上述した反応ガスを用いることができる。
また、本開示は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む金属系酸化膜や金属系窒化膜を形成する場合においても、好適に適用可能である。すなわち、本開示は、ウエハ200上に、TiO膜、TiOC膜、TiOCN膜、TiON膜、TiN膜、TiSiN膜、TiBN膜、TiBCN膜、ZrO膜、ZrOC膜、ZrOCN膜、ZrON膜、ZrN膜、ZrSiN膜、ZrBN膜、ZrBCN膜、HfO膜、HfOC膜、HfOCN膜、HfON膜、HfN膜、HfSiN膜、HfBN膜、HfBCN膜、TaO膜、TaOC膜、TaOCN膜、TaON膜、TaN膜、TaSiN膜、TaBN膜、TaBCN膜、NbO膜、NbOC膜、NbOCN膜、NbON膜、NbN膜、NbSiN膜、NbBN膜、NbBCN膜、AlO膜、AlOC膜、AlOCN膜、AlON膜、AlN膜、AlSiN膜、AlBN膜、AlBCN膜、MoO膜、MoOC膜、MoOCN膜、MoON膜、MoN膜、MoSiN膜、MoBN膜、MoBCN膜、WO膜、WOC膜、WOCN膜、WON膜、WN膜、WSiN膜、WBN膜、WBCN膜等を形成する場合にも、好適に適用することが可能となる。
これらの場合、例えば、原料ガスとして、テトラキス(ジメチルアミノ)チタン(Ti[N(CH、略称:TDMAT)ガス、テトラキス(エチルメチルアミノ)ハフニウム(Hf[N(C)(CH)]、略称:TEMAH)ガス、テトラキス(エチルメチルアミノ)ジルコニウム(Zr[N(C)(CH)]、略称:TEMAZ)ガス、トリメチルアルミニウム(Al(CH、略称:TMA)ガス、チタニウムテトラクロライド(TiCl)ガス、ハフニウムテトラクロライド(HfCl)ガス等を用いることができる。
すなわち、本開示は、半金属元素を含む半金属系膜や金属元素を含む金属系膜を形成する場合に、好適に適用することができる。これらの成膜処理の処理手順、処理条件は、上述の実施形態に示す成膜処理と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の実施形態と同様の効果が得られる。
成膜処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
<付記>
以下、本開示の好ましい態様について付記する。
(付記1)
複数の基板を処理する処理容器と、
前記処理容器の外側に設置される少なくとも1つの電極と、
前記処理容器と前記少なくとも1つの電極との距離を調整することが可能な調整部と、
を有する基板処理装置。
(付記2)
付記1の基板処理装置であって、
前記調整部は、前記処理容器と前記少なくとも1つの電極の一部の距離と、前記処理容器と前記少なくとも1つの電極の他の部分の距離とを異ならせることが可能である。
(付記3)
付記1又は2の基板処理装置であって、
前記少なくとも1つの電極は、前記処理容器の壁面に平行に設置される。
(付記4)
付記3の基板処理装置であって、
前記調整部は、前記電極の上部における前記処理容器との距離を調整することが可能である。
(付記5)
付記3又は4の基板処理装置であって、
前記調整部は、前記電極の中央部における前記処理容器との距離を調整する。
(付記6)
付記3~5のいずれかの基板処理装置であって、
前記調整部は、前記電極の下部における前記処理室との距離を調整する。
(付記7)
付記1~6のいずれかの基板処理装置であって、
前記少なくとも1つの電極の一部には、穴が設けられ、前記穴に前記調整部を挿入することにより、前記処理容器と前記少なくとも1つの電極との距離を調整する基板処理装置。
(付記8)
付記1~7のいずれかの基板処理装置であって、
前記少なくとも1つの電極は、高周波電源に接続される第1の電極と、接地される第2の電極と、で構成される。
(付記9)
付記1~8のいずれかの基板処理装置であって、
前記少なくとも1つの電極は、平板形状で形成される。
(付記10)
処理容器の外側に設置され、前記処理容器との距離を調整する調整部を備えた電極。
(付記11)
付記10の電極であって、
前記調整部は、前記処理容器と前記電極の一部の距離と、前記処理容器と前記電極の他の部分との距離とを異ならせることが可能なである。
(付記12)
付記10又は11の電極であって、
前記処理容器の壁面に平行に設置される。
(付記13)
付記12の電極であって、
前記調整部は、上部における前記処理容器との距離を調整することが可能である。
(付記14)
付記12又は13の電極であって、
前記調整部は、中央部における前記処理容器との距離を調整することが可能である。
(付記15)
付記12~14のいずれかの電極であって、
前記調整部は、下部における前記処理容器との距離を調整することが可能なである。
(付記16)
付記10~15のいずれかの電極であって、
一部に穴が設けられ、前記穴に前記調整部を挿入することにより、前記処理容器との距離を調整することが可能である。
(付記17)
付記10~16のいずれかの電極であって、
前記電極は、高周波電源に接続される第1の電極と、接地される第2の電極と、で構成される。
(付記18)
付記10~17のいずれかの電極であって、
前記電極は、平板形状で形成される。
(付記19)
複数の基板を処理する処理容器と、前記処理容器の外側に設置される少なくとも1つの電極と、前記処理容器と前記少なくとも1つの電極との距離を調整する調整部と、を有する基板処理装置の前記処理室容器に前記複数の基板を搬入する工程と、
前記処理容器内に前記電極によりプラズマを生成して、前記複数の基板を処理する工程と、
を備えた半導体装置の製造方法。
(付記20)
複数の基板を処理する処理容器と、前記処理容器の外側に設置される少なくとも1つの電極と、前記処理容器と前記少なくとも1つの電極との距離を調整する調整部と、を有する基板処理装置の前記処理容器内に前記複数の基板を搬入する手順と、
前記処理容器内に前記電極によりプラズマを生成して、前記複数の基板を処理する手順と、
をコンピュータによって前記基板処理装置に実行させるプログラム。
200・・・ウエハ(基板)
201・・・処理室
300・・・電極
310・・・突起部(調整部)

Claims (5)

  1. 複数の基板を処理する処理容器と、
    前記処理容器の外側に設置される少なくとも1つの電極と、
    前記処理容器と前記少なくとも1つの電極との距離を調整することが可能な調整部と、
    を有する基板処理装置。
  2. 前記調整部は、前記処理容器と前記少なくとも1つの電極の一部の距離と、前記処理容器と前記少なくとも1つの電極の他の部分の距離とを異ならせることが可能な請求項1に記載の基板処理装置。
  3. 前記電極は、前記処理容器の壁面に平行に設けられる請求項1又は2に記載の基板処理装置。
  4. 処理容器の外側に設置され、前記処理容器との距離を調整するすることが可能な調整部を備えた電極。
  5. 複数の基板を処理する処理容器と、前記処理容器の外側に設置される少なくとも1つの電極と、前記処理容器と前記少なくとも1つの電極との距離を調整することが可能な調整部と、を有する基板処理装置の前記処理容器内に前記複数の基板を搬入する工程と、
    前記電極により前記処理容器内にプラズマを生成し、前記複数の基板を処理する工程と、
    を備えた半導体装置の製造方法。
JP2021015036A 2021-02-02 2021-02-02 基板処理装置、電極及び半導体装置の製造方法 Pending JP2022118471A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021015036A JP2022118471A (ja) 2021-02-02 2021-02-02 基板処理装置、電極及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021015036A JP2022118471A (ja) 2021-02-02 2021-02-02 基板処理装置、電極及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2022118471A true JP2022118471A (ja) 2022-08-15

Family

ID=82839950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021015036A Pending JP2022118471A (ja) 2021-02-02 2021-02-02 基板処理装置、電極及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2022118471A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175879A (ja) * 1988-12-27 1990-07-09 Tel Sagami Ltd 化学的気相成長方法及び化学的気相成長装置
JP2016046415A (ja) * 2014-08-25 2016-04-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175879A (ja) * 1988-12-27 1990-07-09 Tel Sagami Ltd 化学的気相成長方法及び化学的気相成長装置
JP2016046415A (ja) * 2014-08-25 2016-04-04 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体

Similar Documents

Publication Publication Date Title
KR102242146B1 (ko) 기판 처리 장치, 기판 처리 장치의 전극 및 반도체 장치의 제조 방법
KR101998463B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 기록 매체 및 프로그램
US11072859B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
WO2020053960A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2022201242A1 (ja) 電極、基板処理装置、半導体装置の製造方法およびプログラム
JP2022118471A (ja) 基板処理装置、電極及び半導体装置の製造方法
JP7431210B2 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法、プラズマ生成方法及びプログラム
JP7290680B2 (ja) 基板処理装置、プラズマ生成装置、半導体装置の製造方法、及びプログラム
KR20240017968A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
US20230307212A1 (en) Substrate Processing Apparatus, Electrode Structure and Method of Manufacturing Semiconductor Device
US20240096604A1 (en) Substrate processing apparatus, plasma generation apparatus, method of processing substrate, method of manufacturing semiconductor device, and recording medium
WO2022054855A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR102559937B1 (ko) 기판 처리 장치, 기판 보지부, 반도체 장치의 제조 방법 및 프로그램
WO2021181450A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP2024045002A (ja) 基板処理装置、プラズマ生成装置、プラズマ生成方法、基板処理方法、半導体装置の製造方法およびプログラム
KR20240049346A (ko) 성막 방법, 반도체 장치의 제조 방법, 성막 장치 및 프로그램
CN117747396A (zh) 衬底处理装置、等离子体生成装置、等离子体生成方法、半导体器件的制造方法及记录介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307