JP2022114153A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2022114153A
JP2022114153A JP2021010325A JP2021010325A JP2022114153A JP 2022114153 A JP2022114153 A JP 2022114153A JP 2021010325 A JP2021010325 A JP 2021010325A JP 2021010325 A JP2021010325 A JP 2021010325A JP 2022114153 A JP2022114153 A JP 2022114153A
Authority
JP
Japan
Prior art keywords
heat
work
pair
heat receiving
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021010325A
Other languages
Japanese (ja)
Other versions
JP7463977B2 (en
Inventor
真夕 広瀬
Mayu Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2021010325A priority Critical patent/JP7463977B2/en
Publication of JP2022114153A publication Critical patent/JP2022114153A/en
Application granted granted Critical
Publication of JP7463977B2 publication Critical patent/JP7463977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a cooling device that can efficiently cool a high-temperature cylindrical workpiece.SOLUTION: A cooling device 9 according to the present invention that cools a workpiece by bringing a pair of relatively low-temperature heat receiving blocks 11 and 12 into contact with the outer peripheral surface of a relatively high-temperature cylindrical workpiece 7 includes a pair of heat receiving blocks 11 and 12 and a pair of drive mechanisms 31 and 32. The pair of heat receiving blocks 11 and 12 are opposed to each other in the movement direction orthogonal to the axis of the workpiece 7, and have a plurality of heat receiving portions H capable of contacting the outer peripheral surface of the workpiece 7, and the plurality of heat receiving portions have a semi-cylindrical shape as a whole. The pair of drive mechanisms 31 and 32 reciprocate the pair of heat receiving blocks 11 and 12 between a contact position in contact with the workpiece 7 and a spaced position away from the workpiece 7. Each of the heat receiving blocks 11 and 12 has a plurality of heat-receiving fins, the tips of the heat-receiving fins are respectively the heat receiving portions 11 and 12, and the heat-receiving fins are separated from each other by slits.SELECTED DRAWING: Figure 1

Description

本発明は、冷却装置に関する。 The present invention relates to cooling devices.

従来、高温のワークに受熱体を接触させることでワークを冷却させる冷却装置が知られている。 Conventionally, there has been known a cooling device that cools a work by bringing a heat receiving body into contact with the work at a high temperature.

例えば特許文献1には、LSIとカバーの間を熱的に接続する熱伝導接触子とこれに接するカバーの冷却フィンまたはスリットの構成を、各接触子毎のセル構造とし、カバーの全長にわたるリブを構成し、モジュール外部への伝熱特性を向上させる技術が開示されている。 For example, in Patent Document 1, the structure of the thermally conductive contact that thermally connects between the LSI and the cover and the cooling fins or slits of the cover in contact with this is made into a cell structure for each contact, and the ribs extending over the entire length of the cover are used. and improve heat transfer characteristics to the outside of the module.

特開平7-38020号公報JP-A-7-38020

上記文献には、基板上に搭載したLSIをカバーにより覆い、LSIの発生熱を上記カバーを通してモジュールの外部に放出するタイプのモジュールが示されている。しかし、このモジュールは構造上、LSIのような平面を有しない円筒状のワークには適用できない。 The above document discloses a type of module in which an LSI mounted on a substrate is covered with a cover and heat generated by the LSI is released to the outside of the module through the cover. However, due to its structure, this module cannot be applied to cylindrical workpieces that do not have a flat surface, such as LSIs.

本発明は上述の点に鑑みて創作されたものであり、その目的は、円筒状ワークを効率的に冷却可能な冷却装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been created in view of the above points, and an object thereof is to provide a cooling device capable of efficiently cooling a cylindrical work.

相対的に高温の円筒状のワーク(7)の外周面に、相対的に低温の一対の受熱ブロック(11、12)を接触させ、ワークを冷却する冷却装置(9)であって、一対の受熱ブロック(11、12)と、一対の駆動装置(31、32)と、を備える。 A cooling device (9) for cooling a relatively hot cylindrical work (7) by bringing a pair of relatively low temperature heat receiving blocks (11, 12) into contact with the outer peripheral surface of the work (7). It comprises heat receiving blocks (11, 12) and a pair of driving devices (31, 32).

前記一対の受熱ブロックは、前記ワークの軸に直交する動作方向において互いに対向し、前記ワークの外周面に接触可能な複数の受熱部(H)を有し、前記ワークの軸に直交する断面で前記複数の受熱部の先端を結んだ曲線が円弧状をなす。 The pair of heat-receiving blocks have a plurality of heat-receiving parts (H) that face each other in the movement direction orthogonal to the axis of the work and can contact the outer peripheral surface of the work, and have a cross section orthogonal to the axis of the work. A curved line connecting the tips of the plurality of heat receiving portions forms an arc.

前記一対の駆動機構は、前記ワークに接触する接触位置および前記ワークから離間した離間位置の間で前記一対の受熱ブロックを往復移動させる。 The pair of drive mechanisms reciprocate the pair of heat receiving blocks between a contact position in contact with the work and a spaced position away from the work.

各前記受熱ブロックは、前記動作方向と直交する方向に延びるスリット(S)で隔てられた複数の受熱フィン(F)を有し、各前記受熱フィンの先端が前記受熱部を構成する。 Each heat-receiving block has a plurality of heat-receiving fins (F) separated by slits (S) extending in a direction orthogonal to the movement direction, and the tip of each heat-receiving fin constitutes the heat-receiving portion.

前記一対の前記受熱ブロックが前記ワークを挟み込んだとき、前記受熱フィンが弾性によりしなり、前記受熱部が前記ワークに押し付けられる。 When the pair of heat-receiving blocks sandwich the work, the heat-receiving fins are elastically bent, and the heat-receiving portion is pressed against the work.

これにより、各受熱部が円筒状ワークの外周面に確実に接触することで接触面積をより大きくし、ワークの熱を効率的に受け取ってワーク温度を下げることができる。 As a result, each heat-receiving portion reliably contacts the outer peripheral surface of the cylindrical work, thereby increasing the contact area and efficiently receiving the heat of the work, thereby lowering the work temperature.

本発明の冷却装置の第1実施形態を示す斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view which shows 1st Embodiment of the cooling device of this invention. 図1のワークが冷却装置に挟持されている斜視図。FIG. 2 is a perspective view of the workpiece shown in FIG. 1 sandwiched by a cooling device; 図2の受熱ブロックの(a)ワークからの離間位置、(b)ワークとの接触位置を示す正面図。FIG. 3 is a front view of the heat-receiving block in FIG. 2 showing (a) a position separated from the work and (b) a position in contact with the work; 第2実施形態の受熱ブロックと支持ブロックの空冷部を示す正面図。The front view which shows the heat-receiving block of 2nd Embodiment, and the air-cooling part of a support block. 図4の支持ブロックを示す斜視図。FIG. 5 is a perspective view showing the support block of FIG. 4; 第2実施形態の受熱ブロックと支持ブロックの水冷部を示す正面断面図。FIG. 11 is a front cross-sectional view showing water-cooled portions of a heat-receiving block and a support block according to the second embodiment; 第3実施形態の受熱ブロックと温度制御式の支持ブロックを示す正面断面図。FIG. 11 is a front cross-sectional view showing a heat receiving block and a temperature control type support block according to a third embodiment;

以下、本発明の複数の実施形態による冷却装置を図面に基づき説明する。 Cooling devices according to multiple embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
[冷却対象物]
最初に本発明の冷却対象物について説明する。図1に冷却対象物であるワーク7の模式図を示す。ワーク7は円筒の形状物である。なお、円筒面の一部に溝や凹み等を含むものも円筒状として扱う。このような円筒面は、平面状の受熱体を面接触させて冷却させることが難しい。
(First embodiment)
[Object to be cooled]
First, an object to be cooled according to the present invention will be described. FIG. 1 shows a schematic diagram of a workpiece 7 which is an object to be cooled. The workpiece 7 is cylindrical. In addition, a cylindrical surface including a groove or a dent in a part thereof is also treated as a cylindrical shape. Such a cylindrical surface is difficult to cool by bringing a planar heat-receiving body into surface contact with the surface.

[冷却装置]
図1に第1実施形態の概要を示す。本実施形態の冷却装置9は、相対的に高温の円筒状のワーク7の外周面に、相対的に低温の一対の受熱ブロック11、12を接触させ、前記ワークを冷却する装置であり、一対の受熱ブロック11、12と、一対の駆動機構31、32を備える。図1に示す構成例では、一対の駆動機構31、32は上下方向に動作し、一対の受熱ブロック11、12が上下からワーク7を挟み込む。
[Cooling system]
FIG. 1 shows an overview of the first embodiment. The cooling device 9 of the present embodiment is a device that cools the work by bringing a pair of relatively low-temperature heat receiving blocks 11 and 12 into contact with the outer peripheral surface of the relatively high-temperature cylindrical work 7 . heat receiving blocks 11 and 12 and a pair of drive mechanisms 31 and 32 . In the configuration example shown in FIG. 1, the pair of drive mechanisms 31 and 32 operate vertically, and the pair of heat receiving blocks 11 and 12 sandwich the workpiece 7 from above and below.

一対の受熱ブロック11、12は、ワーク7の軸に直交する動作方向において互いに対向し、ワーク7の外周面に接触可能な複数の受熱部Hを有し、複数の受熱部Hが全体で半円筒状をなす。一対の駆動機構31、32は、ワーク7に接触する接触位置およびワーク7から離間した離間位置の間で一対の受熱ブロック11、12を往復移動させる。本実施形態では、一対の駆動機構31、32は油圧シリンダにより駆動される。 The pair of heat receiving blocks 11 and 12 are opposed to each other in the movement direction perpendicular to the axis of the work 7 and have a plurality of heat receiving portions H capable of contacting the outer peripheral surface of the work 7. Cylindrical. A pair of drive mechanisms 31 and 32 reciprocate the pair of heat receiving blocks 11 and 12 between a contact position in contact with the work 7 and a spaced position away from the work 7 . In this embodiment, the pair of drive mechanisms 31 and 32 are driven by hydraulic cylinders.

図2を参照する。各受熱ブロック11、12は複数の受熱フィンFを有し、各受熱フィンFの先端は受熱部Hであり、受熱フィンF同士はそれぞれスリットSで隔てられている。受熱フィンFの先端にある受熱部Hがワーク7に接触して板バネのようにしなることで弾性力を生じ、これが受熱部Hを付勢してワーク7の外面に押し付ける。 Please refer to FIG. Each heat-receiving block 11, 12 has a plurality of heat-receiving fins F, the tip of each heat-receiving fin F is a heat-receiving portion H, and the heat-receiving fins F are separated by slits S, respectively. The heat-receiving portion H at the tip of the heat-receiving fins F contacts the work 7 and bends like a leaf spring to generate an elastic force, which urges the heat-receiving portion H to press it against the outer surface of the work 7 .

[冷却装置の動作]
図2、図3を参照して冷却装置9の動作を説明する。図3(a)にワーク7を挟持する前の離間位置にある一対の受熱ブロック11、12を示す。本実施形態では、受熱ブロックは左右二つの部品が結合されている。
[Operation of cooling device]
The operation of the cooling device 9 will be described with reference to FIGS. 2 and 3. FIG. FIG. 3(a) shows a pair of heat receiving blocks 11 and 12 at a separated position before sandwiching the workpiece 7. As shown in FIG. In this embodiment, the heat-receiving block is composed of two left and right components.

ワーク固定治具8(図2)に固定された高温のワーク7に対し、受熱ブロック11は駆動機構31に駆動されて下降方向D1に進み、受熱ブロック12は駆動機構32に駆動されて上昇方向D2に進むことで(冷却装置9、駆動機構31、32は図1)、高温のワーク7が一対の受熱ブロック11、12に挟持される。図3(b)にワーク7を挟持する接触位置にある一対の受熱ブロック11、12を模式的に示す。 The heat receiving block 11 is driven by the drive mechanism 31 to move in the downward direction D1, and the heat receiving block 12 is driven by the drive mechanism 32 to move upward with respect to the high-temperature work 7 fixed to the work fixing jig 8 (FIG. 2). By proceeding to D2 (the cooling device 9 and the drive mechanisms 31 and 32 are shown in FIG. 1), the high-temperature workpiece 7 is sandwiched between the pair of heat receiving blocks 11 and 12 . FIG. 3(b) schematically shows a pair of heat receiving blocks 11 and 12 at the contact position holding the workpiece 7. As shown in FIG.

高温のワーク7を挟持した一対の受熱ブロック11、12がワーク7から熱を受け取る(以下「受熱する」ともいう)と、受熱ブロック11は駆動機構31に駆動されて上昇方向D2に進み、受熱ブロック12は駆動機構32に駆動されて下降方向D1に進むことで、一対の受熱ブロック11、12は最初の離間位置に戻り(図3(a))、ワーク7から受け取った熱(以下「受熱」ともいう)を放熱する。一対の受熱ブロック11、12は、温度が下がると再び熱を受け取る工程まで待機する。 When the pair of heat receiving blocks 11 and 12 holding the high-temperature work 7 receives heat from the work 7 (hereinafter also referred to as "heat receiving"), the heat receiving block 11 is driven by the driving mechanism 31 to advance in the upward direction D2 to receive the heat. The block 12 is driven by the drive mechanism 32 to move downward in the direction D1, whereby the pair of heat receiving blocks 11 and 12 return to the initial separated position (FIG. 3(a)), and heat received from the work 7 (hereinafter referred to as "heat ) to dissipate heat. When the temperature of the pair of heat receiving blocks 11 and 12 drops, they wait until the process of receiving heat again.

ここで、互いに接触したワーク7と一対の受熱ブロック11、12を一つの物体とみたとき、この物体内の熱移動は理論式1で表される。式中のQは伝導伝熱量(W、J/s)、λは熱伝導率(W/m・K)、T1は高温側温度(℃)、T2は低温側温度(℃)、dは伝導距離(m)、Sは断面積(m2)を示す。
(理論式1)Q=λ/d×(T1-T2)×S
Here, when the workpiece 7 and the pair of heat receiving blocks 11 and 12 that are in contact with each other are regarded as one object, the heat transfer in this object is expressed by the theoretical formula 1. In the formula, Q is the amount of conductive heat transfer (W, J/s), λ is the thermal conductivity (W/m K), T1 is the high temperature side temperature (°C), T2 is the low temperature side temperature (°C), d indicates the conduction distance (m), and S indicates the cross-sectional area (m 2 ).
(Theoretical formula 1) Q = λ/d × (T 1 - T 2 ) × S

理論式1に基づいて伝導伝熱量Qと断面積S(すなわち接触面積)の関係をみると、他のパラメータが一定の場合、QはSに比例することがわかる。これは効率的な熱伝導をさせるには接触面積を大きくする必要があることを示すものであり、逆に接触面積が大きいほど放熱が良いことを示すものでもある。本発明はこの原理に鑑み、ワーク7と受熱部Hとの接触面積をできるだけ大きくすることを目的とした。 Looking at the relationship between the amount of conductive heat transfer Q and the cross-sectional area S (that is, the contact area) based on theoretical formula 1, it can be seen that Q is proportional to S when other parameters are constant. This indicates that it is necessary to increase the contact area for efficient heat conduction, and conversely, it also indicates that the larger the contact area, the better the heat dissipation. In view of this principle, it is an object of the present invention to increase the contact area between the workpiece 7 and the heat receiving portion H as much as possible.

[第1実施形態の効果]
上記の構成により、外形が曲面で構成されているために平面部を有するワーク向けの冷却装置ではうまく冷却できない円筒状ワークであっても、受熱部Hがより確実にワーク7表面の各所に接触することができ、接触面積を大きくする。その結果、ワーク7と受熱部Hとの接触箇所を介する熱伝導により、高温ワークに蓄積された熱が受熱部Hから受熱フィンFを通って受熱ブロック11、12側に効率的に移動し、ワーク7は相対的に冷却される。
[Effect of the first embodiment]
With the above configuration, the heat-receiving portion H is in contact with various parts of the surface of the workpiece 7 more reliably even for a cylindrical workpiece that cannot be cooled well by a cooling device for workpieces having a flat portion because the outer shape is composed of a curved surface. and increase the contact area. As a result, the heat accumulated in the high-temperature work efficiently moves from the heat receiving portion H to the heat receiving blocks 11 and 12 through the heat receiving fins F due to heat conduction through the contact points between the work 7 and the heat receiving portion H, Work 7 is relatively cooled.

(第2実施形態)
次に図4、図5を参照し、第2実施形態について説明する。第1実施形態とほぼ共通の構成を有するが、受熱ブロック11が取り付けられた支持ブロック21に、ワーク7から受けとった熱を効率的に外部に逃がすためのしくみである空冷部41または水冷部42が設置されるところが異なっている。
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. 4 and 5. FIG. Although it has almost the same configuration as the first embodiment, an air cooling section 41 or a water cooling section 42, which is a mechanism for efficiently releasing the heat received from the workpiece 7 to the support block 21 to which the heat receiving block 11 is attached, is provided. are installed in different places.

[空冷部]
図4に、空冷部41の正面図を、図5に空冷部41の斜視図を示す。ここでは、図1における冷却装置9の上側の構造のみ示す。空冷部41は、離間位置でのワーク7からの受熱を放熱する工程でのブローによる冷却効果を高めるため、支持ブロック21にスリットが多数形成され、ブローされた風との接触面積を増やしている。
[Air cooling section]
FIG. 4 shows a front view of the air cooling section 41, and FIG. 5 shows a perspective view of the air cooling section 41. As shown in FIG. Here, only the upper structure of the cooling device 9 in FIG. 1 is shown. The air cooling part 41 has a large number of slits formed in the support block 21 to increase the contact area with the blown air in order to enhance the cooling effect of the blow in the process of dissipating the heat received from the work 7 at the spaced position. .

図5に示すように、本実施形態の空冷部41は支持ブロック21の途中で行き止まりとなっており、空冷部41の各スリットと平行に風が流れるように、ブロー方向DBにブローすると、風が行き止まりの箇所で効率的に受熱し、上に流されて熱を逃がす。ある設計仕様の支持ブロック21で試算したところ、図4、図5のスリット部分を上下に10メートル毎秒でブローすると、50秒で約30kJの熱を放熱可能である。 As shown in FIG. 5, the air-cooling unit 41 of the present embodiment has a dead end in the middle of the support block 21. When the air-cooling unit 41 blows in the blow direction DB so that the air flows parallel to the slits of the air-cooling unit 41, Efficiently receives heat at dead-end points and is swept upwards to release heat. According to a trial calculation with the support block 21 having certain design specifications, it is possible to dissipate heat of about 30 kJ in 50 seconds by blowing the slit portion in FIGS. 4 and 5 vertically at 10 meters per second.

[水冷部]
図6に、水冷部42の正面断面図を示す。ここでは冷却水の流路は垂直に穿たれ、その流路を通過する平面で切ったときの断面図を示している。同上の設計仕様の支持ブロック21で試算したところ、図6の水冷部42に水を流した場合、空冷の約6分の1の時間で、ブローと同じ約30kJの熱を放熱可能である。
[Water cooling part]
FIG. 6 shows a front cross-sectional view of the water cooling section 42. As shown in FIG. Here, a cooling water flow path is formed vertically, and a cross-sectional view taken along a plane passing through the flow path is shown. According to a trial calculation using the support block 21 having the same design specifications as above, when the water cooling section 42 shown in FIG.

[第2実施形態の効果]
この構成により、受熱ブロックから支持ブロック、さらにその外部へと、ワークからの受熱をより効率的に逃がして放熱できる。その結果、放熱工程に要する時間が短縮され、作業効率が向上する。
[Effect of Second Embodiment]
With this configuration, the heat received from the workpiece can be released more efficiently from the heat receiving block to the support block and further to the outside thereof. As a result, the time required for the heat dissipation process is shortened, and work efficiency is improved.

(第3実施形態)
次に図7を参照し、第3実施形態について説明する。第2実施形態とほぼ共通の構成を有するが、受熱ブロック11が取り付けられた支持ブロック21には、空冷部41や水冷部42の代わりにヒータ51、52が設置されるところが異なっている。本実施形態では、支持ブロック21の底部の温度をモニタするための温度センサ6も併せて設置されている。
(Third embodiment)
Next, with reference to FIG. 7, a third embodiment will be described. Although the configuration is substantially the same as that of the second embodiment, the difference is that the support block 21 to which the heat receiving block 11 is attached is provided with heaters 51 and 52 instead of the air cooling section 41 and the water cooling section 42 . In this embodiment, a temperature sensor 6 for monitoring the temperature of the bottom of the support block 21 is also installed.

[第3実施形態の効果]
上記の構成により、ワークの温度ばらつきが±50℃を超えない範囲に支持ブロック21、受熱ブロック11の温度を調節することができる。本実施形態は、例えば高温のワーク7について材料特性などを考慮し、複数の冷却ステップを用いて、ステップごとのワーク温度を±50℃の範囲に抑えながら順次急冷する必要がある場合に特に有効である。
[Effect of the third embodiment]
With the above configuration, the temperature of the support block 21 and the heat receiving block 11 can be adjusted within a range in which the workpiece temperature variation does not exceed ±50°C. This embodiment is particularly effective when, for example, it is necessary to consider the material properties of the high-temperature work 7 and use multiple cooling steps to sequentially cool the work 7 while keeping the work temperature within the range of ±50 ° C. is.

(その他の実施形態)
上記実施形態では、一対の駆動装置により、一対の受熱ブロックがワークを上下から挟み込む機構としているが、本発明の挟み込み方式はこれに限定されない。前後の工程における作業の接続性、空間の制約などの状況に応じ、例えば左右からワークを挟み込む機構であってもよい。その場合、受熱ブロックのスリットは上下方向に形成され、受熱ブロックが左右からワークを挟み込んだとき、受熱フィンが左右にしなってワークの外周面に接触する。
(Other embodiments)
In the above embodiment, a pair of heat-receiving blocks are driven by a pair of driving devices to sandwich the workpiece from above and below. However, the sandwiching method of the present invention is not limited to this. For example, it may be a mechanism that sandwiches the workpiece from the left and right depending on conditions such as work connectivity and space constraints in the preceding and following processes. In that case, the slits in the heat receiving block are formed in the vertical direction, and when the heat receiving block sandwiches the work from the left and right, the heat receiving fins turn left and right and come into contact with the outer peripheral surface of the work.

また、一対の受熱ブロックがそれぞれロボットアームに装着されており、ロボットアームがワークを挟み込む機構であってもよい。 Alternatively, a pair of heat-receiving blocks may be attached to the robot arms, respectively, and the robot arms may sandwich the workpiece.

その他の実施形態では、一対の駆動装置は油圧シリンダやエア圧シリンダに限定されず、他の駆動装置を用いてもよい。 In other embodiments, the pair of drive devices is not limited to hydraulic cylinders or pneumatic cylinders, and other drive devices may be used.

第2実施形態の空冷部は行き止まり構造を伴うスリット状であるが、空冷部は効率的なブロー冷却に適した形状であればよい。例えば行き止まり構造でなくてもよいし、スリットの代わりに多数の通気孔が設置された構造であってもよい。 Although the air-cooling part of the second embodiment has a slit shape with a dead-end structure, the air-cooling part may have any shape suitable for efficient blow cooling. For example, it may not have a dead-end structure, or may have a structure in which a large number of ventilation holes are provided instead of slits.

第2実施形態の水冷部を通過させる冷媒は流体であればよい。例えば水でなくてもよいし、液体の代わりに熱伝導率の高い特殊な気体を流してもよい。また冷却水の流れる方向DWの向きも図示のものに限定されず、図6と逆方向に流れてもよい。 The coolant passed through the water cooling section of the second embodiment may be any fluid. For example, water may not be used, and a special gas with high thermal conductivity may be used instead of the liquid. Also, the direction DW in which the cooling water flows is not limited to the illustrated one, and the cooling water may flow in the direction opposite to that shown in FIG.

さらに、流路の形状も必要に応じて適宜設計することができる。例えば2つの螺旋スロープ状の空間が接続した複雑な流路であってもよい。 Furthermore, the shape of the flow path can also be appropriately designed as needed. For example, it may be a complicated flow path in which two spiral slope-like spaces are connected.

第3実施形態には、第2実施形態のような空冷部や水冷部を併設することができる。これにより、支持ブロックの温度調節がより機動的に行えるようになる。 The third embodiment can be provided with an air cooling section and a water cooling section as in the second embodiment. Thereby, the temperature control of the support block can be performed more flexibly.

以上、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、さまざまな形態で実施することができる。 As described above, the present invention is not limited to the above embodiments, and can be implemented in various forms without departing from the scope of the present invention.

11、12 受熱ブロック、31、32 駆動装置、7 ワーク
D1 下降方向、D2 上昇方向、F 受熱フィン、H 受熱部、S スリット
11, 12 heat receiving block, 31, 32 drive device, 7 workpiece D1 descending direction, D2 ascending direction, F heat receiving fin, H heat receiving part, S slit

Claims (3)

相対的に高温の円筒状のワーク(7)の外周面に、相対的に低温の一対の受熱ブロック(11、12)を接触させ、前記ワークを冷却する冷却装置(9)であって、
前記ワークの軸に直交する動作方向において互いに対向し、前記ワークの外周面に接触可能な複数の受熱部(H)を有し、前記ワークの軸に直交する断面で前記複数の受熱部の先端を結んだ曲線が円弧状をなす前記一対の受熱ブロックと、
前記ワークに接触する接触位置および前記ワークから離間した離間位置の間で前記一対の受熱ブロックを往復移動させる一対の駆動機構(31、32)と、
を備え、
各前記受熱ブロックは、前記動作方向と直交する方向に延びるスリット(S)で隔てられた複数の受熱フィン(F)を有し、各前記受熱フィンの先端が前記受熱部を構成し、
一対の前記受熱ブロックが前記ワークを挟み込んだとき、前記受熱フィンが弾性によりしなり、前記受熱部が前記ワークに押し付けられる冷却装置。
A cooling device (9) for cooling a relatively high temperature cylindrical work (7) by bringing a pair of relatively low temperature heat receiving blocks (11, 12) into contact with the outer peripheral surface of the work (7),
A plurality of heat-receiving parts (H) facing each other in an operation direction orthogonal to the axis of the work and capable of contacting the outer peripheral surface of the work, and tips of the plurality of heat-receiving parts in a cross section orthogonal to the axis of the work the pair of heat-receiving blocks having an arcuate curve connecting the
a pair of drive mechanisms (31, 32) for reciprocating the pair of heat receiving blocks between a contact position in contact with the work and a spaced position away from the work;
with
Each of the heat receiving blocks has a plurality of heat receiving fins (F) separated by slits (S) extending in a direction perpendicular to the movement direction, and the tip of each of the heat receiving fins constitutes the heat receiving portion,
A cooling device in which, when the pair of heat receiving blocks sandwich the work, the heat receiving fins are elastically bent, and the heat receiving portion is pressed against the work.
前記受熱ブロックは前記ワークから受け取った熱を放熱するように、前記離間位置に移動して空冷または水冷される請求項1に記載の冷却装置。 2. The cooling device according to claim 1, wherein said heat receiving block is air-cooled or water-cooled by moving to said separated position so as to radiate heat received from said work. 前記受熱ブロックにはヒータ(51、52)が設置され、所定の温度範囲に温度調節される請求項1または2に記載の冷却装置。 3. The cooling device according to claim 1 or 2, wherein heaters (51, 52) are installed in said heat-receiving block and the temperature thereof is controlled within a predetermined temperature range.
JP2021010325A 2021-01-26 2021-01-26 Cooling system Active JP7463977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021010325A JP7463977B2 (en) 2021-01-26 2021-01-26 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021010325A JP7463977B2 (en) 2021-01-26 2021-01-26 Cooling system

Publications (2)

Publication Number Publication Date
JP2022114153A true JP2022114153A (en) 2022-08-05
JP7463977B2 JP7463977B2 (en) 2024-04-09

Family

ID=82658555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021010325A Active JP7463977B2 (en) 2021-01-26 2021-01-26 Cooling system

Country Status (1)

Country Link
JP (1) JP7463977B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266144A (en) * 1994-03-25 1995-10-17 Sanyo Mach Works Ltd Work cooling device
JP2000141136A (en) * 1998-11-10 2000-05-23 Mitsubishi Electric Corp Cylindrical member cooling device
US20090097207A1 (en) * 2007-10-09 2009-04-16 Vetco Gray Controls Limited Heat Removal From Electronic Modules
JP2010535417A (en) * 2007-07-30 2010-11-18 株式会社アドバンテスト Electronic component temperature controller
JP2020009817A (en) * 2018-07-03 2020-01-16 Nok株式会社 Heat conductive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266144A (en) * 1994-03-25 1995-10-17 Sanyo Mach Works Ltd Work cooling device
JP2000141136A (en) * 1998-11-10 2000-05-23 Mitsubishi Electric Corp Cylindrical member cooling device
JP2010535417A (en) * 2007-07-30 2010-11-18 株式会社アドバンテスト Electronic component temperature controller
US20090097207A1 (en) * 2007-10-09 2009-04-16 Vetco Gray Controls Limited Heat Removal From Electronic Modules
JP2020009817A (en) * 2018-07-03 2020-01-16 Nok株式会社 Heat conductive sheet

Also Published As

Publication number Publication date
JP7463977B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
US7606036B2 (en) Heat dissipation device
US7090001B2 (en) Optimized multiple heat pipe blocks for electronics cooling
US20050257532A1 (en) Module for cooling semiconductor device
US20130175021A1 (en) Servo amplifier with heat sink having two sets of heat-releasing plates perpendicular to each other
US7448438B2 (en) Heat pipe type heat dissipation device
KR20150119302A (en) Cooling apparatus and cooling apparatus-attached power module using same
US20080101035A1 (en) Heat-dissipating assembly structure
US11252842B2 (en) Composite pin fin heat sink with improved heat dissipation performance
KR102593882B1 (en) Heat dissipation device
US11876036B2 (en) Fluid cooling system including embedded channels and cold plates
US20100206538A1 (en) Thermal module having enhanced heat-dissipating efficiency and heat dissipating system thereof
CN100499977C (en) Heat sink
KR20150075122A (en) Heat exchanger with thermoelectric element
US7401642B2 (en) Heat sink with heat pipes
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
TWI763164B (en) Heat dissipation base
JP2022114153A (en) Cooling device
JP2008106958A (en) Heat exchanger
CN101287347A (en) Heat pipe radiating device
JPH10270616A (en) Apparatus for radiating heat of electronic components
JPH11243289A (en) Electronic equipment
JP4150647B2 (en) Electronic component cooling system
JP4360624B2 (en) Heat sink for semiconductor element cooling
Wirtz Longitudinal fin heat sink performance in arrays of low-profile electronic packages
CN210042686U (en) Dual-heat-dissipation heat dissipation module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240311

R150 Certificate of patent or registration of utility model

Ref document number: 7463977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150